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Resolvent Expansions and Trace Regularizations

for Schrödinger Operators

Michael Hitrik and Iosif Polterovich

Abstract. We provide a direct approach to a study of regularized
traces for long range Schrödinger operators and small time asymptotics
of the heat kernel on the diagonal. The approach does not depend on
multiple commutator techniques and improves upon earlier treatments
by Agmon and Kannai, Melin, and the authors.

1. Introduction

In this paper we continue our study of regularized traces and heat in-
variants for Schrödinger operators, initiated in [7]. In [7], we derived certain
expansions for the heat kernel, and studied asymptotics of trace distribu-
tions for Schrödinger operators with long range potentials. Our results were
based on [12], where expansions for functions of Schrödinger operators were
obtained by means of a certain commutator technique (see also [1]). In [7],
we have shown that the multiple commutators of [12] could be eliminated,
and the expansions could be presented in a much simpler form. Eliminating
the commutators in [7] allowed us to derive explicit formulas for the coef-
ficients of the asymptotics of trace distributions for long range Schrödinger
operators. A similar approach was used earlier for computing the heat in-
variants of Riemannian manifolds in [14], [16]. However, the proofs in [7], as
well as in [14], [16], still relied on the commutator techniques of [1] and [12].

Our purpose here is to reexamine [7], as well as [1] and [12], and to
provide proofs of some of the basic results in these papers, which do not
depend on the commutator techniques. Apart from the technical simplifi-
cations that this approach accomplishes, it also seems that one gains more
insight into the nature of the expansions of [1], [12], and [7]. In particular,
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here the intuition that the above mentioned expansions are instances of a
“noncommutative Taylor’s formula”, in the sense of [9], is justified.

The key ingredient of our approach is a version of the iterated resolvent
identity that we state in Proposition 2.1 below (see also [11]). Using this
identity, we study regularized traces in Section 2, and heat kernel expansions
are then derived in Section 3. We remark that combining the proofs of
Section 3 together with the combinatorial analysis of [16], we get a direct
proof of the formulas for the heat invariants for Schrödinger operators, which
improves the proofs from [15], [16]. In Section 4 we have collected additional
results and remarks pertinent to heat kernel expansions and trace regulari-
zations. In particular, we point out how the formulas for the heat invariants
of [16] can be generalized to the case of matrix Schrödinger operators.

Throughout the paper, we shall make use of some estimates for the free
resolvent, established in [1] and [12]. These estimates are as basic for us
as they were in those papers. Apart from these results, our note is self-
contained.
Acknowledgements. We are grateful to A. Pushnitski for stimulating
discussions on the iterated resolvent identity. We would also like to thank
R. Mazzeo and J. Sjöstrand for helpful advice.

This paper was completed while both authors were visiting the Mittag-
Leffler Institute. Its hospitality and stimulating atmosphere are greatly
appreciated.

2. Trace regularizations for long range potentials

The purpose of this section is to give a direct commutator indepen-
dent approach to the expansions and regularized traces for functions of
Schrödinger operators, studied in [12] and [7].

Let H = −∆ + V (x) in L2(Rn), where V ∈ C∞(Rn) is a real-valued
potential which is bounded on Rn together with all its derivatives. We shall
write H0 = −∆. Introduce the operators Xm, m ≥ 0, recursively by

X0 = I, Xm = −V Xm−1 + [Xm−1,H0], m ≥ 1. (2.1)

An induction argument shows that Xm are differential operators of orders
≤ m− 1, m ≥ 1, with coefficients that are bounded on Rn together with all
derivatives.

Let R(λ) = (H − λ)−1 and R0(λ) = (H0 − λ)−1 be the resolvents of H and
H0, respectively. The following expansion for R(λ) will play the crucial role
throughout the present paper.

Proposition 2.1. For each M = 0, 1, 2, . . . , we have

R(λ) =

M∑

m=0

XmR0(λ)m+1 + R(λ)XM+1R0(λ)M+1. (2.2)
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Here

R(λ)XM+1R0(λ)M+1 = OM (1)
〈λ〉M/2

|Imλ|M+2
: L2 → L2, Im λ 6= 0, (2.3)

and we write 〈λ〉 = (1 + |λ|2)1/2.

Proof: For M = 0, (2.2) becomes the resolvent equation. When proving
(2.2), we may therefore assume that M ≥ 1 and that (2.2) is already proved
for lower values of this number. Thus,

R(λ) =

M−1∑

m=0

XmR0(λ)m+1 + R(λ)XMR0(λ)M , (2.4)

and we only have to check that

R(λ)XMR0(λ)M = XMR0(λ)M+1 + R(λ)XM+1R0(λ)M+1.

In doing so we consider

R(λ)XMR0(λ)M − R(λ)XM+1R0(λ)M+1 (2.5)

=

(
R(λ)XM − R(λ)XM+1R0(λ)

)
R0(λ)M ,

and using the recursive definition (2.1), we see that the expression in the
brackets in the right-hand side of (2.5) is equal to XMR0(λ). This completes
the proof of (2.2). When proving the L2-remainder estimate (2.3), we shall
make use of some results of [12]. Since the order of the differential operator
XM+1 is ≤ M , when estimating the norm on L2 of XM+1R0(λ)M+1, it
suffices to estimate the norm of the operator

R0(λ)M+1 : L2 → HM .

Here HM is the standard Sobolev space on Rn. An application of Proposi-
tion 3.3 in [12] shows that this norm can be bounded from above by

OM (1)
〈λ〉M/2

|Im λ|M+1
, Im λ 6= 0.

Since the norm on L2 of R(λ) does not exceed |Im λ|−1, the estimate (2.3)
follows. ✷

Remark. The iterated resolvent identity (2.2) was proved in [9] in the context
of Banach algebras, and it can also be extracted from the book [13]. In the
terminology of [13], the expansion (2.2) is an instance of a “noncommutative
Taylor’s formula”, see also [9]. The connection between (2.2) and expansions
for the heat kernel of H has been explained in [7], see also Section 3, and
the recent paper [11].



4 MICHAEL HITRIK AND IOSIF POLTEROVICH

Remark. The identity (2.2) should be compared with the standard Neumann
expansion for the resolvent,

R(λ) =

M∑

m=0

(−1)mR0(λ) (V R0(λ))m + (−1)M+1R(λ) (V R0(λ))M+1 , (2.6)

which holds for M = 0, 1, 2, . . . . The point of (2.2), as compared to (2.6),
is in rewriting the sum in (2.6), so that powers of the free resolvent R0(λ)
appear there. The important thing, exploited in this paper, is a simple and
explicit expression for the remainder in (2.2). It is precisely this expression
that allows us to give short and direct proofs of some of the results of [7], [1],
and [12].

In the remainder of this section, we shall assume that V is in the symbol
space S−ε(Rn) for some 0 < ε ≤ 1, so that

∂αV (x) = Oα(1)〈x〉−ε−|α|, x ∈ Rn.

A simple proof by induction using (2.1) shows that then,

Xm =
∑

|α|≤m−1

bmα(x)Dα
x ,

where

bmα(x) ∈ S−εm(Rn). (2.7)

Moreover, as in [7], we find,

Xm =

m∑

k=0

(−1)k
(

m

k

)
HkHm−k

0 . (2.8)

We shall prove the following result.

Theorem 2.2. Let V ∈ S−ε(Rn) for some ε ∈ (0, 1], and set N(ε) =
[n/ε], the integer part of n/ε. Then the operator

ϕ(H) −

N(ε)∑

m=0

(−1)m
Xmϕ(m)(H0)

m!
(2.9)

is of trace class on L2, when ϕ ∈ C∞
0 (R).

The proof of Theorem 2.2 will consist of combining Proposition 2.1 with
estimates for the resolvents and the functional calculus. Our starting point
is the operator Cauchy’s formula of Helffer and Sjöstrand. If ϕ ∈ C∞

0 (R),
then

ϕ(H) =
1

π

∫
∂ϕ̃(λ)R(λ)L(dλ). (2.10)

Here L(dλ) is the Lebesgue measure in C, and ϕ̃ ∈ C∞
0 (C) is an almost

analytic extension of ϕ with support close to that of ϕ — see Chapter 8
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in [6] and references given there. An application of functional calculus in
this form allows us to conclude that

1

π

∫
∂ϕ̃(λ)R0(λ)m+1L(dλ) = (−1)mϕ(m)(H0)/m!,

so that the contribution to ϕ(H) from the sum in (2.2) is equal to

M∑

m=0

1

π
Xm

∫
∂ϕ̃(λ)R0(λ)m+1L(dλ) =

M∑

m=0

(−1)mXmϕ(m)(H0)

m!
.

We get

ϕ(H) =

M∑

m=0

(−1)mXmϕ(m)(H0)

m!
+

1

π

∫
∂ϕ̃(λ)R(λ)XM+1R0(λ)M+1L(dλ).

(2.11)
Here the last integral converges in the L2-operator norm, in view of (2.3)
and the fact that ∂ϕ̃(λ) = O(|Im λ|∞).

When establishing trace class properties of the operator in (2.9), we shall
take M in (2.11) sufficiently large.

Lemma 2.3. Let us put M = N := N(ε). Then the expression

R(λ)XN+1R0(λ)N+1 (2.12)

is an analytic family of trace class operators on L2, for Imλ 6= 0, of the

trace class norm

Oε(1)
〈λ〉N/2+ε(N+1)

|Im λ|N+2+ε(N+1)/2
.

Proof: It follows from (2.7) and the pseudodifferential calculus used in [12],
that

{R(λ)XN+1R0(λ)N+1; Im λ 6= 0}

is an analytic family of pseudodifferential operators whose symbols p(x, ξ, λ)
satisfy the estimates

∂α
x ∂β

ξ p(x, ξ, λ) = Oα,β(1)m(x, ξ)〈x〉−|α|〈ξ〉−|β|,

locally unformly in λ. Here the order function

m(x, ξ) = 〈x〉−ε(N+1)〈ξ〉−N−4 ∈ L1(R2n),

since ε(N + 1) > n, N + 4 > n. The trace class properties of (2.12) follow.
When estimating the trace class norm of (2.12), we shall again make

use of some results of Section 3 of [12], where estimates are derived for
the norms of powers of R0(λ), considered as mappings between weighted
Sobolev spaces. Let us recall from [12] that the weighted space H(µ,ν) is

defined as the set of distributions u ∈ S ′(Rn) such that 〈x〉µ〈D〉νu ∈ L2.
Set

s =
ε(N + 1)

2
>

n

2
.
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It is then true that the trace class norm of the operator XN+1R0(λ)N+1 on
L2 can be estimated from above by a constant (depending on ε) times the
norm of the operator

XN+1R0(λ)N+1 : H(−s,−s) → H(s,s). (2.13)

Now (2.7) shows that

XN+1 = O(1) : H(−s,s+N) → H(s,s),

and when estimating the norm in (2.13), it suffices therefore to estimate the
norm of the mapping

R0(λ)N+1 : H(−s,−s) → H(−s,s+N).

An application of Proposition 3.3 in [12] shows that the latter norm can be
bounded from above by a constant times

〈λ〉N/2+2s

|Im λ|N+s+1
, Im λ 6= 0.

It follows that the trace class norm of R(λ)XN+1R0(λ)N+1 is

O(1)
〈λ〉N/2+2s

|Im λ|N+s+2
,

and recalling the definition of s, we complete the proof. ✷

An application of Lemma 2.3 shows that the integral
∫

∂ϕ̃(λ)R(λ)XN+1R0(λ)N+1L(dλ)

converges in the space of trace class operators, due to the almost analyticity
of ϕ̃. The proof of Theorem 2.2 is complete, in view of (2.11).

Remark. An inspection of the arguments in this section shows that the
operator

e−tH −

N(ε)∑

m=0

tmXme−tH0

m!
, t > 0. (2.14)

is of trace class — see also Theorem 1.2 in [7]. This follows by combining
Proposition 2.3 with Cauchy’s integral formula, expressing e−tH in terms of
R(λ). The asymptotic behaviour of the trace of (2.14), as t → 0+, has been
described in [7].

3. Heat kernel expansions

In this section it will be assumed that V ∈ C∞(Rn) is a bounded real-
valued function all of whose derivatives are bounded. Our purpose here is to
give a direct proof of Theorem 1.1 of [7], relying upon the iterated resolvent
equation (2.2). We recall that in [7], the proof of this result made use of
the explicit expressions for the local heat invariants, derived in [16]. Since
the proof in this section does not depend on the results of [16], we therefore
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obtain a more direct and transparent way of computing the above mentioned
invariants for Schrödinger operators.

We shall prove the following result, which is Theorem 1.1 of [7].

Theorem 3.1. For M = 0, 1, 2, . . ., the following asymptotic represen-

tation of the heat kernel is true, as t → 0+,

e−tH(x, x) =

M∑

m=0

tm

m!

(
Xme−tH0

)
(x, x) + O(t(M+2)/2−n/2), (3.1)

uniformly in x.

In proving (3.1), let us fix A < 0, A < inf Spec (H). Multiplying the
identity (2.2) by e−tλ and integrating over λ from c− i∞ to c + i∞, for any
c ≤ A, we get:

e−tH =

M∑

m=0

tmXme−tH0

m!
+

1

2πi

∫ c+i∞

c−i∞
R(λ)XM+1R0(λ)M+1e−tλdλ, t > 0.

(3.2)
In order to estimate the error term in (3.2), we apply the following result.

Lemma 3.2. If the dimension n = 1, then the kernel of

R(λ)XM+1R0(λ)M+1, M = 0, 1, . . . ,

is a continuous bounded function on R2 depending analytically on λ with

Reλ ≤ A, and such that

R(λ)XM+1R0(λ)M+1(x, x) = O(1)〈λ〉(M+1)/2 |λ|−M−2 , Re λ ≤ A,

uniformly in x.

Proof: This follows directly from Theorem 4.2 of [1]. ✷

For any t ∈ (0, 1), we choose now c = A/t in (3.2), so that λ = (A/t) (1+iη),
η ∈ R. A direct estimate of the kernel of the remainder in (3.2), making use
of Lemma 3.2, then gives

e−tH(x, x) =
M∑

m=0

tm

m!

(
Xme−tH0

)
(x, x) + O(t(M+2)/2−1/2). (3.3)

This proves Theorem 3.1 in the one-dimensional case.

In the case of higher dimensions, we could have followed the idea of [16]
and studied expansions of derivatives of R(λ) with respect to the spectral
parameter — see also the remark at the end of this section. We prefer a
different approach, which has an advantage of being more direct. A straight-
forward computation, performed in Section 2 of [7], shows that, uniformly
in x, we have

tm
(
Xme−tH0

)
(x, x) = O(t(m+1)/2−n/2), m = 1, 2, . . . ,
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and therefore it suffices to prove Theorem 3.1 only for sufficiently large M .
We shall take M > n − 2.

Proposition 3.3. Assume that M ∈ N is such that M > n − 2. Then

the distribution kernel of the operator

R(λ)XM+1R0(λ)M+1 (3.4)

is a continuous and bounded function on R2n depending analytically on λ,

with Re λ ≤ A. We have, uniformly in x,

(
R(λ)XM+1R0(λ)M+1

)
(x, x) = O(1)

〈λ〉(M+n)/2

|λ|M+2
, Reλ ≤ A. (3.5)

In the proof we shall need some estimates for the full resolvent R(λ),
considered as a mapping between the standard Sobolev spaces Hs.

Proposition 3.4. Let s ≥ 0 be a real number and 1 ≤ j be an integer.

For any t ∈ [0, 2j], we have

R(λ)j = Os,t,j(1)
〈λ〉t/2

|λ|j
: Hs → Hs+t, Reλ ≤ A. (3.6)

Proof: It suffices to show that

R(λ) = Os,t(1)
〈λ〉t/2

|λ|
: Hs → Hs+t, t ∈ [0, 2], Reλ ≤ A. (3.7)

In doing so, it will be convenient to apply the adjoint equation of (2.2) with
M = [s] + 1,

R(λ) =

M∑

m=0

R0(λ)m+1X∗
m + R0(λ)M+1X∗

M+1R(λ), Reλ ≤ A. (3.8)

Here X∗
i is the formal adjoint of the differential operator Xi, i = 0, 1, . . . M +

1, and we have also used that R(λ)∗ = R(λ), and similarly for R0(λ). An
application of Lemma 4.1 of [1] shows that

R0(λ) = Os,t(1)
〈λ〉t/2

|λ|
: Hs → Hs+t, Reλ ≤ A,

and

R0(λ)m+1X∗
m = Os,t,m(1)

〈λ〉t/2 |λ|(m−1)/2

|λ|m+1 : Hs → Hs+t, 1 ≤ m ≤ M.

Another application of the same lemma from [1] together with the standard
L2-bound on R(λ) gives

R0(λ)M+1X∗
M+1R(λ) = Os,t(1)

〈λ〉t/2

|λ|2
: Hs → Hs+t, M = [s] + 1.

In view of (3.8), this establishes (3.7) and completes the proof of the propo-
sition. ✷



RESOLVENT EXPANSIONS AND TRACE REGULARIZATIONS 9

Remark. It follows from (2.1), or, alternatively, from (2.8) that the opera-
tors Wm := (−1)mX∗

m satisfy W0 = I, Wm = Wm−1V + [Wm−1,H0]. An
application of Proposition 4.1 of [7] shows that Wm = Vm, where the opera-
tors Vm were introduced in [12] using the multiple commutator technique,
see also [7].

We now come to the proof of Proposition 3.3. It is clear that the operator
in (3.4) has a bounded and continuous kernel, since it is a pseudodiferential
operator of order ≤ −M − 2 < −n. In order to derive pointwise estimates
for the kernel, we shall make use of Theorem 2.1 in [1]. We must therefore
estimate the operator norms of the mappings:

R(λ)XM+1R0(λ)M+1 : L2 → L2, (3.9)

and

R(λ)XM+1R0(λ)M+1 : L2 → HM+2. (3.10)

As in Proposition 2.1, we see that the operator norm in (3.9) can be esti-
mated from above by a constant times

〈λ〉M/2

|λ|M+2
, Reλ ≤ A.

When estimating the norm in (3.10), we notice that an application of Lemma
4.1 of [1] shows that the operator norm of

XM+1R0(λ)M+1 : L2 → HM+2

can be estimated by

OM (1)
〈λ〉M+1

|λ|M+1
.

Now an application of Proposition 3.4 shows that

R(λ) = OM (1)
1

|λ|
: HM+2 → HM+2, Re λ ≤ A,

and we conclude that the operator norm in (3.10) does not exceed

OM (1)
〈λ〉M+1

|λ|M+2
, Reλ ≤ A.

Furthermore, it follows by similar arguments that we have the same bound
on the norm of the L2-adjoint of the operator in (3.10), viewed as mapping
L2 → HM+2. An application of Theorem 2.1 of [1] then shows that the
kernel of (3.4) is

O(1)

(
〈λ〉M/2

|λ|M+2

)1− n

M+2
(
〈λ〉M+1

|λ|M+2

) n

M+2

, Reλ ≤ A,

which is

O(1)
〈λ〉(M+n)/2

|λ|M+2
,
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uniformly on R2n. This completes the proof of Proposition 3.3.

Applying (3.2), we get, for M > n − 2,

e−tH(x, x) =

M∑

m=0

tm

m!

(
Xme−tH0

)
(x, x) (3.11)

+
1

2πi

∫ c+i∞

c−i∞

(
R(λ)XM+1R0(λ)M+1

)
(x, x)e−tλ dλ, t > 0, c ≤ A.

It follows from Proposition 3.3 that the integral in (3.11) converges abso-
lutely for any t ≥ 0, since M + 2 − M/2 − n/2 > 1 for M > n − 2. When
deriving a bound on the integral, we choose c = A/t, 0 < t < 1, as in the
first part of the proof. Another application of Proposition 3.3 shows that
the remainder in (3.11) is

O
(
t(M+2)/2−n/2

)
, t → 0+,

uniformly on Rn. This completes the proof of Theorem 3.1.

Remark. Let l ∈ N be such that l > n/2 − 1. Since
(

d

dλ

)l

R(λ) = l!R(λ)l+1,

it is true that the kernel of the l-th derivative of R(λ) is a continuous bounded
function. Differentiating (2.2) with respect to λ we get

l!R(λ)l+1 =

M∑

m=0

(m + l)!

m!
XmR0(λ)m+l+1 +

(
d

dλ

)l

R(λ)XM+1R0(λ)M+1.

(3.12)
Developing further the arguments used in this section, and, in particular,
making use of the full power of Proposition 3.4, we can also show that for
M = 0, 1, 2, . . . , the kernel of the remainder in the right-hand side of (3.12)
is a continuous and bounded function on R2n depending analytically on λ
with Reλ ≤ A, such that, uniformly in x,
((

d

dλ

)l

R(λ)XM+1R0(λ)M+1

)
(x, x) = O(1)

〈λ〉(M+n)/2

|λ|M+l+2
, Reλ ≤ A.

(3.13)
In the case of Schrödinger operators, the identity (3.12) together with (3.13)
establishes therefore an explicit remainder estimate in the expansion, stated
in Theorem 2.3.1 in [16].

4. Additional results and remarks

In the first part of this section we shall briefly discuss relations between
the trace regularization of Section 2 and a different approach to regula-
rized traces for long range Schrödinger operators, developed in [4], [5], follo-
wing [10]. When V ∈ S−ε(Rn), for some ε > 0, it is proved in [4] that the
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operator

ϕ(H0 + V ) −

N(ε)∑

m=0

1

m!

dm

dεm

∣∣∣∣
ε=0

ϕ(H0 + εV ), N(ε) = [n/ε], (4.1)

is of trace class, for ϕ ∈ C∞
0 (R). (More general perturbations are conside-

red in [4]). We remark that if we choose ϕ(t) = ϕλ(t) = (t − λ)−1, then an
application of (2.6) shows that the operator in (4.1) is equal to

(−1)N(ε)+1R(λ) (V R0(λ))N(ε)+1 ,

and for ε ≤ 1, this clearly is a trace class operator, depending analytically
on λ, Imλ 6= 0. The number of terms that one subtracts from ϕ(H) in (4.1)
to get a trace class operator agrees with that in (2.9) precisely when ε ≤ 1,
while for 1 < ε ≤ n, one has to replace N(ε) in (2.9) by n. This follows from
the arguments of Section 2, if one observes that for V ∈ S−ε(Rn), ε > 0, it
is true that the coefficients of the differential operator Xm are in S−εm(Rn),
where ε = min(ε, 1). The regularization (4.1) is therefore essentially different
from the one in Theorem 2.2. In the terminology of [13], the regularization
(4.1) corresponds to a “noncommutative Newton’s formula”, while (2.9) is
related to Taylor’s formula in the operator setting, see [13].

There is no difficulty in generalizing the results of the previous sections
and of [16] to the case of matrix Schrödinger operators. To formulate the
precise statement, let us consider

H = −∆ ⊗ I + V,

acting on L2(Rn,Cd), where I is the identity operator on Cd and where, for
simplicity, we assume that V is a smooth compactly supported function on
Rn with values in the set of Hermitian d × d matrices. The heat operator
e−tH , t > 0, is a smoothing operator on L2(Rn,Cd), and the heat invariants
Aj(x) are the smooth d × d matrix-valued functions on Rn, arising in the
expansion

e−tH(x, x) ∼ (4πt)−n/2
∞∑

j=0

Aj(x)tj , t → 0+. (4.2)

An inspection of the arguments in Section 3 shows that Theorem 3.1 remains
valid in the case of H — see also [8] for resolvent expansions for much more
general elliptic systems. Indeed, in our case, the operator H has a scalar
constant coefficient principal part H0 = −∆⊗I, and therefore the operation
of commuting with H0 increases the order of a d × d matrix operator by at
most one unit. It follows, as in the scalar case, that the order of the matrix
operator Xm, defined in (2.1), does not exceed m − 1. Combining heat
kernel expansions for H with the combinatorial analysis of [16] leads to the
following closed expressions for the coefficients Aj(x), cf. [2].
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Theorem 4.1. For any integer r ≥ j − 1, the d × d matrices Aj(x),
defined in (4.2) , are given by

Aj(x) = (−1)j
r∑

k=0

(
r + n/2

k + n/2

)
1

4kk!(j + k)!
Hj+k

y

(
d(x, y)2kI

)
|y=x j ≥ 1.

(4.3)
Here I is the identity operator on Cd and d(x, y) is the Euclidean distance

in Rn.

In particular, when n = 1, we get formulas for the matrix KdV hierar-
chy—see [15] for the scalar case.

We shall finally point out how Theorem 4.1 can be generalized to the
case of Laplace type operators, acting on sections of a d-dimensional vec-
tor bundle over some Riemannian manifold M of dimension n. We recall
that an operator of Laplace type L has a scalar leading symbol, and the
computation of the local heat invariants Aj(x) in this case uses (2.2), and
proceeds similarly to the case of the Laplacian on functions in [16]. When
applying (2.2), one replaces the unperturbed part H0 by L0, where L0 is
the principal part of L, with the coefficients frozen at the point x ∈ M , and
the perturbation V is replaced by L − L0. The main difficulty in applying
(2.2) in this case lies in the fact that the principal part of L has variable
coefficients, so that the order of L − L0 is in general no less than the order
of L. This difficulty is resolved in [16] by a more careful study of the or-
ders of the operators Xm, using results of [1]. As a consequence of this, a
formula for the local heat invariants for the Laplacian, similar to (4.3), is
obtained in [16]. There, instead of r ≥ j − 1, one assumes that r ≥ 3j, and
the Euclidean distance d(x, y) in (4.3) is replaced by a Riemannian distance
function — see Theorem 1.2.1 in [16]. The same formula is then also valid
in the case of Laplace type operators.

Remark. It was proved recently in [17], that one can take r ≥ j in the
case of the heat invariants for Laplace type operators. This could also be
seen by our methods, working in geodesic polar coordinates near the point
x, and using that the radial component of L − L0 is an operator of order
one — see [3]. We take this into account in a heat kernel expansion as in
Theorem 3.1, and observe that the heat kernel associated to the operator
L0 is a radial function, since in normal coordinates, L0 = −∆⊗ I, where ∆
is the Euclidean Laplacian. Using these observations, one can infer the fact
that we only need r ≥ j for Laplace type operators.
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