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1 Introduction

In this paper we are going to study some problems arising in inverse scattering
theory for the Schrödinger operator Hpu = −u′′ + pu on the real line. Here p
is a real-valued potential. It will be assumed that x ≤ 0 in the support of p
and that ∫ 0

−∞
(1 + |x|) |p(x)| dx <∞.

In the later part of the paper we shall assume in addition that p decays expo-
nentially at −∞.

The support properties of the potential imply that the right reflection
coefficient r(k) admits a meromorphic continuation to the upper half-plane
C+ = {k ∈ C, Im k > 0} with at most finitely many poles. The inverse
problem under consideration consists of recovery of the potential p from the
sequence {r(in), n = 1, 2 . . .}. This sequence will be referred to as “the data”.
We remark that part of the motivation for studying this problem comes from
an inverse boundary value problem for the Schrödinger operator with radi-
ally symmetric potential in two dimensions. We refer to the paper by J.
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Sylvester [17] for a study of the conductivity equation in the radially sym-
metric case. Working in the scattering theoretical framework, we first prove
that the data determine the potential uniquely.

The main part of the paper is devoted to the problem of recovery of the
potential from some partial data. The question we are addressing is that of
stability of the inverse problem. The general stability estimates in inverse
boundary value problems and inverse scattering at a fixed energy are due to
Alessandrini and Stefanov, see [1], [16], and also [15]. These are logarith-
mic continuous dependence results (see [18] for the precise formulation), and
therefore predict quite a weak form of continuous dependence. In the paper [5]
a related problem is studied and logarithmic type estimates are established.
The main purpose of the present work is to derive a stronger stability estimate
of Hölder type. The estimate obtained applies in particular to the radially
symmetric inverse boundary value problem in two dimensions. It may be in-
teresting to notice that it was believed that, for this problem, a logarithmic
stability estimate would be optimal, see [9].

Our main Theorem 2.2 is obtained by combining two results, which are
independent of each other: Theorem 2.4 and Theorem 2.5. Here in Theorem
2.4 we establish a general stability estimate for potentials in terms of their
reflection coefficients. In Theorem 2.5 we derive Hölder type estimates for the
reflection coefficients. This is possible to do thanks to the exponential fall-
off of our potentials, which guarantees the meromorphic continuation of the
scattering matrix to a strip in the lower half-plane.

The plan of the paper is as follows. In Section 2 we present our main results.
Section 3 is devoted to a review of the basic facts of one-dimensional scattering
theory. In particular, we recall the representation of the reflection coefficients,
as given in [13]. We also show identifiability of the potential from the data.
Theorem 2.4 is proved in Section 4 and Theorem 2.5—in Section 5. Finally,
in Section 6, as an application of the results, we present an inverse boundary
value problem for the Schrödinger operator, and in the case of radial potential
reduce it to the inverse problem, studied in the main part of the paper.

2 Main results

First we shall briefly describe the main notation, used in the paper. Most
distributions that we shall consider will be real-valued. The Fourier transform
will be normalized so that it is given by

û(k) =

∫ ∞
−∞

u(x)e−ixk dx, k ∈ R,

2



when u is in the Schwartz space, and it is extended to the space of temperate
distributions in the usual way. The notation L is used for the space of real-
valued measurable potentials p such that

|| p || =
∫ ∞
−∞

(1 + |x|) |p(x)| dx <∞.

When p is a potential in L, then the right reflection coefficient r = rp is defined
(the precise definition will be recalled in Section 3).

We let now a ≥ 0 be a given number and q ≥ 0 be a function such that
e2a|x|q(x) ∈ L and x ≤ 0 in supp(q). We shall work with the following class of
potentials.

Definition 2.1 Mq is the set of all p ∈ L such that |p| ≤ q and Hp has no
bound states.

We shall also consider potentials having some additional regularity. When
m is a nonnegative integer, introduce the set M

(m)
q which consists of all p ∈Mq

such that p(j) ∈ L when j ≤ m and
∣∣p(j)

∣∣ ≤ q, 0 ≤ j ≤ m.
For p ∈Mq, set

|| p ||a =

∫ 0

−∞
(1 + |x|)e2a|x| |p(x)| dx.

When a = 0, we shall write || p ||0 = || p ||.
The notation C(a) will be used for various constants, depending only on a,

and constants which depend only on || q || will be denoted C(q).

The main result of the paper is the following stability estimate.

Theorem 2.2 Assume that 0 < a ≤ 1/2 and let p1 and p2 ∈ Mq be two
potentials such that

rp1(in) = rp2(in), n = 1, . . . N.

Then the estimate

|| 〈x〉−δ(P2 − P1) ||L2 ≤ CN−a, 〈x〉 = (1 + x2)1/2, δ =
5

2
,

holds. Here

Pj(x) =

∫ ∞
x

pj(t) dt, j = 1, 2

and
C = C(a)C(q) (1 + || q ||a)2 .
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Remark. If we assume in addition that the potentials are uniformly Hölder
continuous, then we can also derive estimates for p1 − p2 in the L∞ norm on
each compact set.

For potentials in M
(m)
q we have a stronger estimate, provided that m is

sufficiently large.

Theorem 2.3 Assume that a > 0 and p1, p2 ∈M (m)
q are such that

rp1(in) = rp2(in), n = 1, . . . N.

Then if m ≥ 2a− 1 the estimate

|| 〈x〉−δ(P2 − P1) ||L2 ≤ CN−a, 〈x〉 = (1 + x2)1/2, δ =
5

2

holds. Here

C = C(a)C(2mq) (1 + || q ||a)2 .

Theorems 2.2 and 2.3 are immediate consequences of the following two
results.

Theorem 2.4 Assume that a ≥ 0 and p1, p2 ∈Mq. Then we have

|| 〈x〉−δ(P2 − P1) ||L2 ≤ C(q)|| rp2 − rp1 ||L2 , δ =
5

2
.

Theorem 2.5 Assume that a > 0 and p1, p2 ∈Mq are such that

rp1(in) = rp2(in), n = 1, . . . N.

If a ≤ 1/2 then the estimate

|| rp2 − rp1 ||L2 ≤ C(a)C(q) (1 + || q ||a)2N−a

holds. When p1, p2 ∈M (m)
q with m ≥ 2a− 1 we have

|| rp2 − rp1 ||L2 ≤ C(a)C(2mq) (1 + || q ||a)2N−a.

Remark. The number δ above may be replaced by any number > 2.
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3 Review of scattering theory

We begin by recalling some important results of scattering theory on the line.
The present state of the theory of (inverse) scattering for the Schrödinger equa-
tion on the real line is described in the articles [2], [3], [13] and the monograph
[11]. Our basic reference here is the paper [13].

Consider the Schrödinger equation

Hpu := −u′′ + pu = k2u, k ∈ R, (3.1)

where p ∈ L. We shall not assume in these discussions that x ≤ 0 in the
support of p.

There exist two functions f(x, k) and g(x, k), such that f and g solve (3.1),
and

f(x, k) = eixk + o(1), x→ +∞,

g(x, k) = e−ixk + o(1), x→ −∞.

We shall say that f and g are the Jost functions. For k ∈ R \ {0}, f(x, k) and
f(x, k) = f(x,−k) are solutions of the same equation (3.1), but with different
boundary conditions at +∞, so they are linearly independent. Therefore, we
can write

ikg(x, k) = a(k)f(x,−k) + b(k)f(x, k), (3.2)

where a(k) and b(k) are uniquely determined. One finds that a(k) = a(−k),
b(k) = b(−k), and that

k2 + |b(k)|2 = |a(k)|2. (3.3)

A combination of (3.2) with its complex conjugate then shows that

ikf(x, k) = a(k)g(x,−k) + b(−k)g(x, k). (3.4)

We shall now introduce the elements of the scattering matrix of p when
k 6= 0. When doing it we notice that, since a(k) 6= 0 by (3.3), it follows that
the functions f and g form a basis of solutions of (3.1). Moreover, they extend
to analytic functions of k in the upper half-plane, continuous in the closure of
that set. Their complex conjugates f(x, k) = f(x,−k) and g(x, k) = g(x,−k)
have natural analytic extensions to the lower half-plane instead. The equations
(3.2) and (3.4) may now be rewritten in the form

f(x,−k) =
ik

a(k)
g(x, k)− b(k)

a(k)
f(x, k), (3.5)

g(x,−k) = −b(−k)

a(k)
g(x, k) +

ik

a(k)
f(x, k),
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where we have expressed the solutions of (3.1) with analytic extensions in k
to C− as linear combinations of those with analytic extensions to C+. Since
f(x, k) was normalized by boundary conditions at +∞, we shall call

r(k) =
b(k)

a(k)
(3.6)

the right reflection coefficient. For similar reasons, b(−k)/a(k) is called the
left reflection coefficient, and the function

t(k) =
ik

a(k)
(3.7)

is the transmission coefficient.

The assertions about analyticity in k ∈ C+ of the functions f and g are
consequences of their integral representations in terms of the intertwining op-
erators between Hp and H0, which we proceed to discuss following [13]. As-
sociated to p, there are two operators A+ = I + R+ and A− = I + R−, with
HpA± = A±H0, such that ±(y − x) ≥ 0 in the support of A±. (Here and
in what follows we identify operators with their distribution kernels.) The
functions R± are continuous up to the boundary in the sets ±(y−x) > 0, and

||R±(x, ·) ||L1 =

∫
|R±(x, y)| dy <∞, (3.8)

for any x. Moreover, ||R±(x, ·) ||L1 → 0 as x → ±∞. It follows from the
properties of R± that f(x,−k) (resp. g(x, k)) is the Fourier transform of
A+(x, y) (resp. A−(x, y)) with respect to the second variable. More precisely,

f(x, k) = eixk +

∫ ∞
x

R+(x, y)eiyk dy, (3.9)

and

g(x, k) = e−ixk +

∫ x

−∞
R−(x, y)e−iyk dy, (3.10)

where k ∈ R.
Apart from functions that are continuous on the whole of R2, we have

R±(x, y) ≡ R±,0(x, y),

where

R+,0(x, y) =

(
1

2

)
θ+(y − x)

∫ ∞
(x+y)/2

p(t) dt,
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and

R−,0(x, y) =

(
1

2

)
θ+(x− y)

∫ (x+y)/2

−∞
p(t) dt, (3.11)

θ+(t) = 1 when t ≥ 0 and 0 otherwise.

These are the leading terms in R±, and one has that the R± satisfy the equa-
tions

R± = R±,0 + Lp,±R±, (3.12)

where Lp = Lp,− is given by

LpT (x, y) =

∫∫
E(x− x′, y − y′)p(x′)T (x′, y′) dx′ dy′,

E(x, y) =
1

2
when x > 0, |y| < |x| and 0 otherwise.

There is a similar expression for Lp,+(x, y). In what follows we shall write
R−,0(x, y) = R0(x, y), R−(x, y) = R(x, y), when no confusion seems possible.
The reason for this is that later the attention will be restricted to potentials
vanishing for x > 0.

In order to describe the growth properties of R(x, y), and, in particular, to
sharpen (3.8), we introduce the increasing functions

u(x) =

∫ x

−∞
|p(t)| dt, v(x) =

∫ x

−∞
u(t) dt.

The solution R of (3.12) is obtained by inverting the operator I − Lp;

R =
∞∑
k=0

LkpR0. (3.13)

Estimating the partial sums in (3.13), one can show that the estimate

|R(x, y)| ≤ 1

2
u

(
x+ y

2

)
exp

(
v(x)− v

(
x+ y

2

))
, y < x, (3.14)

is true, see [11]. It implies that

||R(x, ·) ||L1 =

∫ x

−∞
|R(x, y)| dy ≤ ev(x) − 1.

Another important result ([13], Lemma 4.2) is that

p(x)R(x, y) ∈ L1(R2). (3.15)
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Notice also that if x ≥ a in the support of p, then it is immediate from (3.14)
that

2a− x ≤ y ≤ x in the support of R(x, y). (3.16)

We introduce now the following representations for the functions a and b,
given by Melin [13]: There exist temperate real-valued distributions X and Y
such that

a(k) = X̂(k) and b(k) = Ŷ (k), (3.17)

where X and Y are given by the following explicit formulas

X(y) = δ′(y)−
(

1

2

)(∫ +∞

−∞
p(z)dz

)
δ(y)−

(
1

2

)∫ +∞

−∞
p(z)R(z, z + y) dz,

(3.18)

Y (y) =

(
1

4

)
p
(y

2

)
+

(
1

2

)∫ +∞

−∞
p(z)R(z, y − z) dz. (3.19)

We remark that the expressions for X and Y in [13] were given in terms of the
kernel R+(x, y), but using the identities R+(x, y, p̌) = R(−x,−y, p), Xp̌ = Xp

and Yp̌ = Y̌p, which appear in [13], formula (5.14), it is easy to see that the
representations (3.18) and (3.19) are valid.

For future reference we rewrite now (3.2) in the form

ikg(x, k) = X̂(k)f(x,−k) + Ŷ (k)f(x, k). (3.20)

A combination of (3.16) with (3.18) and (3.19) shows that

chsupp(Y ) ⊂ chsupp(p(·/2)) (3.21)

and
chsupp(X) ⊂ [−2d, 0], (3.22)

if d is the diameter of the support of p. Furthermore,

X(y)− δ′(y) +

(
1

2

)(∫ +∞

−∞
p(z)dz

)
δ(y) ∈ L1 ∩ L∞, (3.23)

and

Y (y)−
(

1

4

)
p
(y

2

)
∈ L1 ∩ L∞. (3.24)

It follows from (3.22) and (3.23) that X̂ extends to an analytic function in
Im k > 0, continuous up to the boundary. We also know that X̂(k) has finitely
many zeros in Im k > 0, all of them simple and situated on the imaginary axis.
Furthermore, iβ is a zero precisely when −β2 is an eigenvalue of Hp.
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We shall now give some symmetry properties of the distributions X and
Y with respect to the one-parameter groups δλp(x) = λ2p(λx), λ > 0 and
τhp(x) = p(x + h), h ∈ R. It follows from (3.11) and (3.13) that Rδλp(x, y) =
λRp(λx, λy). Therefore, the mappings

p→ Xp and p→ Yp

commute with the action of the dilatation group. In other words,

Xδλp = δλXp, Yδλp = δλYp. (3.25)

For the translation group we have instead,

Xτhp = Xp, Yτhp = τ2hYp. (3.26)

We have already observed the important result (3.15), valid for all po-
tentials p ∈ L. Later on we shall concentrate the discussion on the case of
exponentially decaying potentials, and the following proposition will then be
our starting point.

Proposition 3.1 Let e2a|x|p(x) ∈ L for some a > 0, and set

q(x) = e2a|x| |p(x)| .

Then

ea|y|
∫ ∞
−∞
|p(z)Rp(z, z + y)| dz ≤

∫ ∞
−∞

q(z)Rq(z, z + y) dz ∈ L1 ∩ L∞, (3.27)

and

ea|y|
∫ ∞
−∞
|p(z)Rp(z, y − z)| dz ≤

∫ ∞
−∞

q(z)Rq(z, y − z) dz ∈ L1 ∩ L∞. (3.28)

Proof: Since |Rp| ≤ R|p|, we may assume that p ≥ 0. First we shall prove that

p(x)Rp(x, y) ≤ e−2a|x|+a(x+y)q(x)Rq(x, y), (3.29)

for this clearly implies (3.27). We have

R0,p(x, y) ≤ 1

2

∫ (x+y)/2

−∞
e−2a|t|q(t) dt ≤ ea(x+y)R0,q(x, y), y ≤ x,

since |t| ≥ −(x+ y)/2. It suffices then to prove that

LkpR0,p(x, y) ≤ ea(x+y)LkqR0,q(x, y). (3.30)
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However, we have that the following sharper bound is valid,

LkpR0,p(x, y) ≤ ea(x+y)LkpR0,q(x, y). (3.31)

We have just seen that it is true when k = 0, so we assume that k ≥ 1 and
(3.31) has been proved for lower values of k. We have

LkpR0,p(x, y) =

∫∫
E(x− x′, y − y′)p(x′)Lk−1

p R0,p(x
′, y′) dx′ dy′

≤
∫∫

E(x− x′, y − y′)ea(x′+y′)p(x′)Lk−1
p R0,q(x

′, y′) dx′ dy′,

and we only have to notice that

x′ + y′ ≤ x+ y

when x ≥ y and (x′, y′) is in the support of the integrand. This gives (3.27).
When proving (3.28), we obtain from (3.29)

p(z)Rp(z, y − z) ≤ e−2a|z|+ayq(z)Rq(z, y − z) ≤ e−a|y|q(z)Rq(z, y − z),

when y < 0. When y ≥ 0, we notice that y ≤ 2z in the support of p(z)Rp(z, y−
z), and estimating Rp by Rq, we get

p(z)Rp(z, y − z) ≤ e−2a|z|q(z)Rq(z, y − z) ≤ e−a|y|q(z)Rq(z, y − z).

The proof is complete. 2

It follows that when e2a|x|p(x) ∈ L, X̂ = X̂p and Ŷ = Ŷp extend to analytic
functions in the strip S = {k; |Im k| < a}, continuous up to the boundary of
this set. The relation (3.3) extends to S as

k2 + Ŷ (k)Ŷ (−k) = X̂(k)X̂(−k), (3.32)

since X̂(k) = X̂(−k), Ŷ (k) = Ŷ (−k), k ∈ R.

We shall finish this section by discussing potentials p such that x ≤ b in
the support of p for some b <∞. Then (3.21) gives that x ≤ 2b in the support
of Y , and it follows that the reflection coefficient

r(k) =
Ŷ (k)

X̂(k)

has a continuation off the real axis to a meromorphic function in Im k > 0.
We have the following
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Theorem 3.2 If p ∈ L and x ≤ b in the support of p for some b, then p is
uniquely determined by the sequence {r(in), n = N,N + 1, . . .}, where N is an
arbitrary positive integer.

Proof: In view of (3.26) we may assume that b = 0. Let p1 and p2 be two
potentials, satisfying the assumptions above and such that r1(in) = r2(in),
n = N,N + 1, . . .. Put

h(k) = r2(k + iM)− r1(k + iM),

for a sufficiently large positive integer M ≥ N . Then it follows from (3.18),
(3.19) and (3.23), (3.24) that h is a bounded analytic function in C+. Now
it is well known that the zeros {zj} of a function in H∞(C+), which is not
identically zero, satisfy the condition for convergence of a Blaschke product,

∞∑
j=1

Im zj

1 + |zj|2
<∞,

see [4]. Since h(in) = 0, n ≥ N , we have that h must vanish identically.
Therefore, r1(k) = r2(k) in Im k ≥ 0, k 6= 0. The proof is therefore completed
by an application of the following proposition. 2

Proposition 3.3 If p ∈ L and x ≤ b in the support of p, then p is uniquely
determined by the right reflection coefficient r(k).

Proof: This result was first proved in [12], as was kindly pointed out to the
author by Roman Novikov. For the sake of completeness we present here the
simple argument.

We may assume again that b = 0, and then we write

r(k) =
Ŷ (k)

X̂(k)
, Im k ≥ 0, k 6= 0.

The support properties of p imply that x ≤ y ≤ −x in the support of R+(x, y)
and (3.9) therefore gives that f(x, k) is an entire analytic function of k. The
relation (3.20) extends then to Im k > 0 and it follows that Ŷ (k) does not
vanish at the zeros of X̂(k). Thus −β2 is an eigenvalue of Hp precisely when
iβ is a pole of r(k) and the eigenvalues of Hp are determined by r(k).

Consider now the Gelfand-Levitan equation for the right scattering data,

R+(x, y) +Q(x+ y) +

∫ +∞

x

R+(x, t)Q(y + t)dt = 0, y > x, (3.33)
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where the kernel Q(x) is given by

Q(x) =
1

2π

∫ +∞

−∞
eikx

Ŷ (k)

X̂(k)
dk +

N∑
j=1

c+
j e
−βjx, (3.34)

and c+
j are the norming constants, see [13]. It is easy to see that Q(x) = 0

for x > 0 if and only if R+(x, y) = 0 for x > 0. The last condition holds,
since supp(p) ⊂ R−. Now it is clear that the fact that Q(x) = 0 for x > 0
determines the c+

j uniquely. The uniqueness in the proposition follows, since
any p ∈ L is determined by the right reflection coefficient together with the
poles βj and the norming constants c+

j . 2

Remark. We can also find the expression for the norming constants in terms
of the reflection coefficient. Recall from [13] that

c+
j =

(∫ ∞
−∞

f(x, iβj)
2 dx

)−1

.

It follows from (3.20) that when X̂(iβj) = 0, we have

g(x, iβj) =
−Ŷ (iβj)

βj
f(x, iβj),

and, thus,

c+
j =

−iŶ (iβj)

iβj
∫∞
−∞ f(x, iβj)g(x, iβj) dx

.

In view of [13], formula (5.36), we get

c+
j =

−iŶ (iβj)

X̂ ′(iβj)
= −iRes(r(k), iβj). (3.35)

4 Proof of Theorem 2.4

When p ∈ L, the Gelfand-Levitan kernel Q = Qp of p is a continuous function
on R which solves the equation

R+(x, y) +Q(x+ y) +

∫ ∞
x

R+(x, t)Q(y + t) dt = 0, y > x.

We notice that the part of Q which is linear in p equals

−R+,0(x, x+ 0) = −R+(x, x+ 0) = −1

2

∫ ∞
x

p(y) dy = −1

2
P (x).
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We let Q also denote the operator with integral kernel Q(x + y). It will be
clear from the context which interpretation we have chosen. If A+,j = A+,pj

correspond to pj ∈ L, j = 1, 2 and Q1, Q2 are the corresponding Gelfand-
Levitan operators, we have the following general identity.

Proposition 4.1 Assume that pj ∈ L, j = 1, 2. Then

1

2
(P1(x)− P2(x)) =

(
A+,1(Q2 −Q1)A∗+,2

)
(x, x). (4.1)

Proof: We shall make use of the calculus for some classes of operators developed
in Section 3 of [13]. This calculus makes it meaningful to study products
A+,pj (I + Qk) A

∗
+,pl

for arbitrary j, k, l ∈ {1, 2}.
Recall the operator formulation of the Gelfand-Levitan equation, as given

in [13]
A+,j(I +Qj)A

∗
+,j = I, j = 1, 2. (4.2)

Then
A+,1(I +Q1)A∗+,2 = (A∗+,1)−1A∗+,2.

It follows from the calculus developed in [13] that x ≥ y in the support of
(the kernel of) the operator A+,1(I + Q1)A∗+,2, and since this is a continuous
function up to the boundary in the sets ±(y − x) > 0, we have(

A+,1(I +Q1)A∗+,2
)

(x, x+ 0) = 0.

With A+,j = I +R+,j, j = 1, 2 this implies that

0 =
(
(I +Q1)A∗+,2

)
(x, x+ 0) + (R+,1(I +Q1)A∗+,2)(x, x+ 0)

=
(
Q1A

∗
+,2

)
(x, x+ 0) + (R+,1A

∗
+,2)(x, x+ 0) + (R+,1Q1) (x, x)

+
(
R+,1Q1R

∗
+,2

)
(x, x) =

(
Q1A

∗
+,2

)
(x, x) +

(
R+,1R

∗
+,2

)
(x, x)

+R+,1(x, x+ 0) + (R+,1Q1) (x, x) +
(
R+,1Q1R

∗
+,2

)
(x, x).

Here we have written, for example,
(
R+,1R

∗
+,2

)
(x, x + 0) =

(
R+,1R

∗
+,2

)
(x, x),

since it follows easily from the results in [13] that the function
(
R+,1R

∗
+,2

)
(x, y)

is continuous in R2.
Interchanging p1 and p2 and taking the difference of the equations, we

obtain

R+,1(x, x+ 0)−R+,2(x, x+ 0) =
(
Q2A

∗
+,1

)
(x, x)−

(
Q1A

∗
+,2

)
(x, x)

+ (R+,2Q2) (x, x)− (R+,1Q1) (x, x)

+
(
R+,1(Q2 −Q1)R∗+,2

)
(x, x).

13



Here we have used that
(
R+,1R

∗
+,2

)
(x, x) =

(
R+,2R

∗
+,1

)
(x, x) and(

R+,2Q2R
∗
+,1

)
(x, x) =

(
R+,1Q2R

∗
+,2

)
(x, x).

We get

R+,1(x, x+ 0)−R+,2(x, x+ 0) = (Q2 −Q1) (x, x) +
(
Q2R

∗
+,1

)
(x, x)

−
(
Q1R

∗
+,2

)
(x, x) + (R+,2Q2) (x, x)− (R+,1Q1) (x, x)

+
(
R+,1(Q2 −Q1)R∗+,2

)
(x, x) = (Q2 −Q1) (x, x)

+ (R+,1(Q2 −Q1)) (x, x) + (R+,2(Q2 −Q1)) (x, x)

+
(
R+,1(Q2 −Q1)R∗+,2

)
(x, x) =

(
A+,1(Q2 −Q1)A∗+,2

)
(x, x),

since (R+,2(Q2 −Q1)) (x, x) =
(
(Q2 −Q1)R∗+,2

)
(x, x). The proof is complete.

2

Let us write

1

2
(P1(x)− P2(x)) = (Q2 −Q1) (2x) (4.3)

+

∫
R+,1(x, y) (Q2(x+ y)−Q1(x+ y)) dy

+

∫
R+,2(x, y) (Q2(x+ y)−Q1(x+ y)) dy

+

∫
R+,1(x, y)

{∫
R+,2(x, z) (Q2(y + z)−Q1(y + z)) dz

}
dy.

From now on we assume that a = 0 and p1, p2 ∈ Mq. Since Hpj , j = 1, 2
has no bound states, (3.34) gives that

rpj(k) = Q̂j(k). (4.4)

Hence Qj ∈ L2(R) and we have that∣∣∣∣∫ R+,j(x, y) (Q2(x+ y)−Q1(x+ y)) dy

∣∣∣∣ ≤ ||R+,j(x, ·) ||L2||Q2 −Q1 ||L2 .

Estimating the last integral in the right-hand side of (4.3), we see that∣∣∣∣∫ R+,1(x, y)

{∫
R+,2(x, z) (Q2(y + z)−Q1(y + z)) dz

}
dy

∣∣∣∣
≤ ||R+,2(x, ·) ||L2

∫ ∞
x

|R+,1(x, y)|
{∫ ∞

x

|Q2(y + z)−Q1(y + z)|2dz
}1/2

dy

≤ ||R+,1(x, ·) ||L2||R+,2(x, ·) ||L2 ||Qx ||L2 ,
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where Qx(y, z) = Q2(y + z) − Q1(y + z) when x ≤ y, x ≤ z and Qx = 0
otherwise. Since y + z ≤ 0 in the support of Qx, we have

||Qx ||2L2 =

∫∫
x≤y,x≤z,y+z≤0

|Q2(y + z)−Q1(y + z)|2 dy dz

=

∫∫
2x≤t≤0,x≤z≤|x|

|Q2(t)−Q1(t)|2 dt dz ≤ 2 |x| ||Q2 −Q1 ||2L2 .

Therefore we obtain

|P2(x)− P1(x)| ≤ 2 |Q2(2x)−Q1(2x)| (4.5)

+2 (||R+,1(x, ·) ||L2 + ||R+,2(x, ·) ||L2) ||Q2 −Q1 ||L2

+2 (2 |x|)1/2 ||R+,1(x, ·) ||L2 ||R+,2(x, ·) ||L2||Q2 −Q1 ||L2 .

We now come to estimate ||R+(x, ·) ||L2 = ||R+,p(x, ·) ||L2 when p ∈ Mq.
From (3.12) we recall that

R+ = R+,0 + Lp,+R+,

where

R+,0(x, y) =
1

2
θ+(y − x)

∫ ∞
(x+y)/2

p(t) dt,

and

Lp,+T (x, y) =

∫∫
E(x− x′, y − y′)p(x′)T (x′, y′) dx′ dy′,

where

E(x, y) =
1

2
when x < 0, |y| < |x| and 0 otherwise.

Using the Minkowski inequality and the fact that

||E(x, ·) ||L2 ≤ |x|1/2 ,

we get

||R+(x, ·) ||L2 ≤ ||R+,0(x, ·) ||L2 +

∫∫
x≤x′≤0

|x− x′|1/2 |p(x′)R+(x′, y′)| dx′ dy′.

Since

R+,0(x, y) =
1

2

∫
p(z)χx,z(y) dz,

where χx,z is the characteristic function of the set {y;x ≤ y ≤ 2z − x}, we
have

||R+,0(x, ·) ||L2 ≤ || p || |x|1/2 .
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We obtain the estimate

||R+(x, ·) ||L2 ≤
(
|| p ||+

∫∫
|p(x′)R+(x′, y′)| dx′ dy′

)
|x|1/2 (4.6)

≤ C(q) |x|1/2 , x < 0, p ∈Mq.

Here we have used (3.15) together with Lemma 4.2 in [13], which shows that
for any p ∈Mq we have∫∫

|p(x)R+(x, y)| dx dy ≤ ϕ(|| q ||),

where ϕ(s) = 2es(2s2 + s3es). In fact, it follows from the analysis in [7] that∫∫
|p(x)R+,p(x, y)| dx dy ≤ || p ||L1ψ

(∫
|x| |p(x)| dx

)
,

where ψ(s) = 2ess(1 + s). This estimate has the merit of being invariant
under scaling, see (3.25). We shall, however, not be concerned with the exact
values of the constants, depending only on || q || and as in Section 2 we use the
notation C(q) to denote such constants.

Combining (4.5) and (4.6) we obtain

|P2(x)− P1(x)| ≤ 2 |Q2(2x)−Q1(2x)|+ C(q)(1 + |x|)3/2||Q2 −Q1 ||L2 .

This gives

|| 〈x〉−δ(P2 − P1) ||L2 ≤ C(q)||Q2 −Q1 ||L2 , δ =
5

2
,

and in view (4.4) the proof of Theorem 2.4 is complete.

5 Proof of Theorem 2.5

Let a > 0 be a given number and q ≥ 0 be a function such that e2a|x|q(x) ∈ L
and x ≤ 0 in supp(q). The number a and the function q will be kept fixed in the
considerations. In the beginning of this section we shall work with potentials
in the set Mq, introduced in Section 2. We recall the notation

|| p ||a =

∫ 0

−∞
(1 + |x|)e2a|x| |p(x)| dx,

and || p || = || p ||0.
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If p ∈ Mq we let rp denote the corresponding right reflection coefficient.
We are going to derive estimates for rp2 − rp1 when p1, p2 ∈Mq and

rp1(in) = rp2(in), n = 1, . . . N. (5.1)

When p ∈Mq then rp = Ŷp/X̂p is meromorphic in Im k > −a. It is analytic
in the upper half-plane, continuous in Im k ≥ 0, k 6= 0 and it has at most a
pole at the origin. Since |rp(k)| < 1 when k ∈ R\{0} in view of (3.3) and

(3.17), we have that rp is analytic at the origin. We notice that Ŷp is bounded
in Im k ≥ 0 and vanishes at∞ in view of the Riemann-Lebesgue lemma, while∣∣∣X̂p(k)/k

∣∣∣→ 1 as |k| → ∞, Im k ≥ 0. Moreover,
∣∣∣X̂p(k)

∣∣∣ ≥ |k| when k ∈ R in

view of (3.3) and (3.17). It follows therefore from the maximum principle that

|rp(k)| ≤ 1, Im k ≥ 0,

and ∣∣∣X̂p(k)
∣∣∣ ≥ |k| , |krp(k)| ≤ ||Yp ||L1 , Im k ≥ 0. (5.2)

Consider

g(k) =
X̂1(k)X̂2(k)

k
ρ(k) =

Ŷ2(k)X̂1(k)− Ŷ1(k)X̂2(k)

k
, (5.3)

when Xj = Xpj , Yj = Ypj , j = 1, 2 and ρ = rp2 − rp1 . It follows from (3.18)

and (3.19) that X̂j(0) + Ŷj(0) = 0 and therefore g is analytic in Im k > −a. It
is bounded and continuous in the closure of this set and g → 0 as |k| → ∞,
Im k+ a ≥ 0. It is important for us to have an explicit bound on g in terms of
the potentials.

Lemma 5.1 We have

|g(k)| ≤ C(a)C(q) (1 + || q ||a)2 , Im k + a ≥ 0.

Proof: It suffices to estimate |g| from above along the line Im k = −a. When
p ∈Mq and

f(y) = fp(y) =

∫ 0

−∞
p(x)R(x, x+ y) dx,

we shall estimate f̂(k) on Im k = −a. We have∫ 0

−∞
|f(y)| ea|y| dy ≤

∫ 0

−∞
eax |p(x)|

(∫ x

−∞
|R(x, y)| e−ay dy

)
dx.
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Using (3.14), we see that the inner integral does not exceed exp(v(x) + ax)
times ∫ x

−∞
u(y)e−2ay dy ≤

∫ x

−∞

(∫ y

−∞
e−2at |p(t)| dt

)
dy

=

∫ x

−∞
(x− t)e−2at |p(t)| dt ≤

∫ 0

−∞
|t| e−2at |p(t)| dt ≤ || p ||a.

Therefore, ∣∣∣X̂p(k)− ik
∣∣∣ ≤ 1

2
|| p ||+ 1

2
e|| p |||| p || || p ||a, Im k = −a.

Similarly we get∣∣∣Ŷp(k)
∣∣∣ ≤ 1

2
|| p ||a +

1

2
e|| p |||| p || || p ||a, Im k = −a.

Then,

|g(k)| ≤
∣∣∣Ŷ1(k)

∣∣∣+
∣∣∣Ŷ2(k)

∣∣∣+
1

a

(∣∣∣Ŷ1(k)(X̂2(k)− ik)
∣∣∣+
∣∣∣Ŷ2(k)(X̂1(k)− ik)

∣∣∣)
≤ a+ 1

a

(∣∣∣Ŷ1(k)
∣∣∣+
∣∣∣X̂1(k)− ik

∣∣∣+ 1
)(∣∣∣Ŷ2(k)

∣∣∣+
∣∣∣X̂2(k)− ik

∣∣∣+ 1
)

≤ a+ 1

a

(
|| p1 ||a(1 + || p1 ||e|| p1 ||) + 1

) (
|| p2 ||a(1 + || p2 ||e|| p2 ||) + 1

)
≤ a+ 1

a

(
1 + e|| q |||| q ||

)2
(1 + || q ||a)2 = C(a)C(q) (1 + || q ||a)2 .

The proof is complete. 2

The following result is now crucial.

Proposition 5.2 The estimate

|g(k)| ≤ C(a)C(q) (1 + || q ||a)2

(
|k + i|
N

)2a

, k ∈ R

holds.

Proof: Set kn = i(a+ n), n = 1, . . . N and

BN(k) =
N∏
n=1

k − kn
k − kn

,

h(k) = g(k − ia). (5.4)
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Then it follows from (5.1) that h(k)/BN(k) is analytic in Im k > 0 and con-
tinuous in its closure. In view of Lemma 5.1 we have that∣∣∣∣ h(k)

BN(k)

∣∣∣∣ ≤ C(a)C(q) (1 + || q ||a)2

when k ∈ R, and it follows from the maximum principle then that

|h(k)| ≤ C(a)C(q) (1 + || q ||a)2 |BN(k)| , Im k ≥ 0.

Hence
|g(k)| ≤ C(a)C(q) (1 + || q ||a)2 |BN(k + ia)| , k ∈ R,

and the proposition follows from Lemma 5.3 below. 2

Lemma 5.3 We have

|BN(k)| ≤
(
e |k + i(a+ 1)|

N

)2Im k

, Im k > 0.

Proof: The inequality
− log t ≥ 1− t, t > 0,

gives

− log

∣∣∣∣k − kjk − kj

∣∣∣∣2 ≥ 1−
∣∣∣∣k − kjk − kj

∣∣∣∣2 = 4Im k
Im kj∣∣k − kj∣∣2 .

Therefore,

log |BN(k)|2 ≤ −4Im k
N∑
j=1

Im kj∣∣k − kj∣∣2 ≤ −4Im k
N∑
j=1

j

|k + ia+ ij|2

= −4Im k ϕN(k + ia), k ∈ C+,

where

ϕN(k) :=
N∑
j=1

j

|k + ij|2
.

Writing k = α + iβ, we get

N∑
j=1

j

|k + ij|2
≥

∫ N

0

t

α2 + (t+ β + 1)2
dt

=

∫ β+1+N

β+1

t

α2 + t2
dt− (β + 1)

∫ (β+1+N

β+1

dt

α2 + t2

≥ 1

2
log

(
α2 + (β + 1 +N)2

α2 + (β + 1)2

)
− (β + 1)

∫ ∞
β+1

dt

t2

= log

(∣∣∣∣k + i(N + 1)

k + i

∣∣∣∣)− 1 ≥ log

(
N

|k + i|

)
− 1.
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Since
|BN(k)| ≤ exp (−2Im kϕN(k + ia)) , Im k > 0,

the estimate in the lemma follows. 2

Remark. Proposition 5.2 can be generalized to the case of “inaccurate” partial
scattering data. Assume that instead of (5.1) we only have

|rp2(in)− rp1(in)| ≤ δ, n = 1, . . . N (5.5)

for some small δ, and define the functions g and h as in (5.3) and (5.4). By
the Pick-Nevanlinna theory (see [4], p. 138) we can find a bounded analytic
function f in Im k > 0 such that f interpolates the values of h on the sequence
{i(a + n)}, n = 1, . . . N , and which has the minimal H∞−norm. Then the
function h − f vanishes on the sequence {i(a + n)}, n = 1, . . . N , and as in
Proposition 5.2 this gives us a bound on h−f in Im k > 0. The problem is then
to control the function f . We have to estimate the constant of interpolation

MN = sup
|| bn ||∞≤1

inf{|| f ||∞; f(ia+ in) = bn, n = 1 . . . N, f ∈ H∞(C+)},

and this can be done by means of Carleson’s interpolation theorem, see [4].
The following estimate holds

1

ρ
≤MN ≤

A

ρ

(
1 + log

1

ρ

)
, (5.6)

where A is some absolute constant, and

ρ = inf
1≤j≤N

∏
l;l 6=j

∣∣∣∣kj − klkj − kl

∣∣∣∣ , kj = i(a+ j). (5.7)

It is known that except for the value of the numerical constant A, the upper
bound for MN given by (5.6) is sharp, see [4]. Estimating (5.7) we get that
ρ ≥ 1/Ce−CN and then MN ≤ CeCN for some C = C(a). This leads to
estimates of g on the real line under the assumption (5.5).

We also notice that since the constant of interpolation MN is a charac-
teristic of the uniform grid of points {in + ia}, n = 1, . . . N , the bounds on
MN which follow from (5.6) illustrate the degree of ill-posedness of the inverse
problem, which is due to the limited accuracy of the measurements of the data.

We shall now use Proposition 5.2 to obtain an L2 estimate of the function
ρ on a compact subset of the real line. We recall that C(a) denotes various
constants, which depend only on a.
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Proposition 5.4 The estimate∫
|k|≤R

|ρ(k)|2 dk ≤ C(a)C(q) (1 + || q ||a)4

(
ψa(R)

N4a
+

1

N2a

)
(5.8)

is true for any R > 1. Here

ψa(R) =


R4a−1, a > 1/4
logR, a = 1/4
1, 0 < a < 1/4.

Proof: It follows from (5.2) that∣∣∣X̂p(k)
∣∣∣ ≥ |k| , k ∈ R, p ∈Mq,

and then by (5.3) and Proposition 5.2 we get

|ρ(k)| ≤ |k|−1 |g(k)| ≤ C(a)C(q) (1 + || q ||a)2 (|k|+ 1)2a

N2a |k|
. (5.9)

We notice that, when 0 < a < 1/4, then the right-hand side of (5.9) is in L2

near infinity. Then, when ε ∈ (0, 1) and R > 1, we have∫
ε≤|k|≤R

|ρ(k)|2 dk ≤
∫ 1

ε

C(a)C(q) (1 + || q ||a)4

N4ak2
dk

+

∫ R

1

C(a)C(q) (1 + || q ||a)4 k4a−2

N4a
dk

≤ C(a)C(q) (1 + || q ||a)4

(
1

N4aε
+
ψa(R)

N4a

)
.

Combining this inequality with the fact that |ρ(k)| ≤ 2 for |k| ≤ ε and choosing
ε = N−2a, we get therefore∫ R

−R
|ρ(k)|2 dk ≤ C(a)C(q) (1 + || q ||a)4

(
ψa(R)

N4a
+

1

N2a

)
. (5.10)

The proof is complete. 2

We shall finally obtain an estimate of the function ρ(k) in the whole L2(R).
When doing this we recall from (5.2) that

|rp(k)| ≤ ||Yp ||L
1

|k|
≤ C(q)

|k|
, k 6= 0.
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Combining this with (5.8) gives

|| ρ ||2L2 ≤ C(a)C(q) (1 + || q ||a)4

(
ψa(R)

N4a
+

1

N2a
+

1

R

)
, R > 1.

When 1/4 ≤ a ≤ 1/2 we balance the terms in the right-hand side by choosing
R = N and when 0 < a < 1/4 we take R = +∞. This leads directly to the
first statement of Theorem 2.5.

Let us now recall the set M
(m)
q , m ≥ 0, introduced in Section 2. In the

remaining part of this section we shall complete the proof of Theorem 2.5,
deriving stability estimates for rp2 − rp1 when p1, p2 ∈M (m)

q and (5.1) holds.

Proposition 5.5 When p ∈M (m)
q then

||Y (β)
p ||L1 ≤ C(2mq), 0 ≤ β ≤ m.

Proof: It follows from the results in [13] that when p ∈M (m)
q we haveRp(x, y) =

θ+(x− y)Gp(x, y) with Gp ∈ Cm(R2). Our starting point is the estimate

|(∂x + ∂y)Rp| ≤ R2q, p ∈M (m)
q , m ≥ 1. (5.11)

When proving it we let Rp,j denote the contribution to Rp which is homo-
geneous of degree j ≥ 1 in p. In order to prove (5.11) it suffices to show
that

|(∂x + ∂y)Rp,j| ≤ jRq,j ≤ R2q,j, j ≥ 1. (5.12)

We notice that the last inequality follows since Rq,j is homogeneous of degree
j in q and 2j ≥ j.

We have

Rp,1(x, y) =

(
1

2

)
θ+(x− y)

∫ (x+y)/2

−∞
p(t) dt,

and since |p(x)| ≤
∫ x
−∞ |p

′(t)| dt, it follows that

|(∂x + ∂y)Rp,1(x, y)| ≤
(

1

2

)
θ+(x−y)

∫ (x+y)/2

−∞
q(t) dt = Rq,1(x, y), p ∈M (m)

q .

We may assume therefore that j > 1 and (5.12) has already been proved for
lower values of j. Since

Rp,j(x, y) =

∫∫
E(x− x′, y − y′)p(x′)Rp,j−1(x′, y′) dx′ dy′,
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we have

|(∂x + ∂y)Rp,j(x, y)| ≤
∫∫

E(x− x′, y − y′) |p′(x′)Rp,j−1(x′, y′)| dx′ dy′

+

∫∫
E(x− x′, y − y′) |p(x′) (∂x + ∂y)Rp,j−1(x′, y′)| dx′ dy

≤
∫∫

E(x− x′, y − y′)q(x′)Rq,j−1(x′, y′) dx′ dy

+

∫∫
E(x− x′, y − y′)q(x′)(j − 1)Rq,j−1(x′, y′) dx′ dy = jRq,j(x, y),

and this gives (5.12) and therefore (5.11). Similarly, using Leibniz’ rule, we
obtain ∣∣∣(∂x + ∂y)

β Rp,j

∣∣∣ ≤ jβRq,j ≤ R2βq,j, p ∈M (m)
q , β ≤ m,

and then ∣∣∣(∂x + ∂y)
β Rp

∣∣∣ ≤ R2βq, p ∈M (m)
q , β ≤ m. (5.13)

We shall now compute the derivatives of Yp and when doing this we write
Rp(x, y) = θ+(x− y)Gp(x, y), where Gp ∈ Cm(R2). It follows from (3.19) that

Yp(y) =
1

4
p
(y

2

)
+

1

2

∫ 0

y/2

p(z)Gp(z, y − z) dz,

and then

Y ′p(y)− 1

8
p′
(y

2

)
= −1

4
p
(y

2

)
Gp

(y
2
,
y

2

)
+

1

2

∫ 0

y/2

p(z)∂yGp(z, y − z) dz

= −1

4
p
(y

2

)
Gp

(y
2
,
y

2

)
+

1

4

∫ 0

y/2

p(z) ((∂x + ∂y)Gp) (z, y − z) dz

−1

4

∫ 0

y/2

p(z) ((∂x − ∂y)Gp) (z, y − z) dz = −1

4
p
(y

2

)
Gp

(y
2
,
y

2

)
+

1

4

∫ 0

y/2

p(z) ((∂x + ∂y)Gp) (z, y − z) dz − 1

4

∫ 0

y/2

p(z)∂zGp(z, y − z) dz

=
1

4

∫ 0

y/2

p(z) ((∂x + ∂y)Gp) (z, y − z) dz +
1

4

∫ 0

y/2

p′(z)Gp(z, y − z) dz

=
1

4

∫
p(z) ((∂x + ∂y)Rp) (z, y − z) dz +

1

4

∫
p′(z)Rp(z, y − z) dz.

It follows then by induction that

Y (β)
p (y) =

1

2β+2
p(β)

(y
2

)
+

1

2β+1

β∑
γ=0

(
β
γ

) ∫
p(γ)(z)

(
(∂x + ∂y)

β−γRp

)
(z, y−z) dz,

(5.14)
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when p ∈ M (m)
q , β ≤ m. Combining (5.13) and (5.14) we see that Y

(β)
p ∈ L1

when β ≤ m and we have bounds

||Y (β)
p ||L1 ≤ ||Y2mq ||L1 ≤ C(2mq), β ≤ m.

The proof is complete. 2

It follows from (5.2) and Proposition 5.5 that when p ∈M (m)
q we have

(1 + |k|)m+1 |rp(k)| ≤ C(2mq),

and combining it with (5.8) we get

|| ρ ||2L2 ≤ C(a)C(2mq) (1 + || q ||a)4

(
1

N2a
+
ψa(R)

N4a
+

1

R2m+1

)
.

We may assume now that a ≥ 1/2. Then ψa(R) = R4a−1 and we choose R so
that R4a−1 = N2a. If 2m+ 1 ≥ 4a− 1 it follows that

|| ρ ||L2 ≤ C(a)C(2mq) (1 + || q ||a)2 1

Na
.

This completes the proof of Theorem 2.5.

6 A radial inverse boundary value problem

The purpose of this section is to present an inverse boundary value problem
for the Schrödinger operator, and, in the radially symmetric case, relate the
Dirichlet to Neumann map to the right reflection coefficient of one-dimensional
scattering theory. This establishes a link between this inverse problem and the
problem, studied above. In particular, the identifiability of a radial potential
becomes the contents of Theorem 3.2.

6.1 Basic facts on the Dirichlet to Neumann map. A
simple example

Let Ω be a smooth bounded domain in Rn, n ≥ 2, and consider the following
elliptic boundary value problem{

(−∆ + v)u = 0 in Ω,
u = f on ∂Ω.

(6.1)

In order to define the Dirichlet to Neumann map, we recall the following solv-
ability result.
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Theorem 6.1 Let Ω be a bounded domain in Rn with a smooth boundary.
Suppose that v ∈ L∞(Ω) is real-valued, and that zero is not a Dirichlet eigen-
value of −∆ + v in Ω. Then for every f in H3/2(∂Ω) there is a unique u in
H2(Ω) which solves (6.1). The Poisson operator P (v)f =: u satisfies

||P (v)f ||H2(Ω) ≤ C||f ||H3/2(∂Ω). (6.2)

Proof: The proof follows from the general theory of elliptic boundary value
problems and can in this particular case be found in Grisvard [6]. 2

If the conditions of the theorem are fulfilled, we may introduce the Dirichlet
to Neumann map

N(v) : H3/2(∂Ω) 3 f 7−→ ∂u

∂n

∣∣∣
∂Ω
∈ H1/2(∂Ω),

where n is the outer unit normal to the boundary. The Sobolev trace theorem
together with (6.2) shows that

||N(v)f ||H1/2(∂Ω) ≤ C|| f ||H3/2(∂Ω).

It is known that when v ∈ C∞(Ω), N(v) is a first order classical elliptic
pseudo-differential operator and it follows from Green’s theorem that N(v) is
symmetric. Hence the self–adjoint extension of N(v) has discrete real spec-
trum. We refer the reader to Lee and Uhlmann [10] where the full symbol of
N(v) is analyzed in some local coordinates.

The inverse boundary value problem consists of the study of the map v 7−→
N(v) and its inverse, when it exists. Let us illustrate it by studying a very
simplified version of the inverse problem. We shall take v = λ, a constant, and
Ω = D, the unit disc, and examine to what extent knowledge of the Dirichlet
to Neumann map N(v) allows us to determine this constant. In order to have
the unique solvability of the boundary value problem (6.1) we assume that −λ
lies below the spectrum of the Dirichlet Laplacian on D.

We set now v(x) = λ > 0 and consider{
−∆u+ λu = 0 in D,
u = f on ∂D.

(6.3)

Assuming that f is constant, we shall find the radial solution to this problem.
Let J0 denote the Bessel function of the first kind of order 0 and I0 denote

the modified Bessel function, corresponding to J0 (i.e. I0(r) = J0(ir)). The
function I0 is positive on the positive real axis and solves the equation

−d
2I0

dr2
− 1

r

dI0

dr
+ I0 = 0.
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It follows that the function

uλ(r) =
f

I0(
√
λ)
I0(
√
λr)

is the solution of the Dirichlet problem (6.3). We have also

I0(
√
λ) =

∞∑
p=0

λp

4p(p!)2
.

Then
N(v)f = (∂ruλ) (1) = ψ(λ)f,

where

ψ(λ) =
I ′0(
√
λ)
√
λ

I0(
√
λ)

Thus the Dirichlet to Neumann map, restricted to constant functions, is
given as a multiplication by ψ(λ). We have the following theorem.

Theorem 6.2 ψ(λ) is strictly increasing on the interval (0,∞).

Proof: Set λ = es and g(s) = ϕ(λ) = I0(
√
λ). Then

1

2
ψ(λ) =

λϕ′(λ)

ϕ(λ)
=
g′(s)

g(s)
= (log g(s))′,

and it is enough to show that log g is strictly convex. In view of Lemma 1.2.8
in [8] this follows from the fact that the function

ecsg(s) =
∞∑
j=0

e(c+j)s

4j(j!)2
,

is strictly convex for any c. 2

6.2 The Dirichlet to Neumann map in the radial case

Consider {
−∆u+ v(r)u = 0 in D,
u = f on ∂D.

(6.4)

We assume that v is a bounded radial function, such that 0 is not a Dirichlet
eigenvalue of −∆ + v in D.
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For n ∈ Z, we let Πn be the orthogonal projection of L2(D) onto the
subspace L2

n(D) consisting of functions which in polar coordinates have the
form ρ(r)einϕ. We notice that

(Πnu) (z) =
1

2π

∫ π

−π
u(zeiθ)e−inθ dθ, z ∈ D.

The corresponding spaces of functions on the boundary are denoted L2(∂D)
and L2

n(∂D). The latter space is one-dimensional. We also let Π0
n : L2(∂D)→

L2
n(∂D) be the orthogonal projection.

The operator Πn commutes with −∆+v(r), and the Sobolev spaces Hs(D)
are invariant under Πn for each s ≥ 0. Since(

∂

∂r
Πnu

) ∣∣∣
∂D

= Π0
n

(
∂u

∂r

∣∣∣
∂D

)
,

it is also true that Π0
n commutes with the Dirichlet to Neumann map N(v).

We may therefore write N(v) as a direct sum

N(v) =
⊕
n∈Z

Nn(v),

where Nn(v), for each n, is a linear operator on the one-dimensional space
L2
n(∂D), and is therefore given by a number. These numbers are real and

Nn(v) = N−n(v), since v is real. We may compute Nn(v) by noticing that

−∆u+ vu =

(
−ρ′′(r)− 1

r
ρ′(r) + (n2/r2 + v(r))ρ(r)

)
einϕ,

when u ∈ L2
n(D) equals ρ(r)einϕ in polar coordinates. If −∆u + vu = 0, then

we have ρ′(1) = Nn(v)ρ(1).
It is convenient now to introduce new coordinates. We write r = es, −∞ <

s < 0, and set h(s) = ρ(r). Then we have

−h′′(s) + p(s)h(s) = −n2h(s), −∞ < s < 0. (6.5)

where p(s) = e2sv(es). A basis h±n of solutions of the equation (6.5) for n 6= 0
is defined by the condition h±n (s) ∼ e±ns, as s → −∞. When n = 0, then
a basis h±0 satisfies h+

0 ∼ 1 and h−0 grows linearly at −∞. If n ≥ 0, then,
since u is locally bounded, we have that u(reiϕ) is proportional to h+

n (s)einϕ,
if −∆u + vu = 0, and u ∈ L2

n(D). We write therefore hn(s) = h+
n (s), n ≥ 0,

and it follows that h′n(0) = Nn(v)hn(0). Since we have assumed that ρ(1) 6= 0,
we have the following proposition.
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Proposition 6.3 In the radially symmetric case the Dirichlet to Neumann
map N(v) and the sequence {

h′n(0)

hn(0)

}∞
n=0

(6.6)

carry the same information.

Using Proposition 6.3 we shall now relate the Dirichlet to Neumann map
to the right reflection coefficient of the potential p(s), extended as zero to
the positive half line. Recall the left Jost function g(x, k), defined by (3.10).
We observe that the restriction of g(x, in) to the negative axis solves (6.5) for
n = 0, 1, 2, . . ., and since g(x, in) ∼ enx at −∞, the knowledge of the Dirichlet
to Neumann map N(v) is equivalent to the knowledge of the sequence

µ(in) =
g′(0, in)

g(0, in)
, n = 0, 1, 2 . . .

Recall from (3.20) that

ik g(x, k) = X̂(k) f(x,−k) + Ŷ (k) f(x, k), k ∈ R. (6.7)

Since
f(x, k) = eixk for x > 0,

we immediately obtain

ikg(0, k) = X̂(k) + Ŷ (k),

g′x(0, k) = Ŷ (k)− X̂(k).

This extends to Im k > 0, since both sides here are analytic in Im k > 0 and
continuous in the closure of this set. We get

r(k) =
ik + µ(k)

ik − µ(k)
, Im k > 0. (6.8)

The discussion above can be summarized in the following proposition.

Proposition 6.4 If v = v(r) and we consider −∆ + v(r) on the unit disc in
two dimensions, then the knowledge of the Dirichlet to Neumann map N(v)
implies the knowledge of the sequence {rp(in)}, where n = 1, 2 . . . and p(s) =
e2sv(es) for s ≤ 0 and zero otherwise.

Remark. The exponential decay of the potential p is of fundamental importance
when deriving the stability estimates in Section 5.

From Theorem 3.2 we now get a uniqueness result for the radially symmet-
ric inverse boundary value problem.
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Theorem 6.5 If D is the unit disc in the plane and v(r) ∈ L∞(D) is a radial
potential, then v is uniquely determined by its Dirichlet to Neumann map N(v).

Remarks:
1. The uniqueness was proved in [14] for potentials of the form v = ∆u/u,
with u ∈ W 2,p(Ω), u > 0, for some p > 1 on arbitrary domains Ω. However, as
pointed out in [19], the corresponding result for a general potential v ∈ L∞(Ω)
in two dimensions is unknown.

2. We notice that Theorem 2.2 together with Propositions 6.3 and 6.4
provides us with Hölder type stability estimates for the radially symmetric
inverse boundary value problem. More precisely, suppose that a bounded
radial potential v is such that the Schrödinger operator Hp, with p defined
as in Proposition 6.4, has no bound states. (This is always the case if v is
nonnegative, for example.) Then the partial Dirichlet to Neumann data{

h′n(0)

hn(0)

}N
n=0

.

determines v (in a suitable norm as given by Theorem 2.2) up to an error of
order N−1/2.

3. Assume that the radial potential 0 ≤ v(r) is such that v ∈ Ck[0, 1],
v(j)(1) = 0, j ≤ k, for some k, and v vanishes near the origin. Then in view
of Theorem 2.3 together with Proposition 6.4 it follows that the exponent in
the stability estimates for v can be taken as large as we wish provided that k
is sufficiently large. This can be considered to reflect the fact that the part of
a smooth potential near the centre of the disc is the most difficult to recover.
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