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Abstract

The Schr0odinger operator with a compactly supported magnetic 1eld is shown to produce in1nitely many
resonances, in any odd dimension¿ 3. The proof is based on the Poisson formula for resonances and properties
of the magnetic heat invariants.
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1. Introduction

The purpose of this note is to show the existence of in1nitely many resonances for the magnetic
Schr0odinger operator in Rn; n¿ 3 odd, with a nonvanishing compactly supported magnetic 1eld.
As in previous works on the existence of resonances in odd dimensions, see [15–17], this result
is a consequence of the Poisson formula for resonances and an explicit expression for the second
heat coe;cient for the magnetic Schr0odinger operator. This expression appears to be essentially well
known in the literature—see [5,14,18]. The latter paper also contains a discussion of the physical
signi1cance of the 1rst heat coe;cients in electromagnetic scattering. In this note we shall take an
opportunity to outline how the approach of [13] (see also [6]) leads to closed formulas for all the
heat coe;cients for the magnetic Schr0odinger operator.

When a1; : : : ; an are real-valued C∞-functions on Rn; n is odd¿ 3, we introduce the corresponding
1-form a =

∑n
j=1 aj dxj, the magnetic potential, and consider the magnetic Schr0odinger operator

Ha =
n∑

j=1

(Dj + aj)2; (1.1)
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where Dj =−i9j. It describes a scalar non-relativistic particle without a spin in an external magnetic
1eld. The magnetic 1eld here is the 2-form B which is de1ned as

B = da =
n∑

j; k=1

9aj
9xk dxk ∧ dxj =

1
2

n∑
j; k=1

Bj;k dxj ∧ dxk ;

where Bkj = −Bjk . Obviously,

B =
∑
j¡k

Bjk dxj ∧ dxk ;

and

Bjk =
9ak
9xj − 9aj

9xk :

We introduce a norm of B de1ned as follows,

‖B‖ =


∑

j¡k

|Bjk |2



1=2

: (1.2)

Throughout the paper we shall assume that the magnetic 1eld B is compactly supported, so that
Bjk ∈C∞

0 (Rn). The magnetic potential a can then be chosen to be of compact support as well, since
the dimension n �= 2. This follows from the fact that the second de Rham cohomology group with
compact support H 2

c (Rn) vanishes when n �= 2—see [2] for this familiar topological result. In what
follows we shall therefore work with operator (1.1), with aj ∈C∞

0 (Rn); j = 1; : : : ; n.
The operator Ha, de1ned on C∞

0 (Rn), is essentially self-adjoint, non-negative, and the spectrum of
Ha is purely absolutely continuous, 1lling the positive half-axis [0;∞). Much more general essentially
self-adjoint perturbations of the Euclidean Laplacian H0 = −� were considered in [4].

Let

R(�) = (Ha − �2)−1 :L2(Rn) → L2(Rn); Im �¿ 0;

be the (modi1ed) resolvent of Ha. It is then well-known, see [19], that R(�) continues meromorphi-
cally to the entire complex plane, as an operator

R(�) :L2
comp(Rn) → L2

loc(Rn);

with the poles of 1nite rank. The poles of R(�) are called resonances or scattering poles, and they
constitute a natural replacement of discrete spectral data for problems on unbounded domains. It is
a consequence of the gauge invariance of the operator Ha that the set of resonances of Ha does not
depend on the choice of the magnetic potential a, provided that the magnetic 1eld B is kept 1xed.
Namely, if a; a′ ∈C∞

0 are two magnetic potentials with da = da′ = B, then by the PoincarJe lemma
we know that a′ = a+ d’, where ’∈C∞ is de1ned up to an additive constant and can be assumed
to be real-valued. Then the operators Ha′ and Ha are related by

Ha′ = e−i’Haei’;

and thus have the same scattering poles. It is therefore natural that the condition on the existence
of resonances should be given in terms of B, rather than a.
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Theorem 1.1. Let n¿ 3 be odd. Assume that the magnetic 3eld B is a compactly supported smooth
2-form on Rn which does not vanish identically. Then the operator Ha has in3nitely many reso-
nances.

As in [15–17], the method that we use to prove Theorem 1.1 is non-constructive, and therefore
the result is far from the optimal upper bounds on the density of resonances of Ha in large discs,
established in [19].

2. Proof of Theorem 1.1

As pointed out in the Introduction, the proof of Theorem 1.1 depends on the explicit expression
for the second heat coe;cient for Ha. In the beginning of this section we shall therefore recall
this expression and make some remarks on how its structure can be deduced from some general
considerations.

When t ¿ 0, it follows from [14] that the operator

e−tHa − e−tH0

is of trace class, and as t → 0+, there is an asymptotic expansion of the form

tr(e−tHa − e−tH0) ∼ (4�t)−n=2
∞∑
j=1

bjtj: (2.1)

We shall refer to the coe;cients bj as the heat invariants, or heat coe;cients, of Ha. While for our
purposes we shall only need an expression for b2, the following proposition gives a closed formula
for the general heat coe;cient.

Proposition 2.1. We have that bj =
∫
bj(x) dx; where bj(x)∈C∞

0 (Rn) are given by

bj(x) = (−1)j
j∑

k=0

(
j + n=2
k + n=2

)
Hk+j

a (�x(y)2k)|y=x

4kk!(k + j)!
: (2.2)

Here �x(y) is the Euclidean distance between the points x; y∈Rn; and the binomial coe6cients
are given by(

j + n=2
k + n=2

)
=

�(j + (n=2) + 1)
(j − k)!�(k + (n=2) + 1)

:

Proof. This result follows from the proof in [13; Theorem 1.2.1]; and we shall merely indicate how
to extract it from that paper. In [13]; closed formulas are derived for the local heat invariants for
the Laplace–Beltrami operator on a smooth Riemannian manifold. This is achieved by means of
the Agmon–Kannai expansion for the kernel of (a power of) the resolvent of the Laplace–Beltrami
operator; see [1]. Now the same approach can be applied to the Schr0odinger operator with a magnetic
1eld—see [6] for applications to non-magnetic Schr0odinger operators; also with long-range potentials.
An inspection of the arguments of [13] then leads to (2.2).
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An explicit computation using Proposition 2.1 then shows that b1 = 0, in agreement with [18].
When computing the coe;cient b2 by means of Proposition 2.1 in dimension 3, it is convenient
to implement Formula (2.2) using the Maple software. As a result, we get a several lines long
expression, which is readily seen to be equal to

b2 = −1
6

∫
‖B‖2 dx: (2.3)

Here the norm of B has been de1ned in (1.2). This result is also in agreement with [18], and
moreover from [5,18] we know that (2.3) is true in any dimension. Therefore, b2 ¡ 0, unless the
magnetic 1eld vanishes identically.

Remark. The following argument indicates that the expression for the coe;cient b2 in (2.3) has
the correct physical dimension to match the factor t−(n=2)+2; in front of which it appears in (2.1).
Here we use the units related to the heat equation; where the time t has the dimension of units of
length squared; [m]2. From (1.1) we know that the magnetic potential has the dimension of [m]−1;
and it follows from (1.2) and (2.3) that the dimension of ‖B‖2 is [m]−4. Therefore; the dimension
of the second heat coe;cient b2 is [m]−4+n; which matches precisely the power t−(n=2)+2. Notice
also that the heat coe;cients bj are de1ned through (2.1) and therefore do not depend on the
choice of the magnetic potential; provided that the magnetic 1eld B is kept 1xed. The local densities
bj(x); de1ned in (2.2); are therefore polynomials in Bjk and its derivatives; and we see immediately
that the only contributions to b2(x); which have non-vanishing integrals and the correct dimension;
must be proportional to |Bjk |2. This determines the heat coe;cient b2 up to a numerical constant;
whose value can be obtained; e.g.; from the computation using the Maple program; mentioned
above.

Remark. In the context of Schr0odinger operators without a magnetic 1eld; explicit expressions for
the 1rst two heat coe;cients can be obtained from the Feynman–Kac formula for the heat kernel
by a means of straightforward computation—see [6; Section 2]. It would therefore be interesting to
compute the 1rst several heat coe;cients for the magnetic Schr0odinger operator Ha by means of
the Feynman–Kac–Itô formula; see [3]. The computational complexity here could be smaller than in
computations based on Proposition 2.1.

We shall now turn to the proof of Theorem 1.1. This will follow closely the arguments of [17]
with further improvements from [22], and for the sake of completeness we shall recall the main
steps here. The starting point in the proof of Theorem 1.1 is the Poisson formula for resonances,
originally established in [9,10] for scattering by obstacles, in the framework of the Lax–Phillips
scattering theory. It was then extended in [20] to the general situation of “black box” scattering,
which includes the case of the magnetic Schr0odinger operator. A proof of the Poisson formula not
relying upon the Lax–Phillips theory was given in [21], which is our basic reference.

The property of 1nite propagation speed for supports of solutions to the wave equation implies
that we can de1ne a distribution

u(t) = 2 tr(cos t
√

Ha − cos t
√

H0)∈D′(R);
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so that

〈u(t); ’〉 = 2 tr
∫

’(t)(cos t
√

Ha − cos t
√

H0) dt; ’∈C∞
0 (R):

The Poisson formula, see [21], then states that in D′(R\{0}) it is true that

u(t) =
∑

e−i�j|t|: (2.4)

Here the summation is performed over the set of all resonances {�j}, counted according to their
multiplicity. The sum in (2.4) converges in the sense of distribution theory, in view of the polynomial
upper bounds on the number of resonances in large discs, see [19].

Assume now that Ha has no resonances. Then it follows from (2.4) that u(t) is supported by
the origin. Now it is well known that the asymptotic expansion of u(t) for small t, which can be
obtained from Hadamard’s parametrix construction, see [7], is of the form,

u(t) ∼
(n−1)=2∑
j=1

dj�(n−1−2j)(t) +
∑

j¿(n+1)=2

dj|t|2j−n+1: (2.5)

The second sum therefore vanishes, and (2.5) is an exact equality,

u(t) =
(n−1)=2∑
j=1

dj�(n−1−2j)(t); t ∈R: (2.6)

Using (2.6), we shall now pass to the regularized trace of the heat semigroup,

tr(e−tHa − e−tH0); t ¿ 0;

and relate the heat coe;cients bj in (2.1) to the wave coe;cients dj. We have the well-known
transmutation formula of [8],

e−tH0 =
1√
4�t

∫
e−s2=4t cos (s

√
H0) ds; (2.7)

and the corresponding formula is also true for Ha. Using (2.6) and (2.7) we get

tr(e−tHa − e−tH0) =
1

2
√

4�t

∫
e−s2=4tu(s) ds

=
1

2
√

4�t

(n−1)=2∑
j=1

dj

∫
e−s2=4t

(
d
ds

)n−1−2j

�(s) ds

=
1

2
√

4�t

(n−1)=2∑
j=1

(−1)n−1−2jdj

((
d
ds

)n−1−2j

e−s2=4t

)
(0)

=
1√
t

(n−1)=2∑
j=1

 jdjt−(n−1−2j)=2 = t−n=2
(n−1)=2∑
j=1

 jdjtj;  j �= 0:



96 M. Hitrik / Journal of Computational and Applied Mathematics 148 (2002) 91–97

In this computation we have used Taylor’s formula. We have thus proved the following
result.

Proposition 2.2. Assume that the resolvent R(�) of Ha is an entire function. Then

tr(e−tHa − e−tH0) = (4�t)−n=2
(n−1)=2∑
j=1

bjtj; t ¿ 0;

where bj = !jdj; !j = (4�)n=2 j �= 0; are the heat coe6cients of Ha.

When n = 3, Proposition 2.2 together with (2.1) gives that b2 = 0, and it follows from (2.3) that
the magnetic 1eld B vanishes. In the case of dimensions n¿ 5, following [17], we shall analyze the
behaviour of the regularized heat trace as t → ∞. To this end we recall the Birman–Krein formula
for Ha—see [22] for the relevant version,

tr(e−tHa − e−tH0) =
∫ ∞

0
e−t�2

"′(�) d�; t ¿ 0: (2.8)

Here "(�) is the scattering phase of Ha, and we have also used the fact that Ha has no point
spectrum and that 0 is not a resonance of Ha. Let us recall that the scattering phase "(�) is de1ned
as the argument of the determinant of the scattering matrix of Ha. We refer to [11,21] for further
information on this basic object of scattering theory, and here we remark only that heuristically, the
scattering phase measures the averaged phase shift of a wave passing through the scatterer.

In order to study the behaviour of the left-hand side of (2.8) as t → ∞, it is natural to study
"′(�) near � = 0. (See also [12].) In doing so we recall from [22], that in any dimension n¿ 3, it
is true that "′(�) vanishes to the order at least n− 3 as � → 0+, provided that 0 is not a resonance.
More precisely, from [22] we get,

"′(�) = �n−3f(�); �¿ 0; (2.9)

with f smooth near the origin. It follows therefore from (2.8) and (2.9) that, as t → ∞,

tr(e−tHa − e−tH0) =
1
2
�
(n

2
− 1
)
f(0)t−n=2+1 + O(t−(n=2)+1=2): (2.10)

Combining (2.10) with Proposition 2.2, we get that bj = 0; j¿ 2, and as before, it follows that
B ≡ 0.

We conclude that, if B does not vanish identically, there exists at least one resonance. The
argument of [11] now shows that the existence of some resonances implies that there are in1nitely
many of them. Indeed, it follows from (2.4) and (2.5) that for small t,∑

e−i�j|t| = F(t); |t|¿ 0;

where F is continuous near t = 0 and F(0) = 0. If there were only 1nitely many resonances, then
their number would be equal to limt→0 F(t) = 0, which is a contradiction. This completes the proof
of Theorem 1.1.
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