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The operator of today

D@ = (0070 “35) e/ Dr= 40+ 0

Uz+7v)=U(z), v€3N\ AN=Z+wZ

Seeley 85: P(a) = XDy + ae™, x € S, Spec(P(a)) =C, a € Z.
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experimentally relevant first magic angle, address its properties analytically, and discuss how lattice
relaxation effects help justify our model parameters.
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Magic angles vs. Scattering resonances

Magic a's Resonances for Byp(0,1)
Ha e A:lal <r}| < Cr?

HaeA:|a|<r}>c??

(Known for obstacles in hyperbolic plane: Vodev, Borthwick...)
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Flat bands
The bands are eigenvalues of Hy(a) on L3(C/A), k € C/A*:

Theorem (BHZ '22; implicit in BEWZ '20)
Jk ¢ N+ {K,—K} Ei(a,k) =0 = Vk Ei(a,k) =0.
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Z a P ¢ i@ and as a consequence |A| = co.
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Theorem (BHZ '22) The first real magic o is simple and it lies in
(0.583,0.589).

Remark: Luskin—Watson '21 showed |.A N (0.583,0.589)| > 1
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What lies behind this spectral characterization?
An abstract formulation: Galkowski—Z '23
(a, k) = Q(a, k) : X — Y, holomorphic, Fredholm, index 0
Tv(p) T Q(a, k)Tx(p) = Q(at, k + p), P € A* s weaker sssumption possible

2mi

m(a, k) = trja{ Q(a, ()10 Q(av, ¢)d¢
or oo if Q(a,z)~! is never invertible.
Theorem (GZ '23) If for some oy
Va,k m(a, k) > m(ag, k) # oo
then there exists a discrete set A such that for

00 a € A,
m(a k) = { m(ao, k) ad Al

Example Q(a, k) = (2Dz + k)? — a?U(z)U(—2z): a scalar model in
which m(0, k) = 21p+(k) > dimker Q(0, k).
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Structure of eigenfunctions at the flat band
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YaeC, (D(a)+ K)uk(a)=0, uk(a)e Hy(C/A)\ {0}.
Consider the (rescaled) Green function of 2D5 on C/A:
(2Dz + k)F(z) = a(k)do(z),  k — Fj holomorphic

(k — a(k) any entire function a|p~ = 0, Fx = a(k) x Green's function)

(D(e) + k)(Fk—k(z — z0)uk) = uk(20)a(k — K)do(z — zo).
uk(z) = Fr_k(z — z0)uk(z) € C*(C/N),
dzp uk(20) =0= ¢ (D(a)+ k)ux =0, VkeC,

flat band at «.

Theorem (BHZ '22) If a € A is simple then the unique zero has to
appear at the stacking point zs = —z(K) = \/3/i.
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Application: We can consider an added in-plane magnetic field as
a perturbation:

o= (578 3%) = oy %)



How do the (two) Dirac points move when in-plane magnetic field
B is applied to sheets of bilayer graphene twisted by 6 ~ 1/a ?



How do the (two) Dirac points move when in-plane magnetic field

B is applied to sheets of bilayer graphene twisted by § ~ 1/a ?

DA



How do the (two) Dirac points move when in-plane magnetic field
B is applied to sheets of bilayer graphene twisted by § ~ 1/a ?

L: 0 varies, B/|B| fixed

u}

o)
1
n

it

DA



How do the (two) Dirac points move when in-plane magnetic field

B is applied to sheets of bilayer graphene twisted by § ~ 1/a ?

L: 0 varies, B/|B| fixed

R: B/|B| varies, 6 fixed

DA



How do the (two) Dirac points move when in-plane magnetic field

B is applied to sheets of bilayer graphene twisted by § ~ 1/a ?

L: 0 varies, B/|B| fixed

R: B/|B| varies, 6 fixed

DA



In-plane magnetic field for the chiral model



In-plane magnetic field for the chiral model
Kwan et al '20, Qin—MacDonald '21:



In-plane magnetic field for the chiral model
Kwan et al 20, Qin—MacDonald '21:

Dg(a) :

B 0 i
D(a)+ B, B:= (0 _B), B = Bye®™?,



In-plane magnetic field for the chiral model
Kwan et al 20, Qin—MacDonald '21:

Dg(a) :==D(a)+ B, B:= (B 0

_ 27if
0 _B>, B—Boe .

Dirac point at k <= k € Spec;z(c/r) Ds(a)



In-plane magnetic field for the chiral model
Kwan et al 20, Qin—MacDonald '21:

Dg(a) :==D(a)+ B, B:= (B 0

_ 27if
0 _B>, B—Boe .

Dirac point at k <= k € Spec;2(¢/r) Dg(«)

Theorem (BZ '23) If a € A is simple (+ one more condition) and
0 < By < 1 then there are no flat bands and for o ~ o Dirac
points (eigenvalues of Dg(«)) are close to the I' point.



In-plane magnetic field for the chiral model
Kwan et al '20, Qin—MacDonald '21:

DB(Q’) = D(CY) +B, B = <§ _OB> , B = 80627”9,

Dirac point at k <= k € Spec;z(c/r) Ds(a)

Theorem (BZ '23) If a € A is simple (+ one more condition) and
0 < By < 1 then there are no flat bands and for o« ~ a Dirac
points (eigenvalues of Dg(«)) are close to the I' point.




B01.mp4
Media File (video/mp4)


In-plane magnetic field for the chiral model
Kwan et al '20, Qin—MacDonald '21:

DB(Q’) = D(CY) +B, B = <§ _OB> , B = Boe2”i9,

Dirac point at k <= k € Spec;z(c/r) Ds(a)

Theorem (BZ '23) If « € A is simple (+ one more condition) and
0 < By < 1 then there are no flat bands and for a ~ « Dirac




In-plane magnetic field for the chiral model
Kwan et al '20, Qin—MacDonald '21:

DB(Q’) = D(CY) +B7 B = (? _OB> , B = B()e27ri6.

Dirac point at k < k € SpecL(z)((C/r) Dg(«)

Theorem (BZ '23) If a € A is simple (+ one more condition) and
0 < By < 1 then there are no flat bands and for a ~ « Dirac
points (eigenvalues of Dg(«)) are close to the I' point.




In-plane magnetic field for the chiral model
Kwan et al '20, Qin—MacDonald '21:

Dg(a) := D(a)+ B, B:= (g —OB> . B = By

Theorem (BZ '23) If « € ANR is simple and 0 < By < 1 then

K\ U D(k,e€) C U Specz(D,ep(a)) C e,
kK a—d<a<a+to

Ry = W r(iR+Z) U %(R + i7))



In-plane magnetic field for the chiral model
Kwan et al '20, Qin—MacDonald '21:

Dg(a) :=D(a)+ B, B:= (g —OB> . B= Bye2™0

Theorem (BZ '23) If « € ANR is simple and 0 < By < 1 then

K\ U D(k,e€) C U Specz(D,ep(a)) C e,
kK a—d<a<a+to
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A semiclassical formulation

[ 2nDs  AU(2)\ _
Pi= <)\U(—Z) 2th> = p(x, hD)

P9 = (s o) z=mtie T=batie)
Symplectic structure:
o = déiAdxi+d&Adx = 2Re d(Adz, z = xi+ix, (= 2(&—i&)
Classical dynamics : flow of the Hamilton vector field:
2
Ha =Y 8¢ a0y, — Oyads,, o(e,Ha) = da
j=1
Poisson bracket: {a, b} := H,b
Classical /quantum correspondence:

[a(x, hD), b(x, hD)] = 2{a, b}(x, hD) + O(h?)
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P(=\)P(\) = q(x, hD)le2 + hR(x)

q(x,€) = 43 — NU(2)U(-2), z=xi+ e, =36 +i6)

Rx) = (_ADZ 8(_2) 2>\D2U(z))

{4, G}g-1(0) measures the “complexity” of g(x,§) € C

S & v o N o~ o

A contour plot of |{q, §}| over C/3A
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Passage to PDE with analytic coefficients has its complications
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Theorem. (Hitrik-Z '23) Suppose that q(x, hD)u = 0 near xp, and
HUHLQ(neigh(xo)) < 1. Then if
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Proof by example: Consider q(x, &) = € + ix?, xo = 0. Then
{q,q} = —4ix|x=0 =0, {q,{q,g}} = —4i, so the condition holds.

If 0 = q(x, hD)u = 2(8, — x2/h)u, then u(x, h) = u(0, h)e3*’ /.
For this to be uniformly bounded near 0, we need u(0, h) = e~/
c>0.



Classically forbidden region when {q,q} =0

Theorem. (Hitrik-Z '23) Suppose that q(x, hD)u = 0 near xp, and
HUHLQ(neigh(xo)) < 1. Then if

q(Xo,{) =0 = {q, C_]} = 07 {qa {qa q}} 7& 0

then there exists an h-independent neighbourhood of xy, 2, such
that
lu(z,h)| < e /P zeq.

based on: Kashiwara, Sjostrand, Trepreau, Himonas '80s
related recent work: Sjostrand—Vogel '23

Proof by example: Consider q(x, &) = € + ix?, xo = 0. Then
{q,q} = —4ix|x=0 =0, {q,{q,g}} = —4i, so the condition holds.

If 0 = q(x, hD)u = 2(8, — x2/h)u, then u(x, h) = u(0, h)e3*’ /.
For this to be uniformly bounded near 0, we need u(0, h) = e~/
c > 0. So |u(x, h)| < e=</?" for |x| small. O
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Application to the chiral model of TBG

Exponential decay of solutions near xpg guaranteed by
q(%0,§) =0 = {q.g} =0, {q.{q.3}} #0
q= (2 - U(2)U(-2), q=0 & 20 =+/U(z)U(-2)
{9.3} = +8i Im ((U(z)U(=2))20:(U(2) U(~2))

Precalculus = {g,q} = 0 on 7 *(hexagon) N g~ *(0)
hexagon = spanned by +z5 + A, zs = i//3, wzs = zs mod A
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Application to the chiral model of TBG

Exponential decay of solutions near xpg guaranteed by
q(%0,§) =0 = {q.g} =0, {q.{q.3}} #0
q= (2 - U(2)U(-2), q=0 & 20 =+/U(z)U(-2)
{9.3} = +8i Im ((U(z)U(=2))20:(U(2) U(~2))

Precalculus = {g,q} = 0 on 7 *(hexagon) N g~ *(0)
hexagon = spanned by +z5 + A, zs = i//3, wzs = zs mod A
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{a.{q.G}} = 2227%(c — 1)*(2c + 1)(2c — 9), ¢ := cos(27V/3t/3)
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Exponential decay of solutions near xp guaranteed by

q(x0,8) =0 = {q,G} =0, {g,{q,q}} #0

Condition satisfied if xg is in the interior of the edges of the hexagon

Theorem. (Hitrik-Z '23) Suppose that (D(«) + k)u(a) = 0 near
x0, ||ul|;2 <1, and that xq is in the interior of the edge of the
hexagon. Then there exists a neighbourhood, 2, of xg and ¢y > 0
such that
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Application to the chiral model of TBG

Exponential decay of solutions near xp guaranteed by

q(x0,§) =0 = {q,4} =0, {q,{q.q}} #0

Condition satisfied if xg is in the interior of the edges of the hexagon

Theorem. (Hitrik-Z '23) Suppose that (D(«) + k)u(a) = 0 near
x0, ||ul|;2 <1, and that xq is in the interior of the edge of the
hexagon. Then there exists a neighbourhood, 0, of xy and ¢y > 0
such that

lu(a, z)| < Ce™ @, z€Q
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Application to the chiral model of TBG
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chiral model scalar model

{qv {qv a}}(iz.S: 0) =0 but {q7 {qa {q7 {qa C_I}}(:l:ZSa 0) 7& 0

Galkowski '23: C* theory of Egorov and Hormander does not give

lu(a,z)| < Cya™™ VN, z near +zs

What about the center of the hexagon?

At (x,&) = (0,0) (the center of the hexagon) the operator is not
of principal type:

q(0,0) =0, Vq(0,0)=0

Lower order terms matter as we see in the figure above!
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AnonymOUS '23 (communicated by Simon Becker)

Proofs are for dinosaurs - why don’t you just put it on a computer.

Anders would not agree!

Happy Birthday!




