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Abstract

\N{letgjtxie a detailed proof of a theorem of L. Boutet de Monvel formulated in 1978
in +F , and we state a ”conjecture” on the ramification locus of the Poisson kernel
on general analytic Riemmannian manifolds with boundary.
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1 Introduction

These notes are a written version of a 3 hours course given at Northwestern university
in may 2013. The main purpoge is tq give a detailed proof of a theorem of L. Boutet de
Monvel formulated in 1978 in % . We have add a "conjecture” on the ramification locus
of the Poisson kernel on general analytic Riemmannian manifolds with boundary. We
hope that this will be motivating for students and researchers in linear partial differential
equations and microlocal analysis.

Let (M, g) be a compact, connected, analytic Riemannian manifold of dimension m.
Let us recall that the metric g on the tangent bundle T'M gives a canonical identification
of T'M with the cotangent bundle T*M. Let dyx be the volume form on M associated to
the metric g. The Laplace operator A, on M is defined by the formula

/M Ay (0)Tdga = — /M (duldv)d,z (1.1)

Here df denotes the differential of the function f so one has by definition Ay; = —d*d where
d* is the adjoint of d for the natural Hilbert structure induced by g on section of T*M. The
unbounded operator —A, with domain H?(M) is self-adjoint on L*(M, d,x), non negative,
with compact resolvant. We will denote by (e;),>0 an orthonormal basis of L*(M, d,x) of
real eigenfunctions of —A\, associated to the eigenvalues wJQ-, withwy =0<w; <wy < ...,
lim;_,o w; = +00, so that one has

— Nylej) = wjzej, / ejendyr = 0j (1.2)
M

Since A\, is a second order elliptic operator with analytic coefficients, the eigenfunctions
e; are real analytic functions on M.

Let X be a complexification of M. This means that X is a complex analytic manifold
of complex dimension m, and M C X is a totally real submanifold of X (this means
TM NiTM = M where M C TM is view as the zero section). Let d(z,y) be the
distance function on M x M. Then d?(x,y) is an analytic function near the diagonal
Diagy = {(z,x),x € M} C M x M, and therefore extends as an holomorphic function
in a complex neighborhood of Diagys in X x X. Let us define ®(z) by the formula

B(2) = = sup Re(—d?(z,y) (1.3)
2 yeM
sec3
We will see in section %_t‘ﬁat this function is well defined for z € X close to M, and is
real analytic and strictly pluri-subharmonic. Moreover, one has ®|y; = 0,d®|;; = 0 and
the signature of the Hessian of ® is equal to (m,0) at any point of M; in particular, one
has ®(z) > 0 and ®(z) = 0 if and only if z € M. This function allows to define, for € > 0
small enough, the tubular neighborhood B, of M in X
2
B.={z€e X, ¢(2)< 5} (1.4)

Let us denote by O(B,) the space of holomorphic functions defined on B,. For f € O(B,),
its boundary value flgp, on 0B is well defined as an hyperfunction on 9B, which is an



thmboutet

analytic compact real manifold of dimension 2m —1. This boundary value is a distribution
on 0B, if and only if the function f satisfies a polynomial growth condition at the boundary
of the form |f(2)| < Cdist(z,0B.)~". Let us recall that the Hardy space H(B,) is the
Hilbert space defined by

H(B:) ={f € O(B.), flop. € L*(0B.)} (1.5)

outetl
We can now state the Boutet theorem formulated in F'ﬁﬁa slightly different but equiv-
alent form). Let us recall that a family (u;);>o is a Riesz basis of an Hilbert space H if
and only if any x € H can be written in a unique way as the sum of a convergent serie
in H, z =3 ¢j(z)u; and Y |¢j(x)|* is equivalent to ||z, We use the classical notation
<z >=(1+2%)2

Theorem 1.1 For € > 0 small enough the following holds true. The eigenfunctions e;
extends holomorphicaly to B. and the family (e=% < w; >M=V/ ¢.(2)),50 is a Riesz
basis of H(B.). For f € H(B.) and a; = [,, fe;d,x, one has

f(z) =) aje;(2) (1.6)

where the sum is uniformly convergent on any compact subset of B, and convergent in
H(B.). There exists a constant C. such that one has the equivalence of norms

1 ew; —(m—
a”fH%{(Be) < Z |6 < wj > g2 < Cell fl1Zes.) (1.7)
¢ j

A detailed proof jé éclllqcigtt}leorem has been given recently by S. Zelditch in %g’]'], following
the lines indicate in "]t—nd'using the Hadamard parametrix for the wave equation, and
also by M. Stenzel in F_" which uses the asymptotic expansions of the heat kernel. Here,
we will give a proof based on non-caracteristic deformation techniques and a direct calculus
of the Hadamard type parametrix for the Poisson Kernel.

The p é)eeCrQis organized as follows:
In section 2, we just recall explicit formulas in the euclidian space R™ and we give a proof
of the Bo%gﬁ%theorem in the special case of the flat torus (R/27Z)™.
In section I3, we recall basic facts on symplectic geometry. We iPtroduce the fundamental
function ® and we give some of his properties. We refer to QJQ‘For a detailed study of the
relation%@ between real and complex symplectic geometry.
Section 1%voted to the proof of the Boutet theorem.
In section b, we state our ”conjecture” on the ramification locus in the complex domain
for general Poisson kernels, and we give some exemples.
Finally, the appendix contains some proofs of technical results.

There is no need to have any knowledge about analytic microlocal analysis to read
these notes. The onHI v analgtic” thin&s that we will use are: Cauchy-Kowalewski, Zerner-
emzerner . se . . . o
lemma (see lemma 1.2 1n section ), and the analytic regularity for solutions of elliptic
linear differential operator with analytic coefficients.




Finally, let us recall that the representation of the analytic wave front set as the
analytic singular support of boundary values of holomorphic functions defined inside a
strictly pseudoconvex domain, which is one of the most fundamental results in microlocal
analysis, (and which is closely related to the Boutet theorem) is due t Sato, T. Kawai
and M. Kashiwara and is explicit in their foundation article of 1971 }%%/’

2 Explicit formulas in the flat case

In this section, we just recall what are the explicit formulas for the Poisson kernel, heat
kernel, and FBI transform on the euclidean space R™. Replacing R™ by the standard
m-~dimensional torus T™ = (R/277Z)™, this will give a straightforward proof of the Boutet
theorem in this special case.

First opsgrve that on R™ one has d*(z,y) = (z — y)?, and therefore the function ®(z)
given by (h) is defined on all C™ by

D(z) = Im(2)?/2 (2.1)

The heat kernel in R™ is equal to p,(z,y) = (2rt)~™/2e~(#==%)*/2 The solution of the
heat equation

1
Of —50F=0(nt>0), flmo=g€S R (2.2)
is given by the formula
fto) = [ meo)gto)dy (23)
On the Fourier side, one has the obvious identity
f(£,6) = e 5(6) (24)

Observe that if we replace € R™ by z € C™, and if we set A = 1/t > 0, we get

(6.2 = ()™ [ e gy = 1y(6)(2) (2.5)

i1
where T) is exactly the most usual FBI transform introduced by J. Sjostrand in F‘]]_(up
to the factor (3=)™/? in front of it). Therefore, we get that this FBI transform is just a
complexification of the usual heat kernel. One has the obvious bound

A bl :
£t ) < ()2 P g (2.6)

Now we recall the formula for the Poisson kernel Ps(z,y). The solution of the elliptic
boundary value problem, with f(s,.) bounded in s > 0 with values in L?(R™)

O2f+Af=0(ns>0), fleo=g¢€L*(R™ (2.7)

is given by the formula

f(s,2) = Pu(g)(z) = / P gy (2.8)



One has the obvious identity

P.(g)(z) = (2m) ™ [ e Hlg(e)ag 29)

2.7
Fix now s > 0. Then (b_g) clearly implies that P4(g), (with g in any Sobolev space
H*(R™)) extends holomorphicaly for s > 0 in the domain

B, = {IIm(2)] < s} = {3(z) < 5*/2}

For z € By, set z = a + ib. Then the map g — Ti(g) = Ps(g9)|op, is given by

7,(g)(a.b) = (2m) " [ el g o) (2.10)

Clearly, T, extends for all real p to a map defined on the Sobolev space H*(R™) with
values in D'(0B;). Let dog be the standard measure on the sphere of radius s in R, and
let ¢,,, be the volume of the unit sphere S™! in R™. Let dyu, be the volume form on 0B,

dus = ¢, 's~ ™ Vdado(b) (2.11)
Let T be adjoint of T, with respect to L*(0Bs,du,). One has

T (f)() = (2m) ™ / 1o ESEl £ (0 by de (2.12)

and therefore we get
TiT(g)(x) = (2m)™™ [ €T (s€)g(&)de

(2.13)
R I 0
S'm—l

It is clear that I', is a real strictly positive function and T',,(0) = 1. The function I',,(n)
depends only on || and €?"IT",,,(n) is an entire function of |n|2. Moreover, by stationary
phase, we get that I',,(n) is an elliptic symbol of degree —(m — 1)/2 in n (and even an
analytic symbol). Therefore, with < 1 >= (1 + |n|?)"/? there exists ¢ > 1 such that

1
S <p>mVRD () <ec<n >V yp e R
c

Since T*T is the Fourier multiplier by IT',,(s€), this shows that T:7T; is a self adjoint,
non negative, elliptic pseudodifferential operator of degree —(m — 1)/2, and also an iso-
morphism of the Sobolev space H#~(m=D/2(R™) onto H*(R™) for any real p. From the
identity
(T2 To(9)9) 2z o) = I T5(D) 208, )
we get
T,(g) € L*(0B,) if and only if ¢ € H~m=D/4(R™)

From the above formulas, it is easy to get the Boutet theorem for M = T™ = (R/27xZ)™.
The standard L? orthonormal basis is in that case e(x) = (27)"™/2e**  with k € Z™,
and associated eigenvalue |k|?>. The Poisson operator is given by

IP’S(Z crer)(x) = Z cre ey (x)

2.

10

.11



which clearly extends to By = {z = a+ib € (C/27Z)™, |b] < s}. If T, sti%_lgfnotes the
map g — Ts(g) = Ps(g)|op., one has (T is the adjoint for the volume form (Z.T1) on dB,)

TS*TS(Z Crer) = Z el (sk)ey,

thus T,(g) € L?(0B,) if and only if g € H=(m=D/4(T™). One has

TS(Z cxex)(a + ib) = (2m) ™2 Z cpe Sl gika=kb

The functions (27)~™/2¢tka=kb = p ( b), are trivially orthogonal in L*(0Bs, dus), and
the computation we have done to get (g 3) shows that one has

HEk|’%2(aBs) = ezslkTm(SIf)

. . . Egtg}% . . .
It will be proven in section at the family (ey(2))y is dense in the Hardy space H(B;)
(we leave this as an exercise in the special case of the flat torus). Thus, in the flat case,
we get the more precise statement that the family

e D -12(sk)er(2), kez™

is an orthonormal basis of the Hardy space H(B;). Thus the Boutet theorem holds true
in the special case of the flat torus.

Remark 2.1 As one can see, in the flat case, T:Ts is in fact a function of the Laplace
operator, and the eigenfunctions ey(z)|sp, remains orthogonal for any s for a natural
choice of the volume form on 0Bs. This will not remain true in the general case. Vérifier
1. Also, one has to notice that w%'zih respect to s, view as a small parameter and not view
as a fized constant, formula (bTS’) indicate that TXTs is a s-pseudodifferential operator
and not at all a usual pseudo-differential operator uniformly in s €]0,1].

Let us now recall how one can recover the Poisson kernel from the heat kernel. We
start from the formula, valid for all x € [0, oo.

_ 1 /OO _ 2/4 _ du
el =— e T/t — (2.14)
VT Jo Vu

This formula is easy to prove, since both side are continuous functions of z > (), and
satisfy the equation f” — f =0in x > 0 and f(0) = 1, lim,_, f(z) = 0. From (E_l?[), we
get for s > 0,w > 0 (change of variable u = s*/2t)

732/21‘/ ftw2/2 dt
\/ﬁ e (2.15)

Therefore, one has the following identity which allows to recover the Poisson kernel from
the heat kernel, (and which remains obviously valid on any Riemmannian compact man-
ifold (M, g) by decomposition on the orthonormal basis (e;);):

—52/2t dt

Py(z,y) (x y)t3/2 (2.16)

\/ﬁ

2.

.12

.13

14



t
This identity is used by M. Stenzel in F']] in his prgof of the Boutet theorem. If we
express this in term of the FBI transform defined in (b [6), we get (recall A = 1/t)

Py(z,y) = \/82_7r/o e N2 Th(z,y) A2d\ (2.17)
2.4bis 2.15

From (2.6), we recover from (}’ZTT) that in the flat case, Ps(z,y) extends holomorphicaly
in the domain |[Im(z)| < s. Therefore, the FBI transform (i.e the complexification of
the heat kernel) contains at least as much information than the Poisson Kernel. In fact,
the two points of view are essentially equivalent if the FBI transform acts on functions
independent of A\. The use of the FBI transform is of course more relevant in semi-
classical analysis, with small ameter h =1/X =t. We refer to the article by F.Golse,
E.Leichtnam and M. Stenzel, for a study of the FBI transform as a complexification
of the heat kernel on compact Riemannian analytic manifolds.

3 Symplectic geometry

Let T* X be the complex cotangent bundle to the complex manifold X. Let us recall that
for (z,() € T*X, ( is a C-linear form on the complex vector space T, X with values in C,
i.e ((iu) = iC(u) for all w € TX. As usual, if f is a function defined on X with values in
C, we denote by df (resp df) its holomorphic (resp. antiholomorphic) derivative, that is

0 (u) = 3 (df(w) — idf(iw).  Tf(w) = 5 (df () + i i)
Then Of is a section of T*X and one has d = 9 + 0.

Let us denote by X® the real analytic manifold X without its complex structure.
In these notes, we shall identify the real cotangent bundle 7*(X®) with the complex
cotangent bundle 7" X by the following rule

(2,¢) € T*X is identified with (z,£) € T*X® . &(u) = Re(((u)) (3.1)
With this identification, for any smooth function ¢ : X — R,
dp(z) € Tr X® is identified with 20¢(z) € T X (3.2)

Let w = dC A dz be the canonical complex symplectic 2-form on 7*X. Then Re(w) and
Im(w) are real symplectic 2-forms on 7*X®, and moreover, Re(w) = w® is the canonical
symplectic 2-form on T*X®. This facts are easy to verify in local coordinates. We shall
say that a real submanifold A of 7*X is R-symplectic (resp I-lagrangian) iff A is sym-
plectic for Re(w) = w® (resp lagrangian for Im(w)). In other words, A is R-symplectic iff
dimgA = 2m and Re(w)|, is non degenerate, and A is I-lagrangian iff dimgA = 2m and
Im(w)|px = 0.

Lemma 3.1 Let z — ((z) be a smooth section of T*X ~ T*X® defined on an open
contractible subset Q of X and let A = {(2,{(2)), z € Q}. Then A is I-lagrangian iff
there exists a smooth function ¢ : Q — R such that ((z) = 2i0p(2). Moreover, A is also
R-symplectic iff the 2-form of type (1,1) 2i00p on TX|q is non degenerate.



Proof. 1f A is I-lagrangian, then —iA = {(z, —i((2)), 2z € Q} is R-lagrangian, w®| ;5 = 0.
Since 2 is contractible, there exists a function ¢ :  — R such that —iA view as a SLEQS;’G
of T*X® is of the form {(z,dp(2))}. With the identification T*X ~ T* X%, and by (3.2),
we get —i((z) = 20p(2), i.e

((2) = 2i0¢(2)
Let j : Q@ — T*X be defined by j(z) = (z,2i0¢(z)). One has j*(Im(w)) = 0. Moreover A

is R-symplectic iff j*(w®) is non degenerate and the result follows from

7W") =" (W) = j7(d(¢dz)) = d(57(Cdz)) = d(2idp) = 2i00,

g

The Levi form on TX|q, L,(u,v) = 2i0dp(u,v) is given in local complex coordinates
(21, ., Zm) by the formula

P

L,(u,v) =21 > 7500
g,k

(2)(Wjvr — Vjuy)

One has obviously L,(u,v) € R, and L, is entirely determinate by the associated hermi-
tian form ¢,(u) = L,(tu, u). In local coordinates, one has

gplu) =13 25

ik 82J8zk

(=) (3.3)

Therefore, A is I-lagrangian and R-symplectic iff the hermitian form ¢, is non degenerate,
hence of signature (p, q) with p 4+ ¢ = m.

The real cotangent bundle T*M is a subset of T*X: for v € M, any u € T, X
can be written in a unique way v = a + ib, a,b € T, M, and (z,§) € T*M defines
(x,¢) € T*X, ((u) = &(a) +i&(b). Then it is obvious that T*M is both R-symplectic
and I-lagrangian. Moreover, T*M is a totally real submanifold of 7% X and the complex
symplectic manifold T*X is a complexification of the real symplectic manifold 7% M.

Let p(z,¢) be the holomorphic extension of p(z,§) = 1[£|2. In local coordinates, one
has

P20 = 3 3 0 (GG
i,k

and p(z, () is well defined on T*X|yy if W is a small neighborhood of M in X. For ¢t € C,
let us denote by exp(tH,)(z, () = (Z(t, z,(), E(, z,()) the complex integral curve of the
hamiltonian vector field of p starting at (z,(). One has the Hamilton-Jacobi equations

0,2 = (9:p)(2,5), 2(0,z
atE = _(azp)(Zv E‘)a E(O,

)=¢

Since p(z, () is homogeneous of degree 2 in (, one has for A\ # 0

Z(\t, 2, /X)) = 2(t,2,0), ZE(M, z,(/A) =224, 2,0) (3.5)

<€) (34)
ENS



Therefore, exp(tH,)(z, () is well defined for [¢t¢| small and (z,() € T*X|w if W is small
enough, and one has the Taylor expansion

Z(t,2,¢) = 2+ t(0p)(,¢) + 0((t)*)

3.6
=(t.2.0) = ¢ ~ H0)(2.0) + 0(C(HOP) 0

Let ¢y > 0 given and small. For s €]0, 1], set
As ={(2,0) = explisHy)(x, ) € T*X, (2,§) € T"M, [¢|. < €0/s} (3.7)

Then for € small enough and all s €]0, 1], A, is well defined and from (E_g), one has Ay =
s~'A;. Moreover, since the map exp(tH,) preserves the complex sympl téc structure
of T*X for any t € C, A, is both R-symplectic and I-lagrangian. By (eg_ﬁ), the map
(x,&) — Z(is,z,€) is given in local coordinates by

(x,8) — Z(is,x,§), Zi(is,x,§) xk+stgjk 2)&; + 0((s€)?) (3.8)

lem3.1
hence is an isomorphism near £ = 0. By lemma }3._1,_near any point x € M there exists
a unique function ®,(z) = s~ '®(z) define in a neighborhood of z, with ®,(z) = 0 such
that one has
Ay ={(2,0), ¢ =2i0P,(z) = 2is '0D(2)}

39 and (38 on o
From (B'0) and (3.8) , one has 0®|;; = 0, and therefore the function ® is globally defined
in a neighborhood of M in X and one has

Ol =0, dd|y =0 (3.9)

Lemma 3.2 The following identity holds true

(2(i,2,€)) = [¢]5/2 (3.10)

Proof. For s € [0, 1], set (y(s ), (s)) = (Z(is,z,£),=Z(is,z,£)) and ((s) = 2i0P(v(s)). One
has, for s > 0, (y(s),n(s)) € Ay = s71A, and therefore n(s) = s712i0®(v(s)) = s71{(s).
Let

g(s) = ®(Z(is, x,§)) = ®((s))
Then we get

g(s) = d(y(s)(7/(s)) = Re(200(1(s)) (10,2 (is, 7, €))
= Re(2i00(1()) (@2 (is, 2,€) = Re(C(s)0p(1(s),n(s)) (311

= sRe(2p(v(s),1(s))) = sRe(2p(7(0),7(0)) = ¢

3.
Here we have used that 0® is C-linear, the Hamilton-Jacobi equations (%7%), C(s) = sn(s),
and the fact that p(z, () is homogeneous of degree 2 in ¢ and invariant by the flow of the
hamllt(TPlaél yector field H,. Since g(0) = 0, we thus get g(s) = s2|¢]2/2. The proof of

lemma 1S complete.
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O
lem3.2 . . . . . .
As a byproduct of lemma We function @ is strictly pluri-subharmonic, i.e the
hermitian form ¢g defined in (%‘3) is strictly positive. Moreover the map

(x,8) — Z(i,2,€) (3.12)

gives a real analytic identification between the neighborhood {|¢|. < €} of the zero sec-
tion in the symplectic manifold 7*M, and the neighborhood B, = {®(z) < €2/2} of M
in the complex manifold X. With this identification, the symplectic structure on B, is
defined by the real and closed 2-form 2i00®, and the associated hermitian metric gq
defines a Kahlerian structure on B,,. Since ® is an exhaustion strictly pluri-subharmonic
function on B, B, is a Stein manifold.
Moreover, this 1dent1ﬁcation induces a complex structure J on {|¢|, < €}. We refer to
the article of Lempert and Szoke jF for more details on this complex structure .J on
M, which is canonically defined by the metric g on M. In particular, it is shown in
% theorem 4.3, that if this complex structure can be extended to {|{|, < R}, then the

sectional curvatures of g are bounded from below by —7?/(4R?).

We denote by 3, (resp () the real (resp complez) 1-form on the real (resp complex)
analytic manifold B, defined by

ﬁz = Re(Cz)a Cz E<Z z f) Z(i7$7£)7 (l’,f) e1T"M (313)
By construction, one has
¢, = 2i0P(z) (3.14)

Let q(z,€) = |€],. Then the hamiltonian exp(tH,)(z,¢) = (Z(t,2,¢),=(t,5,¢)) is well
defined for t € C close to 0 and (z,{) € T*X in a conic neighborhood of T*M \ M.
Since p = ¢?/2, one has by homogeneity, wih the notation |¢|. = (¢7'(2)(¢))"/?, which is
preserved by the flow of H,,

Z(t,2,¢) = Z(t,z.¢/IC].), E(t.s,0) = [¢[.E(t, z,¢/IC]) (3.15)

For s €]0, €[ let k(is) = exp(isH,). Then r(is) is an homogeneous canonical gqmplex
transformation of 7* X, defined in a conic neighborhood U of T*M \ M. From (%_5), one
has

r(is)(z, C) = (20, 2, 5¢/|C]2), [C]-E(, 2, 5¢/[C]2)) (3.16)
Since k(is) preserves the canonical 1-form (dz on 7% X, one has
[C1:2(0, 2, 5¢/[C]2)d- o (Z(i, 2, 5¢/|C[2)) = Cd= (3.17)

For y € M, let A, = k(is)(T; M\ 0), and let AT = k(is)(UNT; X \ 0) be its complexi-
ﬁca% I %1%% A 5 gf is a C-lagrangian homogeneous submamfold of T*X. One has

As,y = {(Z = Z(i,?J»??)a < = tCZ)> (?/J?) € TJM> |77|y =5, 1> 0} (318)
Since d*(Z(t,y,n),y) = t*|n|;, and these functions are analytic in ¢, we get

d*(Z(i,y,m),y) = —=Inl; = =2®8(Z(i,y,m)), YneT;M (3.19)

3.49

3.50

3.53



11

and therefore the function s? + d?(z,y) vanishes on 7(A;,), where 7 is the projection

T*X — X. Since m(AS,) is a complexification of 7(A,,) (a real analytic manifold of real
dimension m — 1) , we get that Agy is the conormal bundle to the complex hypersurface

s* + d*(z,y) = 0 near the points z = Z(i,y,n), |n|, = s:

AS, =Ts, X\0, 3 ={z, " +d*(z,y) =0} (3.20) [3.54
. 1.3

The following lemma (and (&3 [0)) gives in particular a proof for the definition (h_g) of the
function ® given in the introduction.

Lemma 3.3 There ezists ¢ > 0 and a neighborhood U of Diag(M) such that for all
s €]0, €], all (x,y) € U and all z = Z(i,z,€) € OB, (i.e |£], = s), one has

022, sty = 2 3.21)
and
Re(d*(z,y) + %) > cd®(x,y) (3.22) |3.13

3.53 3.52 3.54
Proof. From (%3 9) one has d*(Z(i,y,n),y) = —[n|; and from (%3 g) and (}B.ZU), one has

0.d*(2,y) | s=z(iym) = A, for some XA € C\ 0. Let z(t) = Z(i,y,e'n) = Z(ie',y,n). One
has 2(0) = Z(i,y,e'n) = z and d*(z(t),y) = —e*|n|2. By evaluation of the derivative at
t =0, we find:

_2‘77’3 = dt<d2<z(t)7 y))|t=0 = )\Cz(dtz(t)lt=0) = ’i)\ng—Zg(Z, Cz) = 21)\]7(2, Cz) = MW;

This implies A = 2i. Let us now verify (%_21%) In geodesic coordinates exp,(a) centered
at z, set d*(a,b) = (a — b)*> + Ry(a,b). The function R,(a,b) is symmetric in a,b. From
d*(0,b) = b*, we get R.(0,b) = 0, thus R,(a,0) = 0, and R.(a,b) = >_. a;0Q% (a,b).
From (V,d?)(0,b) = —2b, one gets >, b;Q%(0,b) = 0, hence d?*(a,b) = (a — b)* + O(a?b),

and since R,(a,b) is symmetric
d*(a,b) = (a — b)*> + O(a*b?) (3.23) [3.14

Set y = expy(a) and z = Z(i,x,£). In geodesic coordinates centered at x, one has
g(z) =1Id, Z(t,z,€&) = t&, thus z = i¢, and from [£|, = s and d*(z,y) = a?, we get

d*(z,y) = d*(x,y) — s* — 2ia& + O(s*d*(z,y)) (3.24) |3.14
3.13 lem3.3
Since s is small, (b‘ZZ) holds true. The proof of lemma 5% complete. O

4 A proof of the Boutet de Monvel theorem
Recall that for € €]0, o], Be is the tubular neighborhood of M in X

B = {2, ®(2) < &/2} = {Z0,5.€), (x.6) € T*M, |¢l. < e} (4.1)
As in (H_g), the Hardy space H(B.) is defined as the Hilbert space:

H(B:) ={f € O(B.), flop. € L*(9B)}, Il = flon.

L2(9B.) (4.2)
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Recall that for f € O(B,), f satisfies the elliptic system of Cauchy Riemann equations
O0f = 0. Hence the trace f|p, is well defined as an hyperfunction on dB,, and if this trace
is analytic, then f is analytic up to the boundary. In particular, if the trace is equal to 0,
the extension f of f by 0 outside B, still satisfy df = 0; therefore f is holomorphic, and
since f vanishes outside B,, one gets f = 0. This shows that || f|ss, 12(aB.) is a Hilbert
norm, and H(B.) an Hilbert space.

The Poisson kernel Pg(x,y) on (M, g) is the smooth function on |0, co[x M x M given
by the formula
y) = Z e *ej(x)e;(y) (4.3)

For any vE LQ(M ), the smooth function on ]0, co[x M defined by
=/[,P v Ps(z,y)v(y)dyy satisfies the elliptic boundary problem

02+ Au=0, limu(s,z) =v(x) in L*(M) (4.4)

s—0

We start with purely geometric lemmas about the holomorphic extension of the e;,
and more generally of solutions to the elliptic operator 97 + A,.

Lemma 4.1 Letu(s,z) be a solution of the elliptic equation (024+2Ag)u = 0 on 0, 00[x M.
Then u extends holomorphicaly in the open set

D= {(S, Z) eCx X, RG(S) >0z€ Bmin(eo,Re(s))} (45)

Proof. By translation invariance in s, it is sufficient to prove the following property: Let
a €]0, €[, and u(s,z) a solution of the equation (92 + A,)u =0 on | — a,a[xM. Then u
extends holomorphicaly in the open set

Go ={(s,2) € Cx X, Re(s) €] —a,a[, 2 € Ba_|Re(s)| } (4.6)

The proof of this fact uses a cla, i(lgal non-caracteristic deformation argument based on
the following Zerner lemma (see TF_]) This lemma is a Cﬁp%eé]_l%ence of the precise form
of the Cauchy-Kowalewski theorem given by J. Leray (see eorem 9.4.7 for a proof).

Lemma 4.2 (Zerner) Let Q(2,0.) = 3_, 4j<m 9a(2)02 be a linear differential operator
with holomorphic coefficients defined near 0 in CN and let q(z,{) = > laj=m €a(2)C* be its

principal symbol. Let f : CN — R be a C* function such that f(0) = 0 and such that,
with o = 210f(0), one has q(0,{y) # 0. Then, if u(z) is an holomorphic function defined
in a half-neighborhood of 0 in f < 0, such that Q(u) extends holomorphicaly near 0, then
u extends holomorphicaly near Q.

For p € [0,a] let ¢,(t),t € R, be the non negative Lipschitz function
Y1) = max(a — (12 + 2)7,0) (@7)
Let 7 > 0 be given. For p € [0, a], let K, ; be the set

Ky = {(5,2) € Cx By, ®(2) +7Im(s)” < t,(Re(s))%/2, |Re(s)| < (@ = p2)"*} (4.8)

4.31

4.32

4.34
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From 0 < ¢, < a < ¢, we get that K, , is a compact set, and its interior, Int(K, ), is
defined by the equation

Int(K,r) = {(s,2), ®(2) +7Im(s)* < vu(Re(s))*/2, |Re(s)| < (a* — p?)/?}  (4.9)

One has K, C Ky, for i/ < pi and the closure of Int(K,, ;) is equal to K, » for p < a.
Since one has
Ga C UT>0[7”lt<K0’T)

we have just to prove that u extends holomorphicaly to Int(Ky,). Set
J = {p, u extends holomorphicaly to Int(K, )}

Since K, , = {s =0} x M, J contains a neighborhood of a, and it remains to show that
for y1 > 0 in J, u extends holomorphicaly to a neighborhood of K, .. Let > 0 in J.
Let (s0,20) € 0K, = K, \ Int(K,,). Set so = a +1i8. If ¢,(a) = 0, then one
has zp € M, = 0, and therefore u is holomorphic near (sg, zp) since u is analytic on
] — a,a[x M. We may thus assume 9,(a) # 0, i.e |a| < (a* — u2)'/2. The function

f(s,2) = ®(2) + 7Im(s)* — ¥, (Re(s))?*/2

is smooth for |Re(s)| < (a® — p?)Y/2, one 185..f (50, 20) = 0, and the differential of f is
given by (with the identification of section

2001 = (Gor C2) = i( =68, (Re(s)) — 2irIm(s), 20.8(2))

The differential of f at (so, 20), ((s(S0),(:(20)) does not vanish.(Otherwise, we will have
z € M and Im(sg) = 0 and this contradict f(so,2) = 0 and 9,(«) # 0) Moreover, u
satisfies the equation Qu = (9% + A,)u = 0 in a half-neighborhood of (sg, z9) in f < 0.
The principal symbol of Q is ¢(s,2;¢s,¢.) = (% + 2p(z,(.). Therefore, by the Zerner
lemma, it remains to show

(Y, (@) + 2im8) # 2p(20, Czy) (4.10)
Let (z9,&) € T*M such that Z(i,xo,&) = 2o. Then one has (z,(,,) = exp(igzlléxo,&]),
10)

and since the function p is invariant by the hamiltonian flow H,,, one has by (

2p(20, Czo) = |€0l2, = 2®(20) = Y ()® — 278° € R

4.35 4.35
We first verify that (h [0) holds true for 5 # 0. For § # 0, equality in (h_l'U) implies
(take imaginary part) ¢, (o) = 0, and equality of the real part gives —4723% = 28(29) > 0
which is impossible. It remains to verify 4, (a) # %1 for p > 0 and |o| < (a* — p?)?,

which is obvious since one has

, —«
a) = ——
) = e
lem3.1
The proof of lemma kfml 1s complete. O

If one apply the above lemma to the function u(s,z) = e *“e;(z), we get that all the
eigenfunctions e;(x) extends holomorphicaly to the neighborhoad B, of M in X, which is
independent of j. In fact, we can deduce easily from lemma }3. a more precise statement.

4.35
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Lemma 4.3 Let a €]0, €[ For all § > 0 small, there exists Cs such that

Vj, sup |e;j(z)] < Cselatowi (4.11) [4.36
z€B,

Proof. Set E = L*(M,dgz) and F = {f € O(B,),sup,cp, | f(2)| < co}. These are Banach
spaces, and the canonical injection i : ' — E| i(f) = f|u is continuous. Let § > 0 such
that a + 0 < €9 and let As be the linear continous map from E to E defined by

Aé(z cjej(x)) = Z e~ “Ticie;(x)

lem3.1
By lemma }3. [, one has Im(As) C O(Bays) C F. By the closed graph theorem, the map
As from E to F' is continuous, and therefore, there exists a constant Cs such that

[As()lr < Csllflle. VfeEE (4.12) [4.37

4.37 4.36 lem4.2
If one applies (h_[?) to f = e;, we get that (hl ) holds true. The proof of lemma hélmZ 1S
complete. 0

4.36
Remark 4.4 The estimate (&[ [) on the sup-norm of the eigenfunctions in B, is of
course very weak. The exponential factor e®i is the correct one, but the sub-exponential
factor Cse®i (for any & >10) is far to be optimal. To my knowledge, the best estimate is

proven by S.Zelditch m%‘ |, corollary 3: sup,cp, |e;(2)] < Cw; (m+1)/4 jaw;

Another interesting by-product of Zerner-lemma is the following caracterisation of the
space O(B,) of holomorphic functions on B,. This gives the "analytic” version of the
Boutet theorem (i.e without any precise information on Sobolev spaces and polynomial
growth of the Fourier coefficients). It implies in particular that the Poisson opera-
tor P, (D> cjei(x)) = > cje”*ie;(2) is an isomorphism from the space A'(M) of Sato-
hyperfunctions on M, onto the space O(B;) of holomorphic functions in Bs.

Lemma 4.5 Let a €]0, €[ and let f(x) =) cje;(x) an analytic function on M. Then f
extends holomorphicaly to B, iff

VS > 0, 3C5, such that for all j one has |c;| < Cse™ (@79 (4.13) [4.38
Moreover, for any function f(z) € O(Ba), the Fourier coefficients ¢; = Jo f( r)d,x
satisfy (h [3), and one has f(z) =}, cje;(z) for all z € B,, where the sum is umformly

convergent on compact subsets of B,.

Proof. 1f (ﬁ;ﬁg)is satisfied, then by lemma Bl%ﬂif%rmula (ﬁ._l:il@) the sum ) cje;(z) is
uniformly convergent on B, for all ¢’ < a,(since by Weyl formula, #{j,w; < R} < CR™)
hence f extends holomorphicaly to B,. It remams to shog_&r:[]%at for a function f(z) €

O(B,), its Fourier coefficients ¢; = [}, f( r)dgx satisfy (1.13): with g(z) = Y ¢cje;(2),
we will have g € O(B,) by the first part of the lemma and since (f438g)|M =0, we will
get f = ¢ by analytic continuation. The proof of the estimate (h_l'S) on the Fourier
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coefficients ¢; uses the Zerner Lemma. Let F(s, z) be the Cauchy-Kowalewski solution of
the analytic Cauchy problem:

(02 + AN)F =0, F(a,z) = f(2), 0,F(a,z) =0 (4.14)
Zerner lemma implies that F' extends holomorphicaly to the open set
Fo={(s,2) € Cx X, |Re(s) —a| < a, 2 € Ba_|re(s)—a| } (4.15)

lem4.1
The proof of this point follows the salg;e%&ne as the proof of lemma h._l.—We first change s
in s+ a so that the Cauchy data for (1.T1) are now on the set {s = 0} x By, and we have
to prove that F' extends to the open set G, defined in (F.6). We use the non-caracteristic
deformation associated to the function, with 7 > 0,

frl(s,2) = %Re(s)2 + 7Im(s)* — %(ma:v(a — V24 2P(2), 0))2 (4.16)

: : : %&f& :
Observe that in comparison with the proof of lemma F.T,"we just exchange the role of
2Re(s)? and ®(z). For u € [0,a], we define K, . by

Kur={(5,2) €Cx X, fr(s,2) <0, 20(2) < a* — p*} (4.17)

The function F' js holomorphic in a neighborhood of K,,={s=0} x M, and as in the
proof of lemma % [, we just have to verify that for pu €]0,af, if F' extends to Int(K, ),
then F' extends to a neighborhood of K, ,. Let (s, 2) € 0K, , = K, \ Int(K,.). Set
so = a+if. If 20(z) = a* — p? < a, then one has 2y € B, and s = 0, and therefore
F' is holomorphic near (sg, z9) by Cauchy-Kowalewski theorem. We may thus assume
20(z) < a? — p2. Then the function f, is smooth near (sg,z) and its differential at
(so = a+1if,2) is equal to

2%0f, = (Cops Coy) = 2i(crf2 — T, LV A 2(1)(20)8@(20)) (4.18)
p* + 29 (20)

By the Zerner lemma, it remains to show (2 + 2p(zo, (,,) # 0. Since 2p(2q, ;) = 2P(20),
this is equivalent to

o (T T8 —
(v — 2iT3)* # 2P(20) 24 20(z0) € [0, 00] (4.19)
We first verify that (ELL;%SBJ) holds true for 8 # 0. For 8 # 0, equality in (Eiﬁ%) implies (take
imaginary part) a3 = 0, hence a = 0 and —4723% > 0 which is impossible. For § = 0,
from f-(s0,20) = 0 and 2®(zy) < a2 — u2, we get |a| = a — /12 + 2®(29) > 0. It remains

to verify

29 (20) o
p* + 29 (z0)
for y €]0,a[ and o # 0 which is obvious. Thus F' extends holomorphicaly to [ nt(Ko.,)
for all 7 > 0, and since one has U,~oInt(Ky,) = G,, we get the desired result.

a? #£

For s €]0,2al[, set now Fj(s) = [,, F(s,z)e;(x)dz. Then Fj(s) is analytic on |0, 2a|
and satisfies the equation

OPF, —w2F; =0, Fy(a) = ¢;, 0,F;(a) =0

4.39

4.40

4.41

4.42

4.43
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This gives Fj(s) = ajch((a — s)w;). Since for all s €]0,al, the function x — F(s,x) is
analytic on M, its Fourier coefficients are bounded, i.e

Vs €]0,a], 3C; such that sup|cjch((a — s)w;)| < C;
J

4.38 lem4.3
By taking s = 0 small, this implies (h [3). The proof of lemma h%n 1S complete. U

We will now recall the classical construction of the Hadamard type parametrix for the
Poisson kernel near s = 0 and « = y. Let (s, z,y) be defined by the formula

§(s,x,y) = s* + d*(z,9) (4.20)

The function ¢ is holomorphic in a small neighborhood W of {s = 0} x Diagys in Cx X x X.
Let ey = supyy |0]. Clearly, we may assume ¢y as small as we want by choosing W small
enough. Set u = —(m+1)/2.

Proposition 4.6 For W small enough, the following holds true.
For all j € N, there exists holomorphic functions a;(s,x,y) defined on W, such that

E sup |a;j|cly, < oo (4.21)
~
j

and such that if one defines G(s,x,y) by the formula

G = sé“Zéjaj if m is even

J20

k-1 | (4.22)
G = sé* Z 8 a; + slog(6) Z &a; if mois odd

j=0 32|ul

then the function Py(z,y) — G(s,x,y) which is defined a priori for s > 0 small and
(x,y) € M x M close to Diagys, extends holomorphicaly to W. Moreover, the functions
a; are even in s and one has

ao(0,y,y) =d.}, dn = / (14 22)~m+D/2qy (4.23)

Proof. Let us denote by Vf the gradient of a function f, i.e the vector fields on M
which is associated to the differential df via the identification of TM and T*M. An easy
computation shows that the following formula holds true:

(02 + D)(f'6) = 11 = 1) f'2((0sf)* + [V f )

} (4.24)
11 (20,0 + 2V JIV0)y + (D2f + AFIB) + [1(D2+ Ab)

For a given y, the function f(s,z) = d(s, z,y) satisfies the dentity (050)* + | V0|2 = 40
(the analog of the eiconal equation). Thus we get from (1.24)

(62 + A)(6') =151 (4sasb 4 2V, d2|Vb)y + (Ag(d2) + 41 — 2)b>
+ 649 + Ab)

(4.25)
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If we set b = sa, with a even in s, we thus get

(a§+zg@ya):dy—%gaxa+zmzdﬂva%+4z%af)+4z+2yg

N B (4.26)
+ 50"(05a + 25~ 0sa + Na)

. . . .. [4.9bis | o
Let us first assume that m is even. We will apply the identity (h.%i withl =p+7,7 € N
Then for all 7 € N, one has [ # 0. Let us denote by Z; the first order operator

Zi(a) = 4s0,a + 2(V,d*|Va), + (AL(d®) + 4l + 2)a (4.27)

. . Ell_-% . .
Then the function G defines by the first line of (1.22) will be formally a solution of the
equation (924+A)G = 0 if one choose the functions a; solutions of the transport equations:

ZM(CLO) =0
1 4.28
Zyrjag) = —m(af +2571 00+ Ay)ajy Vj>1 (4.28)

The key point here is that the equation Z,(ag) = 0 admits a unique even in s holomorphic
solution in W for any given data a(0,y,y), and the equation 7, ;(a) = b with j > 1 and
b(s,z,y) even in s and holomorphic in W, admits a unique solution a(s493I f/)’ even in
s and holomorphic in W. Thereforg:zzghe system of transport equations (h_ZS) admits a
unique solution such that formula (7.23) holds true. We refer £O5the appendix for a proof
of these aﬁrmation%g?d also for a proof of the estimate (h‘Z‘l) for small enough W.
From the estimate (4.21), the function >0 #?a; is a holomorphic function on W, and
therefore -
G=s6">
Jj=0

is an holomorphic function on the set W N{Re(d) > 0}. In this set, which clearly contains
Wn{s>0,r,y € M}, G satisfies by construction the equation (9% + A,)G = 0, and
extends as a holomorphic functjoy on the two sheets covering of the set W\{d =0}. Now
we claim that with the choice (h_ZB) of the initial data for the solution ay of the transport
equation Z,(ag) = 0, one has

}gii% G(s,2,y) = 0p—y (4.29)

Here, we identify a m asyre on M with a distribution by factorization of the volume form
dgz. In other words, (h:ZE)) means

lim [ G(s, 2, y)p(x)dsz = ¢(y) (4.30)

s—0 M

. . . . 4.45bis
for any smooth test function ¢ with support close to y. The verification of (h.!S()) 1S
easy: take near y, the geodesic coordinate system v +— exp,(v),v € T,M. Then one has
d?(z,y) = v* and dyz = (1 4+ O(v?))dv. For f smooth with support near 0 one has

tim [ (5?4 02) D g s, epy ) ()1 + O

(4.31)
— a0(0, 3, 9) £ (0) / (1 + w?) D20y = £(0)

m

4.45

4.46
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by the choice (h‘Z‘S) of ag(0,y,y) (use the change of variables v = sw and Lebesgue dom-
inated convergence theorem). The same argument shows that t%—) gher terms in the
(i

development of GG in powers of § do not contribute to the limit in ).

Therefore, H(s,z,y) = Ps(z,y) — G(s, z,y) satisfies the elliptic boundary value prob-
lem in variables (s, x) close to (0,y)

(0> 4+ A, )H =0in s > 0, lim H = 0 (4.32)

Hence H(s,x,y) is analytic in (s, x) near (0,y). This is a classical result for this kind of
elliptic boundary problem with analytic coefficients, but here, one can use a most elemen-
tary reflection argument: near (0,y) in R x M, the function u(s,z) = sign(s)H(|s|)(z,y)
satisfies the elliptic equation (0% + A,)u = 0, hence is analytic. The proof of the fact
that H(s,z,y) is analytic in (s,x,y) near {s = 0} x Diagys is of the same kind: One
has the symmetry Ps(z,y) = Ps(y, z) and from the uniqueness in the construction of the
coefficients a; (see the appendix), one has also G(s,z,y) = G(s,y,z). Hence, H(s,z,y)
satisfies the elliptic boundary value problem in variables (s, z,y) close to {s = 0} x Diagy

(202 + A, +A,)H=0ins>0, limH=0 (4.33)
s—0

Therefore, we conclude that H(s,z,y) is analytic near {s = 0} x Diagy,.

4.8
I 4tggi(sjase m odd, the proof follows the same lines . In addition to formulas (h‘ﬂ)
and (hf?ﬁ J, one also use the formulas with n € N

(02 + A)(f" log(f)b) = nf""*(2+ (n — 1) 1og(f))((0:f)* + [V f[g)b

+ f"7H (1 + nlog(f)) (28sfasb +2(VfIVb), + (O2f + A f)b) + " log(f)(02b + Ab)
(4.34)
which gives since (0,6)* 4 [VO[2 = 40

(62 + A) (0™ og(8)b) = nd" log(6) (438519 + 2(V,d2|Vb)y + (Ag(d?) + 4n — 2)b)

+ 6" 1og(8)(92%b + Ab) + ™! (450517 + 2(Vod|Vb), + (Du(d?) + 80 + 2)b)

(4.35)
If we set b = sa, with a even in s, we thus get

(92 + A) (56" log(6)a) = snd™ log(d) <4388a +2AVLd2|Va), + (Da(d?) + 4n + 2)a>
+ 56" log(0)(9%a + 25~ dsa + Na)

4 son L (4588a +2VLd?|Va), + (Aa(d?) + Sn + 6)a>
i (4.36)
Then one find that the second line of (h_ZQ) holds true with an additional term of the
form sh(s,z,y) with h holomorphic near s = 0,z = y, and this term plays no role in the
verification of the boundary condition at s = 0 nor in the fact that Py(z,y) — G(s,z,y) is

analytic near {s = 0} x Z%éa%ygsee the appendix for the details).
The proof of proposition 1.6 s complete. O

4.47

4.47
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Lemma 4.7 There ezists ¢g > 0, such that for all s €]0, o[ the following holds true.
i)The function Pgs(z,y) is holomorphic in (z,y) near any point (z,y) € By x M.
ii) The function Py(z,y) extends holomorphicaly near any point (z,y) € 0Bs X M such

that z ¢ {Z(i,y,n), Inl, = s}.

o . . . Ell_\')l' h_H4-36
Propf, Point i) follows directly from the identity (1.3) and the bound (1.IT) of lemma
h.ZS. Point ii) is also easy to prove: the function (s, x) €]0,00[x M +— P,(x,y) satisfies the
elliptic boundary value problem

(02 4+ A)Py(z,y) =01in s > 0, Py(z,y) = duey

rop4.1
Therefore, as in the proof of proposition ETG‘,PWget that Py(z,y) is analytic in (s, z) near
any point (0, z) with = # y. By choosing €y > 0 small enough, we ay thus assume that
z=Z(1,x,8),|¢]s = s and x close to y € M. Then by proposition E 6 the singularities
of Py(z,y) near such points are on the s gmplex mani ol% {7‘ 2,y),8* + d*(z,y) = OZE
and the result follows from the formula %7‘2 of lemma he proof of lemma m
complete. O

Recall that we use the identification of {(z,&) € T* M, |{|, = s} with 0By given by the
map (x,&) — Z(i,z,£), and that ¢, is the volume of the unit sphere in R™, so ¢,,/m is
the volume of the unit ball in R™. Let dxd£ be the canonical Liouville measure on T%M.
We define the measure dus; on 0B, by the formula

_m 1/2 do(u)
pam =7 [ st m Jdde = / /Sml (2 50/ 2() Yy (437)

0B Cm m

15, is compatlble with the definition of dyu, that we have used in the flat case in section
b nd if f(z) is a smooth function on X defined near M, one has

hm fdus = / f(x)d,z (4.38)
8BS M

3.
The real 1-form [, introduced in (%3 3) defines by restriction to 0By a 1-form that we
still denote by 3,. This defines a canonical half line bundle L~ C T*(0B;)

= = {(2,0) € T*(DB,), ¢ = tf.,t < 0} (4.39)
For s €]0, o[, we denote by Ty the map from D'(M) into D’ (0By)
> e =f = To(f) = Pu(f)lon, = Ze “icjejlon, (4.40)

Lemma 4.8 For all s €]0, €[, Ts is well defined and injective map. The Hormander wave
front set of its distribution kernel Ts(z,y) is given by

WE(T,) ={(z,Gy,n) € T*(0Bs) x T"(M)\ M, z = Z(i,y, sn/nl), ¢ = =P:[nl/s} (4.41)
In particular, W F(T) is parametrized by (y,n) € T*(M) \ M.
Moreover, for any f € D'(M), one has

T(f)= lim [ Po(29)f(y)dey = lim [ Ty(e12" ) (4.42)

D'r—0t Jar D'r—0t Jar
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Proof. One has Py(f) = [,, P M f(y)dyy € O(B;), thus the injectivity of T is obvious,

4.1
The fact that Ty(f @§ for an ; €, D'(M) follows easily from proposition EG
em E 4.4

and point ii) of lemma y lemma e smgular support of the Kernel Ty(z,y) is
contained in {(z,y),3n ﬁ T*Jy,lm]y s, and z = Z(i,y,n)}. Then to compute WF(T}),
we may use proposition H.0, angd this reduce to the CO%MHOH of WF(s* 4+ d*(z, PiA
which is easy if one uses lemma Wd gives formula (4.4T). Finally, the assertion (hﬂ?)

is obvious. The proof of lemma is complete. O

In the following proposition, 77 is the adjoint of 7 for the measures d,oz on M and
dus on 0B;.

Proposition 4.9 Let I = [c,d] C|0,e[. Then T:Ts is a smooth family in s € I of
elliptic pseudodifferential operators of degree —(m—1)/2. Moreover, there exists a constant
C(I) > 1 such that one has the equivalence of norms

1
WHTSQHL?@BS,dus) <N gllg-en—vraany < CNTsgll 208, du.) (4.43)

utetl

Proof. The proof of this lemma is suggested in %ﬁmentially, we use the fact that T
is a ”Fourie Ptegral Operjgor V\ch complex phase”, which is a direct consequence of
pr0p051t10n d lemma and then we apply the general machinery. (this is the
proof given in % % Here, to avoid invocation of a general machinery, and also to get
the principal symbol, we shall directly verify that 777, is an elliptic pseudodifferential
operator of degree —(m—1)/2, by computing its distribution kernel. This will just involve
the knowledge of the stationary phase theorem in the case of complex phase, but with
phase and symbol analytic in the parameters, which is not so difficult.

We start with the following lemma. For his proof, which is elementary, and basic def-
igitiogs E_Psnalytic Symb(')ls7 we refe}“ to the appendix. 4Fgr the computation of 0¢(0,y,y)
given in EI 46, we use the identity, with d,, defined in (&LZS)

WD((m +1)/2) = / / (1) (m1) 2 WAL o / Tt iy
m t 0 Vi

Here, T'(2 fo e Tx*~1dx is the usual Gamma function.

Lemma 4.10 There exists a classical analytic symbol of degree 0, o(A; s, x,y), with holo-
morphic dependance on (s,x,y) € W such that the function defined for s > 0 and (z,y)
close to Diagy,

o d\
G(s,x,y) — s/ e_A(82+d2(x’y)))\(m+1)/20()\;s,x,y)T (4.44)
0
extends holomorphicaly in W. One has for some constants A, B
o(A; s, z,y) Z)\ oi(s,x,y), SII/Il/p|O-j| < AB7j! (4.45)

7>0

and
00(0,y,y) = 7 "D/ (4.46)

4.70

4.71

4.72

4.73



21

Let us verify that 7T is an elliptic pseudodifferential operator of degree —(m — 1)/2.
For f € C*(M), one has T:7T, = [y Ks f(y)dyy with the distribution kernel
K, € D'(M x M) defined by the formula

Ku(n,y) = /8 RGP0 () (4.47)

One has to take care of the fact that the integral in (%) is not an "usual” integral,
but the distribution produgt Is(z (hqé_? € D'(M x M x 0By) is well defined. This
is a consequence of lemma % 8 formula ), and of general results yaye front set of
tensor product, non caracteristic tr&t_cgg) and proper direct image (see?g oreover, one
gets from this general results and (hﬂT) the inclusion

WF(KS) - {(‘ruy7§7n)7x - y7§ +n= 0} = T[*)iag(M)M

Therefore, to compute the kernel K (x,y) modulo a smooth function, we may assume
that (z,y) is close to Diag(M). We will choose the coordinate system (p,w) € TM, w
small and =z = exp,(w/2),y = exp,(—w/2) so that p is the middle point of the geodesic
connecting y fo =, and in these geodesic coordin te&l centered at p, one has w =z — y.
By lemma h‘ZU we may localize the integral in for = = Z(i,u,§) with u close to
p. Let n;,,1 < j < m be an orthonormal basis of T,M. In geodesic coordinates we
write u = exp,(D_ a;n;,), and we denote by £ = (1, ..., &) the dual coordinates of the
(aj). Recall that in geodesic coordinates, one has g(a) = Id + O(a?) and we define new
coordinates b by the formula

b=1b(a,&) = (97'(a)""(§) = & + 0(a’¢) (4.48)

Then one has * = [£|?, and we shall parametrize the set of points z = Z(i,u,§), u
¢lose fo p and [l < e by the coprdinates (g,0) € R?™ close to (0,0). From lemma
h [U, proposition and formulas &I 47 and , one find that near Diag(M), the kernel

Ks(yc7 y) is equal to (modulo a smooth function)préciser I’argument

do
lim / / Eo (s, 2,y; p,u)s*p"dp—— (u)) (p €]0,00[, u € S™ 1)
Sm—1

D' r—0t

Es+r(s,x,y;p,u):/ / e Vs s L (sin 6 cos )™/ 2y (a)/det(g(a))dbda
O m

U5, 2,,u;a,0) =sinf((s +7)* + 32(2, z)) + cosO((s + 1) + d*(z,9))
Yerr(s,2,y,u,pya,0) = o(pcosl, s+ r, z,y)a(psinb, s +r, z, x)

2= Zli,eapy (Y ajmyy), 59" (a)(w)

Here, x € C§°(Ja] < 2¢) is a smooth cutoff function, equal to 1 in the ball |a| < ¢, with
¢o such thag ope has [w| << ¢y << inf(s € I) (recall z = expy(w/2),y = exp,(—w/2)).
By lemma 3.3, one has

Re(Vy,,) >

(4.49)

(sin® + cos0)((s +1)* — s*) + c;(sin @ d*(a, ) + cos 6 d*(a,y))

4.76
and in particular, for r > 0, the integral in (&UKI) is absolutely convergent. The key
technical point is to verify that the analytic function

(CL, 9) = \I]SJFT(S? z,y,u;a, 9)

4.74

4.75

4.76
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admits a unique non degenerate critical point (a.(r,s,z,y,u),8.(r,s,z,y,u)) close to
(0,7/4) for s € I, r close to 0, x,y close to p and any v € S™ !, and that the Hes-
sian of W, at the critical point is non degenerate. To this end, we have just to verify
that it is true for r = 0, x = y = p, and since s is small, we may even assume that the
metric is flat. But in that case, we get easily

WU, (s,p,p,u;a,0) = a*(sin@ + cos @) — 2is(sin — cosB)a.u (4.50)
which admits a unique critical point (a,, 6.) = (0,7/4). From the Taylor expansion
Uy(s,p,p,usa, /4 + @) = V2(a® — 2isp a.u) (4.51)

we get that this critical point is non degenerate. Observe also that the Hessian of Re(W,)
is strictly positive in the a directions. Therefore, for s € I, r close to 0, x, y close to p and
any u € S™ !, one has a unique non degenerate critical point, and the Hessian of ¥, ., is
strictly positive in the a directions. Let

¢5(r7 x? y? u) = qu"l‘r(S’ x? y’ u) a’C(T’ 37 x? y7 u)? QC(T’ 87 x? y7 u)))

be the critical value, which depends analytically on all parameters. In the flat case, one
verifies easily that one has (ac,0.) = (0,7/4) independently of (z,y) = (w/2, —w/2). By
lemma Md Taylor expansion in w = x — y, one gets (a., 0.) = (0,7/4) + O(w?), and
vérifier détailler

Us(r, @, y,u) = \/5((5 +7)? = s +is(r — y)u+ Qp, s, uir v — y)) (4.52)
where Q(p, s, u;r,w) is analytic in (p, s, u;r,w) and satisfies
Q(p, s,u;,0) = 0, VuQ(p, s,u;m,0) = 0, Re(95Q(p, s,u;0,0)) >> 0 (4.53)

To compute the integral in (Ell.%g), one has also to take care of the end points § = 0, 7/2.
Let 1 = x0(0) 4+ xc(0) + xr/2(0) with xo(0) supported near 0, x/2(f) supported near /2
and x.(0) € C5°(]0,7/2[) equal to 1 near w/4. Then the contributions of xo, xx/2 to the
kernel K(z,y) are smooth functions near Diag(M) (see the appendix for a proof of this
point). Now, we can apply the phase stationary theorem to the contribution of y., and
we get

Besir(s,x,y; pyu) = e PVsrew) p=(miD/25 (1 0 ) us p) (4.54)

where 7,(r,x,y,u; p) is a classical symbol of degree 0 in p, 7, ~ ijo Gs;(ryz,y,u)p™
with &5 ; analytic in (r, z,y,u).Then it is easy to pass to the limite r — 0%, and we get
for (z,y) near Diag(M), the equality, modulo a smooth function near Diag(M):

oo ' ] m=1dnd

Cm
4.78bis _ [4.8 . ' ' (4.55)
Then from (53] and (. bo) we get that 77T is a pseudodifferential operator of degree

61 )/2 (set € = S\g y The ellipticity follows easily from the definition of >4 given
in ( T%TU and formula

4.78
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Finally, from the identity

(TeTo(9)9) 20ty = I To(D) 208, i)

7 4.2
and the injectivity of Ty, we get that (&UB} holds true. The proof of proposition EIEOJ 1S
complete. O

Remark 4.11 It is also true that TTs is an analytic elliptic pseudodifferential operator,
but we will not use this fact. If one wants to prove it, one has to modify the above argu-
ments. First prove that Ks(z,y) is analytic outside Diag(M). Second, use the analytic
version of the stationary phase theorem. Third, do not use a cutoff in the 6 variable;
instead, integrate in 0 along a suitable complex path from 0 to w/2 and passing through
the critical point 0.. The cutoff function x(a) is harmless since the Hessian of the real
part is positively defined at the critical point.

End of proof of the Boutet t eoremn.
Take s €]0, ¢g[. From proposition 1.9, he map

g € H_(m_l)/4(M) = Ps(g)(z) = /J\/[IPS(Z’y)dgy € H(Bs) (456)

is well defined, continuous, injective, and has closed range. Let us prove that P, is
surjectiye. hence an isomorphism of Hilbert space. Let f € H(B;) C O(B;). From

m4 .
lemma &fb , one has
=Yoo o= [ @i (457)
M

where the sum is uniformly convergent on compact subset of B, and the Fourier coefficients
¢; satisfy the bounds |c;| < Cse™=9%s for all § > 0. For 0 < s’ < s, one has

’B ’ Z Cjej gs gs = Z es WJCJeJ (458)

From ‘Eﬂlh%bounds on the ¢;, the function gy is smooth (and in fact analytic) on M, and
from (A.43), we get with a constant C' independent of s’ € [s/2, s]

—(m-1)/2 2s'w;| . |2 1/2
(Y <w> ke ) " = g l-cn-simoan (4.59)
< ClTwgsllr2@08, a0 = Cllf 208, du)
Since one has
lim [fllr2@8,.a0,0) = 1 flle2@8.,a00) = 1 fllma0)

we get the "optimal” bound on the ¢;:
Z<wj —(m—1)/2 25wj|c |2<OO

and therefore,
f(Z) = EDS(.QS)? gs = Zeschjej (- Hi(mfl)/‘l(M)
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Finally, the family < w; >™~U/% ¢; an orthonormal basis of H~=(m~V/4(M), and P, is an
isomorphism of Hilbert spaces. Therefore, the family

P (< w; >M D/ ) = 75w <y Sm=D/4 ¢
thmboutet
is a Riesz basis of H(Bs). The proof of the Boutet theorem T 1gucgmplete.

Let us end these section by some results about the principal symbol of T77T;. The
calculus we have done gives the principal symbol A of 17T} equal to

A(s,x,8) = O (s,2,6/1€|)Dm(sl€]0),  (mod [€];"T172)

4.60
C(s,x,u) = 572(2\/5)*(m+1)det(Hess(\I/S(s,:1:, T, U .)))ae=0,0o=r/4 ( )

2.11
W4h§1(")e the function I',, is defined in formula (2.13). To prove this point, we use formula
(:55) which gives

Als,2,6) = 2m)"™ ([€]o/sv/2) "0 D26,0(0,2, 2, /1€|.) (sV2) e

Now we use stationary phase expansion to compute &;0(0,z,z,£/|£|;). One has
U(s,z,r,u;a,0) =sin 0(32(2', x) + 5%) + cosO(d*(z, x) + s?)

2 = Z(i,eap,(a), sg'*(a)(u))

lem3.3
From lemma %.3, we get that the ¢ritical point is (ac,0c) 7= 0,7/4). Thus the function
A(s,x,€) is equal to (here we use (E:ZIG) and the formula (&NIQ) for ;)

1

Als,,€) = (2m)" (&l /5v/2) 7D m D ()T det ™2 (2m) M) (sV2) e

where det is the value of the Hessian determinant of W,(s, x, z,u; a, @) at the critical point

(ac,8.) = (0,7/4) which is equal to s*(2v/2)"*'C(s, z,£/|€|.). Hence we get

(m— 1)/2( ‘€|> (m—1)/2

A(S,l’,f) = C(‘va?g/’ﬂx)

Cm

and the result follows from the fact that the principal symbol of I',,(n) is equal to
(/)i =DRe k.

Remark 4.12 If one replace the measure dus on Og, by dfis = J(z)dus, then the new
principal symbol of T T will be

(20,5, 5/ \E))PCT2(5, 2, €/EL)Tm(sIEl),  (mod [€[;172)

and therefore, with the choice J(Z(i,z,s,su)) = CY4(s,z,u), we will recover the same
principal symbol as the one of the flat case.
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The function C' involves the second derivative in z of d*(z,z) at z = Z(i, z, su), hence
the curvature tensor of M. When M = S% = {z € R™"! 22 = R?} is the sphere of radius
R in R™*! one has

.y
d2($, y) = R2¢(ﬁ)7 ¢<u) = 0° < cost =u
and
Z(i,x, su) = xcosh(s/R) + iRusinh(s/R), x € SE, ue ST, zu=0
which gives
z.y cosh(s/R) 4+ tRu.y sinh(s/R)
2 )

R

These formulas allows to find the Taylor expansion at order 2 of Wy at the critical point

(ac, 0c) = (0,7/4), (6 = 7/4 + p):

d*(Z(i,r, su),y) = R*(

h
U, ~ \/§<|a\2L(S/R) + (1 - L(s/R))(a.u)* — 2isg0a.u), L(u) = u(;)jhEZ;
4.77bi
Observe that L(0) = 1, thus when R — oo, this is compatible with the formula (. o

the flat case. Therefore, in the case of S}, we get
C(s,,u) = C(s) = (L(s/R))" ™"

which depends effectively on the parameter s.

5 A conjecture on the ramification locus for general
Poisson kernels

The reader has to observe that the construction of the Had rrnoar4d Parametrix for the Pois-
son kernel (in the analytic category) given in proposition %.6 uses strongly the fact that
on the Riemannian manifold with boundary [0, co[x M, with metric ds*+ g, the boundary
s = 0 satisfies the following property:

Every null-complex caracteristic curve u — (s(u), z(u); o(u), ((uw)) of the hamiltonian
function o® 4+ g~'(2,¢) such that s(0) = 0,0(0) = 0, satisfies s(u) = 0.
(5.1)

This fact explains why the ramification locus in the complex domain of the kernel of
the Poisson operator associated to the operator 92 + A\, is simply given by the equation
s + d*(x,y) = 0. To my knowledge, the description of the ramification locus in the
complex domain of the kernel of the Poisson operator in a general analytic Riemannian
manifold with boundary is an open problem. In this section, we will state a ”conjecture”
about this ramification locus, and we will give some examples in favor of it.

Let g(z) be an analytic metric defined in a neighborhood of 0 in R™, and Q a half
space near 0 defined by an analytic equation f > 0 with f(0) = 0 and df(0) # 0. We are
interested by local solutions near 0 in ) of the Cauchy problem

Ngv) =0 inQ, wvlpg=0dy (5.2)
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Any solution of (}’g_%) is analytic in Q. Our problem is to determined the ”maximal holo-
morphic extension” of a SolutioM in a neighborhood of 0 € C”. This Gd(fes not depend
on the particular solution v of (5.2) since if vy, vy are two solutions of (kTZ), then vy — vy
extends analytically in a neighborhood of 0.

One has
A, = det(g 1/220 Zdet 124439;)

In the system of coordinates (z’, x,) ”geodesic normal to the boundary” with f =z, =
dist((x', x,),00), let us denote by g(a,.) the metric on the hypersurface =, = a. Then
u = det(g)"/*v satisfies an equation of the form

P(u) = (82 + R(zp,2',0x))u=0 inz, >0, uly-0=20d (5.3)

where R(z,,2',0,/) is a second order differential operator with analytic coefficients and
real principal symbol equal to

xmx 5 Z g l‘n, 525]

i,j<n

Without loss of generality, we may assume 7(0, 0, ') = £2. We will state more gen, rally a
conjecture on the holomorphic extension of a solution u of an equation of type ( }b_if with
the assumption that r(z,,.) is an analytic family of analytic metrics. For (z,() E c
and z close to 0, we define p(z, () by

p(va) = Ci —{—’I“(Zn,zl,cl) (54)

Let B. = {z € C", |z2| < €}. We denote by F' = F, the smallest closed subset of
(T*B. \ B.) N p~*(0), C* homogeneous (i.e for (z,{) € F,, one has |z| < ¢, ( # 0,
p(z,() =0, and (z,s¢) € F. for any s € C*) which satisfies the following 3 conditions

a) (2,0) € F. = exp(sH,)(#,() € F. for |s| small

b) (2/7 07 Clv Cn) € FE = (2,7 07 </7 _gn) € F€ (55)

&) {(0,0),¢ #0,p(0,0) =0} C F.

Observe that a) is a propagation assumption, b) stands for the reflection of singulari-
ties at the boundary z, = 0, and ¢) takes care of the Cauchy data dy.

With 7(z,() = 2z, we set Z = Z. = w(F,). Then Z, is a closed subset of B.. We denote
by dims(A) the real Hausdorff dimension of a set A. We assume € > 0 small enough and
we drop the indices e. Our first conjecture is the following.

Conjecture A

o 1. dimy(Z)=2(n—1), B\ Z is connected, and u can be holomorphicaly extends
along any path ¢t > 0 — ¢(t) such that ¢(0) € Q and ¢(t) € B\ Z for t > 0.
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o 2. Let
Zyeg ={z € Z, Z is a complex smooth hypersurface near z} (5.6)

Then dimy(Z) = 2(n — 1), Z,ey = Z, and near any point of the universal covering

which projects on Z,4, the holomorphic extension of u is regular holonomic.

Recall that w is regular holonomic near a point zy of a smooth hypersurface defined by
an equation ¢g(z) = 0 with g(z9) = 0,dg(z0) # 0 iff u is near z; a finite linear combination
with coefficients in O,, of functions of the form g*, g* log(g).

We define a closed subset Z,,4 of Z by
Zyaa = {2 € Z, Z is not a constructible set near z} (5.7)

Here, by ”constructible near z”, we just mean that Z is defined by an holomorphic equa-
tion near z. Then one has by definition

Z = Zreg ) Zsing U Zbad

5.8
Zsing = {7z € Z, Z is constructible but not a smooth hypersurface near z} (5:8)

Remark 5.1 One has to take care that in general, Z is not the set of zeros of an holo-
morphic function and we may have dimy(Zpaq) = 2(n—1). The behavior of u near points
of Zyaq is most probably not descriptible (at least not by me).

Observe that if conjecture A is true, this will be a substitute in the complex domain for
the celebrated propagation at the boudary of singularities theorem of R. Melrose and J.
Sjostrand (see Wf%

The second conjecture is almost the same, but is probably weaker since it is just about
the normal derivative

Dz, u(0,2") = w(z')
which is a well defined distribution on the boundary, and which is analytic in 2’ # 0. Set
B=BNnz,=0and Z°=ZNz, =0. Let Z° be defined by

reg

0 _ 1 0 0 - )
Lreg = {z' € Z°,Z" is a smooth complex hypersurface of the boundary near z’}

Conjecture B

o 1. dimy(Z°) = 2(n—2), B°\ Z° is connected, and w can be holomorphicaly extends
along any path ¢ > 0 — ¢(t) such that ¢(0) € {2/ # 0} and ¢(t) € B°\ Z° for t > 0.

e 2. One has Z,Qeg = 7% | and near any point of the universal covering which projects

on Z,[,)eg, the holomorphic extension of w is regular holonomic.
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Let us study a very particular case, where Zy,q = 0 and Z = Z,.,, U {z = 0}. Let
ro(z',¢") = 7(0,2',(’). Let us assume that the following hypothesis holds true:

for / € C"\ 0 such that 74(0,7') = 7/* = 0 one has

(2,¢) = expls)(0.1) = S-(0,2,¢) = 0

(5.9)

In that case, we claim that the set F' is equal to the union of null bicaracteristics of p
starting at a point of T;C", i.e

F= Ao = Uczo,p0,0=0{exp(sH,)(0,¢)} (5.10)

and therefore

7 ={z€C",d*(z,0) =0} (5.11)

Z is a complex cone, and Z,., = Z \ {z = 0}. (by a complex cone, we main that it is
defined by an equation ‘2M(z)z = 0 with a matrix M(z) such that aﬁ_mM ) # 0) One
has just to verFGf_rthat the closed C*-homogeneous set AO given by ( satisfies the 3
conditions of (b o since any closed C*-homogeneous set F' which satisfies these condi-
tions contains Ag. Conditions a) and c) are obvious. If n = 2, the equation p(0,¢) = 0
is equivalent to (; = =£i(;, thus there is only 2 null bicaracteristics starting at z = 0,
and they are transversal to the boundary, thus condition b) is obvious. If n > %_éhen
C = {d*(2,0) = 0} N {z, = 0} is still a complex cone in the boundary. By (5.9) C
contains the complex cone C' = {d?(z,0) = 0} where d is the distance in the boundary,
and therefore, one has C' = C' . Thus if a point ((2,0),¢) is in Ay, one has d?(z,0) = 0
and therefore condition b) holds true.

6.6
Observe in particular that (h) is obviously satisfied when 7 is inE ]ggndent of z,
which was %Tcase for the operator 9 + A, with s = z, of section &, and of course

proposition shows that conjecture A holds true in that case.

Observe also that the hypothesm always holds true in dimension n = 2 (since in
that case, the hypothesis is void). urse, n = 2 is very particular since the principal
symbol of an operator of the form 3) factorize in the product of two complex linear
forms.

n

Observe finally that for any n, when A is the flat laplacian on R A d when €2 is ever
the interior or the exterior of a ball of radius R > 0, then condition db_g) holds true. This
is a consequence of the trivial fact that if z € R" is such that 22 = R2, then for any
vector z € C" such that 22 = 0 and z.xz = 0, one has (z + 2)?> = R% Observe that one has
an explicit formula for the Poisson kernel inside or outside a ball, and these formulas are
compatible with conjecture A.

We will end this section with the special case of the operator

R4+ (1+2)0;+ 8 with (z,y,2) eR’, Q={z>0}
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In that case, we will indicate briefly why conjecture B is true, the idea of the proof being
the one of jj This example shows that the set of bad points Z,,4 do exists, and they are
really obstruction in the holomorphic extension of u. Let us first describe what are the
sets F' and Z in that case.

It is easy to compute in coordinates (z,y, z;&,m, () the null bicaracteristic
exp(sH,)(0, Yo, 20; §0, Mo, Go)- One finds

x(s) =258 — s°mg,  E(s) = & — smp
y(s) = yo + 2sm0 + 252Egno — 283778/3, n(s) =no (5.12)
z(s) = 20+ 250, ((s) = (o

Let Ao be defined by (%) For N > 1, we denote by Ay the set of points in
T*C3\ 0, with (z,y, 2) close to O VYQich are connected to a point in Ay by N reflections
on the boundary x = 0. From (h?), it is easy to compute Ay, and we find that it is
parametrized by the complex curve {o? + > + 1 = 0} C C?, with |a| < ¢/N, with the
following formula

x(t) = 2ta — 2
y(t) = 4N (a +20°/3) + 2t + 2t2a — 2t3/3 ‘13
z(t) =4Naf + 2tp (5.13)

(€(1),n(®), (1)) = Ala =t,1,5), rel

Since « is close to 0, this gives Ay = AJr U Ay with § = +iv1+a? on AjE The AjE
C-lagrangian in T *(C3 \ 0. Obviously, the set Uk>0Ak satisfies conditions a),b,c) of I\Fb_g)
and thus we get

F = closure(Ug>oAx) (5.14)

If we define AL by the parameterization with (u,t) € C? close to (0,0)
x(t) = —t*
y(t) = 4u + 2t — 2t*/3
2(t) = +i(4u + 2t)
(€(1),n(t), C(1)) = A(=t, 1, +i), AeC
we find with A = AL UA

(5.15)

F = (UgsoAr) UA (5.16)
Set Zy = {d*((x,y,2),(0,0,0)) = 0}, Zx = 7n(A%), Zy = ZH U Zy, ZE = 7(AL) and
Zoo = Z1 U Z,. Then one gets

Z - (Ukzozk) U Zoo

5.17
Zbad - Zoo ( )

Observe that Zlid is the union of two complex sets of codimension 1 with a cusp singularity
on the boundary x = 0. In particular, dimy(Zpq) = 4 = 2(n — 1). The intersection Z°
of Z with the boundary x = 0 is easy to compute. One find

73 ={(0,00} U, Z%=2nUXn

Yy =XLUSy, 5% ={(y,2) = (4u(l + 2u?/3N?), +diu/1 +u2/N?2)}  (5.18)
70 =Y. =St ux,, Xt ={z=+iy}

.10
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.12

.13

.14

.15

.16
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This gives Z°,, = Z°\ (X ) and therefore Z0 = Z°.

reg reg

6.2
The solution u(z,y, z), x > 0 of the boundary value problem (%0_5’) is easy to compute
via Fourier transform in (y, z). One finds

u(z,y,2) = (5’ / itz A £ 00+ )
R2

2 Ai(n=43(n? + ¢?))

1 ) z A 43 +C2
wly2) = ()7 [ etmonps St € g

(5.19) |6.17

where Ai(u) = & _Jr;o ¢'5v+5°/3) s is the Airy function. Recall that ’%(w) is an analytic

symbol on any angular sector —7m + € < arg(w) < 7+ €, |w| > 1, and

Ai : ,
Sow) = w214 Y ), | < AB) (5.20)
Jj=1
6.17
Thus we get from (hg), with D = —id, |Ag| = =02 — 92, and where N denotes the

Dirichlet to Neumann operator (an analytic pseudodifferential operator of degree 1)

w=N@), N(D,,D.) = —[Lo2(1+ 3 ;D |20 #7%) (5.21)

Jj=1
6.17b
From (}o 19) and (L) AU), one gets for (y,z) € R? and ¢ €] — 37/2,37/2]

w(e Py, e ¥z) =

1 , . Al i
(%)268“9/3 /2 el(lﬂH—zC)nQ/?»E(eZ 50/317 4/3(772 + Cz))dndC (5.22) 6.18
R

AL (e™/3y) is a tempered distribution on R and one has
A ) .
—Z,(e”/3u) — je™/3 / e "*"G(s)ds (5.23) |6.19
Ai R

where G(s) is a tempered distribution with support in s > 0, analytic in s > 0, with

Vs >0, G(s)= Ze‘

k>0

eim/6

Wk (5.24) |6.18

where w; < ws < ... are such that —wy is the k-th zero of the Airy function. Recall

wk = (3m(k —1/4)/2)*? f (k) where f(A) =1+ O(X7?) is a classical analytic symbpl in A.
s =0, one has G(s) € O(s73/%) Set 1y, z) = w(e ™2y, e~/2%). From (%ZZI) and

}’0_2’5 ) we get

w.2) = [ FG oy, 5
0

- (5.25) [6.19
eis3¢(y,z)0_(y’ 2 83) _ 6”71—/9&/ eis3(ya+zb—a*4/3(a2+b2))a?/?:dadb
47T2 R2

where ¢(y, z) is the critical value of the phase

(a,b) — ya + 2b — a3 (a® + b?)
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and o(y, z; A) is a classical analytic symbol of degree 0. Let G(u) be a function of the
type
Glu) = / GN/3)e Mg (s M) AdA (5.26)
0
As in H:]j, one finds that near 0, GG is ramified on the complement of © = 0 and the set of

points u,, = %, arﬁg(i% remains to check that the set of equation ¢(—iy, —iz) = 1;7}02 are
the set Z,, given in b.18, and ¢(—iy, —iz) = 0 iff z = +iy.

6 Appendix
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