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Abstract

We give a detailed proof of a theorem of L. Boutet de Monvel formulated in 1978
in

Boutet1
[1], and we state a ”conjecture” on the ramification locus of the Poisson kernel

on general analytic Riemmannian manifolds with boundary.
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1 Introduction
S0

These notes are a written version of a 3 hours course given at Northwestern university
in may 2013. The main purpose is to give a detailed proof of a theorem of L. Boutet de
Monvel formulated in 1978 in

Boutet1
[1]. We have add a ”conjecture” on the ramification locus

of the Poisson kernel on general analytic Riemmannian manifolds with boundary. We
hope that this will be motivating for students and researchers in linear partial differential
equations and microlocal analysis.

Let (M, g) be a compact, connected, analytic Riemannian manifold of dimension m.
Let us recall that the metric g on the tangent bundle TM gives a canonical identification
of TM with the cotangent bundle T ∗M . Let dgx be the volume form on M associated to
the metric g. The Laplace operator 4g on M is defined by the formula∫

M

4g(u)vdgx = −
∫
M

(du|dv)dgx (1.1) 1.1

Here df denotes the differential of the function f so one has by definition4g = −d∗d where
d∗ is the adjoint of d for the natural Hilbert structure induced by g on section of T ∗M . The
unbounded operator−4g with domain H2(M) is self-adjoint on L2(M,dgx), non negative,
with compact resolvant. We will denote by (ej)j≥0 an orthonormal basis of L2(M,dgx) of
real eigenfunctions of −4g associated to the eigenvalues ω2

j , with ω0 = 0 < ω1 ≤ ω2 ≤ ...,
limj→∞ ωj = +∞, so that one has

−4g(ej) = ω2
j ej,

∫
M

ejekdgx = δj,k (1.2) 1.2

Since 4g is a second order elliptic operator with analytic coefficients, the eigenfunctions
ej are real analytic functions on M .

Let X be a complexification of M . This means that X is a complex analytic manifold
of complex dimension m, and M ⊂ X is a totally real submanifold of X (this means
TM ∩ iTM = M where M ⊂ TM is view as the zero section). Let d(x, y) be the
distance function on M × M . Then d2(x, y) is an analytic function near the diagonal
DiagM = {(x, x), x ∈ M} ⊂ M ×M , and therefore extends as an holomorphic function
in a complex neighborhood of DiagM in X ×X. Let us define Φ(z) by the formula

Φ(z) =
1

2
sup
y∈M

Re(−d2(z, y)) (1.3) 1.3

We will see in section
sec3
3 that this function is well defined for z ∈ X close to M , and is

real analytic and strictly pluri-subharmonic. Moreover, one has Φ|M = 0, dΦ|M = 0 and
the signature of the Hessian of Φ is equal to (m, 0) at any point of M ; in particular, one
has Φ(z) ≥ 0 and Φ(z) = 0 if and only if z ∈M . This function allows to define, for ε > 0
small enough, the tubular neighborhood Bε of M in X

Bε = {z ∈ X, Φ(z) <
ε2

2
} (1.4) 1.4

Let us denote by O(Bε) the space of holomorphic functions defined on Bε. For f ∈ O(Bε),
its boundary value f |∂Bε on ∂Bε is well defined as an hyperfunction on ∂Bε which is an
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analytic compact real manifold of dimension 2m−1. This boundary value is a distribution
on ∂Bε if and only if the function f satisfies a polynomial growth condition at the boundary
of the form |f(z)| ≤ Cdist(z, ∂Bε)

−N . Let us recall that the Hardy space H(Bε) is the
Hilbert space defined by

H(Bε) = {f ∈ O(Bε), f |∂Bε ∈ L2(∂Bε)} (1.5) 1.5

We can now state the Boutet theorem formulated in
Boutet1
[1] (in a slightly different but equiv-

alent form). Let us recall that a family (uj)j≥0 is a Riesz basis of an Hilbert space H if
and only if any x ∈ H can be written in a unique way as the sum of a convergent serie
in H, x =

∑
cj(x)uj and

∑
|cj(x)|2 is equivalent to ‖x‖2

H . We use the classical notation
< x >= (1 + x2)1/2.

thmboutet Theorem 1.1 For ε > 0 small enough the following holds true. The eigenfunctions ej
extends holomorphicaly to Bε and the family (e−εωj < ωj >

(m−1)/4 ej(z))j≥0 is a Riesz
basis of H(Bε). For f ∈ H(Bε) and aj =

∫
M
fejdgx, one has

f(z) =
∑

ajej(z) (1.6) 1.6

where the sum is uniformly convergent on any compact subset of Bε and convergent in
H(Bε). There exists a constant Cε such that one has the equivalence of norms

1

Cε
‖f‖2

H(Bε) ≤
∑
j

|eεωj < ωj >
−(m−1)/4 aj|2 ≤ Cε‖f‖2

H(Bε) (1.7) 1.7

A detailed proof of this theorem has been given recently by S. Zelditch in
Zel
[11], following

the lines indicate in
Boutet1
[1] and using the Hadamard parametrix for the wave equation, and

also by M. Stenzel in
St1
[10] which uses the asymptotic expansions of the heat kernel. Here,

we will give a proof based on non-caracteristic deformation techniques and a direct calculus
of the Hadamard type parametrix for the Poisson Kernel.

The paper is organized as follows:
In section

sec2
2, we just recall explicit formulas in the euclidian space Rm and we give a proof

of the Boutet theorem in the special case of the flat torus (R/2πZ)m.
In section

sec3
3, we recall basic facts on symplectic geometry. We introduce the fundamental

function Φ and we give some of his properties. We refer to
Sch1
[7] for a detailed study of the

relationships between real and complex symplectic geometry.
Section

sec4
4 is devoted to the proof of the Boutet theorem.

In section
sec5
5, we state our ”conjecture” on the ramification locus in the complex domain

for general Poisson kernels, and we give some exemples.
Finally, the appendix contains some proofs of technical results.

There is no need to have any knowledge about analytic microlocal analysis to read
these notes. The only ”analytic” things that we will use are: Cauchy-Kowalewski, Zerner-
lemma (see lemma

lemzerner
4.2 in section

sec4
4), and the analytic regularity for solutions of elliptic

linear differential operator with analytic coefficients.
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Finally, let us recall that the representation of the analytic wave front set as the
analytic singular support of boundary values of holomorphic functions defined inside a
strictly pseudoconvex domain, which is one of the most fundamental results in microlocal
analysis, (and which is closely related to the Boutet theorem) is due to M. Sato, T. Kawai
and M. Kashiwara and is explicit in their foundation article of 1971

SKK
[8].

2 Explicit formulas in the flat case
sec2

In this section, we just recall what are the explicit formulas for the Poisson kernel, heat
kernel, and FBI transform on the euclidean space Rm. Replacing Rm by the standard
m-dimensional torus Tm = (R/2πZ)m, this will give a straightforward proof of the Boutet
theorem in this special case.

First observe that on Rm one has d2(x, y) = (x− y)2, and therefore the function Φ(z)
given by (

1.3
1.3) is defined on all Cm by

Φ(z) = Im(z)2/2 (2.1) 2.0

The heat kernel in Rm is equal to pt(x, y) = (2πt)−m/2e−(x−y)2/2t. The solution of the
heat equation

∂tf −
1

2
4f = 0 (in t > 0), f |t=0 = g ∈ S ′(Rm) (2.2) 2.1

is given by the formula

f(t, x) =

∫
Rm

pt(x, y)g(y)dy (2.3) 2.2

On the Fourier side, one has the obvious identity

f̂(t, ξ) = e−tξ
2/2ĝ(ξ) (2.4) 2.3

Observe that if we replace x ∈ Rm by z ∈ Cm, and if we set λ = 1/t > 0, we get

f(t, z) = (
λ

2π
)m/2

∫
Rm

e−λ(z−y)2/2g(y)dy = Tλ(g)(z) (2.5) 2.4

where Tλ is exactly the most usual FBI transform introduced by J. Sjöstrand in
Sj1
[9] (up

to the factor ( λ
2π

)m/2 in front of it). Therefore, we get that this FBI transform is just a
complexification of the usual heat kernel. One has the obvious bound

|f(t, z)| ≤ (
λ

2π
)m/2eλΦ(z)‖g‖L1 (2.6) 2.4bis

Now we recall the formula for the Poisson kernel Ps(x, y). The solution of the elliptic
boundary value problem, with f(s, .) bounded in s ≥ 0 with values in L2(Rm)

∂2
sf +4f = 0 (in s > 0), f |s=0 = g ∈ L2(Rm) (2.7) 2.5

is given by the formula

f(s, x) = Ps(g)(x) =

∫
Rm

Ps(x, y)g(y)dy (2.8) 2.6
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One has the obvious identity

Ps(g)(x) = (2π)−m
∫
eixξ−s|ξ|ĝ(ξ)dξ (2.9) 2.7

Fix now s > 0. Then (
2.7
2.9) clearly implies that Ps(g), (with g in any Sobolev space

Hµ(Rm)) extends holomorphicaly for s > 0 in the domain

Bs = {|Im(z)| < s} = {Φ(z) < s2/2}

For z ∈ Bs, set z = a+ ib. Then the map g 7→ Ts(g) = Ps(g)|∂Bs is given by

Ts(g)(a, b) = (2π)−m
∫
ei(a−x)ξ−b.ξ−s|ξ|g(x)dxdξ (2.10) 2.8

Clearly, Ts extends for all real µ to a map defined on the Sobolev space Hµ(Rm) with
values in D′(∂Bs). Let dσs be the standard measure on the sphere of radius s in Rm, and
let cm be the volume of the unit sphere Sm−1 in Rm. Let dµs be the volume form on ∂Bs

dµs = c−1
m s−(m−1)dadσs(b) (2.11) 2.9

Let T ∗s be adjoint of Ts with respect to L2(∂Bs, dµs). One has

T ∗s (f)(x) = (2π)−m
∫
ei(x−a)ξ−b.ξ−s|ξ|f(a, b)dµsdξ (2.12) 2.10

and therefore we get

T ∗s Ts(g)(x) = (2π)−m
∫
eixξΓm(sξ)ĝ(ξ)dξ

Γm(η) = c−1
m

∫
Sm−1

e−2(|η|+u.η)dσ(u)

(2.13) 2.11

It is clear that Γm is a real strictly positive function and Γm(0) = 1. The function Γm(η)
depends only on |η| and e2|η|Γm(η) is an entire function of |η|2. Moreover, by stationary
phase, we get that Γm(η) is an elliptic symbol of degree −(m − 1)/2 in η (and even an
analytic symbol). Therefore, with < η >= (1 + |η|2)1/2 there exists c > 1 such that

1

c
< η >−(m−1)/2≤ Γm(η) ≤ c < η >−(m−1)/2, ∀η ∈ Rm

Since T ∗s Ts is the Fourier multiplier by Γm(sξ), this shows that T ∗s Ts is a self adjoint,
non negative, elliptic pseudodifferential operator of degree −(m − 1)/2, and also an iso-
morphism of the Sobolev space Hµ−(m−1)/2(Rm) onto Hµ(Rm) for any real µ. From the
identity

(T ∗s Ts(g)|g)L2(Rm,dx) = ‖Ts(g)‖2
L2(∂Bs,dµs)

we get
Ts(g) ∈ L2(∂Bs) if and only if g ∈ H−(m−1)/4(Rm)

From the above formulas, it is easy to get the Boutet theorem for M = Tm = (R/2πZ)m.
The standard L2 orthonormal basis is in that case ek(x) = (2π)−m/2eik.x, with k ∈ Zm,
and associated eigenvalue |k|2. The Poisson operator is given by

Ps(
∑

ckek)(x) =
∑

cke
−s|k|ek(x)
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which clearly extends to Bs = {z = a + ib ∈ (C/2πZ)m, |b| < s}. If Ts still denotes the
map g 7→ Ts(g) = Ps(g)|∂Bs , one has (T ∗s is the adjoint for the volume form (

2.9
2.11) on ∂Bs)

T ∗s Ts(
∑

ckek) =
∑

ckΓm(sk)ek

thus Ts(g) ∈ L2(∂Bs) if and only if g ∈ H−(m−1)/4(Tm). One has

Ts(
∑

ckek)(a+ ib) = (2π)−m/2
∑

cke
−s|k|eik.a−k.b

The functions (2π)−m/2eik.a−k.b = Ek(a, b) are trivially orthogonal in L2(∂Bs, dµs), and
the computation we have done to get (

2.11
2.13) shows that one has

‖Ek‖2
L2(∂Bs)

= e2s|k|Γm(sk)

It will be proven in section
sec4
4 that the family (ek(z))k is dense in the Hardy space H(Bs)

(we leave this as an exercise in the special case of the flat torus). Thus, in the flat case,
we get the more precise statement that the family

e−s|k|Γ−1/2
m (sk)ek(z), k ∈ Zm

is an orthonormal basis of the Hardy space H(Bs). Thus the Boutet theorem holds true
in the special case of the flat torus.

Remark 2.1 As one can see, in the flat case, T ∗s Ts is in fact a function of the Laplace
operator, and the eigenfunctions ek(z)|∂Bs remains orthogonal for any s for a natural
choice of the volume form on ∂Bs. This will not remain true in the general case. Vérifier
!. Also, one has to notice that with respect to s, view as a small parameter and not view
as a fixed constant, formula (

2.11
2.13) indicate that T ∗s Ts is a s-pseudodifferential operator

and not at all a usual pseudo-differential operator uniformly in s ∈]0, 1].

Let us now recall how one can recover the Poisson kernel from the heat kernel. We
start from the formula, valid for all x ∈ [0,∞[.

e−x =
1√
π

∫ ∞
0

e−x
2/4ue−u

du√
u

(2.14) 2.12

This formula is easy to prove, since both side are continuous functions of x ≥ 0, and
satisfy the equation f ′′− f = 0 in x > 0 and f(0) = 1, limx→∞ f(x) = 0. From (

2.12
2.14), we

get for s > 0, ω ≥ 0 (change of variable u = s2/2t)

e−sω =
s√
2π

∫ ∞
0

e−s
2/2te−tω

2/2 dt

t3/2
(2.15) 2.13

Therefore, one has the following identity which allows to recover the Poisson kernel from
the heat kernel, (and which remains obviously valid on any Riemmannian compact man-
ifold (M, g) by decomposition on the orthonormal basis (ej)j):

Ps(x, y) =
s√
2π

∫ ∞
0

e−s
2/2tpt(x, y)

dt

t3/2
(2.16) 2.14
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This identity is used by M. Stenzel in
St1
[10] in his proof of the Boutet theorem. If we

express this in term of the FBI transform defined in (
2.14
2.16), we get (recall λ = 1/t)

Ps(z, y) =
s√
2π

∫ ∞
0

e−λs
2/2 Tλ(z, y) λ−1/2dλ (2.17) 2.15

From (
2.4bis
2.6), we recover from (

2.15
2.17) that in the flat case, Ps(z, y) extends holomorphicaly

in the domain |Im(z)| < s. Therefore, the FBI transform (i.e the complexification of
the heat kernel) contains at least as much information than the Poisson Kernel. In fact,
the two points of view are essentially equivalent if the FBI transform acts on functions
independent of λ. The use of the FBI transform is of course more relevant in semi-
classical analysis, with small parameter h = 1/λ = t. We refer to the article by F.Golse,
E.Leichtnam and M. Stenzel,

GLS
[4] for a study of the FBI transform as a complexification

of the heat kernel on compact Riemannian analytic manifolds.

3 Symplectic geometry
sec3

Let T ∗X be the complex cotangent bundle to the complex manifold X. Let us recall that
for (z, ζ) ∈ T ∗X, ζ is a C-linear form on the complex vector space TzX with values in C,
i.e ζ(iu) = iζ(u) for all u ∈ TX. As usual, if f is a function defined on X with values in
C, we denote by ∂f (resp ∂f) its holomorphic (resp. antiholomorphic) derivative, that is

∂f(u) =
1

2
(df(u)− idf(iu)), ∂f(u) =

1

2
(df(u) + idf(iu))

Then ∂f is a section of T ∗X and one has d = ∂ + ∂.

Let us denote by XR the real analytic manifold X without its complex structure.
In these notes, we shall identify the real cotangent bundle T ∗(XR) with the complex
cotangent bundle T ∗X by the following rule

(z, ζ) ∈ T ∗X is identified with (z, ξ) ∈ T ∗XR : ξ(u) = Re(ζ(u)) (3.1) 3.1

With this identification, for any smooth function ϕ : X → R,

dϕ(z) ∈ T ∗zXR is identified with 2∂ϕ(z) ∈ T ∗zX (3.2) 3.2

Let ω = dζ ∧ dz be the canonical complex symplectic 2-form on T ∗X. Then Re(ω) and
Im(ω) are real symplectic 2-forms on T ∗XR, and moreover, Re(ω) = ωR is the canonical
symplectic 2-form on T ∗XR. This facts are easy to verify in local coordinates. We shall
say that a real submanifold Λ of T ∗X is R-symplectic (resp I-lagrangian) iff Λ is sym-
plectic for Re(ω) = ωR (resp lagrangian for Im(ω)). In other words, Λ is R-symplectic iff
dimRΛ = 2m and Re(ω)|Λ is non degenerate, and Λ is I-lagrangian iff dimRΛ = 2m and
Im(ω)|Λ = 0.

lem3.1 Lemma 3.1 Let z 7→ ζ(z) be a smooth section of T ∗X ' T ∗XR defined on an open
contractible subset Ω of X and let Λ = {(z, ζ(z)), z ∈ Ω}. Then Λ is I-lagrangian iff
there exists a smooth function ϕ : Ω → R such that ζ(z) = 2i∂ϕ(z). Moreover, Λ is also
R-symplectic iff the 2-form of type (1, 1) 2i∂∂ϕ on TX|Ω is non degenerate.
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Proof. If Λ is I-lagrangian, then −iΛ = {(z,−iζ(z)), z ∈ Ω} is R-lagrangian, ωR|−iΛ = 0.
Since Ω is contractible, there exists a function ϕ : Ω→ R such that −iΛ view as a subset
of T ∗XR is of the form {(z, dϕ(z))}. With the identification T ∗X ' T ∗XR, and by (

3.2
3.2),

we get −iζ(z) = 2∂ϕ(z), i.e
ζ(z) = 2i∂ϕ(z)

Let j : Ω→ T ∗X be defined by j(z) = (z, 2i∂ϕ(z)). One has j∗(Im(ω)) = 0. Moreover Λ
is R-symplectic iff j∗(ωR) is non degenerate and the result follows from

j∗(ωR) = j∗(ω) = j∗(d(ζdz)) = d(j∗(ζdz)) = d(2i∂ϕ) = 2i∂∂ϕ

�
The Levi form on TX|Ω, Lϕ(u, v) = 2i∂∂ϕ(u, v) is given in local complex coordinates
(z1, ..., zm) by the formula

Lϕ(u, v) = 2i
∑
j,k

∂2ϕ

∂zj∂zk
(z)(ujvk − vjuk)

One has obviously Lϕ(u, v) ∈ R, and Lϕ is entirely determinate by the associated hermi-
tian form qϕ(u) = Lϕ(iu, u). In local coordinates, one has

qϕ(u) = 4
∑
j,k

∂2ϕ

∂zj∂zk
(z)ujuk (3.3) 3.3

Therefore, Λ is I-lagrangian and R-symplectic iff the hermitian form qϕ is non degenerate,
hence of signature (p, q) with p+ q = m.

The real cotangent bundle T ∗M is a subset of T ∗X: for x ∈ M , any u ∈ TxX
can be written in a unique way u = a + ib, a, b ∈ TxM , and (x, ξ) ∈ T ∗M defines
(x, ζ) ∈ T ∗X, ζ(u) = ξ(a) + iξ(b). Then it is obvious that T ∗M is both R-symplectic
and I-lagrangian. Moreover, T ∗M is a totally real submanifold of T ∗X and the complex
symplectic manifold T ∗X is a complexification of the real symplectic manifold T ∗M .

Let p(z, ζ) be the holomorphic extension of p(x, ξ) = 1
2
|ξ|2x. In local coordinates, one

has

p(z, ζ) =
1

2

∑
j,k

gj,k(z)ζjζk

and p(z, ζ) is well defined on T ∗X|W if W is a small neighborhood of M in X. For t ∈ C,
let us denote by exp(tHp)(z, ζ) = (Z(t, z, ζ),Ξ(t, z, ζ)) the complex integral curve of the
hamiltonian vector field of p starting at (z, ζ). One has the Hamilton-Jacobi equations

∂tZ = (∂ζp)(Z,Ξ), Z(0, z, ζ) = z

∂tΞ = −(∂zp)(Z,Ξ), Ξ(0, z, ζ) = ζ
(3.4) 3.4

Since p(z, ζ) is homogeneous of degree 2 in ζ, one has for λ 6= 0

Z(λt, z, ζ/λ) = z(t, z, ζ), Ξ(λt, z, ζ/λ) = λ−1Ξ(t, z, ζ) (3.5) 3.5
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Therefore, exp(tHp)(z, ζ) is well defined for |tζ| small and (z, ζ) ∈ T ∗X|W if W is small
enough, and one has the Taylor expansion

Z(t, z, ζ) = z + t(∂ζp)(z, ζ) + 0((tζ)2)

Ξ(t, z, ζ) = ζ − t(∂zp)(z, ζ) + 0(ζ(tζ)2)
(3.6) 3.6

Let ε0 > 0 given and small. For s ∈]0, 1], set

Λs = {(z, ζ) = exp(isHp)(x, ξ) ∈ T ∗X, (x, ξ) ∈ T ∗M, |ξ|x < ε0/s} (3.7) 3.7

Then for ε0 small enough and all s ∈]0, 1], Λs is well defined and from (
3.5
3.5), one has Λs =

s−1Λ1. Moreover, since the map exp(tHp) preserves the complex symplectic structure
of T ∗X for any t ∈ C, Λs is both R-symplectic and I-lagrangian. By (

3.6
3.6), the map

(x, ξ) 7→ Z(is, x, ξ) is given in local coordinates by

(x, ξ) 7→ Z(is, x, ξ), Zk(is, x, ξ) = xk + is
∑
j

gj,k(x)ξj + 0((sξ)2) (3.8) 3.8

hence is an isomorphism near ξ = 0. By lemma
lem3.1
3.1, near any point x ∈ M there exists

a unique function Φs(z) = s−1Φ(z) define in a neighborhood of x, with Φs(x) = 0 such
that one has

Λs = {(z, ζ), ζ = 2i∂Φs(z) = 2is−1∂Φ(z)}

From (
3.6
3.6) and (

3.8
3.8) , one has ∂Φ|M = 0, and therefore the function Φ is globally defined

in a neighborhood of M in X and one has

Φ|M = 0, dΦ|M = 0 (3.9) 3.9

lem3.2 Lemma 3.2 The following identity holds true

Φ(Z(i, x, ξ)) = |ξ|2x/2 (3.10) 3.10

Proof. For s ∈ [0, 1], set (γ(s), η(s)) = (Z(is, x, ξ),Ξ(is, x, ξ)) and ζ(s) = 2i∂Φ(γ(s)). One
has, for s > 0, (γ(s), η(s)) ∈ Λs = s−1Λ1, and therefore η(s) = s−12i∂Φ(γ(s)) = s−1ζ(s).
Let

g(s) = Φ(Z(is, x, ξ)) = Φ(γ(s))

Then we get

g′(s) = dΦ(γ(s))(γ′(s)) = Re
(

2∂Φ(γ(s))(i∂tZ(is, x, ξ))
)

= Re
(

2i∂Φ(γ(s))(∂tZ(is, x, ξ)) = Re(ζ(s)∂ζp(γ(s), η(s)))

= sRe(2p(γ(s), η(s))) = sRe(2p(γ(0), η(0)) = s|ξ|2x

(3.11) 3.11

Here we have used that ∂Φ is C-linear, the Hamilton-Jacobi equations (
3.4
3.4), ζ(s) = sη(s),

and the fact that p(z, ζ) is homogeneous of degree 2 in ζ and invariant by the flow of the
hamiltonian vector field Hp. Since g(0) = 0, we thus get g(s) = s2|ξ|2x/2. The proof of
lemma

lem3.2
3.2 is complete.
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�

As a byproduct of lemma
lem3.2
3.2, the function Φ is strictly pluri-subharmonic, i.e the

hermitian form qΦ defined in (
3.3
3.3) is strictly positive. Moreover the map

(x, ξ) 7→ Z(i, x, ξ) (3.12) 3.49

gives a real analytic identification between the neighborhood {|ξ|x < ε0} of the zero sec-
tion in the symplectic manifold T ∗M , and the neighborhood Bε0 = {Φ(z) < ε20/2} of M
in the complex manifold X. With this identification, the symplectic structure on Bε0 is
defined by the real and closed 2-form 2i∂∂Φ, and the associated hermitian metric qΦ

defines a Kahlerian structure on Bε0 . Since Φ is an exhaustion strictly pluri-subharmonic
function on Bε0 , Bε0 is a Stein manifold.
Moreover, this identification induces a complex structure J on {|ξ|x < ε0}. We refer to
the article of Lempert and Szöke (

LS
[5]) for more details on this complex structure J on

T ∗M , which is canonically defined by the metric g on M . In particular, it is shown in
LS
[5], theorem 4.3, that if this complex structure can be extended to {|ξ|x < R}, then the
sectional curvatures of g are bounded from below by −π2/(4R2).

We denote by βz (resp ζz) the real (resp complex) 1-form on the real (resp complex)
analytic manifold Bε0 defined by

βz = Re(ζz), ζz = Ξ(i, x, ξ), z = Z(i, x, ξ), (x, ξ) ∈ T ∗M (3.13) 3.50

By construction, one has
ζz = 2i∂Φ(z) (3.14) 3.50bis

Let q(x, ξ) = |ξ|x. Then the hamiltonian exp(tHq)(z, ζ) = (Z̃(t, z, ζ), Ξ̃(t, s, ζ)) is well
defined for t ∈ C close to 0 and (z, ζ) ∈ T ∗X in a conic neighborhood of T ∗M \ M .
Since p = q2/2, one has by homogeneity, wih the notation |ζ|z = (g−1(z)(ζ))1/2, which is
preserved by the flow of Hq,

Z̃(t, z, ζ) = Z(t, z, ζ/|ζ|z), Ξ̃(t, s, ζ)) = |ζ|zΞ(t, z, ζ/|ζ|z) (3.15) 3.51

For s ∈]0, ε0[ let κ(is) = exp(isHq). Then κ(is) is an homogeneous canonical complex
transformation of T ∗X, defined in a conic neighborhood U of T ∗M \M . From (

3.5
3.5), one

has
κ(is)(z, ζ) = (Z(i, z, sζ/|ζ|z), |ζ|zΞ(i, z, sζ/|ζ|z)) (3.16) 3.51bis

Since κ(is) preserves the canonical 1-form ζdz on T ∗X, one has

|ζ|zΞ(i, z, sζ/|ζ|z)dz,ζ(Z(i, z, sζ/|ζ|z)) = ζdz (3.17) 3.51ter

For y ∈M , let Λs,y = κ(is)(T ∗yM \ 0), and let ΛC
s,y = κ(is)(U ∩ T ∗yX \ 0) be its complexi-

fication. Then ΛC
s,y ⊂ T ∗X is a C-lagrangian homogeneous submanifold of T ∗X. One has

by (
3.5
3.5), (

3.50
3.13), and (

3.51
3.15):

Λs,y = {(z = Z(i, y, η), ζ = tζz), (y, η) ∈ T ∗yM, |η|y = s, t > 0} (3.18) 3.52

Since d2(Z(t, y, η), y) = t2|η|2y, and these functions are analytic in t, we get

d2(Z(i, y, η), y) = −|η|2y = −2Φ(Z(i, y, η)), ∀η ∈ T ∗yM (3.19) 3.53
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and therefore the function s2 + d2(z, y) vanishes on π(Λs,y), where π is the projection
T ∗X → X. Since π(ΛC

s,y) is a complexification of π(Λs,y) (a real analytic manifold of real
dimension m− 1) , we get that ΛC

s,y is the conormal bundle to the complex hypersurface
s2 + d2(z, y) = 0 near the points z = Z(i, y, η), |η|y = s:

ΛC
s,y = T ∗Σs,yX \ 0, Σs,y = {z, s2 + d2(z, y) = 0} (3.20) 3.54

The following lemma (and (
3.10
3.10)) gives in particular a proof for the definition (

1.3
1.3) of the

function Φ given in the introduction.

lem3.3 Lemma 3.3 There exists c > 0 and a neighborhood U of Diag(M) such that for all
s ∈]0, ε0], all (x, y) ∈ U and all z = Z(i, x, ξ) ∈ ∂Bs (i.e |ξ|x = s), one has

∂zd
2(z, y)|z=Z(i,y,ξ) = 2iζz (3.21) 3.13bis

and
Re(d2(z, y) + s2) ≥ cd2(x, y) (3.22) 3.13

Proof. From (
3.53
3.19) one has d2(Z(i, y, η), y) = −|η|2y and from (

3.52
3.18) and (

3.54
3.20), one has

∂zd
2(z, y)|z=Z(i,y,η) = λζz for some λ ∈ C \ 0. Let z(t) = Z(i, y, etη) = Z(iet, y, η). One

has z(0) = Z(i, y, etη) = z and d2(z(t), y) = −e2t|η|2y. By evaluation of the derivative at
t = 0, we find:

−2|η|2y = dt(d
2(z(t), y))|t=0 = λζz(dtz(t)|t=0) = iλζz

∂p

∂ζ
(z, ζz) = 2iλp(z, ζz) = iλ|η|2y

This implies λ = 2i. Let us now verify (
3.13
3.22). In geodesic coordinates expx(a) centered

at x, set d2(a, b) = (a − b)2 + Rx(a, b). The function Rx(a, b) is symmetric in a, b. From
d2(0, b) = b2, we get Rx(0, b) = 0, thus Rx(a, 0) = 0, and Rx(a, b) =

∑
j,l ajblQ

j,l
x (a, b).

From (∇ad
2)(0, b) = −2b, one gets

∑
l blQ

j,l
x (0, b) = 0, hence d2(a, b) = (a− b)2 +O(a2b),

and since Rx(a, b) is symmetric

d2(a, b) = (a− b)2 +O(a2b2) (3.23) 3.14

Set y = expx(a) and z = Z(i, x, ξ). In geodesic coordinates centered at x, one has
g(x) = Id, Z(t, x, ξ) = tξ, thus z = iξ, and from |ξ|x = s and d2(x, y) = a2, we get

d2(z, y) = d2(x, y)− s2 − 2iaξ +O(s2d2(x, y)) (3.24) 3.14

Since s is small, (
3.13
3.22) holds true. The proof of lemma

lem3.3
3.3 is complete. �

4 A proof of the Boutet de Monvel theorem
sec4

Recall that for ε ∈]0, ε0], Bε is the tubular neighborhood of M in X

Bε = {z, Φ(z) < ε2/2} = {Z(i, x, ξ), (x, ξ) ∈ T ∗M, |ξ|x < ε} (4.1) 4.0bis

As in (
1.5
1.5), the Hardy space H(Bε) is defined as the Hilbert space:

H(Bε) = {f ∈ O(Bε), f |∂Bε ∈ L2(∂Bε)}, ‖f‖H(Bε) = ‖f |∂Bε‖L2(∂Bε) (4.2) 4.0
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Recall that for f ∈ O(Bε), f satisfies the elliptic system of Cauchy Riemann equations
∂f = 0. Hence the trace f |∂Bε is well defined as an hyperfunction on ∂Bε, and if this trace
is analytic, then f is analytic up to the boundary. In particular, if the trace is equal to 0,
the extension f̃ of f by 0 outside Bε still satisfy ∂f̃ = 0; therefore f̃ is holomorphic, and
since f̃ vanishes outside Bε, one gets f̃ = 0. This shows that ‖f |∂Bε‖L2(∂Bε) is a Hilbert
norm, and H(Bε) an Hilbert space.

The Poisson kernel Ps(x, y) on (M, g) is the smooth function on ]0,∞[×M ×M given
by the formula

Ps(x, y) =
∑
j

e−sωjej(x)ej(y) (4.3) 4.1

For any v ∈ L2(M), the smooth function on ]0,∞[×M defined by
u(s, x) =

∫
M

Ps(x, y)v(y)dgy satisfies the elliptic boundary problem

(∂2
s +4g)u = 0, lim

s→0
u(s, x) = v(x) in L2(M) (4.4) 4.2

We start with purely geometric lemmas about the holomorphic extension of the ej,
and more generally of solutions to the elliptic operator ∂2

s +4g.

lem4.1 Lemma 4.1 Let u(s, x) be a solution of the elliptic equation (∂2
s+4g)u = 0 on ]0,∞[×M .

Then u extends holomorphicaly in the open set

D = {(s, z) ∈ C×X, Re(s) > 0 z ∈ Bmin(ε0,Re(s))} (4.5) 4.3

Proof. By translation invariance in s, it is sufficient to prove the following property: Let
a ∈]0, ε0[, and u(s, x) a solution of the equation (∂2

s +4g)u = 0 on ]− a, a[×M . Then u
extends holomorphicaly in the open set

Ga = {(s, z) ∈ C×X, Re(s) ∈]− a, a[, z ∈ Ba−|Re(s)|} (4.6) 4.31

The proof of this fact uses a classical non-caracteristic deformation argument based on
the following Zerner lemma (see

Zer
[12]). This lemma is a consequence of the precise form

of the Cauchy-Kowalewski theorem given by J. Leray (see
Ho85-1
[2], theorem 9.4.7 for a proof).

lemzerner Lemma 4.2 (Zerner) Let Q(z, ∂z) =
∑

α,|α|≤m qα(z)∂αz be a linear differential operator

with holomorphic coefficients defined near 0 in CN and let q(z, ζ) =
∑
|α|=m qα(z)ζα be its

principal symbol. Let f : CN → R be a C1 function such that f(0) = 0 and such that,
with ζ0 = 2i∂f(0), one has q(0, ζ0) 6= 0. Then, if u(z) is an holomorphic function defined
in a half-neighborhood of 0 in f < 0, such that Q(u) extends holomorphicaly near 0, then
u extends holomorphicaly near 0.

For µ ∈ [0, a] let ψµ(t), t ∈ R, be the non negative Lipschitz function

ψµ(t) = max(a− (µ2 + t2)1/2, 0) (4.7) 4.32

Let τ > 0 be given. For µ ∈ [0, a], let Kµ,τ be the set

Kµ,τ = {(s, z) ∈ C×Bε0 ,Φ(z) + τIm(s)2 ≤ ψµ(Re(s))2/2, |Re(s)| ≤ (a2− µ2)1/2} (4.8) 4.34
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From 0 ≤ ψµ ≤ a < ε0, we get that Kµ,τ is a compact set, and its interior, Int(Kµ,τ ), is
defined by the equation

Int(Kµ,τ ) = {(s, z), Φ(z) + τIm(s)2 < ψµ(Re(s))2/2, |Re(s)| < (a2 − µ2)1/2} (4.9) 4.34bis

One has Kµ,τ ⊂ Kµ′,τ for µ′ ≤ µ and the closure of Int(Kµ,τ ) is equal to Kµ,τ for µ < a.
Since one has

Ga ⊂ ∪τ>0Int(K0,τ )

we have just to prove that u extends holomorphicaly to Int(K0,τ ). Set

J = {µ, u extends holomorphicaly to Int(Kµ,τ )}

Since Ka,τ = {s = 0} ×M , J contains a neighborhood of a, and it remains to show that
for µ > 0 in J , u extends holomorphicaly to a neighborhood of Kµ,τ . Let µ > 0 in J .
Let (s0, z0) ∈ ∂Kµ,τ = Kµ,τ \ Int(Kµ,τ ). Set s0 = α + iβ. If ψµ(α) = 0, then one
has z0 ∈ M,β = 0, and therefore u is holomorphic near (s0, z0) since u is analytic on
]− a, a[×M . We may thus assume ψµ(α) 6= 0, i.e |α| < (a2 − µ2)1/2. The function

f(s, z) = Φ(z) + τIm(s)2 − ψµ(Re(s))2/2

is smooth for |Re(s)| < (a2 − µ2)1/2, one has f(s0, z0) = 0, and the differential of f is
given by (with the identification of section

sec3
3)

2i∂f = (ζs, ζz) = i(−ψµψ′µ(Re(s))− 2iτIm(s), 2∂zΦ(z))

The differential of f at (s0, z0), (ζs(s0), ζz(z0)) does not vanish.(Otherwise, we will have
z ∈ M and Im(s0) = 0 and this contradict f(s0, z0) = 0 and ψµ(α) 6= 0) Moreover, u
satisfies the equation Qu = (∂2

s +4g)u = 0 in a half-neighborhood of (s0, z0) in f < 0.
The principal symbol of Q is q(s, z; ζs, ζz) = ζ2

s + 2p(z, ζz). Therefore, by the Zerner
lemma, it remains to show

(ψµψ
′
µ(α) + 2iτβ)2 6= 2p(z0, ζz0) (4.10) 4.35

Let (x0, ξ0) ∈ T ∗M such that Z(i, x0, ξ0) = z0. Then one has (z0, ζz0) = exp(iHp)(x0, ξ0),
and since the function p is invariant by the hamiltonian flow Hp, one has by (

3.10
3.10)

2p(z0, ζz0) = |ξ0|2x0
= 2Φ(z0) = ψµ(α)2 − 2τβ2 ∈ R

We first verify that (
4.35
4.10) holds true for β 6= 0. For β 6= 0, equality in (

4.35
4.10) implies

(take imaginary part) ψ′µ(α) = 0, and equality of the real part gives −4τ 2β2 = 2Φ(z0) ≥ 0

which is impossible. It remains to verify ψ′µ(α) 6= ±1 for µ > 0 and |α| < (a2 − µ2)1/2,
which is obvious since one has

ψ′µ(α) =
−α√
µ2 + α2

The proof of lemma
lem3.1
3.1 is complete. �

If one apply the above lemma to the function u(s, x) = e−sωjej(x), we get that all the
eigenfunctions ej(x) extends holomorphicaly to the neighborhood Bε0 of M in X, which is
independent of j. In fact, we can deduce easily from lemma

lem3.1
3.1 a more precise statement.
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lem4.2 Lemma 4.3 Let a ∈]0, ε0[. For all δ > 0 small, there exists Cδ such that

∀j, sup
z∈Ba
|ej(z)| ≤ Cδe

(a+δ)ωj (4.11) 4.36

Proof. Set E = L2(M,dgx) and F = {f ∈ O(Ba), supz∈Ba |f(z)| <∞}. These are Banach
spaces, and the canonical injection i : F → E, i(f) = f |M is continuous. Let δ > 0 such
that a+ δ < ε0 and let Aδ be the linear continous map from E to E defined by

Aδ(
∑
j

cjej(x)) =
∑
j

e−(a+δ)ωjcjej(x)

By lemma
lem3.1
3.1, one has Im(Aδ) ⊂ O(Ba+δ) ⊂ F . By the closed graph theorem, the map

Aδ from E to F is continuous, and therefore, there exists a constant Cδ such that

‖Aδ(f)‖F ≤ Cδ‖f‖E, ∀f ∈ E (4.12) 4.37

If one applies (
4.37
4.12) to f = ej, we get that (

4.36
4.11) holds true. The proof of lemma

lem4.2
4.3 is

complete. �

Remark 4.4 The estimate (
4.36
4.11) on the sup-norm of the eigenfunctions in Ba is of

course very weak. The exponential factor eaωj is the correct one, but the sub-exponential
factor Cδe

δωj (for any δ > 0) is far to be optimal. To my knowledge, the best estimate is

proven by S.Zelditch in
Zel
[11], corollary 3: supz∈Ba |ej(z)| ≤ Cω

(m+1)/4
j eaωj .

Another interesting by-product of Zerner-lemma is the following caracterisation of the
space O(Ba) of holomorphic functions on Ba. This gives the ”analytic” version of the
Boutet theorem (i.e without any precise information on Sobolev spaces and polynomial
growth of the Fourier coefficients). It implies in particular that the Poisson opera-
tor Pa(

∑
cjej(x)) =

∑
cje
−aωjej(z) is an isomorphism from the space A′(M) of Sato-

hyperfunctions on M , onto the space O(Bs) of holomorphic functions in Bs.

lem4.3 Lemma 4.5 Let a ∈]0, ε0[ and let f(x) =
∑
cjej(x) an analytic function on M . Then f

extends holomorphicaly to Ba iff

∀δ > 0, ∃Cδ, such that for all j one has |cj| ≤ Cδe
−(a−δ)ωj (4.13) 4.38

Moreover, for any function f(z) ∈ O(Ba), the Fourier coefficients cj =
∫
M
f(x)ej(x)dgx

satisfy (
4.38
4.13), and one has f(z) =

∑
j cjej(z) for all z ∈ Ba, where the sum is uniformly

convergent on compact subsets of Ba.

Proof. If (
4.38
4.13)is satisfied, then by lemma

lem4.2
4.3, formula (

4.36
4.11), the sum

∑
cjej(z) is

uniformly convergent on Ba′ for all a′ < a,(since by Weyl formula, ]{j, ωj ≤ R} ≤ CRm)
hence f extends holomorphicaly to Ba. It remains to show that for a function f(z) ∈
O(Ba), its Fourier coefficients cj =

∫
M
f(x)ej(x)dgx satisfy (

4.38
4.13): with g(z) =

∑
cjej(z),

we will have g ∈ O(Ba) by the first part of the lemma, and since (f − g)|M = 0, we will
get f = g by analytic continuation. The proof of the estimate (

4.38
4.13) on the Fourier
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coefficients cj uses the Zerner Lemma. Let F (s, z) be the Cauchy-Kowalewski solution of
the analytic Cauchy problem:

(∂2
s +4z)F = 0, F (a, z) = f(z), ∂sF (a, z) = 0 (4.14) 4.39

Zerner lemma implies that F extends holomorphicaly to the open set

Fa = {(s, z) ∈ C×X, |Re(s)− a| < a, z ∈ Ba−|Re(s)−a|} (4.15) 4.31bis

The proof of this point follows the same line as the proof of lemma
lem4.1
4.1. We first change s

in s+ a so that the Cauchy data for (
4.39
4.14) are now on the set {s = 0}×Ba, and we have

to prove that F extends to the open set Ga defined in (
4.31
4.6). We use the non-caracteristic

deformation associated to the function, with τ > 0,

f̃τ (s, z) =
1

2
Re(s)2 + τIm(s)2 − 1

2

(
max(a−

√
µ2 + 2Φ(z), 0)

)2

(4.16) 4.40

Observe that in comparison with the proof of lemma
lem4.1
4.1, we just exchange the role of

2Re(s)2 and Φ(z). For µ ∈ [0, a], we define K̃µ,τ by

K̃µ,τ = {(s, z) ∈ C×X, f̃τ (s, z) ≤ 0, 2Φ(z) ≤ a2 − µ2} (4.17) 4.41

The function F is holomorphic in a neighborhood of K̃µ,τ = {s = 0} ×M , and as in the
proof of lemma

lem4.1
4.1, we just have to verify that for µ ∈]0, a[, if F extends to Int(K̃µ,τ ),

then F extends to a neighborhood of K̃µ,τ . Let (s0, z0) ∈ ∂Kµ,τ = Kµ,τ \ Int(Kµ,τ ). Set
s0 = α + iβ. If 2Φ(z0) = a2 − µ2 < a, then one has z0 ∈ Ba and s = 0, and therefore
F is holomorphic near (s0, z0) by Cauchy-Kowalewski theorem. We may thus assume
2Φ(z0) < a2 − µ2. Then the function f̃τ is smooth near (s0, z0) and its differential at
(s0 = α + iβ, z0) is equal to

2i∂f̃τ = (ζs0 , ζz0) = 2i(α/2− iτβ,
a−

√
µ2 + 2Φ(z0)√

µ2 + 2Φ(z0)
∂Φ(z0)) (4.18) 4.42

By the Zerner lemma, it remains to show ζ2
s + 2p(z0, ζz0) 6= 0. Since 2p(z0, ζz0) = 2Φ(z0),

this is equivalent to

(α− 2iτβ)2 6= 2Φ(z0)
(
√
µ2 + 2Φ(z0)− a)2

µ2 + 2Φ(z0)
∈ [0,∞[ (4.19) 4.43

We first verify that (
4.43
4.19) holds true for β 6= 0. For β 6= 0, equality in (

4.43
4.19) implies (take

imaginary part) αβ = 0, hence α = 0 and −4τ 2β2 ≥ 0 which is impossible. For β = 0,
from f̃τ (s0, z0) = 0 and 2Φ(z0) < a2− µ2, we get |α| = a−

√
µ2 + 2Φ(z0) > 0. It remains

to verify

α2 6= 2Φ(z0)

µ2 + 2Φ(z0)
α2

for µ ∈]0, a[ and α 6= 0 which is obvious. Thus F extends holomorphicaly to Int(K̃0,τ )
for all τ > 0, and since one has ∪τ>0Int(K̃0,τ ) = Ga, we get the desired result.

For s ∈]0, 2a[, set now Fj(s) =
∫
M
F (s, x)ej(x)dx. Then Fj(s) is analytic on ]0, 2a[

and satisfies the equation

∂2
sFj − ω2

jFj = 0, Fj(a) = cj, ∂sFj(a) = 0



16

This gives Fj(s) = ajch((a − s)ωj). Since for all s ∈]0, a], the function x 7→ F (s, x) is
analytic on M , its Fourier coefficients are bounded, i.e

∀s ∈]0, a], ∃Cs such that sup
j
|cjch((a− s)ωj)| ≤ Cs

By taking s = δ small, this implies (
4.38
4.13). The proof of lemma

lem4.3
4.5 is complete. �

We will now recall the classical construction of the Hadamard type parametrix for the
Poisson kernel near s = 0 and x = y. Let δ(s, x, y) be defined by the formula

δ(s, x, y) = s2 + d2(x, y) (4.20) 4.4

The function δ is holomorphic in a small neighborhoodW of {s = 0}×DiagM in C×X×X.
Let cW = supW |δ|. Clearly, we may assume cW as small as we want by choosing W small
enough. Set µ = −(m+ 1)/2.

prop4.1 Proposition 4.6 For W small enough, the following holds true.
For all j ∈ N, there exists holomorphic functions aj(s, x, y) defined on W , such that∑

j

sup
W
|aj|cjW <∞ (4.21) 4.5

and such that if one defines G(s, x, y) by the formula

G = sδµ
∑
j≥0

δjaj if m is even

G = sδµ
|µ|−1∑
j=0

δjaj + s log(δ)
∑
j≥|µ|

δjaj if m is odd

(4.22) 4.6

then the function Ps(x, y) − G(s, x, y) which is defined a priori for s > 0 small and
(x, y) ∈ M ×M close to DiagM , extends holomorphicaly to W . Moreover, the functions
aj are even in s and one has

a0(0, y, y) = d−1
m , dm =

∫
Rm

(1 + x2)−(m+1)/2dx (4.23) 4.7

Proof. Let us denote by ∇f the gradient of a function f , i.e the vector fields on M
which is associated to the differential df via the identification of TM and T ∗M . An easy
computation shows that the following formula holds true:

(∂2
s +4)(f lb) = l(l − 1)f l−2((∂sf)2 + |∇f |2g)b

+ lf l−1
(

2∂sf∂sb+ 2(∇f |∇b)g + (∂2
sf +4f)b

)
+ f l(∂2

sb+4b)
(4.24) 4.8

For a given y, the function f(s, x) = δ(s, x, y) satisfies the identity (∂sδ)
2 + |∇xδ|2g = 4δ

(the analog of the eiconal equation). Thus we get from (
4.8
4.24)

(∂2
s +4)(δlb) =lδl−1

(
4s∂sb+ 2(∇xd

2|∇b)g + (4x(d
2) + 4l − 2)b

)
+ δl(∂2

sb+4b)
(4.25) 4.9
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If we set b = sa, with a even in s, we thus get

(∂2
s +4)(sδla) =slδl−1

(
4s∂sa+ 2(∇xd

2|∇a)g + (4x(d
2) + 4l + 2)a

)
+ sδl(∂2

sa+ 2s−1∂sa+4a)
(4.26) 4.9bis

Let us first assume that m is even. We will apply the identity (
4.9bis
4.26) with l = µ+j, j ∈ N.

Then for all j ∈ N, one has l 6= 0. Let us denote by Zl the first order operator

Zl(a) = 4s∂sa+ 2(∇xd
2|∇a)g + (4x(d

2) + 4l + 2)a (4.27) 4.10

Then the function G defines by the first line of (
4.6
4.22) will be formally a solution of the

equation (∂2
s +4)G = 0 if one choose the functions aj solutions of the transport equations:

Zµ(a0) = 0

Zµ+j(aj) = − 1

µ+ j
(∂2
s + 2s−1∂sa+4x)aj−1 ∀j ≥ 1

(4.28) 4.11

The key point here is that the equation Zµ(a0) = 0 admits a unique even in s holomorphic
solution in W for any given data a(0, y, y), and the equation Zµ+j(a) = b with j ≥ 1 and
b(s, x, y) even in s and holomorphic in W , admits a unique solution a(s, x, y), even in
s and holomorphic in W . Therefore, the system of transport equations (

4.11
4.28) admits a

unique solution such that formula (
4.7
4.23) holds true. We refer to the appendix for a proof

of these affirmations, and also for a proof of the estimate (
4.5
4.21) for small enough W .

From the estimate (
4.5
4.21), the function

∑
j≥0 δ

jaj is a holomorphic function on W , and
therefore

G = sδµ
∑
j≥0

δjaj

is an holomorphic function on the set W ∩{Re(δ) > 0}. In this set, which clearly contains
W ∩ {s > 0, x, y ∈ M}, G satisfies by construction the equation (∂2

s +4x)G = 0, and
extends as a holomorphic function on the two sheets covering of the set W \{δ = 0}. Now
we claim that with the choice (

4.7
4.23) of the initial data for the solution a0 of the transport

equation Zµ(a0) = 0, one has
lim
s→0

G(s, x, y) = δx=y (4.29) 4.45

Here, we identify a measure on M with a distribution by factorization of the volume form
dgx. In other words, (

4.45
4.29) means

lim
s→0

∫
M

G(s, x, y)ϕ(x)dgx = ϕ(y) (4.30) 4.45bis

for any smooth test function ϕ with support close to y. The verification of (
4.45bis
4.30) is

easy: take near y, the geodesic coordinate system v 7→ expy(v), v ∈ TyM . Then one has
d2(x, y) = v2 and dgx = (1 +O(v2))dv. For f smooth with support near 0 one has

lim
s→0

∫
Rm

s(s2 + v2)−(m+1)/2a0(s, expyv, y)f(v)(1 +O(v2))dv

= a0(0, y, y)f(0)

∫
Rm

(1 + w2)−(m+1)/2dw = f(0)

(4.31) 4.46
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by the choice (
4.7
4.23) of a0(0, y, y) (use the change of variables v = sw and Lebesgue dom-

inated convergence theorem). The same argument shows that the other terms in the
development of G in powers of δ do not contribute to the limit in (

4.45
4.29).

Therefore, H(s, x, y) = Ps(x, y)−G(s, x, y) satisfies the elliptic boundary value prob-
lem in variables (s, x) close to (0, y)

(∂2
s +4x)H = 0 in s > 0, lim

s→0
H = 0 (4.32) 4.47

Hence H(s, x, y) is analytic in (s, x) near (0, y). This is a classical result for this kind of
elliptic boundary problem with analytic coefficients, but here, one can use a most elemen-
tary reflection argument: near (0, y) in R×M , the function u(s, x) = sign(s)H(|s|)(x, y)
satisfies the elliptic equation (∂2

s + 4x)u = 0, hence is analytic. The proof of the fact
that H(s, x, y) is analytic in (s, x, y) near {s = 0} × DiagM is of the same kind: One
has the symmetry Ps(x, y) = Ps(y, x) and from the uniqueness in the construction of the
coefficients aj (see the appendix), one has also G(s, x, y) = G(s, y, x). Hence, H(s, x, y)
satisfies the elliptic boundary value problem in variables (s, x, y) close to {s = 0}×DiagM

(2∂2
s +4x +4y)H = 0 in s > 0, lim

s→0
H = 0 (4.33) 4.47

Therefore, we conclude that H(s, x, y) is analytic near {s = 0} ×DiagM .

In the case m odd, the proof follows the same lines . In addition to formulas (
4.8
4.24)

and (
4.9bis
4.26), one also use the formulas with n ∈ N

(∂2
s +4)(fn log(f)b) = nfn−2(2 + (n− 1) log(f))((∂sf)2 + |∇f |2g)b

+ fn−1(1 + n log(f))
(

2∂sf∂sb+ 2(∇f |∇b)g + (∂2
sf +4f)b

)
+ fn log(f)(∂2

sb+4b)
(4.34) 4.8bis

which gives since (∂sδ)
2 + |∇δ|2g = 4δ

(∂2
s +4)(δn log(δ)b) = nδn−1 log(δ)

(
4s∂sb+ 2(∇xd

2|∇b)g + (4x(d
2) + 4n− 2)b

)
+ δn log(δ)(∂2

sb+4b) + δn−1
(

4s∂sb+ 2(∇xd
2|∇b)g + (4x(d

2) + 8n+ 2)b
)

(4.35) 4.9ter

If we set b = sa, with a even in s, we thus get

(∂2
s +4)(sδn log(δ)a) = snδn−1 log(δ)

(
4s∂sa+ 2(∇xd

2|∇a)g + (4x(d
2) + 4n+ 2)a

)
+ sδn log(δ)(∂2

sa+ 2s−1∂sa+4a)

+ sδn−1
(

4s∂sa+ 2(∇xd
2|∇a)g + (4x(d

2) + 8n+ 6)a
)

(4.36) 4.9quad

Then one find that the second line of (
4.6
4.22) holds true with an additional term of the

form sh(s, x, y) with h holomorphic near s = 0, x = y, and this term plays no role in the
verification of the boundary condition at s = 0 nor in the fact that Ps(x, y)−G(s, x, y) is
analytic near {s = 0} ×DiagM(see the appendix for the details).
The proof of proposition

prop4.1
4.6 is complete. �
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lem4.4 Lemma 4.7 There exists ε0 > 0, such that for all s ∈]0, ε0[ the following holds true.
i)The function Ps(z, y) is holomorphic in (z, y) near any point (z, y) ∈ Bs ×M .
ii) The function Ps(z, y) extends holomorphicaly near any point (z, y) ∈ ∂Bs ×M such
that z /∈ {Z(i, y, η), |η|y = s}.

Proof. Point i) follows directly from the identity (
4.1
4.3) and the bound (

4.36
4.11) of lemma

lem4.2
4.3. Point ii) is also easy to prove: the function (s, x) ∈]0,∞[×M 7→ Ps(x, y) satisfies the
elliptic boundary value problem

(∂2
s +4x)Ps(x, y) = 0 in s > 0, P0(x, y) = δx=y

Therefore, as in the proof of proposition
prop4.1
4.6, we get that Ps(x, y) is analytic in (s, x) near

any point (0, x) with x 6= y. By choosing ε0 > 0 small enough, we may thus assume that
z = Z(i, x, ξ), |ξ|x = s and x close to y ∈ M . Then by proposition

prop4.1
4.6, the singularities

of Ps(z, y) near such points are on the subcomplex manifold {(z, y), s2 + d2(z, y) = 0},
and the result follows from the formula (

3.13
3.22) of lemma

lem3.3
3.3. The proof of lemma

lem4.4
4.7 is

complete. �

Recall that we use the identification of {(x, ξ) ∈ T ∗M, |ξ|x = s} with ∂Bs given by the
map (x, ξ) 7→ Z(i, x, ξ), and that cm is the volume of the unit sphere in Rm, so cm/m is
the volume of the unit ball in Rm. Let dxdξ be the canonical Liouville measure on T ∗M .
We define the measure dµs on ∂Bs by the formula∫

∂Bs

fdµs =
m

cm

∫
|ξ|x≤1

f(x,
sξ

|ξ|x
)dxdξ =

∫
M

(∫
Sm−1

f(x, sg1/2
x (u))

dσ(u)

cm

)
dgx (4.37) 4.68

This is compatible with the definition of dµs that we have used in the flat case in section
sec2
2, and if f(z) is a smooth function on X defined near M , one has

lim
s→0

∫
∂Bs

fdµs =

∫
M

f(x)dgx (4.38) 4.69

The real 1-form βz introduced in (
3.50
3.13) defines by restriction to ∂Bs a 1-form that we

still denote by βz. This defines a canonical half line bundle L− ⊂ T ∗(∂Bs)

L− = {(z, ζ) ∈ T ∗(∂Bs), ζ = tβz, t < 0} (4.39) 4.62

For s ∈]0, ε0[, we denote by Ts the map from D′(M) into D′(∂Bs)∑
cjej = f 7→ Ts(f) = Ps(f)|∂Bs =

∑
j

e−sωjcjej|∂Bs (4.40) 4.60

lem4.5 Lemma 4.8 For all s ∈]0, ε0[, Ts is well defined and injective map. The Hörmander wave
front set of its distribution kernel Ts(z, y) is given by

WF (Ts) = {(z, ζ; y, η) ∈ T ∗(∂Bs)×T ∗(M)\M, z = Z(i, y, sη/|η|), ζ = −βz|η|/s} (4.41) 4.63

In particular, WF (Ts) is parametrized by (y, η) ∈ T ∗(M) \M .
Moreover, for any f ∈ D′(M), one has

Ts(f) = lim
D′,r→0+

∫
M

Ps+r(z, y)f(y)dgy = lim
D′,r→0+

∫
M

Ts(e
−r|4g |1/2f) (4.42) 4.64
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Proof. One has Ps(f) =
∫
M

Ps(z, y)f(y)dgy ∈ O(Bs), thus the injectivity of Ts is obvious.
The fact that Ts(f) ∈ D′(∂Bs) for any f ∈ D′(M) follows easily from proposition

prop4.1
4.6

and point ii) of lemma
lem4.4
4.7. By lemma

lem4.4
4.7, the singular support of the Kernel Ts(z, y) is

contained in {(z, y),∃η ∈ T ∗yM, |η|y = s, and z = Z(i, y, η)}. Then to compute WF (Ts),
we may use proposition

prop4.1
4.6, and this reduce to the computation of WF (s2 + d2(z, y))µ,

which is easy if one uses lemma
lem3.3
3.3, and gives formula (

4.63
4.41). Finally, the assertion (

4.64
4.42)

is obvious. The proof of lemma
4.5
4.21 is complete. �

In the following proposition, T ∗s is the adjoint of Ts for the measures dgx on M and
dµs on ∂Bs.

prop4.2 Proposition 4.9 Let I = [c, d] ⊂]0, ε0[. Then T ∗s Ts is a smooth family in s ∈ I of
elliptic pseudodifferential operators of degree −(m−1)/2. Moreover, there exists a constant
C(I) > 1 such that one has the equivalence of norms

1

C(I)
‖Tsg‖L2(∂Bs,dµs) ≤ ‖g‖H−(m−1)/4(M) ≤ C(I)‖Tsg‖L2(∂Bs,dµs) (4.43) 4.70

Proof. The proof of this lemma is suggested in
Boutet1
[1]: essentially, we use the fact that Ts

is a ”Fourier Integral Operator with complex phase”, which is a direct consequence of
proposition

4.1
4.3 and lemma

lem4.4
4.7 and then we apply the general machinery. (this is the

proof given in
Zel
[11]). Here, to avoid invocation of a general machinery, and also to get

the principal symbol, we shall directly verify that T ∗s Ts is an elliptic pseudodifferential
operator of degree −(m−1)/2, by computing its distribution kernel. This will just involve
the knowledge of the stationary phase theorem in the case of complex phase, but with
phase and symbol analytic in the parameters, which is not so difficult.

We start with the following lemma. For his proof, which is elementary, and basic def-
initions on analytic symbols, we refer to the appendix. For the computation of σ0(0, y, y)
given in

4.73
4.46, we use the identity, with dm defined in (

4.7
4.23)

dmΓ((m+ 1)/2) =

∫
Rm

∫ ∞
0

e−t(1+x2)t(m+1)/2dtdx

t
= πm/2

∫ ∞
0

e−t
dt√
t

= π(m+1)/2

Here, Γ(z) =
∫∞

0
e−xxz−1dx is the usual Gamma function.

lem4.6 Lemma 4.10 There exists a classical analytic symbol of degree 0, σ(λ; s, x, y), with holo-
morphic dependance on (s, x, y) ∈ W such that the function defined for s > 0 and (x, y)
close to DiagM

G(s, x, y)− s
∫ ∞

0

e−λ(s2+d2(x,y))λ(m+1)/2σ(λ; s, x, y)
dλ

λ
(4.44) 4.71

extends holomorphicaly in W . One has for some constants A,B

σ(λ; s, x, y) '
∑
j≥0

λ−jσj(s, x, y), sup
W
|σj| ≤ ABjj! (4.45) 4.72

and
σ0(0, y, y) = π−(m+1)/2 (4.46) 4.73
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Let us verify that T ∗s Ts is an elliptic pseudodifferential operator of degree −(m − 1)/2.
For f ∈ C∞(M), one has T ∗s Ts(f)(x) =

∫
M
Ks(x, y)f(y)dgy with the distribution kernel

Ks ∈ D′(M ×M) defined by the formula

Ks(x, y) =

∫
∂Bs

Ps(z, x)Ps(z, y)dµs(z) (4.47) 4.74

One has to take care of the fact that the integral in (
4.74
4.47) is not an ”usual” integral,

but the distribution product Ps(z, x)Ps(z, y) ∈ D′(M ×M × ∂Bs) is well defined. This
is a consequence of lemma

lem4.5
4.8 formula (

4.63
4.41), and of general results on wave front set of

tensor product, non caracteristic trace, and proper direct image (see
Ho85-1
[2]). Moreover, one

gets from this general results and (
4.63
4.41) the inclusion

WF (Ks) ⊂ {(x, y, ξ, η), x = y, ξ + η = 0} = T ∗Diag(M)M

Therefore, to compute the kernel Ks(x, y) modulo a smooth function, we may assume
that (x, y) is close to Diag(M). We will choose the coordinate system (p, w) ∈ TM , w
small and x = expp(w/2), y = expp(−w/2) so that p is the middle point of the geodesic
connecting y to x, and in these geodesic coordinates centered at p, one has w = x − y.
By lemma

4.4
4.20 we may localize the integral in

4.74
4.47 for z = Z(i, u, ξ) with u close to

p. Let nj,p, 1 ≤ j ≤ m be an orthonormal basis of TpM . In geodesic coordinates we
write u = expp(

∑
ajnj,p), and we denote by ξ = (ξ1, ..., ξm) the dual coordinates of the

(aj). Recall that in geodesic coordinates, one has g(a) = Id + O(a2) and we define new
coordinates b by the formula

b = b(a, ξ) = (g−1(a))1/2(ξ) = ξ + 0(a2ξ) (4.48) 4.75

Then one has b2 = |ξ|2a, and we shall parametrize the set of points z = Z(i, u, ξ), u
close to p and |ξ|u < ε0 by the coordinates (a, b) ∈ R2m close to (0, 0). From lemma
lem4.6
4.10, proposition

prop4.1
4.6, and formulas

4.64
4.42 and

4.68
4.37, one find that near Diag(M), the kernel

Ks(x, y) is equal to (modulo a smooth function)préciser l’argument

lim
D′,r→0+

∫ ∞
0

∫
Sm−1

Es+r(s, x, y; ρ, u)s2ρmdρ
dσ(u)

cm
, (ρ ∈]0,∞[, u ∈ Sm−1)

Es+r(s, x, y; ρ, u) =

∫ π/2

0

∫
Rm

e−ρΨs+rΣs+r(sin θ cos θ)(m−1)/2χ(a)
√
det(g(a))dθda

Ψs+r(s, x, y, u; a, θ) = sin θ((s+ r)2 + d
2
(z, x)) + cos θ((s+ r)2 + d2(z, y))

Σs+r(s, x, y, u, ρ; a, θ) = σ(ρ cos θ, s+ r, z, y)σ(ρ sin θ, s+ r, z, x)

z = Z(i, expp(
∑

ajnj,p), sg
1/2(a)(u))

(4.49) 4.76

Here, χ ∈ C∞0 (|a| ≤ 2c0) is a smooth cutoff function, equal to 1 in the ball |a| ≤ c0, with
c0 such that one has |w| << c0 << inf(s ∈ I) (recall x = expp(w/2), y = expp(−w/2)).
By lemma

lem3.3
3.3, one has

Re(Ψs+r) ≥ (sin θ + cos θ)((s+ r)2 − s2) + cI(sin θ d
2(a, x) + cos θ d2(a, y))

and in particular, for r > 0, the integral in (
4.76
4.49) is absolutely convergent. The key

technical point is to verify that the analytic function

(a, θ) 7→ Ψs+r(s, x, y, u; a, θ)
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admits a unique non degenerate critical point (ac(r, s, x, y, u), θc(r, s, x, y, u)) close to
(0, π/4) for s ∈ I, r close to 0, x, y close to p and any u ∈ Sm−1, and that the Hes-
sian of Ψs+r at the critical point is non degenerate. To this end, we have just to verify
that it is true for r = 0, x = y = p, and since s is small, we may even assume that the
metric is flat. But in that case, we get easily

Ψs(s, p, p, u; a, θ) = a2(sin θ + cos θ)− 2is(sin θ − cos θ)a.u (4.50) 4.77

which admits a unique critical point (ac, θc) = (0, π/4). From the Taylor expansion

Ψs(s, p, p, u; a, π/4 + ϕ) =
√

2(a2 − 2isϕ a.u) (4.51) 4.77bis

we get that this critical point is non degenerate. Observe also that the Hessian of Re(Ψs)
is strictly positive in the a directions. Therefore, for s ∈ I, r close to 0, x, y close to p and
any u ∈ Sm−1, one has a unique non degenerate critical point, and the Hessian of Ψs+r is
strictly positive in the a directions. Let

ψs(r, x, y, u) = Ψs+r(s, x, y, u; ac(r, s, x, y, u), θc(r, s, x, y, u)))

be the critical value, which depends analytically on all parameters. In the flat case, one
verifies easily that one has (ac, θc) = (0, π/4) independently of (x, y) = (w/2,−w/2). By
lemma

lem3.3
3.3 and Taylor expansion in w = x− y, one gets (ac, θc) = (0, π/4) + O(w2), and

vérifier détailler

ψs(r, x, y, u) =
√

2
(

(s+ r)2 − s2 + is(x− y).u+Q(p, s, u; r, x− y)
)

(4.52) 4.78

where Q(p, s, u; r, w) is analytic in (p, s, u; r, w) and satisfies

Q(p, s, u; r, 0) = 0, ∇wQ(p, s, u; r, 0) = 0, Re(∂2
wQ(p, s, u; 0, 0)) >> 0 (4.53) 4.78bis

To compute the integral in (
4.76
4.49), one has also to take care of the end points θ = 0, π/2.

Let 1 = χ0(θ) + χc(θ) + χπ/2(θ) with χ0(θ) supported near 0, χπ/2(θ) supported near π/2
and χc(θ) ∈ C∞0 (]0, π/2[) equal to 1 near π/4. Then the contributions of χ0, χπ/2 to the
kernel Ks(x, y) are smooth functions near Diag(M) (see the appendix for a proof of this
point). Now, we can apply the phase stationary theorem to the contribution of χc, and
we get

Ec,s+r(s, x, y; ρ, u) = e−ρψs(r,x,y,u)ρ−(m+1)/2σ̃s(r, x, y, u; ρ) (4.54) 4.79

where σ̃s(r, x, y, u; ρ) is a classical symbol of degree 0 in ρ, σ̃s '
∑

j≥0 σ̃s,j(r, x, y, u)ρ−j

with σ̃s,j analytic in (r, x, y, u).Then it is easy to pass to the limite r → 0+, and we get
for (x, y) near Diag(M), the equality, modulo a smooth function near Diag(M):

Ks(x, y) =

∫ ∞
0

∫
Sm−1

ei((x−y)s
√

2ρu+iρQ(p,s,u;0,x−y))ρ−(m−1)/2σ̃s(0, x, y, u; ρ)
ρm−1dρdσ(u)

cm
(4.55) 4.80

Then from (
4.78bis
4.53) and (

4.80
4.55), we get that T ∗s Ts is a pseudodifferential operator of degree

−(m− 1)/2 (set ξ = s
√

2ρu). The ellipticity follows easily from the definition of Σs given
in (

4.76
4.49) and formula (

4.73
4.46).
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Finally, from the identity

(T ∗s Ts(g)|g)L2(M,dgx) = ‖Ts(g)‖2
L2(∂Bs,dµs)

and the injectivity of Ts, we get that (
4.70
4.43) holds true. The proof of proposition

prop4.2
4.9 is

complete. �

Remark 4.11 It is also true that T ∗s Ts is an analytic elliptic pseudodifferential operator,
but we will not use this fact. If one wants to prove it, one has to modify the above argu-
ments. First prove that Ks(x, y) is analytic outside Diag(M). Second, use the analytic
version of the stationary phase theorem. Third, do not use a cutoff in the θ variable;
instead, integrate in θ along a suitable complex path from 0 to π/2 and passing through
the critical point θc. The cutoff function χ(a) is harmless since the Hessian of the real
part is positively defined at the critical point.

End of proof of the Boutet theorem.
Take s ∈]0, ε0[. From proposition

prop4.2
4.9, the map

g ∈ H−(m−1)/4(M) 7→ Ps(g)(z) =

∫
M

Ps(z, y)dgy ∈ H(Bs) (4.56) 4.100

is well defined, continuous, injective, and has closed range. Let us prove that Ps is
surjective, hence an isomorphism of Hilbert space. Let f ∈ H(Bs) ⊂ O(Bs). From
lemma

lem4.3
4.5, one has

f(z) =
∑

cjej(z), cj =

∫
M

f(x)ej(x)dgx (4.57) 4.101

where the sum is uniformly convergent on compact subset of Bs and the Fourier coefficients
cj satisfy the bounds |cj| ≤ Cδe

−(s−δ)ωj for all δ > 0. For 0 < s′ < s, one has

f(z)|Bs′ =
∑

cjej(z) = Ps′(gs′), gs′ =
∑

es
′ωjcjej (4.58) 4.102

From the bounds on the cj, the function gs′ is smooth (and in fact analytic) on M , and
from (

4.70
4.43), we get with a constant C independent of s′ ∈ [s/2, s[(∑

< ωj >
−(m−1)/2 e2s′ωj |cj|2

)1/2

= ‖gs′‖H−(m−1)/4(M)

≤ C‖Ts′gs′‖L2(∂Bs′ ,dµs′ )
= C‖f‖L2(∂Bs′ ,dµs′ )

(4.59) 4.103

Since one has
lim
s′→s
‖f‖L2(∂Bs′ ,dµs′ )

= ‖f‖L2(∂Bs,dµs) = ‖f‖H(Bs)

we get the ”optimal” bound on the cj:∑
< ωj >

−(m−1)/2 e2sωj |cj|2 <∞

and therefore,

f(z) = Ps(gs), gs =
∑

esωjcjej ∈ H−(m−1)/4(M)
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Finally, the family < ωj >
(m−1)/4 ej an orthonormal basis of H−(m−1)/4(M), and Ps is an

isomorphism of Hilbert spaces. Therefore, the family

Ps(< ωj >
(m−1)/4 ej) = e−sωj < ωj >

(m−1)/4 ej

is a Riesz basis of H(Bs). The proof of the Boutet theorem
thmboutet
1.1 is complete.

Let us end these section by some results about the principal symbol of T ∗s Ts. The
calculus we have done gives the principal symbol A of T ∗s Ts equal to

A(s, x, ξ) = C−1/2(s, x, ξ/|ξ|x)Γm(s|ξ|x), (mod |ξ|−(m+1)/2
x )

C(s, x, u) = s−2(2
√

2)−(m+1)det(Hess(Ψs(s, x, x, u; ., .)))ac=0,θc=π/4

(4.60) 4.104

where the function Γm is defined in formula (
2.11
2.13). To prove this point, we use formula

(
4.80
4.55) which gives

A(s, x, ξ) = (2π)m(|ξ|x/s
√

2)−(m−1)/2σ̃s,0(0, x, x, ξ/|ξ|x)(s
√

2)−mc−1
m

Now we use stationary phase expansion to compute σ̃s,0(0, x, x, ξ/|ξ|x). One has

Ψs(s, x, x, u; a, θ) = sin θ(d
2
(z, x) + s2) + cos θ(d2(z, x) + s2)

z = Z(i, expx(a), sg1/2(a)(u))

From lemma
lem3.3
3.3, we get that the critical point is (ac, θc) = (0, π/4). Thus the function

A(s, x, ξ) is equal to (here we use (
4.73
4.46) and the formula (

4.76
4.49) for Σs)

A(s, x, ξ) = (2π)m(|ξ|x/s
√

2)−(m−1)/2s2π−(m+1)(
1

2
)(m−1)/2(det−1/2(2π)(m+1)/2)(s

√
2)−mc−1

m

where det is the value of the Hessian determinant of Ψs(s, x, x, u; a, θ) at the critical point
(ac, θc) = (0, π/4) which is equal to s2(2

√
2)m+1C(s, x, ξ/|ξ|x). Hence we get

A(s, x, ξ) = C(s, x, ξ/|ξ|x)
π(m−1)/2(s|ξ|)−(m−1)/2

cm

and the result follows from the fact that the principal symbol of Γm(η) is equal to
(π/|η|)(m−1)/2c−1

m .

Remark 4.12 If one replace the measure dµs on ∂Bs by dµ̃s = J(z)dµs, then the new
principal symbol of T ∗s Ts will be

|J(Z(i, x, s, sξ/|ξ|x))|2C−1/2(s, x, ξ/|ξ|x)Γm(s|ξ|x), (mod |ξ|−(m+1)/2
x )

and therefore, with the choice J(Z(i, x, s, su)) = C1/4(s, x, u), we will recover the same
principal symbol as the one of the flat case.
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The function C involves the second derivative in z of d2(z, x) at z = Z(i, x, su), hence
the curvature tensor of M . When M = SmR = {x ∈ Rm+1, x2 = R2} is the sphere of radius
R in Rm+1, one has

d2(x, y) = R2ψ(
x.y

R2
), ψ(u) = θ2 ⇔ cos θ = u

and
Z(i, x, su) = x cosh(s/R) + iRu sinh(s/R), x ∈ SmR , u ∈ Sm1 , x.u = 0

which gives

d2(Z(i, x, su), y) = R2ψ(
x.y cosh(s/R) + iRu.y sinh(s/R)

R2
)

These formulas allows to find the Taylor expansion at order 2 of Ψs at the critical point
(ac, θc) = (0, π/4), (θ = π/4 + ϕ):

Ψs '
√

2
(
|a|2L(s/R) + (1− L(s/R))(a.u)2 − 2isϕa.u

)
, L(u) = u

cosh(u)

sinh(u)

Observe that L(0) = 1, thus when R→∞, this is compatible with the formula (
4.77bis
4.51) of

the flat case. Therefore, in the case of SmR , we get

C(s, x, u) = C(s) = (L(s/R))m−1

which depends effectively on the parameter s.

5 A conjecture on the ramification locus for general

Poisson kernels
sec5

The reader has to observe that the construction of the Hadamard parametrix for the Pois-
son kernel (in the analytic category) given in proposition

prop4.1
4.6 uses strongly the fact that

on the Riemannian manifold with boundary [0,∞[×M , with metric ds2 +g, the boundary
s = 0 satisfies the following property:

Every null-complex caracteristic curve u 7→ (s(u), z(u);σ(u), ζ(u)) of the hamiltonian

function σ2 + g−1(z, ζ) such that s(0) = 0, σ(0) = 0, satisfies s(u) = 0.
(5.1) 6.0

This fact explains why the ramification locus in the complex domain of the kernel of
the Poisson operator associated to the operator ∂2

s +4g is simply given by the equation
s2 + d2(x, y) = 0. To my knowledge, the description of the ramification locus in the
complex domain of the kernel of the Poisson operator in a general analytic Riemannian
manifold with boundary is an open problem. In this section, we will state a ”conjecture”
about this ramification locus, and we will give some examples in favor of it.

Let g(x) be an analytic metric defined in a neighborhood of 0 in Rn, and Ω a half
space near 0 defined by an analytic equation f > 0 with f(0) = 0 and df(0) 6= 0. We are
interested by local solutions near 0 in Ω of the Cauchy problem

4g(v) = 0 in Ω, v|∂Ω = δ0 (5.2) 6.1
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Any solution of (
6.1
5.2) is analytic in Ω. Our problem is to determined the ”maximal holo-

morphic extension” of a solution v in a neighborhood of 0 ∈ Cn. This does not depend
on the particular solution v of (

6.1
5.2) since if v1, v2 are two solutions of (

6.1
5.2), then v1 − v2

extends analytically in a neighborhood of 0.

One has
4g = det(g)−1/2

∑
i

∂i(
∑
j

det(g)1/2gi,j∂j)

In the system of coordinates (x′, xn) ”geodesic normal to the boundary” with f = xn =
dist((x′, xn), ∂Ω), let us denote by g̃(a, .) the metric on the hypersurface xn = a. Then
u = det(g)1/4v satisfies an equation of the form

P (u) = (∂2
xn +R(xn, x

′, ∂x′))u = 0 in xn > 0, u|xn=0 = δ0 (5.3) 6.2

where R(xn, x
′, ∂x′) is a second order differential operator with analytic coefficients and

real principal symbol equal to

r(xn, x
′, ξ′) =

∑
i,j<n

g̃i,j(xn, x
′)ξiξj

Without loss of generality, we may assume r(0, 0, ξ′) = ξ′2. We will state more generally a
conjecture on the holomorphic extension of a solution u of an equation of type (

6.2
5.3), with

the assumption that r(xn, .) is an analytic family of analytic metrics. For (z, ζ) ∈ C2n

and z close to 0, we define p(z, ζ) by

p(z, ζ) = ζ2
n + r(zn, z

′, ζ ′) (5.4) 6.3

Let Bε = {z ∈ Cn, |z| < ε}. We denote by F = Fε the smallest closed subset of
(T ∗Bε \ Bε) ∩ p−1(0), C∗ homogeneous (i.e for (z, ζ) ∈ Fε, one has |z| < ε, ζ 6= 0,
p(z, ζ) = 0, and (z, sζ) ∈ Fε for any s ∈ C∗) which satisfies the following 3 conditions

a) (z, ζ) ∈ Fε ⇒ exp(sHp)(z, ζ) ∈ Fε for |s| small

b) (z′, 0, ζ ′, ζn) ∈ Fε ⇒ (z′, 0, ζ ′,−ζn) ∈ Fε
c) {(0, ζ), ζ 6= 0, p(0, ζ) = 0} ⊂ Fε

(5.5) 6.4

Observe that a) is a propagation assumption, b) stands for the reflection of singulari-
ties at the boundary zn = 0, and c) takes care of the Cauchy data δ0.

With π(z, ζ) = z, we set Z = Zε = π(Fε). Then Zε is a closed subset of Bε. We denote
by dimH(A) the real Hausdorff dimension of a set A. We assume ε > 0 small enough and
we drop the indices ε. Our first conjecture is the following.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Conjecture A

• 1. dimH(Z) = 2(n − 1), B \ Z is connected, and u can be holomorphicaly extends
along any path t ≥ 0→ q(t) such that q(0) ∈ Ω and q(t) ∈ B \ Z for t > 0.
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• 2. Let
Zreg = {z ∈ Z, Z is a complex smooth hypersurface near z} (5.6) 6.5

Then dimH(Z) = 2(n− 1), Zreg = Z, and near any point of the universal covering
which projects on Zreg, the holomorphic extension of u is regular holonomic.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Recall that u is regular holonomic near a point z0 of a smooth hypersurface defined by
an equation g(z) = 0 with g(z0) = 0, dg(z0) 6= 0 iff u is near z0 a finite linear combination
with coefficients in Oz0 of functions of the form gµ, gµ log(g).

We define a closed subset Zbad of Z by

Zbad = {z ∈ Z, Z is not a constructible set near z} (5.7) 6.6

Here, by ”constructible near z”, we just mean that Z is defined by an holomorphic equa-
tion near z. Then one has by definition

Z = Zreg ∪ Zsing ∪ Zbad
Zsing = {z ∈ Z, Z is constructible but not a smooth hypersurface near z}

(5.8) 6.7

Remark 5.1 One has to take care that in general, Z is not the set of zeros of an holo-
morphic function and we may have dimH(Zbad) = 2(n−1). The behavior of u near points
of Zbad is most probably not descriptible (at least not by me).

Observe that if conjecture A is true, this will be a substitute in the complex domain for
the celebrated propagation at the boudary of singularities theorem of R. Melrose and J.
Sjöstrand (see

MS
[6]).

The second conjecture is almost the same, but is probably weaker since it is just about
the normal derivative

∂xnu(0, x′) = w(x′)

which is a well defined distribution on the boundary, and which is analytic in x′ 6= 0. Set
B0 = B ∩ zn = 0 and Z0 = Z ∩ zn = 0. Let Z0

reg be defined by

Z0
reg = {z′ ∈ Z0, Z0 is a smooth complex hypersurface of the boundary near z’}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Conjecture B

• 1. dimH(Z0) = 2(n−2), B0\Z0 is connected, and w can be holomorphicaly extends
along any path t ≥ 0→ q(t) such that q(0) ∈ {x′ 6= 0} and q(t) ∈ B0 \Z0 for t > 0.

• 2. One has Z0
reg = Z0 , and near any point of the universal covering which projects

on Z0
reg, the holomorphic extension of w is regular holonomic.
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Let us study a very particular case, where Zbad = ∅ and Z = Zreg ∪ {z = 0}. Let

r0(z′, ζ ′) = r(0, z′, ζ ′). Let us assume that the following hypothesis holds true:

for η′ ∈ Cn−1 \ 0 such that r0(0, η′) = η′2 = 0 one has

(z′, ζ ′) = exp(sHr0)(0, η
′)⇒ ∂r

∂zn
(0, z′, ζ ′) = 0

(5.9) 6.6

In that case, we claim that the set F is equal to the union of null bicaracteristics of p
starting at a point of T ∗0 Cn, i.e

F = Λ0 = ∪ζ 6=0,p(0,ζ)=0{exp(sHp)(0, ζ)} (5.10) 6.7

and therefore

Z = {z ∈ Cn, d2(z, 0) = 0} (5.11) 6.8

Z is a complex cone, and Zreg = Z \ {z = 0}. (by a complex cone, we main that it is
defined by an equation tzM(z)z = 0 with a matrix M(z) such that det(M(0)) 6= 0) One
has just to verify that the closed C∗-homogeneous set Λ0 given by (

6.7
5.10) satisfies the 3

conditions of (
6.4
5.5), since any closed C∗-homogeneous set F which satisfies these condi-

tions contains Λ0. Conditions a) and c) are obvious. If n = 2, the equation p(0, ζ) = 0
is equivalent to ζ2 = ±iζ1, thus there is only 2 null bicaracteristics starting at z = 0,
and they are transversal to the boundary, thus condition b) is obvious. If n ≥ 3, then
C = {d2(z, 0) = 0} ∩ {zn = 0} is still a complex cone in the boundary. By (

6.6
5.9) C

contains the complex cone C̃ = {d̃2(z′, 0) = 0} where d̃ is the distance in the boundary,
and therefore, one has C = C̃ . Thus if a point ((z′, 0), ζ) is in Λ0, one has d2(z′, 0) = 0
and therefore condition b) holds true.

Observe in particular that (
6.6
5.9) is obviously satisfied when r is independent of zn,

which was the case for the operator ∂2
s + 4g with s = xn of section

sec4
4, and of course

proposition
4.1
4.3 shows that conjecture A holds true in that case.

Observe also that the hypothesis (
6.6
5.9) always holds true in dimension n = 2 (since in

that case, the hypothesis is void). Of course, n = 2 is very particular since the principal
symbol of an operator of the form (

6.2
5.3) factorize in the product of two complex linear

forms.

Observe finally that for any n, when 4 is the flat laplacian on Rn and when Ω is ever
the interior or the exterior of a ball of radius R > 0, then condition (

6.6
5.9) holds true. This

is a consequence of the trivial fact that if x ∈ Rn is such that x2 = R2, then for any
vector z ∈ Cn such that z2 = 0 and z.x = 0, one has (x+ z)2 = R2. Observe that one has
an explicit formula for the Poisson kernel inside or outside a ball, and these formulas are
compatible with conjecture A.

We will end this section with the special case of the operator

∂2
x + (1 + x)∂2

y + ∂2
z with (x, y, z) ∈ R3, Ω = {x > 0}
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In that case, we will indicate briefly why conjecture B is true, the idea of the proof being
the one of

L1
[3]. This example shows that the set of bad points Zbad do exists, and they are

really obstruction in the holomorphic extension of u. Let us first describe what are the
sets F and Z in that case.

It is easy to compute in coordinates (x, y, z; ξ, η, ζ) the null bicaracteristic
exp(sHp)(0, y0, z0; ξ0, η0, ζ0). One finds

x(s) = 2sξ0 − s2η2
0, ξ(s) = ξ0 − sη2

0

y(s) = y0 + 2sη0 + 2s2ξ0η0 − 2s3η3
0/3, η(s) = η0

z(s) = z0 + 2sζ0, ζ(s) = ζ0

(5.12) 6.10

Let Λ0 be defined by (
6.7
5.10). For N ≥ 1, we denote by ΛN the set of points in

T ∗C3 \ 0, with (x, y, z) close to 0, which are connected to a point in Λ0 by N reflections
on the boundary x = 0. From (

6.10
5.12), it is easy to compute ΛN , and we find that it is

parametrized by the complex curve {α2 + β2 + 1 = 0} ⊂ C2, with |α| ≤ ε/N , with the
following formula

x(t) = 2tα− t2

y(t) = 4N(α + 2α3/3) + 2t+ 2t2α− 2t3/3

z(t) = 4Nαβ + 2tβ

(ξ(t), η(t), ζ(t)) = λ(α− t, 1, β), λ ∈ C∗

(5.13) 6.11

Since α is close to 0, this gives ΛN = Λ+
N ∪ Λ−N with β = ±i

√
1 + α2 on Λ±N . The Λ±N are

C-lagrangian in T ∗C3 \ 0. Obviously, the set ∪k≥0Λk satisfies conditions a),b,c) of (
6.4
5.5),

and thus we get
F = closure(∪k≥0Λk) (5.14) 6.12

If we define Λ±∞ by the parameterization with (u, t) ∈ C2 close to (0, 0)

x(t) = −t2

y(t) = 4u+ 2t− 2t3/3

z(t) = ±i(4u+ 2t)

(ξ(t), η(t), ζ(t)) = λ(−t, 1,±i), λ ∈ C∗

(5.15) 6.13

we find with Λ∞ = Λ+
∞ ∪ Λ−∞

F = (∪k≥0Λk) ∪ Λ∞ (5.16) 6.14

Set Z0 = {d2((x, y, z), (0, 0, 0)) = 0}, Z±N = π(Λ±N), ZN = Z+
N ∪ Z

−
N , Z±∞ = π(Λ±∞) and

Z∞ = Z+
∞ ∪ Z−∞. Then one gets

Z = (∪k≥0Zk) ∪ Z∞
Zbad = Z∞

(5.17) 6.15

Observe that Z±bad is the union of two complex sets of codimension 1 with a cusp singularity
on the boundary x = 0. In particular, dimH(Zbad) = 4 = 2(n − 1). The intersection Z0

of Z with the boundary x = 0 is easy to compute. One find

Z0
0 = {(0, 0)} ∪ Σ1, Z0

N = ΣN ∪ ΣN+1

ΣN = Σ+
N ∪ Σ−N , Σ±N = {(y, z) = (4u(1 + 2u2/3N2),±4iu

√
1 + u2/N2)}

Z0
∞ = Σ∞ = Σ+

∞ ∪ Σ−∞, Σ+
∞ = {z = ±iy}

(5.18) 6.16



30

This gives Z0
reg = Z0 \ (Σ∞) and therefore Z0

reg = Z0.

The solution u(x, y, z), x > 0 of the boundary value problem (
6.2
5.3) is easy to compute

via Fourier transform in (y, z). One finds

u(x, y, z) = (
1

2π
)2

∫
R2

ei(yη+zζ)Ai(xη
2/3 + η−4/3(η2 + ζ2))

Ai(η−4/3(η2 + ζ2))
dηdζ

w(y, z) = (
1

2π
)2

∫
R2

ei(yη+zζ)η2/3Ai
′(η−4/3(η2 + ζ2))

Ai(η−4/3(η2 + ζ2))
dηdζ

(5.19) 6.17

where Ai(u) = 1
2π

∫ +∞
−∞ ei(su+s3/3)ds is the Airy function. Recall that Ai′

Ai
(w) is an analytic

symbol on any angular sector −π + ε < arg(w) < π + ε, |w| ≥ 1, and

Ai′

Ai
(w) ' −w1/2(1 +

∑
j≥1

cjw
−3j/2), |cj| ≤ ABjj! (5.20) 6.17bis

Thus we get from (
6.17
5.19), with D = −i∂, |40| = −∂2

y − ∂2
z , and where N denotes the

Dirichlet to Neumann operator (an analytic pseudodifferential operator of degree 1)

w = N(δ0), N(Dy, Dz) ' −|40|1/2(1 +
∑
j≥1

cjD
2j
y |40|−3j/2) (5.21) 6.17ter

From (
6.17
5.19) and (

6.17bis
5.20), one gets for (y, z) ∈ R2 and ϕ ∈]− 3π/2, 3π/2[

w(e−iϕy, e−iϕz) = (
1

2π
)2e8iϕ/3

∫
R2

ei(yη+zζ)η2/3Ai
′

Ai
(e2iϕ/3η−4/3(η2 + ζ2))dηdζ (5.22) 6.18

Ai′

Ai
(eiπ/3u) is a tempered distribution on R and one has

Ai′

Ai
(eiπ/3u) = ieiπ/3

∫
R
e−isuG(s)ds (5.23) 6.19

where G(s) is a tempered distribution with support in s ≥ 0, analytic in s > 0, with

∀s > 0, G(s) =
∑
k≥0

e−e
iπ/6sωk (5.24) 6.18

where ω1 < ω2 < ... are such that −ωk is the k-th zero of the Airy function. Recall
ωk = (3π(k− 1/4)/2)2/3f(k) where f(λ) = 1 +O(λ−2) is a classical analytic symbol in λ.
Near s = 0, one has G(s) ∈ O(s−3/2) Set w̃(y, z) = w(e−iπ/2y, e−iπ/2z). From (

6.18
5.24) and

(
6.19
5.25) we get

w̃(y, z) =

∫ ∞
0

s5G(s)eis
3φ(y,z)σ(y, z; s3)ds

eis
3φ(y,z)σ(y, z; s3) = ei7π/9

is3

4π2

∫
R2

eis
3(ya+zb−a−4/3(a2+b2))a2/3dadb

(5.25) 6.19

where φ(y, z) is the critical value of the phase

(a, b) 7→ ya+ zb− a−4/3(a2 + b2)
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and σ(y, z;λ) is a classical analytic symbol of degree 0. Let G(u) be a function of the
type

G(u) =

∫ ∞
0

G(λ1/3)eiλuσ(u;λ)λdλ (5.26) 6.20

As in
L1
[3], one finds that near 0, G is ramified on the complement of u = 0 and the set of

points un = −1
12n2 , and it remains to check that the set of equation φ(−iy,−iz) = −1

12n2 are
the set Zn given in

6.16
5.18, and φ(−iy,−iz) = 0 iff z = ±iy.

6 Appendix
appendix
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Goulaouic- Schwartz, 1979-1980, exposé 17. 29, 31
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[6] Melrose (R.) and Sjöstrand (J.). – Sigularities of boundary value problems I,II. –
CPAM (31) 1978, no 5, pp 593–617, CPAM (35) 1982, no 2, pp 129–168. 27

[7] Schapira (P). – Conditions de positivité dans une variété symplectique complexe.
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