The backscattering transformation

Ingrid Beltiță (IMAR), joint work with Anders Melin

In honor of Anders Melin's 80th birthday Centre for Mathematical Sciences, Lund University September 20, 2023

Scattering operator

 $H_v = -\Delta + v, \quad v \in C_0^{\infty}(\mathbb{R}^n), \ n \ge 3 \text{ odd}.$

- Wave operators: $W_{\pm}=\lim_{t\to\pm\infty}e^{itH_v}e^{-itH_0}$ exist and are complete $(\operatorname{Ran}W_{\pm}=P_{\mathrm{ac}}(H)L^2(\mathbb{R}^n))$
- Scattering operator: $S = W_+^*W_-$, $SH_0 = H_0S$, $\hat{S} = \mathcal{F}S\mathcal{F}^*$.
- $S I = W_+^*(W_- W_+) = -i \int_{-\infty}^{\infty} e^{itH_0}(W_+^*v)e^{-itH_0}dt.$

$$\Longrightarrow (\mathfrak{F}(S-I)\mathfrak{F}^*)\varphi(\xi) = -2\pi i \int \delta(|\xi|^2 - |\eta|^2)\alpha_+(\xi,\eta)\varphi(\eta)\,d\eta,$$

when $\operatorname{supp} \varphi \subseteq \mathbb{R}^n \setminus \{0\}$ and $\xi \neq 0$, where

$$\alpha_{+}(\xi,\eta) = (\mathcal{F}W_{+}^{*}v\mathcal{F}^{*})(\xi,\eta) = (2\pi)^{-n}\widehat{W_{+}^{*}v}(\xi,-\eta).$$

Note that $(i+H_0)^{-N}W_+^*v\in\mathcal{B}_2(L^2)$ for N large enough, hence $\widehat{W_+^*v}(\xi,\eta)$ is L^2_{loc} continuous in η_+ and

$$(1+|\xi|^2)^{-N}|\widehat{(W_+^*v)}(\xi,\eta)| \le g(\xi)$$

a.e. ξ and for every η , where $g \in L^2(\mathbb{R}^n)$.

*** $T \colon \mathcal{S}' \to \mathcal{S}$ linear cont., T(x,y) is its distribution kernel.

Backscattering data

• Backscattering data the function

$$\xi \mapsto \overline{\alpha_+(-\xi,\xi)} = \widehat{vW_+}(\xi,-\xi)$$

or its inverse Fourier transform, that is,

$$(B_{\mathsf{class}}v)(x) = 2^n \int (vW_+)(x-y, x+y) \, dy.$$

• Real backscattering data the function

$$\xi \mapsto 2^{-1}(\overline{\alpha_{+}(-\xi,\xi)} + \alpha(\xi,-\xi)) = 2^{-1}(\widehat{vW_{+}}(\xi,-\xi) + \widehat{vW_{+}}(-\xi,\xi))$$
$$= 2^{-1}(\widehat{vW_{+}} + \widehat{vW_{-}})(\xi,-\xi),$$

or

$$(B_{\mathsf{class,re}}v)(x) = 2^{n-1} \int v(x-y)(W_+ + W_-)(x-y, x+y) \, dy.$$

Link to the wave equation

Some hand-waving computations:

- Assume for the moment that $H_v \geq 0$ and $0 \notin \sigma_p(H_v)$.
- Birman invariance principle: $W_{\pm}(H_v, H_0) = W_{\pm}(\sqrt{H_v}, \sqrt{H_0})$, and

"
$$W_{+} = I - \int_{0}^{\infty} \frac{\sin(t\sqrt{H_{v}})}{\sqrt{H_{v}}} v e^{-it\sqrt{H_{0}}} dt$$

Link to the wave equation

The wave "group" [Melin (2003)]

 $v \in L^q_{\mathrm{cpt}}(\mathbb{R}^n)$, q > n, There is a a unique $K_v \in C^2([0,\infty), \mathcal{B}(H^2,L^2)) \cap C([0,\infty), \mathcal{B}(H^2,H^2))$ such that $K_v(t)$ solves $(\partial_t^2 + H_v)K_v(t) = 0$, $K_v(0) = 0$, $\dot{K}_v(0) = I$,

- $K_0(t)=\frac{\sin t|D|}{|D|}$, $t\geq 0$. Conv. kernel $k_0(\cdot,t)$ of $K_0(t)$, $k_0(x,t)=-i\pi(2\pi i)^{-n}\int_{S^{n-1}}\delta^{(n-2)}(x\theta-t)\,d\theta$ supported on |x|=t.
- $K_N(t) := \int\limits_0^s K_{N-1}(t-s)vK_0(s)\,ds$ $\|K_N(t)\| \le C^N t^{1+N\delta} \|v\|_{L^q}/\Gamma(2+N\delta), \text{ where } \delta = 2-n/q,$

Then

$$K_v(t) = \sum_{N} (-1)^N K_N(t),$$

and $L^q_{\mathrm{cpt}} \ni v \to K_v(t) \in \mathcal{B}(L^2(\mathbb{R}^n))$ is entire analytic.

• $|x - y| \le t$ in the support of $K_v(t, x, y)$

Link to the wave equation

- $W_{\pm}=P_{\mathrm{ac}}-\int\limits_{0}^{\infty}P_{\mathrm{ac}}K_{v}(t)ve^{\mp it\sqrt{H_{0}}}dt$, where $P_{\mathrm{ac}}:=P_{\mathrm{ac}}^{H}$.
- $G := -\int_{0}^{\infty} K_v(t) v \dot{K}_0(t) dt$
- $W_+ + W_- = 2(I+G+S)$ with S a sum of projections defined in terms of eigenvalues ≤ 0 and their and eigenfunctions, such that $S(\cdot,\cdot)$ is smooth in the second variable. Thus

$$(B_{\text{class,re}}v)(x) = 2^{n-1} \int v(x-y)(W_+ + W_-)(x-y, x+y) \, dy$$
$$= v(x) + 2^n \int v(x-y)G(x-y, x+y) \, dy + \int v(y)S(y, x) \, dy$$

(A. Melin (2004)).

The backscattering transformation and the problem

Backscattering transform of v

$$(Bv)(x) = v(x) + 2^n \int v(x-y)G(x-y, x+y) dy.$$

Problem. Find v (singularities of v) from Bv.

- When v is real $Bv B_{\rm class,re}v$ is a smooth function. If there are no bound states $Bv = B_{\rm class,re}v$.
- $C_0^{\infty}(\mathbb{R}^n) \ni v \mapsto Bv \in C^{\infty}(\mathbb{R}^n)$ is entire analytic in v:

$$Bv = \sum_{1}^{\infty} B_N v, \quad B_1 v = v.$$

• $B_N v$ is the value at (v, \ldots, v) of an N-linear singular integral operator.

First result

- ullet The regularity of $B_N v$ increases with N in the sense of the next theorem.
- [A. Melin (03)] The larger degree terms are as regular as we want: Let q > n and k be a nonnegative integer. Then there is a positive integer $N_0 = N_0(n,q,k)$ such that if $R_1,R_2 > 0$ there is a $C = C(n,k,R_1,R_2,q)$ such that

$$\|\Delta^k B_N v\|_{L^2(B(0,R_1))} \le C^N \|v\|_{L^q}^N / N!, \qquad N \ge N_0,$$

whenever $v \in L^q$ has support in the ball $B(0, R_2)$.

Recall:

$$(Bv)(x) = v(x) + 2^n \int v(x-y)G(x-y,x+y) dy$$
, where

$$G = -\int_{0}^{\infty} K_{v}(t)v\dot{K}_{0}(t)dt.$$

$$K_v(t) = \sum (-1)^N K_N(t),$$

$$K_0(t) = \frac{\sin t|D|}{|D|}, \ K_N(t) = \int_{s}^{t} K_{N-1}(t-s)vK_0(s) ds,$$

$$G = \sum_{1}^{\infty} G_N; \ G_N = (-1)^N \int_{-\infty}^{\infty} K_{N-1}(t) v \dot{K}_0(t) dt$$

Thus

$$Bv = \sum B_N v$$

with

$$B_1v = v$$

and

$$B_N = 2^n \int v(x-y)G_{N-1}(x-y,x+y) \, dy, \quad N \ge 2,$$

with

$$G_{N-1} = (-1)^N \int_0^\infty K_{N-2}(t)v\dot{K}_0(t)dt, \quad G_0 = K_0(t),$$

$$K_{N-2}(t) = \int_0^t K_{N-3}(t-s)vK_0(s)ds, \quad K_0(t) = \frac{\sin t|D|}{|D|},$$

Define

$$Q_1(x,t) = k_0(x,t),$$

$$Q_N(x_1, x_N; t) = \int_0^t Q_{N-1}(x_1, \dots, x_{N-1}; t-s) k_0(x_N; s) ds.$$

Then

$$K_N(x,y) = \int v(x_1) \dots v(x_N) Q_{N+1}(x-x_1,x_1-x_2,\dots,x_N-y;t) d\bar{x}$$

and

$$G_N(x,y) = (-1)^N \int v(x_1) \cdots v(x_N) \times \times E_{N+1}(x - x_1, x_1 - x_2, \dots, x_{N-2} - x_{N-1}, x_N - y) d\bar{x}$$

where

$$E_{N+1}(x_1,\ldots,x_{N+1}) = (-1)^N \int_{\mathbb{R}} Q_N(x_1,\ldots,x_N;t) \dot{k}_0(x_{N+1};t) dt.$$

• $E_N \in \mathcal{D}'((\mathbb{R}^n)^N), N > 2$

$$E_N(x_1,\ldots,x_N) := (-1)^{N-1} \int_0^\infty Q_{N-1}(x_1,\ldots,x_{N-1};t) \dot{k}_0(x_N;t) dt$$

 \blacktriangle $Bv = v + \sum_{1}^{\infty} B_N v$, with

$$(B_N v)(x) = \int_{(\mathbb{R}^n)^N} E_N(y_1, \dots, y_N) v\left(x + \frac{y_N}{2} + \frac{y_1}{2} + \dots + \frac{y_{N-1}}{2}\right)$$
$$v\left(x + \frac{y_N}{2} - \frac{y_1}{2} + \frac{y_2}{2} + \dots + \frac{y_{N-1}}{2}\right) \dots v\left(x + \frac{y_N}{2} - \frac{y_1}{2} - \dots - \frac{y_{N-1}}{2}\right) d\vec{y}$$

when $v \in C_0^{\infty}(\mathbb{R}^n)$.

The distribution E_N

Set

$$P_N = (\Delta_1 - \Delta_N) \cdots (\Delta_{N-1} - \Delta_N),$$

 Δ_j in the Laplacian in the variables x_j .

Properties of E_N

 E_N is a fundamental solution of P_N . It has the following properties:

- (i) $E_N(x_1,\ldots,x_N)$ is rotation invariant in each x_i ;
- (ii) $|x_1| + \cdots + |x_{N-1}| = |x_N|$ in the support of E_N ;
- (iii) E_N is homogeneous of degree 2(N-1)-nN.

If E is a fundamental solution of P_N that satisfies (i)-(iii), then $E=E_N$.

• $E_2(x,y) = 4^{-1}(i\pi)^{1-n}\delta^{(n-2)}(x^2 - y^2)$.

A result for n=3

ullet R. Langergren (2011) There is a constant C>0 such that

$$||B_N v||_{(1)} \le CN^3 (8\pi)^{-N} ||v||_{(1)}^N$$

Here, if $n \geq 3$,

$$||f||_{(n-2)} = ||\nabla^{n-2}f||.$$

- For $n \geq 3$ odd
 - $||B_2v||_{(n-2)} \le C||v||_{(n-2)}^2$ (A. Melin (2004))
 - $||B_3v||_{(n-2)} \le C||v||_{(n-2)}^3$ (A. Melin, I.B. (2013))

Smoothning properties of B_N

Theorem

 $s \geq (n-3)/2$, N_0 integer such that

$$a < N_0 - 1$$
, $a < (N_0 - 1)(s - (n - 3)/2)$.

• There is C = C(n, s, a) > 0 such that

$$||B_N v||_{H^{s+a}(B(0,R))} \le C^N R^{(N-1)/2} N^{-N/2} ||v||_{H^s}^N$$

when $N \geq N_0$, R > 0 and $v \in C_0^{\infty}(B(0,R))$.

• There is $C_1 = C_1(n, a, s) > 0$ such that

$$||B_N v||_{H^{s+a}(\mathbb{R}^n)} \le C_1^N R^{N-1} ||v||_{H^s}^N,$$

for every $N \geq N_0$, R > 0 and $v \in C_0^{\infty}(B(0,R))$.

• $0 \le a < 1$, $a \le s - (n-3)/2$ is good for all $N \ge 2$, $\Rightarrow Bv - v$ is in $H_{(s+a)}$.

N = 3: $\phi_a(t) = H(t)(\sin(ta)/a,$

• "
$$\hat{E}_3(\xi_1, \xi_2, \xi_3) = \int_0^\infty (\phi_{|\xi_1|} * \phi_{|\xi_2|})(t) \cos(|\xi_3|t) dt$$
"

• $\sigma > 0$:

$$F(\xi_1, \xi_2, \xi_3, \sigma) := \int_0^\infty (\phi_{|\xi_1|} * \phi_{|\xi_2|})(t) \cos(|\xi_3|t) e^{-t\sigma} dt,$$

$$= \operatorname{Re}\left(\frac{1}{|\xi_1|^2 - (|\xi_3| - i\sigma)^2} \cdot \frac{1}{|\xi_2|^2 - (|\xi_3| - i\sigma)^2}\right).$$

• Good cut-off: $\chi \in C_0^\infty(\mathbb{R})$,

$$E_{3,\chi}(x_1, x_2, x_3) = \int_{0}^{\infty} Q_2(x_1, x_2; t) \dot{k}_0(x_3; t) \chi(t) dt,$$

with good estimates for the Fourier transform.

- If $\chi = 1$ on |t| < R, then $E_{3,\chi} = E_3$ on $|y_3| < R$.
- $\widehat{B_N v}(\xi) = C \int \int \hat{E}_{3,\chi}(\xi_1, \xi_2, \xi) \hat{v}(\xi/2 + \xi_1) \hat{v}(\xi_1 \xi_2) \hat{v}(\xi/2 \xi_2) \, d\xi_1 \, d\xi_2$, for appropriate χ .

Generic local uniqueness

Corollary

s > (n-3)/2, R > 0 fixed.

There is a closed subset G_s of $H^s(B(0,R))$ such that

- $\mathbb{C}f \cap G_{s,R}$ discrete for every $f \in H_0^s(B(0,R))$
- ullet B is a locally isomorphism at every $v\in H^s_0(B(0,R))\setminus G_s.$

In particular, $Bv = 0 \Rightarrow v = 0$ for v small.

The quadratic term

N=2:

$$B_2(v_1, v_2)(x) = \iint E_2(y, z)v_1(x + \frac{y+z}{2})v_2(x - \frac{y-z}{2})dy dz.$$

$$H_a^b(\mathbb{R}^n) = \{ u \in \mathcal{S}'(\mathbb{R}^n); \langle x \rangle^a \langle D \rangle^b u \in L^2(\mathbb{R}^n) \}$$

where $a, b \in \mathbb{R}$.

Theorem.

Assume that

$$0 < \bar{a} < a, \ 0 < \bar{b} < b, \ \bar{a} + \bar{b} < 1/2.$$

Then B_2 is continuous from $H^{m+b}_{1/2+a}(\mathbb{R}^n) \times H^{m+b}_{1/2+a}(\mathbb{R}^n)$ to $H^{m+b+\bar{b}}_{1/2+a+\bar{a}}(\mathbb{R}^n)$. In particular, B_2 is a continuous bilinear operator on H^b_a

when $a \ge 1/2$ and $b \ge m$.

Proof

n = 3

•
$$B_2(f,g)(x) = \iint E(y,z)f(x+\frac{y+z}{2})g(x-\frac{y-z}{2})dy dz$$
,

Then

$$\langle B_2(f,g),h\rangle = -4 \iint_{\mathbb{R}^2} A(f,g)(x,t)(\cos(t|D|)h)(x)dxdt$$

where

$$A(f,g)(x,t) = Ct \int f(x-t\omega)g(x+t\omega) d\omega.$$