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1. Spectral theory

Spectral theory is concerned with the simultaneous diagonalization of
Hermitian forms or, equivalently, a corresponding eigenvalue equation
Su = λTu.

For this to be possible one needs that some linear combination of the
Hermitian forms is positive. This is then used as a scalar product.

If S and T are differential operators the convention is that S has
higher order than T .

In the simplest cases T is multiplication by a positive function w, and
then one may consider the problem in the L2-space with weight w.
This would be a right definite equation.

If one requires positivity of a Hermitian form associated with the
operator S one talks of a left definite equation.
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2. Sturm-Liouville equations

We now restrict ourselves to consider a Sturm–Liouville equation

−(pu′)′ + qu = λwu

on an open interval (a, b).
Standard assumptions are that 1/p, q and w are realvalued, locally
integrable functions.

A Hermitian form associated with the left hand side is the Dirichlet
integral ∫ b

a
(pu′v′ + quv).

We call the problem left-definite if p > 0 a.e. and q ≥ 0 but not ≡ 0.
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3. Brief history

In 1906 Hilbert created a theory of polar integral equations and
applied it to left definite Sturm-Liouville equations with bounded base
interval and integrable 1/p, q and w. This implies discrete spectrum.
As scalar product he used an expression which in a sense is dual to
the Dirichlet integral.

In 1910 Herman Weyl proved the first eigenfunction expansion
theorem for general right definite Sturm-Liouville equations.
Such equations do not necessarily have discrete spectrum.
In a second note 1910 he treated the left definite case, using the
scalar product introduced by Hilbert.

The first to use the Dirichlet integral as scalar product seems to have
been Max Mason who treated a regular case in 1907.

Later results are mainly from the period 1960–1980, but interest was
revived when the Camassa-Holm equation appeared in the 1990s.
This is an integrable system in a similar sense as the KdV equation,
but is associated with a left definite spectral problem.
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4. Normal form

Positivity of the Dirichlet integral requires p > 0 a.e. If we pick
c ∈ (a, b) and change variable by setting t(x) =

∫ x
c 1/p the equation

is transformed into one where p ≡ 1 and q, w still locally integrable.
So, we shall only deal with equations of the form −u′′ + qu = λwu.
For the moment we assume q ≥ 0 but not a.e. 0, which is sufficient
but not necessary for positivity of the form

∫ b
a (u′v′ + quv).

We study the equation in a Hilbert space H1 with scalar product
〈u, v〉 =

∫ b
a (u′v′ + quv) and norm ‖u‖ = 〈u, u〉1/2.

The space H1 is the set of locally absolutely continuous functions u
defined in (a, b) which have finite norm.

It is easily proved that if K ⊂ (a, b) is compact there is a constant
CK such that if u ∈ H1, then |u(x)| ≤ CK‖u‖ for x ∈ K.
Thus point evaluations are bounded linear forms on H1.
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5. Reproducing kernel

Let Lc be the compactly supported elements of L1(a, b).

If v ∈ Lc it follows that the linear form H1 3 u 7→
∫ b
a uv is bounded.

By use of Riesz’ representation theorem we obtain a linear operator
G0 : Lc → H1 such that 〈u,G0v〉 =

∫ b
a uv.

The operator G0 is central to our approach to left definite problems.

Another simple consequence of the Riesz representation theorem is the
following proposition.

Proposition

There exists a unique real-valued reproducing kernel function g0 defined
in (a, b)× (a, b) such that g0(x, ·) ∈ H1 for every fixed x ∈ (a, b) and
u(x) = 〈u, g0(x, ·)〉 for every u ∈ H1 and x ∈ (a, b).

The reproducing kernel has the properties g0(x, y) = g0(y, x), g0(x, x) > 0
and the norm of the linear form H1 3 u 7→ u(x) is

√
g0(x, x).
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6. Max and min relations I

A linear relation on H1 is a subspace of the orthogonal sum H1 ⊕H1.
This is a trivial generalization of the concept of linear operator.

To study −u′′ + qu = wf we use the theory of relations, since the
same u will solve the equation for many f if w = 0 on an open set.

We define a relation Tc = {(G0(wv), v) : v ∈ Lc ∩H1}.
Tc is a symmetric relation, for if u, v ∈ Lc ∩H1 we have

〈G0(wu), v〉 = 〈v,G0(wu)〉 =

∫ b

a
wuv = 〈u,G0(wv)〉.

Define the minimal relation T0 as the closure of Tc, and the maximal
relation T1 as its adjoint, i.e.,

T1 = {(u, f) ∈ H1 ⊕H1 : 〈u, v〉 = 〈f,G0(wv)〉 for all v ∈ Lc ∩H1}.
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7. Max and min relations II

Proposition

T1 is the maximal realization of our equation in H1, i.e., (u, f) ∈ T1 if and
only if u and f ∈ H1, u′ is locally absolutely continuous, and
−u′′ + qu = wf .

Proof.

If u and f ∈ H1 the definition of G0 shows that for any v ∈ Lc ∩H1

〈u, v〉 − 〈f,G0(wv)〉 =

∫ b

a
(u′v′ + quv − wfv) .

In particular, this vanishes for all v ∈ C∞0 (a, b) ⊂ Lc ∩H1 if and only if
−u′′ + qu = wf in the sense of distributions. Since qu− wf is locally
integrable so is u′′, and u′ is locally absolutely continuous.
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8. Abstract spectral theory

Abstract spectral theory now shows that any self-adjoint realization of
our equation in H1 is a restriction of T1 and an extension of T0.

Let Dλ be the defect space at λ of T1. This is the space of elements
(u, λu) ∈ T1. In our case, the set of solutions of −u′′ + qu = λwu
which are in H1, so dimDλ ≤ 2.

In general, dimDλ is constant in the open upper and lower
half-planes. For Imλ > 0 we denote the dimension by d+, for
Imλ < 0 by d−, and d± are called the defect indices of T1.
Self-adjoint restrictions of T1 exist if and only if d+ = d−.

If T is a self-adjoint restriction of T1 and λ ∈ C \ R, then
T = T0 uD where D ⊂ Dλ uDλ. Defect indices are equal and we
have dimD = d+ = d−.

In our case we always have d+ = d− ≤ 2, so there are self-adjoint
realizations T of our equation, and they are obtained by imposing
d+ = d− linear, homogeneous conditions on T1.
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9. Boundary conditions I

If (u, f) and (v, g) are in T1 integration by parts shows that

〈u, g〉 − 〈f, v〉 = lim
K↑(a,b)

(u′g − fv′)
∣∣
K
,

the limit taken over compact intervals K ⊂ (a, b).

For a self-adjoint restriction T of T1 this boundary form must vanish,
so in general we must impose boundary conditions on T1.

An interval endpoint may be limit point (LP), at which u′g − fv′
vanishes on T1, or limit circle (LC) at which it does not.

T1 is already self-adjoint if both endpoints are LP; this is the case of
d± = 0. If just one endpoint is LP, then d± = 1 and a boundary
condition is needed at the other endpoint. If both endpoints are LC,
then d± = 2 and two boundary conditions involving both endpoints
are needed.
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10. Boundary conditions II

u′ may not be well-defined at a LC endpoint, but if W is a real-valued
primitive of w, then f and u′ +Wf always are.

Note that u′g − fv′ = (u′ +Wf)g − f(v′ +Wg). This means that f
and u′ +Wf play the same role in the boundary form as u and u′ do
in the right definite (regular) case.

Thus, if both endpoints are LC, one type of self-adjoint boundary
conditions is (

f(b)
(u′ +Wf)(b)

)
= S

(
f(a)

(u′ +Wf)(a)

)
where S is a symplectic 2× 2 matrix. This means that S is a real
matrix of determinant 1 multiplied by a complex number of absolute
value 1.

Special cases are ‘periodic’ conditions, when S is the unit matrix, and
‘semi-periodic’ conditions, when S is the negative of the unit matrix.
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11. Limit point criterion

The other type of self-adjoint realization when both endpoints are LC
is obtained by giving separated boundary conditions at the endpoints.

At a a separated condition is f(a) cosα+ (u′ +Wf)(a) sinα = 0 for
some fixed α ∈ [0, π). A similar condition is applied at b.

If just one endpoint is LC we just need a separated boundary
condition at this endpoint, and if both endpoints are LP no boundary
conditions at all are applied.

In contrast to the right definite case one may give explicit necessary
and sufficient conditions for LP in the left definite case.

Theorem

Suppose W is a primitive of w. If an endpoint is finite, and q and W 2 are
integrable near the endpoint, then the endpoint is LC.
Otherwise the endpoint is LP.
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12. More abstract spectral theory

Let DT = {u : there exists (u, f) ∈ T}, H∞ = {f : (0, f) ∈ T} and
let H be the closure of DT in H1.
If T is self-adjoint, then H1 = H⊕H∞ and T ∩H2 is the graph of a
self-adjoint operator in H. We denote also this operator by T .

We shall finally turn to eigenfunction expansions for T , and start with
the simplest case.

If a self-adjoint operator T on a Hilbert space H has discrete spectrum
(compact resolvent) with eigenvalues λ1, λ2, ... and corresponding
orthonormal eigenfunctions e1, e2, ..., then every element u of the
Hilbert space has an expansion u =

∑∞
k=1 ûkek where ûk = 〈u, ek〉.

The series is norm convergent in H, but note that in our case,
because of the existence of a reproducing kernel, this implies locally
uniform convergence.
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13. Compact resolvent

We have the following sufficient conditions for compact resolvent.

Theorem

Suppose that near each endpoint of (a, b) either x 7→ w(x)g0(x, x) is
integrable or else there is a primitive W of w such that x 7→W 2(x)g0(x, x)
is integrable near the endpoint. Then T has compact resolvent.
In particular, if both endpoints of (a, b) are LC, then T has compact
resolvent.

In general neither condition implies the other, and we are not aware of any
explicit necessary and sufficient conditions for compact resolvent.
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14. Green’s function

To obtain an expansion theorem in case of a non-compact resolvent
we need detailed information on the resolvent Rλ = (T − λI)−1.
Note that Rλ has adjoint Rλ. Using the reproducing kernel we find
that Rλu(x) = 〈Rλu, g0(x, ·)〉 = 〈u,Rλg0(x, ·)〉, so we may say that

G(x, y;λ) = Rλg0(x, ·)(y) is Green’s function at λ.

However, it is convenient to introduce the kernel
g(x, y;λ) = G(x, y;λ) + g0(x, y)/λ, so that
Rλu(x) = 〈u, g(x, · ;λ)〉 − u(x)/λ.

We now need an explicit expression for g(x, y;λ). It is convenient to
first consider the case when at least one endpoint is LC.
The reason is that if both endpoints are LP one may have continuous
spectrum of multiplicity two complicating the eigenfunction
expansion.

So, from now on assume a is LC while b can be either LP or LC. Since
spectrum is discrete if b is LC, the interesting case is when b is LP.
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15. The m-function

Assume that the boundary condition at a is

f(a) cosα+ (u′ +Wf)(a) sinα = 0.

Let ϕ and θ be solutions of −u′′ + qu = λwu for λ 6= 0 with initial data{
λϕ(a, λ) = − sinα

(ϕ′ +Wλϕ)(a, λ) = cosα
,

{
λθ(a, λ) = cosα

(θ′ +Wλθ)(a, λ) = sinα
.

Then ϕ and θ are analytic in λ 6= 0, locally uniformly in x.

Theorem

There exists a unique function λ 7→ m(λ) defined in the resolvent set of T
except at 0 and such that ψ(x, λ) = θ(x, λ) +m(λ)ϕ(x, λ) is in H1, and
satisfies the boundary condition at b if b is LC.
We then have g(x, y;λ) = ϕ(min(x, y), λ)ψ(max(x, y), λ).

The function m is the (left definite) Titchmarsh-Weyl m-function for our
problem.
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16. The spectral measure

The function m is a Nevanlinna function, i.e., it satisfies
m(λ) = m(λ), is analytic in C \ R, and maps the open upper half
plane into itself.
Nevanlinna functions have a unique representation
m(λ) = A+Bλ+

∫
R
(

1
t−λ −

t
t2+1

)
dη(t), where A ∈ R, B ≥ 0 and

the positive measure η satisfies
∫
R
dη(t)
t2+1

<∞.

The measure η is called the spectral measure for our self-adjoint
realization.
It gives rise to a Hilbert space L2

η with scalar product

〈û, v̂〉η =
∫
R ûv̂ dη.

By a finite function we shall mean a function in H1 which is
identically zero near b.

Because of the special role played by λ = 0 in the left-definite
equation we may need to remove a 1-dimensional space from H1 to
obtain a simple expansion theorem.
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17. The expansion theorem

So, let H0 = H1 unless b is LC with the boundary condition λu(b, λ) = 0.
In the exceptional case, let H0 be the closure of the finite functions in H1.
Then H ⊂ H0 and the expansion theorem is:

Theorem
1 The map u 7→ û(t) = 〈u, ϕ(·, t)〉, defined for finite u ∈ H1, extends to

a map F : H0 → L2
η, the Fourier transform associated with T .

2 F has nullspace H∞ and is unitary from H to L2
ρ, so that Parsevals

formula 〈u, v〉 = 〈û, v̂〉η holds for functions in H.

3 ϕ(x, ·) ∈ L2
η for each x and 〈û, ϕ(x, ·)〉η converges in H. The map

û 7→ 〈û, ϕ(x, ·)〉η is the inverse of F : H → L2
η.

4 f̂(t) = tû(t) if and only if (u, f) ∈ T , so F diagonalizes T .

The proof is by contour integration of 〈Rλu, v〉. This yields Parseval’s
formula and then the rest follows easily.
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18. Two LP endpoints

To deal with two LP endpoints one may use a device introduced by
Weyl in 1910 and also used by Titchmarsh.
Pick c ∈ (a, b) and solutions ϕ and θ as before, but with initial data
in c. As before we obtain solutions ψ+ for the interval (c, b) and ψ−
for the interval (a, c) satisfying the boundary conditions at b
respectively a.

Introducing Φ = ( ϕθ ) and J =
(
0 −1
1 0

)
we may now write

g(x, y;λ) = Φ∗(min(x, y), λ)(M(λ)− 1
2J)Φ(max(x, y), λ

where M is a 2× 2-valued Nevanlinna function, with a corresponding
2× 2 spectral measure.

The corresponding vector-valued L2-space now serves as the
transform space in which T is diagonalized.
We omit the details.

C Bennewitz Left definite equations Lund, September 19, 2023 18 / 23



19. Generalized left definite equations I

Assuming
∫ b
a (|u′|2 + q|u|2) > 0 for u 6= 0 does not imply q ≥ 0, but it

does imply that solutions of −u′′ + qu = 0 can have at most one zero.
It also implies that there is a positive solution with reciprocal in L2. This
gives a hint of how to generalize the concept of a left definite
Sturm-Liouville equation.

Definition

Let F ∈ H1
loc(a, b) be strictly positive and satisfy 1/F ∈ L2(a, b).

Here H1
loc(a, b) is the set of functions with distributional derivatives in

L2
loc(a, b). Similarly, H−1loc (a, b) is the set of distributional derivatives of

functions in L2
loc(a, b).

Thus −F ′′ + qF = 0 where q = F ′′/F ∈ H−1loc (a, b).
Let h = F ′/F ∈ L2

loc(a, b), note that h′ + h2 = q, and put

〈u, v〉 =

∫ b

a
(u/F )′(v/F )′F 2 =

∫ b

a
(u′ − hu)(v′ − hv).
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20. Generalized left definite equations II

If u or v is compactly supported 〈u, v〉 =
∫ b
a (u′v′ + quv) and 〈u, u〉 > 0 if

u is not a multiple of F . However, 〈F, F 〉 = 0.
To obtain a positive definite scalar product we note that if 〈u, u〉 <∞,

then
∫ b
a |(u/F )′| =

∫ b
a |(u/F )′F |/F ≤

√
〈u, u〉

∫ b
a F
−2 so that ũ = u/F

has finite limits at a and b.
We may therefore define 〈u, v〉Q = 〈u, v〉+Q(u, v) where

Q(u, v) = αũ(a)ṽ(a) + βũ(b)ṽ(b) + γũ(a)ṽ(b) + γũ(b)ṽ(a).

This gives a positive definite scalar product if α+ 1 > 0 and
(α+ 1)(β + 1) > |γ − 1|2.
One may now create a complete spectral theory very similar to the one
described, concerning the equation −u′′ + qu = wf , where q and
w ∈ H−1loc (a, b), provided q = F ′′/F with F as in our definition.
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21. Examples

F (x) = coshx. Here q = F ′′/F = 1 so the equation is
−u′′ + u = wf . This is covered by our earlier theory (if w ∈ L1

loc).

F (x) = 2 + |x| on R. We obtain the equation −u′′ + δu = wf , where
δ is the Dirac measure at 0. δ is a positive measure and it would be
easy to extend our previous theory to cover such a case.

F (x) = xα + x1−α on (0,∞). Here q = α(α− 1)x−2, which is < 0 in
(0,∞) if 0 < α < 1, while 1/F ∈ L2(0,∞) unless α = 1/2.
Thus we may find F satisfying all requirements in spite of q being
strictly negative.
Since this means that F is positive and concave this is only possible
on bounded or semi-bounded intervals.

Even on R one may have q negative on a large set.
For example, with F (x) = (1 + x2)1/3 we have 1/F ∈ L2(R), but
q = 1

9(6− 2x2)(1 + x2)−2.

Thus q is negative except on the compact interval [−
√

3,
√

3].
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22. A final example

Consider, finally, F (x) = 1 + |x|α on R.
Then 1/F ∈ L2(R) if α > 1/2, and F ′(x) = α|x|α−2x.
Differentiating for x 6= 0 we obtain F ′′(x) = α(α− 1)|x|α−2, which is
negative if 1/2 < α < 1.
F ′ has an infinite jump at 0 so it is not of locally bounded variation, but it
is locally square integrable. Thus F ′′ ∈ H−1loc (R) but is not a measure.
We have q(x) = α(α− 1)|x|α−2/(1 + |x|α) < 0 for x 6= 0, but in any
neighborhood of 0 we have q ∈ H−1loc , but it is not a measure.
Thus the formula does not represent q there and it is meaningless to speak
of its sign in a neighborhood of 0.
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Thanks for listening.

The End.
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