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e CLR and Lieb-Thirring inequalities

Consider a Schrodinger operator
H=-A—-V(x), in L?(R%),

where V' — 0 as |z| — oo and V > 0 and let {—Ax} be negative eigenvalues of
H.

Spectrum:

DI =Y N (V) < Cuy //(15\2 _ V(az))i drd€ = Ly . / V(z) T da.

This inequality holds true ford =1,v>1/2; d=2,v>0;d > 3, v > 0.

Compare it with Weyl’s asymptotic formula:

S NQV) ~ame Ly [ (aVi 2 da = 2m) 4 [ [(€f? - V)T dede
J

which implies L§ < Lq.



Applications.

e Weyl’s asymptotics.

Stability of matter.
Study of properties of continuous spectrum of Schrodinger operators.
Estimate of dimensions of attractors in theory of Navier-Stokes equations.

Bounds on the maximum ionization of atoms.



Theorem. Let v > 1/2ifd=1,v>0ifd > 2, v > 0if d > 3 and let
0 <V e LYT¥2(R%). Then the negative eigenvalues {—\,} of the operator

—A — V satisfy
> N < La, / VT2 gy,
k R

M.S.Biman, M.Z.Solomyak, G.Rosenblum, M.Cwikel, J.G. Conlon, E.H.Lieb,
W.Thirring, M.Aizenmann, D.Hundertmark, L. Thomas, AL & T.Weidl, R.Frank,
M. Jex, P. T. Nam, R.Benguria & M.Loss, J.Dolbeault, M.Rumin, J.P. Solovej,
R. Seiringer.

Sharp constant were obtained in the following cases:

Theorem. It is known that L 1/ = 1/2 (LS

112 =1/4) and
Lgy=1L3 ify>3/2,d>1.

In other cases the sharp constants are unknown.



e Sharp multidimensional Lieb-Thirring inequalities, v > 3/2.

The main argument is based on a Lieb-Thirring inequality for Schrodinger op-
erators with matrix-valued potentials.

Theorem. (AL & T.Weidl)
Let M > 0 be a Hermitian m x m matrix-function and let H = —d?/dx? — M
in L?(R). Then

3

Z)\i/Q(H) < E/TrMQ(x) dx.

Our proof was based on the matrix valued version of the so-called second trace
(BFZ) formula related to the integral of motion for the KdV equation

3
Z)\i/2+i/k210g|a(k)|dk:— VZdx
3 27T R 16

and the fact that |a(k)| > 1.



Using the L-Th inequality for the matrix-valued potentials we prove the follow-
ing

Theorem. (AL & T.Weidl)

Let V' > 0 with v > 3/2. Then for the negative eigenvalues {—A;} of the
Schrédinger operator H = —A — V in L?(R%) we have

d N < LY, / VIt2(g) da.

R4

For the proof we use the ”lifting argument” with respect to dimension.
Let for simplicity d =2, V € C§*(R?), V > 0, x = (21, 22) and v = 3/2. Then

H=-A-V=-0*_—(02_, +V).

11 T2I2

"

H(z1)

\

Spectrum o(H) of H(z1) has a finite number of positive eigenvalues p;(z).
Thus H, (x1) has a finite rank. We find

DN <Y N (05, — Hy)
J J

< %/Trﬁi(xl)daﬁl < %L?’Q // V3/2+1(g;) dx.
——

cl
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The operator-valued approach was fruitful and used in the cases:

e 7=1/2- DHundertmark, AL, T.Weidl (2 x Lg, ,

— sharp if d = 1>.

e ~=1-J. Dolbeault, AL, M. Loss (1.8 « Lgl{l)
_ and lately by R. Frank, M. Jex, P. T. Nam (1.4 x Lg{l).



2N =2 (V) < Ca //(!€|2 ~V(2)) drde.

J
Remoark.
Let Q C R? be a domain of finite measure and for A > 0 let

Q
V(m):{)\’ x € (),
—00, x & .

In this case we reduce the problem to the eigenvalues {\;} of the Dirichlet
Laplacian in €2 and the L-Th inequalities become

ST A} < Gl [ (6 - N7 de

k

e v=0,d>1.

This inequality was proved for bounded domains by Birman & Solomyak (’70)
and Ciesielski ("70) with some finite constant.

For domains of finite measure it was proved by G.Rosenblum (’71) and E.Lieb
(’80).

The sharp constant Cj ., = (27)~¢ was obtained by Pélya for tiling domains.
Recently N. Filonov, M. Levitin, I. Polterovich & D.A. Sher proved this inequal-
ity for discs.

AL proved for some product type domains.

e ~y>1,d>1.
The best constant Cy ., = (2m)~% is due to Berezin and Li & Yau.



e The Berezin—Li—Yau inequalities.

Theorem. Let  C R be an open set of finite measure and A > 0. Then

D A=)y <m)TQl [ (A (€7 de

% R4

A1) ) [ (- ) de

R4

Proof. Let © C R? be an open set of finite measure. Then the spectrum of
—AfL is discrete. We denote by A\ the non-decreasing sequence of eigenvalues
(counting with multiplicities) and let () be an associated othonormal system
of Dirichlet eigenfunctions. Note that these eigenfunctions can be continued by
zero outside of Q to H'-functions on RY.

For any A > 0 we have

d A=Ay =) (/Q()\’S%’z — [Vir|?) dx)Jr

k k

= (en [Lo—mmn ) <en [ ok 3w

Clearly

SIGEE = S (rs e ) 2oy = e 12 = 192,
k k



Corollary. Let Q C R be an open set of finite measure. Then for all A > 0,
we have

9\ /2
N\ —AF) < (1 + 3) LE 19 X2,

Proof. Consider

Proof.

X (0.2) (f) jn

Here p =1 — A. Then by the BLY inequality we have

1 1
e N LG Il MURILR

1+d/2

_n )~ 12
=L lalen [ (- leP). de

Minimising wrt n we find 7 = A 2+%2 and obtain the proof.
g U U d/2




e Berezin-Li & Yau type inequalities on sphere.

Let now Q C S9! with (d — 1)-dimensional surface area || < [S?~1| =: oy.
Denote by {\;}72; the eigenvalues of the Laplace-Beltrami operator —A with
the Dirichlet boundary conditions in L?(£2). Then

Theorem. (A.Ilyin, AL) We have

d A=)l < % D> (A= Ap)ka(n),

n=0

where v > 1, A, and kg are the eigenvalues and their multiplicities of the
Laplace-Beltrami operator on the whole sphere S¥1.



e Lieb—Thirring inequalities on manifolds with negative constant curvature.

Let H? be the upper half-space
H* = {(z,y): £ e R y e R}

with the Poincare metric ds? = y_2(2f;11 dx? +dy?) assuming that the negative
curvature equals —1.

We consider the self-adjoint Laplace-Beltrami operator in L? (]Rd L x Ry, dx dy)

5, a
A, = —yt L2 "
Bn=—y5,Y Z@xQ

The spectrum of the standard Laplacian —A in L?(R?,dx) is continuous and
covers the whole left half-line [0, co).

It is well-known that the spectrum of the hyperbolic Laplace operator —Ay
covers the interval [(d — 1)?/4, c0).



Proposition. Let —A}, be the Laplacian in L? (Hd, d‘;fy). Then the continu-

ous spectrum coincides with o, = [(d — 1)? /4, o0).

Proof. Let us consider the quadratic form of the operator —Ay,

d—1
(—Apu,u) = / y?2 = | |0yul® + Z 0, ul? | dxdy.
H n=1

The substitution

implies

d d
// uf? xdy:/ 0|2 da dt.
RA—1 xR, Y R4

d—1 2 d—1
(—Apu,u) = / <]v£]2 + % [v]? 4 e* Z ]8%1)\2> dxdt.
R4

and

n=1
Thus we reduce the hyperbolic Laplacian to the operator in L?(R%)

2 o 2 o 2
B N G VG e Vi

ot? 4 4




Let V' > 0 and let us consider the spectrum problem for the Schrodinger operator
in L2(H?, y~9 dzdy)

Hpu=(—Ap —V)u= ((d;w u) u.

Theorem. (A. Ilyin, AL, T. Weinmann) Let v > 1/2, V > 0 and let V' €
LY+42(He, 4y~ dxdy). Then

Srisi, [
. Hd Yy

Proof. Applying the exponential change of variables we reduce the problem to
the study of the spectrum defined by the form

d—1
/ <|v£2 + %t Z 0. v|* — V(z, et)v|2> dxdt = —p / v|? dadt.
Rd Rd

n=1

Using the L-Th inequalities for 1D operators with operator-valued symbols we
obtain

d—1

52 v+1/2
Y ol <Ly /RTT <—€2t 2507~ V(Cl%@t)> dt

dzd
A=D( tyr+d/2 dwdt:Ldm/ V(a, y)+is2 22

<Li Lg_1~+1 2/
v Y+1/ Ha yd

Rd



e Dual inequalities.

Consider an orthonormal set of function {u,,}»_, in L?(H¢, 3y~ dxdy). Then
using the exponential change

y = et’ Uy = 6(al—l)i&/2 Vi

dxd
5m,l :/umﬂl# :/ Uy U1 dadt.
H Y n

Assuming v = 1 we obtain

we find

dxdt

M d—1
O m2 2t 8:1: m2—V t m2
Z/<+ > 10e, vl = V() ol
- Zﬂm > —Lg1 / V(z,e")' 2 dadt.
m R

d

1V



Thus

M d—1
Z /Rd <| fom|© + e Z] U] x

m=1 n=1

M
Z / <V($, et) Z ‘Um‘Q T Ld,l V(l’, €t)1+d/2> dxdt
R4 m=1
= / (V(ﬂ%et) p— Laa V(af,et)1+d/2) dzdt,
Rd

where p = ZZ:1 [vm|?. We choose now

' (Ld,mi d/2>)2/d

and obtain

M d—1
Z / (‘atUmP + Z ‘8a:n@m‘2> drdt > Kg 1 / (p)1+2/4 dadt,
m=1 R n=1 R4

where

9 g\ 12/d
~1 2/d
Kgq = d (1 - 5) Ld,/l -



Returning back to the orthonormal system of functions {u,,} and denoting by
p=S"M_|um|? we obtain

Theorem. Let v = 1 and let {u,,}*_, be an orthonormal system of function
in L?(H¢, y~?dzdy). Then

M

—1)2

Z(—Ahum,um) > Kd,l/ p1+2/d daﬁ;ly M (d ) .
— Hd Yy 4

m=1

Assume that M =1 and let v € H! (]H[d, T dxdy). Denote

dxdy
lull? = / uf? Y.
Hd Yy

Theorem. We have the following Sobolev type inequality

2/d |\ 2 (d—1)2 2/
leall3/ 1y~ ol 2y = /K a2+ == luli.



e Hyperbolic Dirichlet Laplacian.

Let Q C Q C H? satisfies the inequality

dxd
MM:/ Y < .
QY

We consider the Dirichlet eigenvalue problem for the Laplace—Beltrami operator
—Ay, in L?(Q,y 4dzdy)

—Apu = Au, 0.

u|(:c,y)€(9§2 -

The spectrum of this operator is discrete and we denote by {\} its eigenvalues.
Such eigenvalues satisfy the inequality

(d—1)°

A > 1

It is convenient to introduce number v such that

d—1)?
Ak:%‘FVk:

and study the counting function A (A) of the spectrum

N(A) = #{k: v, < A}, A>0.



Theorem. Let |€)|;, < co. Then the counting function N (A) of the eigenvalues
of the hyperbolic Dirichlet Laplacian satisfies the following inequality

2\ %/? d
N(A) < (1 + g) (1 + 5) Lai A2 Q]

where Lq ;1 is the best known constant in L-Th inequality. so that
(14+d/2)La1 < Ri1(14d/2) LY, = Ri1 LY.

This inequality is a Pdlya type inequality for manifolds with constant negative
curvature, where, we believe, the constant is not sharp.

e Conjecture 1. For the counting function A (A) of the eigenvalues
A = (d — 1)?/4 + v, of the hyperbolic Dirichlet Laplacian we have

N(A) < L AY2 195
e Conjecture 2. Prove the Berezin - Li & Yau type inequality

D (A —wi)p S LG AT,
k

(Kontrovich-Lebedev’s inversion formula).

Remark. At the moment we do not have any examples of €} for which such
inequalities hold.



Happy birthday Anders






