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Abstract: We provide a general overview of the recent works [18], [19] by the authors,
devoted to continuity properties of semiclassical Gevrey pseudodifferential operators
acting on a natural scale of exponentially weighted spaces of entire holomorphic func-
tions.
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1 Introduction and statement of results

The purpose of this brief survey paper is to give a broad non-technical account of some
recent work by the authors [18], [19], dealing with semiclassical Gevrey pseudodifferen-
tial operators acting on exponentially weighted spaces of entire holomorphic functions
on Cn. Generally speaking, Gevrey microlocal analysis [26], [27], [14], occupying an
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intermediate position between analytic microlocal analysis [36], [20] and standard mi-
crolocal analysis in the C∞–framework [11], [21], [9], becomes of particular interest
whenever there is an essential difference between the methods and results in the an-
alytic and C∞ categories. Such a difference occurs, in particular, when considering
the action of a semiclassical pseudodifferential operator on microlocally exponentially
weighted spaces, depending on the precise regularity properties of the (smooth) symbol.
To motivate the following discussion and to arrive at a natural definition of the expo-
nentially weighted spaces in question, it will be convenient for us to start by recalling
the approach to semiclassical microlocal analysis based on FBI-Bargmann transforms,
in the simplest metaplectic setting [36], [41], [30], [20]. To this end, let φ(x, y) be a
holomorphic quadratic form on Cn

x ×Cn
y such that

Imφ′′yy > 0, detφ′′xy 6= 0. (1.1)

Associated to φ is the (metaplectic) FBI-Bargmann transformation T : S ′(Rn) →
Hol(Cn), given by

Tu(x;h) = Ch−3n/4

∫
eiφ(x,y)/h u(y) dy, x ∈ Cn, 0 < h ≤ 1. (1.2)

Here the constant C > 0 is chosen suitably so that the map T is unitary,

T : L2(Rn)→ HΦ0(Cn) := Hol(Cn) ∩ L2(Cn; e−2Φ0/hL(dx)), (1.3)

where
Φ0(x) = sup

y∈Rn
(−Imφ(x, y)) , (1.4)

and L(dx) is the Lebesgue measure on Cn. Heuristically, we can regard the map T
in (1.2) as a way of passing from the real to the complex domain, and viewing T as
a Fourier integral operator with complex phase, we introduce the associated complex
linear canonical transformation

κT : C2n 3 (y,−φ′y(x, y)) 7→ (x, φ′x(x, y)) ∈ C2n. (1.5)

The canonical transformation κT maps the real phase space R2n bijectively onto the
I-Lagrangian R-symplectic linear subspace

ΛΦ0 :=

{(
x,

2

i

∂Φ0

∂x
(x)

)
, x ∈ Cn

}
⊂ C2n = Cn

x ×Cn
ξ , (1.6)

see [20], and it follows, in particular, that the quadratic form Φ0 in (1.4) is strictly
plurisubharmonic. Furthermore, when a ∈ C∞b (R2n) in the sense that ∂αa ∈ L∞(R2n),
for all α ∈ N2n, we have the exact Egorov property [41], [20],

T ◦ aw(x, hDx) = bw(x, hDx) ◦ T. (1.7)
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Here b ∈ C∞b (ΛΦ0) is given by b = a ◦κ−1
T and aw(x, hDx), bw(x, hDx) are the semiclas-

sical Weyl quantizations of a and b, acting on L2(Rn) and HΦ0(Cn), respectively.

Let us proceed next to recall some general ideas concerning the philosophy of exponen-
tial weights on phase space and exponentially weighted estimates on the FBI-Bargmann
transform side, [36], [41], [30]. Our starting point here is the well known observation
that using the FBI transform point of view, one can give a systematic characteriza-
tion of the semiclassical wave front set in the C∞, analytic, and Gevrey frameworks.
Indeed, let u(h) be a tempered family in L2(Rn), so that ||u(h) ||L2(Rn) ≤ O(h−K),
for some K ≥ 0. Let (y0, η0) ∈ T ∗Rn = R2n, and let us set x0 = πx(κT (y0, η0)),
where πx : ΛΦ0 3 (x, ξ) 7→ x ∈ Cn

x is the projection map. We then have respectively,
(y0, η0) /∈ WFh(u), (y0, η0) /∈ WFa,h(u), (y0, η0) /∈ WFs,h(u), for some s > 1, precisely
when there exists an open neighborhood V ⊂ Cn of x0, such that, respectively,

• for all N ∈ N, we have

|Tu(x;h)| ≤ ON(1)hNeΦ0(x)/h, x ∈ V, 0 < h ≤ 1, (1.8)

see [28], [43],

• there exists C > 0 such that

|Tu(x;h)| ≤ O(1)e
1
h(Φ0(x)− 1

C ), x ∈ V, 0 < h ≤ 1, (1.9)

see [36], [30],

• there exists C > 0 such that

|Tu(x;h)| ≤ O(1)e
Φ0(x)
h exp

(
− 1

C
h−

1
s

)
, x ∈ V, 0 < h ≤ 1, (1.10)

see [7], [42].

The exponential growth properties of Tu(x;h) near x0, as h → 0+, reflect therefore
the microlocal regularity of the family u(h) near (y0, η0), and the estimates (1.8),
(1.9), (1.10) suggest that in order to study microlocal properties of solutions to a
pseudodifferential equation of the form aw(x, hDx)u = 0, say, where the symbol a
is C∞, analytic, or Gevrey on R2n, it may be natural to proceed as follows: pass-
ing to the FBI transform side via (1.7), one may consider deformations Φ of the
quadratic weight function Φ0 in (1.4), letting our (conjugated) pseudodifferential oper-
ator bw(x, hDx) = T ◦ aw(x, hDx) ◦ T−1 act on the new spaces HΦ(Cn) of holomorphic
functions, obtained from the Bargmann space HΦ0(Cn) in (1.3) by modifying the ex-
ponential weight. Associated to the new spaces are the new I-Lagrangian manifolds
of the form ΛΦ ⊂ C2n, and the natural symbol associated to the operator bw(x, hDx)
acting on the space HΦ(Cn) turns out to be the restriction of b to ΛΦ, roughly speak-
ing, see [36], [40], [20]. In the analytic case, in particular, this idea has proven to
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be extremely fruitful in the works by the third-named author [36], [37], [41], and we
refer to [8], [17] for analogous developments in the C∞ framework. In the latter case,
deformations of the weight allowed are fairly weak and should be O(h |log h|)–close to
Φ0, while much stronger perturbations of the standard weight, that are small but in-
dependent of h, become available in the analytic theory. Following [18], [19], our focus
here is on the "intermediate" Gevrey case, where, as suggested by (1.10), admissible
deformations should be O(h1− 1

s )–close to Φ0. Here s > 1 is the Gevrey index.

We are now ready to describe the precise assumptions and state the main results
established in [18], [19]. Let s > 1. The (global) Gevrey class Gsb (R

m) consists of all
functions u ∈ C∞(Rm) such that there exist A > 0, C > 0 such that for all α ∈ Nm,
we have

|∂αu(x)| ≤ AC |α|(α!)s, x ∈ Rm. (1.11)

Identifying the space ΛΦ0 in (1.6) linearly with Cn
x, via the projection map πx : ΛΦ0 3

(x, ξ) 7→ x ∈ Cn
x, we may then also define the Gevrey space Gsb (ΛΦ0). Given a ∈

Gsb (ΛΦ0), for some s > 1, and u ∈ Hol(Cn) such that ue−Φ0/h is rapidly decaying on
Cn, let us introduce the semiclassical Weyl quantization of a acting on u,

awΓ (x, hDx)u(x) =
1

(2πh)n

∫∫
Γ(x)

e
i
h

(x−y)·θa

(
x+ y

2
, θ

)
u(y) dy ∧ dθ. (1.12)

Here 0 < h ≤ 1 is the semiclassical parameter and Γ(x) ⊂ C2n
y,θ is the natural 2n–

dimensional contour of integration given by

θ =
2

i

∂Φ0

∂x

(
x+ y

2

)
, y ∈ Cn. (1.13)

Let Φ1 ∈ C1,1(Cn; R), the space of C1 functions on Cn with a globally Lipschitz
gradient, be such that

|| ∇k(Φ1 − Φ0) ||L∞(Cn) ≤
1

C
h1− 1

s , k = 0, 1, 2, (1.14)

for some C > 0 sufficiently large, depending on a. The following result has been
established in [18].

Theorem 1.1 Let ω = h1− 1
s and let us introduce the following 2n–dimensional Lips-

chitz contours for j = 0, 1 and x ∈ Cn,

ΓΦj
ω (x) : θ =

2

i

∂Φj

∂x

(
x+ y

2

)
+ ifω(x− y), y ∈ Cn, (1.15)

where

fω(z) =


z, |z| ≤ ω,

ω
z

|z|
, |z| > ω.

(1.16)
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Let a ∈ Gsb (ΛΦ0), for some 1 < s ≤ 2, and let ã ∈ Gsb (C
2n) be an almost holomorphic

extension of a off the maximally totally real subspace ΛΦ0, such that supp ã ⊂ ΛΦ0 +
BC2n(0, C0), for some C0 > 0. We have for j = 0, 1,

awΓ (x, hDx)− ãw
Γ

Φj
ω

(x, hDx) = O(1) exp
(
− 1

O(1)
h−

1
s

)
:

L2(Cn, e−2Φj/hL(dx))→ L2(Cn, e−2Φj/hL(dx)), (1.17)

where the realization

ãw
Γ

Φj
ω

(x, hDx)u(x) =
1

(2πh)n

∫∫
Γ

Φj
ω (x)

e
i
h

(x−y)·θã

(
x+ y

2
, θ

)
u(y) dy ∧ dθ (1.18)

satisfies
ãw

Γ
Φj
ω

(x, hDx) = O(1) : HΦj(C
n)→ L2(Cn, e−2Φj/hL(dx)). (1.19)

Here we have set, similarly to (1.3),

HΦ1(Cn) = Hol(Cn) ∩ L2(Cn, e−2Φ1/hL(dx)).

Remark. It follows from Theorem 1.1 that the operator awΓ (x, hDx) in (1.12) extends
from HΦ0(Cn) ∩HΦ1(Cn) to a uniformly bounded map,

awΓ (x, hDx) = O(1) : HΦ1(Cn)→ HΦ1(Cn), (1.20)

for 1 < s ≤ 2, but the conclusion in (1.17), (1.18), (1.19) is considerably more precise
and allows us to regard the operator ãw

Γ
Φ1
ω

(x, hDx) in (1.18) as the corresponding uni-
formly bounded realization, which agrees with awΓ (x, hDx) modulo a remainder which
is optimally small, see (1.17) and (1.10). We would also like to emphasize that it is
precisely due to choice of the Lipschitz contour (1.15), (1.16) that we are able to obtain
such accurate remainder estimates. Here the restriction to the range of Gevrey indices
1 < s ≤ 2 seems natural, and as discussed in [18, Section 3], the existence of a contour
Γ̃(x), such that the properties (1.17), (1.19) both hold for s > 2, with Γ

Φj
ω (x) replaced

by Γ̃(x), seems unlikely.

Remark. We refer to [18, Section 3] for results analogous to Theorem 1.1 when s > 2.
It turns out that in this range, one should accept remainder terms that are larger
than the ones in (1.17), when obtaining uniformly bounded realizations of the Gevrey
operator aw(x, hDx) on the exponentially weighted spaces HΦj(C

n), j = 0, 1.

Remark. As is seen in the statement of Theorem 1.1, a crucial role in the work [18]
is played by the existence of almost holomorphic extensions of a symbol a ∈ Gsb (ΛΦ0),
belonging to the same Gevrey class. This can be established by an application of a
classical result of Carleson [5] on the universal moment problem. In fact, as observed
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in [18, Section 3], alternatively, it would have been sufficient in Theorem 1.1 to work
with an extension ã ∈ C1

b (C2n) of a such that

∣∣∂ã(ρ)
∣∣ ≤ O(1) exp

(
− 1

O(1)
dist
(
ρ,ΛΦ0

)− 1
s−1

)
, ρ ∈ C2n. (1.21)

Such an extension can be obtained more directly by means of Mather’s method [31],
see [18, Section 2].

Let us now turn the attention to the work [19], which is concerned with mapping
properties of semiclassical operators of the form aw(x, hDx), for a ∈ Gsb (ΛΦ0), with the
Gevrey index s belonging to the "complementary" range s ≥ 2. The following is the
main result of that work.

Theorem 1.2 Let a ∈ Gsb (ΛΦ0), for some s ≥ 2, and let Φ1 ∈ C1,1(Cn; R) be such that

|| ∇k(Φ1 − Φ0) ||L∞(Cn) ≤
1

C
h1− 1

s , k = 0, 1, (1.22)

where C > 0 is large enough, depending on a. Then the operator awΓ (x, hDx) in (1.12)
extends from HΦ0(Cn) ∩HΦ1(Cn) to a uniformly bounded map

awΓ (x, hDx) = O(1) : HΦ1(Cn)→ HΦ1(Cn). (1.23)

Remark. Let us point out that the conclusion of Theorem 1.2 follows also from the
analysis developed in [18], apart from the inessential difference that (1.14) demands
also that the Hessian of the perturbation Φ1 − Φ0 should be small, whereas no such
condition is required in (1.22). The principal merit of the work [19] is to be found, in
fact, in the method of proof of this result, which is quite direct and does not depend
on the passage to a complex neighborhood of ΛΦ0 by means of an almost holomorphic
extension, relying instead on some basic ideas of the time frequency analysis [12]. It
may also be interesting to notice that the arguments of [19] appear to work in the
range of Gevrey indices s ≥ 2 only, which is precisely the region where the almost
holomorphic techniques of [18] do not lead to optimal remainder estimates.

We would like to finish the introduction by acknowledging that the study of Gevrey
classes has a long and distinguished tradition in the linear PDE theory, in particular
in connection with the analysis of hyperbolic operators with multiple characteristics,
see [4], [6], [22], [23], [24], [25], [32], [33], [42]. Let us also mention some of the
more recent developments concerning Gevrey regularity issues arising in the theory of
dynamical systems, in the context of trace formulas for Anosov flows [14], as well as in
the theory of Landau damping for the Boltzmann equation [3], [10]. To the best of our
knowledge, the analysis of semiclassical Gevrey pseudodifferential operators has not
yet been pursued systematically within the framework of HΦ–spaces in the literature,
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with the very interesting paper [42] being a notable exception, and the works [18], [19]
are meant to be the first steps in this direction.

It is a great pleasure for us to dedicate this paper to Professor Shmuel Agmon, and to
acknowledge his influential fundamental work on exponentially weighted estimates for
Schrödinger operators and Agmon-Lithner metrics [1]. It played a crucial role in the
work by Bernard Helffer and the third-named author on multiple wells and tunnel-
ing [15], [16], and in the work by Barry Simon [35], see also [9, Chapter 6] for a system-
atic discussion and [29] for an early result on the exponential decay of eigenfunctions.
As discussed above, in our works [18], [19], (moderately weak) exponential weights
appear on the FBI-Bargmann transform side and we expect the techniques developed
in the proofs of Theorem 1.1 and Theorem 1.2 above to be relevant when studying the
propagation of Gevrey singularities for solutions of semiclassical Gevrey pseudodiffer-
ential equations, as well as for the functional calculus of (selfadjoint) Gevrey operators.

2 Some ideas of the proofs of Theorems 1.1 and 1.2
Referring to [18] and [19] for the complete details of the proofs, here we shall merely
indicate the main steps along the way. When doing so, we shall also attempt to point
out some of the possible directions for the future work.

As alluded to in the introduction, see (1.21), the starting point in the proof of Theorem
1.1 is the existence of an extension ã ∈ C∞b (Cm) of a ∈ Gsb (R

m), for some s > 1, such
that we have ∣∣∂ã(z)

∣∣ ≤ O(1) exp
(
− 1

C

∣∣Im z
∣∣− 1

s−1

)
, |Im z| ≤ O(1), (2.1)

for some C > 0. Following the approach of [31], see also [9, Chapter 8] and [34], and
assuming for simplicity that a ∈ Gsb (R

m) is compactly supported, we may set

ã(z) =
1

(2π)m

∫
Rm

ψ
(
|y| |ξ|1−

1
s

)
ei(x+iy)·ξâ(ξ) dξ, z = x+ iy, (2.2)

where ψ ∈ C∞0 (R) is equal to 1 near the origin and â(ξ) =
∫
e−ix·ξa(x) dx is the Fourier

transform of a. The bound (2.1) follows from (2.2) thanks to the following well known
decay estimate for â,

|â(ξ)| ≤ O(1) exp
(
− 1

O(1)
|ξ|

1
s

)
, ξ ∈ Rm, (2.3)

see [18, Section 2].

Once the existence of a suitable almost holomorphic extension of a ∈ Gsb (ΛΦ0), satisfying
(1.21), has been established, the proof of Theorem 1.1 proceeds by relying on essentially
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two basic ingredients: contour deformations to "good contours" adapted to the weights,
in the spirit of [36], justified by an application of Stokes’ formula, and Schur’s lemma,
to control the operator norms in various weighted L2–spaces. Let us describe briefly
the first step in the proof, deforming the contour Γ(x) in (1.13) to ΓΦ0

ω (x) in (1.15),
(1.16), via the intermediate family of contours

θ =
2

i

∂Φ0

∂x

(
x+ y

2

)
+ itfω(x− y), y ∈ Cn, (2.4)

for t ∈ [0, 1]. Letting also G[0,1],ω(x) ⊂ C2n
y,θ stand for the (2n+ 1)–dimensional contour

given by (2.4), parametrized by (t, y) ∈ [0, 1]×Cn, we can write for u ∈ Hol(Cn) such
that e−Φ0/hu is rapidly decaying, in view of Stokes’ formula,

awΓ (x, hDx)u = ãw
Γ

Φ0
ω

(x, hDx)u+Ru. (2.5)

Here ãw
Γ

Φ0
ω

(x, hDx) is given in (1.18) and

Ru(x) =
1

(2πh)n

∫∫∫
G[0,1],ω(x)

e
i
h

(x−y)·θu(y) ∂

(
ã

(
x+ y

2
, θ

))
∧ dy ∧ dθ. (2.6)

Writing

Ru(x) =

∫
r(x, y;h)u(y)L(dy),

we see that the absolute value of the effective kernel e−Φ0(x)/hr(x, y;h)eΦ0(y)/h of the
operator R does not exceed

O(1)h−n sup
t∈[0,1]


exp

(
−C

h
(t|x− y|)2 − C1(t |x− y|)−

1
s−1

)
, |x− y| ≤ ω,

exp
(
−C

h
ω t |x− y| − C1(t ω)−

1
s−1

)
, |x− y| > ω.

(2.7)

We would like to conclude that the quantity in (2.7) is

O(h−n) exp
(
− 1

O(1)
h−

1
s

)
,

uniformly, and some explicit computations show that this is indeed the case, provided
that we choose the parameter ω = h1− 1

s . An application of Schur’s lemma implies then
that

R = O(1) exp
(
− 1

O(1)
h−

1
s

)
: L2(Cn, e−2Φ0/hL(dx))→ L2(Cn, e−2Φ0/hL(dx)), (2.8)

and using Schur’s lemma again we also obtain

ãw
Γ

Φ0
ω

(x, hDx) = O(1)max
(

1, h−n(1− 2
s)
)

: L2(Cn, e−2Φ0/hL(dx))→ L2(Cn, e−2Φ0/hL(dx)).

(2.9)
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In particular, this operator is O(1), provided that 1 < s ≤ 2.

Remark. As discussed in [18, Section 3], performing a deformation to a contour of the
form

Γ̃(x) : θ =
2

i

∂Φ0

∂x

(
x+ y

2

)
+ i(x− y), y ∈ Cn,

natural in the analytic theory [36], [41], [20], rather than to the contour ΓΦ0
ω (x) in

(1.15), (1.16), allows us only to conclude that

awΓ (x, hDx)− ãwΓ̃ (x, hDx) = O(1) exp
(
− 1

O(1)
h−

1
2s−1

)
:

L2(Cn, e−2Φ0/hL(dx))→ L2(Cn, e−2Φ0/hL(dx)), (2.10)

giving a remainder estimate which is not precise enough. Heuristically speaking, when
working with Gevrey symbols, we should stay therefore much closer to the real domain
than in the analytic case. The price that we have to pay for working with contours
such as ΓΦ0

ω (x) in (1.15), (1.16) is that the corresponding realization ãw
Γ

Φ0
ω

(x, hDx) in
(1.18) is uniformly bounded on L2(Cn, e−2Φ0/hL(dx)) in the range 1 < s ≤ 2 only.

When studying the action of the operator awΓ (x, hDx) on the weighted space HΦ1(Cn),
with Φ1 satisfying (1.14), we perform an additional contour deformation in (2.5), pass-
ing from ΓΦ0

ω (x) to ΓΦ1
ω (x), see (1.15) and (1.16). Applying Stokes’ formula and Schur’s

lemma once more, we get

ãw
Γ

Φ0
ω

(x, hDx)− ãwΓΦ1
ω

(x, hDx) = O(1) exp
(
− 1

O(1)
h−

1
s

)
:

HΦ0(Cn)→ L2(Cn, e−2Φ0/hL(dx)). (2.11)

Here the contour ΓΦ1
ω (x) is adapted to the weight Φ1 and yet another application of

Schur’s lemma gives therefore

ãw
Γ

Φ1
ω

(x, hDx) = O(1) max
(

1, h−n(1− 2
s

)
)

: HΦ1(Cn)→ L2(Cn, e−2Φ1/hL(dx)). (2.12)

This completes a sketch of the proof of Theorem 1.1.

The paper [18] is concluded by the analysis of the composition aw(x, hDx)◦bw(x, hDx) =
(a#b)w(x, hDx), for a, b ∈ Gsb (ΛΦ0), for some s > 1. Let σ be the complex symplectic
(2, 0)–form on C2n = Cn

x ×Cn
ξ . Using the classical formula for the Weyl symbol of the

composition,

(a#b)(X) =
1

(πh)2n

∫∫
ΛΦ0
×ΛΦ0

e−2iσ(Y,Z)/ha(X + Y )b(X + Z) dY dZ, (2.13)

see [43, Chapters 4, 13], of which we provide a partially new derivation in [18], we verify
that the symbol c = a#b satisfies c ∈ Gsb (ΛΦ0), making use of the method of contour
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deformations. In doing so, we also observe that the standard asymptotic expansion for
c, as h→ 0+, see [9, Chapter 7], does not lead to some sharp control of the remainders
in the expansions. Here we encounter the familiar phenomenon of the loss of Gevrey
smoothness in stationary phase expansions, see [26], [27], [34], and [14].

Remark. A closely related natural problem, which seems to be open, concerns estab-
lishing the following Wiener type result for the algebra of Gevrey pseudodifferential
operators, and for simplicity we shall only state it in the real domain: assume that
an operator of the form aw(x, hDx), with a ∈ Gsb (R

2n), for some s > 1, is invertible
on L2(Rn), for all h > 0 small enough. It follows from the Beals lemma [9, Chapter
8] that the inverse satisfies (aw(x, hDx))

−1 = bw(x, hDx), for some b ∈ C∞b (R2n), and
the problem is to show that b ∈ Gsb (R

2n). More generally, establishing a Beals type
characterization for the space of semiclassical Gevrey operators, while being of some
independent interest, perhaps, may also have applications to the functional calculus
of (selfadjoint) Gevrey operators, via the Dynkin-Helffer-Sjöstrand Cauchy formula,
see [9, Chapter 8] and also [2], for applications to the functional calculus for several
(non-selfadjoint non-commuting) operators.

Remark. The HΦ–techniques developed in [18] are likely to have applications to the
study of the propagation of Gevrey singularities for solutions of Gevrey pseudodiffer-
ential equations, starting with the case of Gevrey operators of real principal type as
a "warm-up" problem. In this connection, let us emphasize that the work [42] by
V. Sordoni also uses the techniques of exponentially weighted estimates on the FBI-
Bargmann transform side, to study Gevrey singularities for microhyperbolic operators.
In this work, Gevrey operators on the transform side are considered directly on the level
of scalar products in exponentially weighted spaces, and we believe that the explicit
description of the operators on the transform side, realized with the help of suitable
good contours, obtained in [18], may also be valuable for the future analysis. A more
long term project in this direction concerns developing a systematic FBI transform
approach to microlocal analysis on Gevrey manifolds, see also [14] for recent results in
this direction.

We shall finally sketch the principal ideas behind the work [19]. The starting point
here is the following essentially well known Wiener type characterization of the Gevrey
class Gsb (R

m), in the spirit of [38], [39]. Let ϕ0 ∈ Gsb (R
m; R) be compactly supported

and such that ||ϕ0 ||L2(Rm) = 1. Given a ∈ S ′(Rm), we have a ∈ Gsb (R
m), for some

s > 1, precisely when the following holds,

sup
t∈Rm

|F(ϕta)(ξ)| ≤ O(1) exp
(
− 1

C
|ξ|1/s

)
, ξ ∈ Rm, (2.14)

for some C > 0. Here ϕt(x) = ϕ0(x − t) and F is the Fourier transformation. As
observed in [19], the function ϕ0 in (2.14) can also be taken to be the L2–normalized
real Gaussian,

ϕ0(x) = Cme
−|x|2 , Cm > 0, (2.15)
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and it is this choice which is made in [19]. Passing to the FBI transform side by
means of a suitable complex linear canonical transformation of the form κT in (1.5),
and letting a ∈ Gsb (ΛΦ0), we may restate (2.14) as follows,

|F(χTa)(Y )| ≤ O(1) exp
(
− 1

C0

|Y |1/s
)
, Y ∈ ΛΦ0 , (2.16)

for some C0 > 0, uniformly in T ∈ ΛΦ0 . Here χT (Y ) = χ0(Y − T ) and χ0 = ϕ0 ◦ κ−1
T ∈

S(ΛΦ0), where ϕ0 is defined in (2.15), withm = 2n. Using the Fourier inversion formula
on the real symplectic space (ΛΦ0 , σ|ΛΦ0

), we can write

M(h)a(X) =
1

(πh)n

∫∫
ΛΦ0
×ΛΦ0

e2iσ(X,Y )/hχ0

(
X − T
h1/2

)
Fh(χTa)(Y ) dY dT. (2.17)

Here M(h) � hn I and Fh is the semiclassical (symplectic) Fourier transformation on
ΛΦ0 . We would now like to pass to the Weyl quantizations in (2.17), and the crucial
observation, due to [13] in the real setting, is that operator χw0 ((x, hDx)/h

1/2) is a rank
one orthogonal projection onto Cv0, where v0 ∈ HΦ0(Cn) is a coherent state of the
form

v0(x) = Ch−n/2eig(x)/h. (2.18)

Here g is a holomorphic quadratic form on Cn such that Φ0(x) + Im g(x) � |x|2,
x ∈ Cn. Combining this observation with (2.17) and some Weyl calculus, we obtain
the following decomposition,

M(h)aw(x, hDx)u

=
C

hn

∫∫
(ΛΦ0

)2

e
iσ(Y,T )

2h Fh(χ−Y+T
2
a)

(
Y − T

2

)
(u, e

iσ((x,hDx),T )
h v0) e

iσ((x,hDx),Y )
h v0 dY dT,

(2.19)

for some C 6= 0, which represents the operator aw(x, hDx) as a superposition of rank
one kernels. Here the magnetic translations eiσ((x,hDx),Y )/h, Y ∈ ΛΦ0 , are unitary as
operators

eiσ((x,hDx),Y )/h : HΦ0(Cn)→ HΦ0(Cn),

and
eiσ((x,hDx),Y )/h : HΦ1(Cn)→ HΦ2(Cn),

where Φ2(x) = Φ0(x) + Φ1(x+ y)− Φ0(x+ y), Y = (y, η) ∈ ΛΦ0 , see [19, Section 2].

Remark. Assume that a ∈ S ′(ΛΦ0) is such that (Y, T ) 7→ F(χTa)(Y ) ∈ L1(ΛΦ0 ×ΛΦ0).
It follows then from (2.19) that the operator aw(x, hDx) is of trace class on HΦ0(Cn),

IHere we write X � Y for X,Y ∈ R if X,Y have the same sign (or vanish) and X = O(Y ) and
Y = O(X).
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which corresponds to a well known statement in the real setting, see [9, Chapter 9].
Assuming instead that

|F(χTa)(Y )| ≤ U(Y ), Y ∈ ΛΦ0 ,

uniformly in T ∈ ΛΦ0 , for some U ∈ L1(ΛΦ0), we obtain, as a consequence of (2.19)
combined with Schur’s lemma, that the operator

aw(x, hDx) = O(1) : HΦ0(Cn)→ HΦ0(Cn),

see [19, Section 4]. We recover therefore in a simple way the L2–boundedness property
for the Wiener algebra of pseudodifferential operators, established in [38], [39], see
also [13].

The proof of Theorem 1.2 proceeds along the similar lines, combining the decomposi-
tion (2.19) with Schur’s lemma, and making crucial use of the decay estimate (2.16).
The restriction s ≥ 2 appears at the very end of the argument, when estimating a
contribution to the integral kernel of the form

K(x, y) =
O(1)

hn
e(f(y)−f(x))/he−|x−y|

2/Ch,

where f = Φ1 − Φ0 satisfying (1.14) with k = 0, 1. Indeed, using (1.22), we see that
K = O(1) : L2(Cn)→ L2(Cn), provided that s ≥ 2.
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