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Abstract. Let F be a totally real field with ring of integers O and p be an odd prime unramified in F . Let p
be a prime above p. We prove that a mod p Hilbert modular form associated to F is determined by its restric-
tion to the partial Serre-Tate deformation space Ĝm ⊗ Op (p-rigidity). Let K/F be an imaginary quadratic
CM extension such that each prime of F above p splits in K and λ a Hecke character of K. Partly based on
p-rigidity, we prove that the µ-invariant of anticyclotomic Katz p-adic L-function of λ equals the µ-invariant
of the full anticyclotomic Katz p-adic L-function of λ. An analogue holds for a class of Rankin-Selberg p-adic
L-functions. When λ is self-dual with the root number −1, we prove that the µ-invariant of the cyclotomic
derivatives of Katz p-adic L-function of λ equals the µ-invariant of the cyclotomic derivatives of Katz p-adic
L-function of λ. Based on previous works of authors and Hsieh, we consequently obtain a formula for the
µ-invariant of these p-adic L-functions and derivatives, in most of the cases. We also prove a p-version of a
conjecture of Gillard, namely the vanishing of the µ-invariant of Katz p-adic L-function of λ.
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1. Introduction

Zeta values seem to suggest deep phenomena in Mathematics. They seem to mysteriously encode deep arith-
metic information. They also seem to suggest surprising modular and Iwasawa-theoretic phenomena.
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Sometimes, they are a sum of evaluation of modular forms at CM points. Such an expression for critical
Hecke L-values and conjectural non-triviality of the corresponding anticyclotomic p-adic L-function, suggested
to the second named author a linear independence of mod p Hilbert modular forms. Based on Chai’s theory
of Hecke-stable subvarieties of a Shimura variety (cf. [8], [9] and [10]), this guess was proven in [19]. Let p be
a prime above p (cf. Abstract). Recently, the expression and conjectural non-triviality of the corresponding
anticyclotomic p-adic L-function suggested to us a rather surprising rigidity property of mod p Hilbert mod-
ular forms. Partly based on the rigidity, we obtain intriguing equalities of Iwasawa µ-invariants of seemingly
independent p-adic L-functions.

Here is some geometric reason for such rigidity referred as L-rigidity in the following. Let Ŝ be a formal
torus over a field which is the residue field of a mixed characteristic ring. Suppose that we have a rational
structure coming from an algebraic subscheme S over the mixed characteristic ring whose formal completion
at a closed point x ∈ S gives Ŝ. Here S is not necessarily an algebraic torus. We suppose that there exists a
positive dimensional transcendental linear subvariety L of Ŝ with strictly smaller dimension i.e., a non-trivial
formal subtorus which does not equal formal completion along x of an algebraic subscheme of S. Transcen-
dence of L implies “algebraic" Zariski closure of L in S is the entire S. This may not happen for the formal
Zariski closure. Let A = OS,x and L = Spf(B). Thus, the transcendence of L is equivalent to the injectivity of
the natural morphism A→ B given by φ 7→ φ|L for φ ∈ A and hence the L-rigidity i.e. φ is determined by its
restriction to the formal subtorus L. The rigidity remains true for φ ◦a for any automorphism a of Ŝ. It turns
out that often the rigidity also remains true for

∑
i φi ◦ ai for a well chosen set of automorphisms ai of Ŝ and

φi ∈ Γ(S,OS) i.e.,
∑
i φi ◦ ai = 0 ⇒ φi = 0 for all i. As the notion of well chosen may vary from context to

context, we only mention that {ai}’s typically satisfy a transcendental property and specify it in the current
context later. We study the case for the Serre-Tate deformation space Ŝ with rational structure induced from
the Hilbert modular Shimura variety. The formal subtorus we study is the partial p-deformation subspace of
Ŝ. We consider certain {ai}i such that the differences {aia−1

j }i 6=j are “transcendetal" automorphisms of the
Serre-Tate deformation space (cf. §4.1).

Let F be a totally real field of degree d and O the integers ring. Let p be an odd prime unramified in
F . Let p1, ..., pr be the primes above p. Fix two embeddings ι∞ : Q → C and ιp : Q → Cp. Let vp be the
p-adic valuation of Cp normalised such that vp(p) = 1. Let F be an algebraic closure of Fp.

Let Sh/F be the Kottwitz model of prime to p Hilbert modular Shimura variety associated to F . We re-
fer to §2.2 for the definition. Here we only mention that in the moduli interpretation for Sh/Z(p)

, the full
prime to p level structure appears. Let x ∈ Sh be a closed ordinary point. From Serre-Tate deformation
theory, a p∞-level structure on x induces a canonical isomorphism

(1.1) Spf(ÔSh,x) '
∏
i

Ĝm ⊗Opi
.

Let p = pi, for some i. Let f be a mod p Hilbert modular form in the sense of §2.4. In view of the irreducibility
of the connected components of Sh, the form f is determined by its restriction to Spf(ÔSh,x). In fact, we have
the following rigidity result.

Theorem A (p-rigidity) Let f be a non-zero mod p Hilbert modular form. Then, f does not vanish identi-
cally on the partial Serre-Tate deformation space Ĝm ⊗ Op. In particular, a mod p Hilbert modular form is
determined by its restriction to the partial Serre-Tate deformation space Ĝm ⊗Op.

We now describe the results regarding the Iwasawa µ-invariants.

Let K be a totally imaginary quadratic extension of F . Let h? denote the class number of ?, for ? = K,F .
Let c denote the complex conjugation on C which induces the unique non-trivial element of Gal(K/F ) via
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ι∞. We assume the following hypothesis:

(ord) Every prime of F above p splits in K.

The condition (ord) guarantees the existence of a p-adic CM type Σ i.e. Σ is a CM type of K such that, p-adic
places induced by elements in Σ via ιp are disjoint from those induced by Σc. We fix such a CM type. We also
identify it with the set of infinite places of F . Let K−∞ (resp. K+

∞) be the anticyclotomic Zdp-extension (resp.
cyclotomic Zp-extension) of K and and K−p,∞ ⊂ K−∞ be the p-anticyclotomic subextension i.e. the maximal
subextension unramified outside the primes above p in K. Let Kp,∞ = K−p,∞K

+
∞. Let Γ± := Gal(K±∞/K),

Γ−p = Gal(K−p,∞/K) and Γp = Gal(Kp,∞/K).

Let C be a prime-to-p integral ideal of K. Let λ be a Hecke character of K. Suppose that C is the prime-
to-p conductor of λ. Associated to this data, a natural (d + 1)-variable Katz p-adic L-function LΣ,λ =

LΣ,λ(T1, ..., Td, S) ∈ ZpJΓK is constructed in [25] and [14]. Here, Ti’s are the anticyclotomic variables and S is
the cyclotomic variable. Katz p-adic L-function LΣ,λ interpolates critical Hecke L-values L(0, λχ) as χ varies
over certain Hecke characters mod Cp∞ (cf. [14, Thm. II]). Let L−Σ,λ ∈ ZpJΓ−K (resp. L−Σ,λ,p ∈ ZpJΓ−p K) be
the anticyclotomic (resp. p-anticyclotomic) projection obtained from the projection π− : ZpJΓK � ZpJΓ−K
(resp. π−p : ZpJΓK � ZpJΓ−p K). Let LΣ,λ,p ∈ ZpJΓpK be obtained from the projection πp : ZpJΓK � ZpJΓpK.
We call LΣ,λ,p as the Katz p-adic L-function to emphasise the consideration of p-component. This is a slightly
non-traditional terminology as the construction is still under the same embedding ιp.

The µ-invariant of L−Σ,λ,p is given by the following Theorem.

Theorem B
µ(L−Σ,λ) = µ(L−Σ,λ,p).

In most of the cases, µ(L−Σ,λ) has been explicitly determined (cf. [19] and [23]). Thus, we obtain a for-
mula for µ(L−Σ,λ,p).

A result analogous to Theorem B also holds for a class of Rankin-Selberg anticyclotomic p-adic L-functions.

When λ is self-dual with the root number −1, all the Hecke L-values appearing in the interpolation prop-
erty of L−Σ,λ vanish. Accordingly, L−Σ,λ and L−Σ,λ,p identically vanish. The anticyclotomic arithmetic informa-
tion contained in L−Σ,λ and L−Σ,λ,p may seem to have disappeared. However, we can look at the cyclotomic
derivatives

(1.2) L
′

Σ,λ = (
∂

∂S
LΣ,λ(T1, ..., Td, S))|S=0

and L
′

Σ,λ,p (defined analogously).

The µ-invariant of L′Σ,λ,p is given by the following Theorem.

Theorem C Suppose that p - h−K , where h−K is the relative class number given by h−K = hK/hF . Then,

µ(L′Σ,λ) = µ(L′Σ,λ,p).

In most of the cases, µ(L′Σ,λ) has been explicitly determined (cf. [3]). Thus, we obtain a formula for µ(L′Σ,λ,p).

We have the following p-version of a conjecture of Gillard regarding the vanishing of the µ-invariant of Katz
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p-adic L-function (cf. [12, Conj. (i)]).

Theorem D
µ(LΣ,λ,p) = 0.

We now describe the strategy of the proof of Theorem A. Some of the notation used here is not followed
in the rest of the article.

Let G = ResO/Z(GL2). The group G(Z(p)) acts on the prime to p Hilbert modular Shimura variety Sh/Z(p)
.

We refer to §3.2 for the action. Here we only mention that in terms of the moduli interpretation, the action
corresponds to the one on the level structure. Let V be an irreducible component of Sh containing x. Let
Hx(Z(p)) be the stabiliser of x in G(Z(p)). It acts on Spec (OV,x) and thus on the Serre-Tate deformation
space Spf(ÔV,x). In view of the description of the action on the Serre-Tate co-ordinates, we observe that the
formal subtorus Ĝm ⊗ Op ⊂ Spf(ÔV,x) is stable under the action of Hx(Z(p)). Chai and the second named
author have proven that a positive dimensional closed irreducible subvariety of V containing x and stable
under Hx(Z(p)) equals V itself. In this sense, the formal subtorus Ĝm ⊗ Op is transcedental in the Shimura
variety. Recall that the Igusa tower is étale over V . As a mod p Hilbert modular form is an algebraic function
on the Igusa tower, we prove p-rigidity based on the transcendence.

We now describe the strategy of the proof of Theorem B. Some of the notation used here is not followed
in the rest of the article.

Let us briefly recall the second named author’s strategy to determine µ(L−Σ,λ) (cf. [19]). Let Op = O ⊗ Zp.
Let GΣ,λ ∈ ZpJT1, ..., TdK be the power series expansion of the measure L−Σ,λ regarded as a p-adic measure on
Op with support in 1 + pOp, given by

(1.3) GΣ,λ =

∫
1+pOp

tydL−Σ,λ(y) =
∑

(k1,...,kd)∈(Z≥0)d

(∫
1+pOp

(
y

k1, ..., kd

)
dL−Σ,λ(y)

)
T k11 ...T kdd .

The starting point is the observation that there are classical Hilbert modular Eisenstein series (fλ,i)i such that

(1.4) GΣ,λ =
∑
i

ai ◦ (fλ,i(t)),

where fλ,i(t) is the t-expansion of fλ,i around a well chosen CM point y with the CM type (K,Σ) on the
Hilbert modular Shimura variety Sh and ai is an automorphism of the the Serre-Tate deformation space
Spf(ÔSh,y) i.e. ai ∈ Hy(Zp) (cf. §3.2). Based on Chai’s study of Hecke-stable subvarieties of a Shimura
variety, the second named author has proven the linear independence of (ai ◦ fλ,i)i modulo p. It follows that
µ(L−Σ,λ) = mini µ(fλ,i(t)).

Let GΣ,λ,p ∈ ZpJΓ−p K be the analogous power series expansion of the measure L−Σ,λ,p. Based on the ac-
tion of p-adic differential operators on the t-expansion of a p-adic Hilbert modular form around an ordinary
point in terms of the partial Serre-Tate co-ordinates, we show that

(1.5) GΣ,λ,p =
∑
i

ai,p ◦ (fλ,i(tp)),

where ai,p is the projection of ai to Hy(Zp)p (cf. §3.2) and fλ,i(tp) is the p-adic Serre-Tate expansion of
f around y (cf. §6.1). Based on p-rigidity and Chai’s study of Hecke-stable subvarieties of a Shimura va-
riety, we prove p-independence i.e. the linear independence of (ai,p ◦ (fλ,i(tp)))i modulo p. It follows that
µ(L−Σ,λ,p) = mini µ(fλ,i(tp)). From p-rigidity, we have µ(fλ,i(t)) = µ(fλ,i(tp)) and this concludes the proof of
Theorem B.

The strategy of the proof of Theorem C is similar to the above strategy. Finally, Theorem D is proven
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based on Theorem B and the proof of results in [20] and [2]. As in [19], we would like to emphasise that Chai’s
theory plays an underlying role in all of the above results.

In this article, we give an elementary construction of p-adic differential operators on the space of p-adic
Hilbert modular forms avoiding the use of Gauss-Manin connection in Katz’s construction. This is based on
the ideas of the second named author in the early 90’s. Based on this construction, we determine the action
of p-adic differential operators on the t-expansion of a p-adic Hilbert modular form around an ordinary point
in terms of the partial Serre-Tate co-ordinates.

Along with p-adic Gross–Zagier formula, Theorem B and Theorem C have application towards generic non-
vanishing of p-adic heights on CM abelian varieties (cf. [7]). This provides an evidence for Schneider’s con-
jecture on the non-vanishing of p-adic heights in the CM case.

Let pi and pj be primes above p as above. Theorem B implies an intriguing equality µ(L−Σ,λ,pi) = µ(L−Σ,λ,pj )

of Iwasawa µ-invariants. This is rather surprising as theses µ-invariants could be non-zero and one in general
does not expect any relation between the p-adic L-functions LΣ,λ,pi ’s. These p-adic L-functions correspond to
independent variables whose number may vary with i. As per as we know, Theorem B is a first phenomena pos-
sibly suggesting a relation. It would be interesting to see whether an analogue holds for Iwasawa λ-invariants.
One can perhaps first collect experimental data. In the case of self-duality and the root number being −1,
the equality of the µ-invariants persists even after taking the cyclotomic derivative. It seems tempting that a
deeper phenomena mediates the relation.

In view of the anticyclotomic main conjectures, Theorem B would imply an equality of the corresponding
algebraic µ-invariants. Note that the underlying Selmer groups correspond to rather different local conditions.
In many cases, the anticyclotomic main conjecture has been proven (cf. [16] and [18]). It would be interesting
to prove the equality of the algebraic µ-invariants directly. The equality of this type does not seem to be
conjectured in the literature.

In [6], the first named author proves analogue of p-rigidity and p-independence for quaternionic modular
forms over totally real fields. In the near future, the first named author hopes to consider an analogue of
Theorem B for a class of quaternionic Rankin-Selberg p-adic L-functions. In [13], a construction of p-adic
L-function for Unitary Shimura varieties is announced (cf. [11]). In such a case, the number of variables of
the p-adic L-function is typically less than the dimension of the Shimura variety. The variables of the p-adic
L-function may correspond to an analgoue of the Ĝm ⊗ Op-variables. In the future, we hope to consider this
question starting with the case of U(n, 1) Shimura varieties.

Formulating p-rigidity type statement for a PEL Shimura variety seems to be an interesting question. In
characteristic zero, we hope to approach rigidity based on the approach in [5].

The article is organised as follows. In §2, we recall basic facts about Hilbert modular Shimura variety Sh.
In §3, we prove Theorem A. In §3.1-3.2, we firstly recall some facts about Serre-Tate deformation theory of
an ordinary closed point in Sh. In §3.3, we prove the Theorem. In §4, we prove p-rigidity i.e. the linear
independence of mod p Hilbert modular forms restricted to the partial Serre-Tate deformation space Ĝm⊗Op.
In §5.1, we give an elementary construction of p-adic differential operators on the space of p-adic Hilbert
modular forms. In §5.2, we use it to compute the action of the p-adic differential operators on the t-expansion
of a p-adic Hilbert modular form around an ordinary point in terms of the partial Serre-Tate co-ordinates. In
§6, we consider Iwasawa µ-invariants as in Theorems B-D. In §6.1, we determine the µ-invariant of certain
anticyclotomic p-adic L-functions (cf. Theorem B). In §6.2, we determine the µ-invariant of the cyclotomic
derivative L′Σ,λ,p of Katz p-adic L-function, when the branch character λ is self-dual with the root number
−1 (cf. Theorem C). In §6.3, we prove a p-version of a conjecture Gillard regarding the vanishing of the
µ-invariant of Katz p-adic L-function (cf. Theorem D).
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Notation We use the following notation unless otherwise stated.

For a number field L, let AL be the the adele ring and Af
L the finite adeles of L. Let GL be the abso-

lute Galois group of L and GabL the maximal abelian quotient. Let recL : A×L → GabL be the geometrically
normalized reciprocity law.

2. Hilbert modular Shimura variety

In this section, we recall basic facts about Hilbert modular Shimura variety. We follow [15].

2.1. Setup. In this subsection, we recall a basic setup regarding Hilbert modular Shimura variety.

Let G = ResF/QGL2 and h0 : ResC/RGm → G/R be the morphism of real group schemes arising from

a+ bi 7→
[
a −b
b a

]
,

where a + bi ∈ C×. Let X be the set of G(R)-conjugacy classes of h0. We have a canonical isomorphism
X ' (C−R)I , where I is the set of real places of F . The pair (G,X) satisfies Deligne’s axioms for a Shimura
variety. It gives rise to a tower (ShK = ShK(G,X))K of quasi-projective smooth varieties over Q indexed by
open compact subgroups K of G(Af ). The pro-algebraic variety Sh/Q is the projective limit of these varieties.
The complex points of these varieties are given as follows

(2.1) ShK(C) = G(Q)\X ×G(Af )/K, Sh(C) = G(Q)\X ×G(Af )/Z(Q).

Here, Z(Q) is the closure of the center Z(Q) in G(Af ) under the adélic topology. From (2.1), it follows that
Sh/Q is endowed with an action of G(Af ) (cf. [15, §4.2]). This gives rise to the Hecke action.

2.2. p-integral model. In this subsection, we briefly recall a canonical p-integral smooth model Sh(p)
/Z(p)

of
the Shimura variety Sh/G(Zp)/Q.

Hilbert modular Shimura variety Sh/Q represents a functor F classifying abelian schemes having multiplica-
tion by O along with additional structure, where O is the ring of integers of F (cf. [15, §4.2] and [27]). When
p is unramified in F , a p-integral interpretation F (p) of F leads to a p-integral smooth model of Sh/G(Zp)/Q.

The functor F (p) is given by

F (p) : SCH/Z(p)
→ SETS

(2.2) S 7→ {(A, ι, λ̄, η(p))/S}/ ∼ .
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Here,

(PM1) A is abelian scheme over S of dimension of d.
(PM2) ι : O ↪→ EndS A is an algebra embedding.
(PM3) λ̄ is the polarisation class of a homogeneous polarisation λ up to scalar multiplication by ι(O×(p),+),
where O(p),+ := {a ∈ O(p)|σ(a) > 0,∀σ ∈ I}. Also, the Rosati involution of EndS A takes ι(l) to ι(l∗), for
l ∈ O.
(PM4) Let T (p)(A) be the prime-to-p Tate module lim←−p-N A[N ]. η(p) is a prime-to-p level structure given by

an O-linear isomorphism η(p) : O2 ⊗Z Ẑ(p) ' T (p)(A), where Ẑ(p) =
∏
l 6=p Zl.

(PM5) Let LieS(A) be the relative Lie algebra of A. There exists an O⊗ZOS-module isomorphism LieS(A) '
O ⊗Z OS , locally under the Zariski topology of S.

The notation ∼ denotes up to a prime-to-p isogeny.

Theorem 2.1 (Kottwitz). The functor F (p) is represented by a pro-algebraic scheme Sh(p)(G,X)/Z(p)
. More-

over, there exists an isomorphism given by

Sh(p) ×Q ' Sh/G(Zp)/Q.

(cf. [15, §4.2.1]).

The pro-algebraic scheme Sh(p)(G,X)/Z(p)
is usually referred as the Kottwitz model. In what follows, we let

Sh
(p)
/Z(p)

denote Sh(p)(G,X)/Z(p)
for simplicity of notation.

2.3. Igusa tower. In this subsection, we briefly recall the notion of p-ordinary Igusa tower over the p-integral
model Sh(p).

Let Q be an algebraic closure of Q and Qp be an algebraic closure of Qp. We fix a complex embedding
ι∞ : Q ↪→ C and a p-adic embedding ιp : Q ↪→ Qp.

Let W be the strict Henselisation inside Q of the local ring of Z(p) corresponding to ιp. Let F be the
residue field of W. Note that F is an algebraic closure of Fp.

Let Sh(p)
/W = Sh(p) ×Z(p)

W and Sh(p)
/F = Sh

(p)
/W ×W F.

From now, let Sh denote Sh(p)
/F . Let A be the universal abelian scheme over Sh.

Let Shord be the subscheme of Sh on which the Hasse-invariant does not vanish. It is an open dense sub-
scheme. Over Shord, the connected part A[pm]◦ of A[pm] is étale-locally isomorphic to µpm ⊗Zp O

∗ as an
Op-module, where O∗ = O−1d−1

F , dF is the different of F/Q and Op = O ⊗ Zp.

We now define the Igusa tower. For m ∈ N, the mth-layer of the Igusa tower over Shord is defined by

(2.3) Igm = IsomOp
(µpm ⊗Zp O

∗,A[pm]◦).

Note that the projection πm : Igm → Shord is finite and étale. The full Igusa tower over Shord is defined by

(2.4) Ig = Ig∞ = lim←− Igm = IsomOp(µp∞ ⊗Zp O
∗,A[p∞]◦).

(Ét) Note that the projection π : Ig → Shord is étale.

Let x be a closed ordinary point in Sh. We have the following description of the level p∞-structure on
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Ax[p∞].

(PL) Let η◦p be a level p∞-structure on Ax[p∞]◦. For the primes p in O dividing p, it is a collection of
level p∞ structures η◦p, given by isomorphisms η◦p : O∗p ' Ax[p∞]◦, where O∗p = O∗ ⊗Op. The Cartier duality
and the polarisation λ̄x induces an isomorphism ηétp : Op ' Ax[p∞]ét. Thus, we get a level p∞-structure ηétp
on Ax[p∞]ét from η◦p .

Let V be an irreducible component of Sh and V ord be V ∩ Shord. Let I be the inverse image of V ord

under π. In [15, Ch.8] and [17], it has been shown that

(Ir) I is an irreducible component of Ig.

2.4. Mod p modular forms. In this subsection, we briefly recall the notion of mod p modular forms on an
irreducible component of the Hilbert modular Shimura variety Sh.

Let V and I be as in §2.3. Let B be an F-algebra. The space of mod p modular forms on V over B is
defined by

(2.5) M(V,B) = H0(I/B ,OI/B ),

where I/B := I ×F B. In view of §2.2-2.3, we have the following geometric interpretation of mod p modular
forms.

A mod p modular form is a function f of isomorphism classes of x̃ = (x, η◦p)/B′ where B′ is a B-algebra,
x = (A, ι, λ̄, η(p))/B′ ∈ F (p)(B′) and η◦p : µp∞ ⊗Zp O

∗ ' A[p∞]◦ is an Op-linear isomorphism, such that the
following conditions are satisfied.

(G1) f(x̃) ∈ B′.
(G2) If x̃ ' x̃′, then f(x̃) = f(x̃′), where x̃ ' x̃′ means x ' x′ and the corresponding isomorphism between A
and A′ induces an isomorphism between η◦p and η′◦p .
(G3) f(x̃×B′ B′′) = h(f(x̃)) for any B-algebra homomorphism h : B′ → B′′.

We also have the notion of q-expansion and q-expansion principle for mod p modular forms (cf. [15, Thm.
4.21]).

2.5. p-adic modular forms. In this subsection, we briefly recall the notion of p-adic modular forms on an
irreducible component of the Hilbert modular Shimura variety Sh.

Let W denote the Witt ring W (F). The construction of the Igusa tower in §2.3 is well defined for the
base W . Let I/W be the irreducible component of the Igusa tower Ig/W over an irreducible component V/W
of the Shimura variety Sh/W . Let C be a p-adically complete local W -algebra with maximal ideal mC . The
space of p-adic modular forms on V over C is defined by

(2.6) M(V,C) = H0(I/C ,OI/C ),

where I/C := I/W ×/W C.

By definition, a p-adic modular form over C modulo mC is a mod p modular form.

We have an analogous moduli interpretation as in §2.4 and also the q-expansion principle, for p-adic modular
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forms (cf. [19, §4.1]).

3. p-rigidity

In this section, we prove the rigidity property of mod p modular forms (cf. Theorem A). In §3.1-3.2, we firstly
recall basic facts about Serre-Tate deformation theory of an ordinary closed point in Sh. In §3.3, we prove
the rigidity property.

3.1. Serre-Tate deformation theory. In this subsection, we briefly recall Serre-Tate deformation theory of
an ordinary closed point in Sh. We follow [15, §8.2], [19, §2] and [21, §1].

Let x be a closed point in Shord carrying (Ax, ιx, λ̄x, η
(p)
x )/F. Let V be the irreducible component of Sh

containing x.

Let CLW be the category of complete local W -algebras with residue field F. Let D/W be the fiber cate-
gory over CLW of deformations of x/F defined as follows. Let R ∈ CLW . The objects of D/W over R consist
of x′∗ = (x′, ιx′), where x′ ∈ F (p)(R) and ιx′ : x′ ×R F ' x. Let x′∗ and x′′∗ be in D/W over R. By definition,
a morphism φ between x′∗ and x′′∗ is a morphism (still denoted by) φ between x′ and x′′ satisfying [15, (7.3)]
and the following condition.

(M) Let φ0 be the special fiber of φ. The automorphism ιx′′ ◦ φ0 ◦ ι−1
x′ of x equals the identity.

Let F̂x be the deformation functor given by

F̂x : CL/W → SETS

(3.1) R 7→ {x′∗/R ∈ D}/ ' .

The notation ' denotes up to an isomorphism.

Recall, R ∈ CLW . As R is a projective limit of local W -algebras with nilpotent maximal ideal, we can
(and do) suppose that R is a local Artinian W -algebra with nilpotent maximal ideal mR. Let x′∗/R ∈ D and A
denote Ax′ . By Drinfeld’s theorem (cf. [15, §8.2.1]), A[p∞]◦(R) is killed by pn0 for sufficiently large n0. Let
y ∈ A(F) and ỹ ∈ A(R) such that ỹ0 = y, where ỹ0 denotes the special fiber of ỹ (as A/R is smooth, such a
lift always exists). By definition, ỹ is determined modulo ker(A(R) 7→ A(F)) = A[p∞]◦(R). Thus, for n ≥ n0,
“pn”y0 := pnỹ is well defined. From now, we suppose that n ≥ n0. If y ∈ A[pn](F), then “pn”y ∈ A[p∞]◦(R).
Strictly speaking, we apply idempotent ep corresponding to p so that ep“pn”y ∈ A[p∞]◦(R). We let “pn”y
denote ep“pn”y for simplicity of notation.

Thus, we have a homomorphism

(3.2) “pn” : A[pn](F)→ A[p∞]◦(R).

We also have the commutative diagram

A[pn+1]ét(R)
'
> A[pn+1](F)

“pn+1”
> A[p∞]◦(R)

A[pn]ét(R)

p
∨

'
> A[pn](F)

p
∨

“pn”
> A[p∞]◦(R).

=
∨
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Passing to the projective limit, this gives rise to a homomorphism

(3.3) “p∞” : A[p∞](F)→ A[p∞]◦(R).

(CC) Let y = lim←− yn ∈ A[p∞](F) ' Ax[p∞]ét, where yn ∈ A[pn](F) and the later isomorphism is induced by ιx′ .
Let qn,p(yn) = “pn”yn and qp(y) = lim qn,p(yn). By definition, qp(y) ∈ A[p∞]◦(R) ' Hom(A∨x [p∞]ét, Ĝm(R))
for A∨x being the dual of the abelian variety Ax. Let qA,p be the pairing given by

qA,p : Ax[p∞]étA∨x [p∞]ét → Ĝm(R)

(3.4) qA,p(y, z) = qp(y)(z).

We have the following fundamental result.

Theorem 3.1 (Serre-Tate). (1). There exists a canonical isomorphism

(3.5) F̂x(R) '
∏
p

HomZp(Ax[p∞]ét ×A∨x [p∞]ét, Ĝm(R))

given by x′∗ 7→ qA :=
∏

p qAx′ ,p.
(2). The deformation functor F̂x is represented by the formal scheme Ŝ/W := Spf(ÔV,x). A level p∞-
structure as in (PL), gives rise to a canonical isomorphism of the deformation space Ŝ/W with the formal
torus

∏
p Ĝm ⊗Zp Op (cf. [21, Prop. 1.2]).

Let xST be the universal deformation.

We now recall a couple of definitions.

Definition 3.2. Recall that a level p∞-structure as in (PL) gives rise to a canonical isomorphism of the
deformation space Ŝ/W with the formal torus

∏
p Ĝm ⊗Zp Op (cf. part (2) of Theorem 3.1). Under this iden-

tification, let t = (tp)p be the co-ordinates of the deformation space Ŝ/W , where tp is the co-ordinate of
Ĝm ⊗Zp Op. We call t = (tp)p the Serre-Tate co-ordinates of the deformation space Ŝ/W .

We have Ŝ = Spf(Ŵ [O]), where S = Gm ⊗ O∗, W [O] = W [X(S)] and Ŵ [O] is the completion at the aug-
mentation ideal. Here, X(S) is the character group of S. Note that W [O] is the ring consisting of formal
finite sums

∑
ξ∈O a(ξ)tξ, where a(ξ) ∈ W and t is the co-ordinate of Gm. Here, tξ is the character given by

tξ(t⊗ u) = tTrF/Q(ξu), for u ∈ O∗.

Definition 3.3. Let f be a mod p modular form over F (cf. §2.4). A level p∞-structure η◦p of x gives rise to
a canonical level p∞-structure η◦p,ST of the universal deformation xST . We call f((xST , η

◦
p,ST )) ∈ F̂[O] as the

t-expansion of f around x.

We have the following t-expansion principle.

(t-expansion principle) The t-expansion of f around x determines f uniquely (cf. (Ir)).

We have an analogous t-expansion principle for p-adic modular forms (cf. [19, §4.1]).
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3.2. Reciprocity law for the deformation space. In this subsection, we recall the action of the local
algebraic stabiliser of a closed ordinary point x on the Serre-Tate co-ordinates of the deformation space of x.
This can be considered as an infinitesimal analogue of Shimura’s reciprocity law.

Let g ∈ G(Z(p)) acts on Sh through the right multiplication on the prime-to-p level structure i.e.,

(A, ι, λ̄, η(p))/S 7→ (A, ι, λ̄, η(p) ◦ g)/S

(cf. §2.2).

Recall that x is a closed ordinary point in Sh with a p∞-level structure ηordp . Let (Kx,Σx) be the CM-
type of x. We suppose that ι : O ↪→ End(A) extends to ιx : O ↪→ End(A), where O is the ring of integers of
Kx. Let Hx(Z(p)) be the stabiliser of x in G(Z(p)). In fact,

(3.6) Hx(Z(p)) = (ResO(p)/Z(p)
Gm)(Z(p)) = O×(p),

where O(p) = O ⊗ Z(p) (cf. [19, §3.2] and [28]). We call Hx(Z(p)) the local algebraic stabiliser of x.

Let cx be the complex conjugation of Kx.

As x is ordinary, Σx is a p-ordinary CM type. When considered as a p-adic CM type, we denote it by Σx,p.
Let p =

∏
v∈Σx,p

pv , for the primes pv associated to the valuation v ∈ Σx,p. Note that Op = Op =
∏

pOp

and Op = Op × Opcx . Let Hx(Zp)p be the p-component O×p of Hx(Zp) = O×p . We have a natural inclusion
O(p) ⊂ Op. Thus, we regard Hx(Z(p)) ⊂ Hx(Zp). Let Hx(Z(p))p be the projection of Hx(Z(p)) to Hx(Zp)p.
Note that we have an isomorphism Hx(Z(p)) ' Hx(Z(p))p. Let α ∈ Hx(Z(p)). Let αp be the projection of α
to the p-component O×p of O×p . As Hx(Z(p)) stabilises x, it follows that α acts on Spec (OV,x) and thus on
Spf(ÔV,x). In particular, it acts on the Serre-Tate co-ordinates (cf. Definition 3.2). The action is given by the
following Lemma.

Lemma 3.4. The endomorphism α acts on the Serre-Tate co-ordinates t = (tp)p by t 7→ tα
1−cx , where

tα
1−cx

= (t
α1−cx

p
p )p (cf. [19, Lem. 3.3]).

We have the following immediate corollary.

Corollary 3.5. The partial Serre-Tate deformation space Ĝm ⊗Op ⊂ Spf(ÔV,x) is stable under the action of
the local algebraic stabiliser Hx(Z(p)).

This simple corollary is crucial for p-rigidity. It seems to be overlooked in the literature and may lead to
rigidity-style phenomena with different flavour.

3.3. p-rigidity. In this subsection, we prove the rigidity of mod p modular forms (cf. Theorem A).

Recall that x is a closed ordinary point in V with p∞-level structure η◦p and V = lim←−VK , where VK is the
projection of V to ShK = Sh/K for K small and maximal at p. This gives rise to a closed point x̃ = (x, η◦p)

in the Igusa tower I over x. In view of (Ét), there exists a canonical isomorphism ÔV,x ' ÔI,x̃. Thus, a mod
p modular form can be thought of as a function on Spec (OV,x).
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Let f be a non-zero mod p modular form. We suppose that f is a non-unit in OV,x. Let b ⊂ OV,x be
the zero ideal of f i.e. b = (f) ∩ OV,x. As f is an algebraic function on I, it follows that V (b) is non-empty
not only in Spf(ÔV,x) but also in Spec (OV,x). In particular, we have b 6= 0. Let X be the Zariski closure of
Spec (OV,x/b) in V . Note that X ⊂ V is a closed irreducible pro-subscheme containing x and X = lim←−XK ,
where XK is the projection of X to VK .

We start with a preparatory lemma.

Lemma 3.6. Let Yi be a family of closed subschemes of an irreducible noetherian scheme Y such that there
exists a closed point y ∈ Yi, for all i i.e., y ∈

⋂
i Yi. Suppose that the intersection of Spf(ÔYi,y)’s (viewed

inside Spf(ÔY,y)) is positive dimensional. Then, the intersection of Yi’s is positive dimensional.

Proof. It suffices to consider the affine case.

Let A be a noetherian integral domain and Ri = A/ai, for ideals ai. Take non-units t1,..., tr in A and
let (t) = (t1, ..., tr). Suppose that V (t) = Spec (R/(t)) ⊂ Vi = Spec (R/ai), for all i. This implies ai ⊂ (t). In
particular,

∑
i ai ⊂ (t).

If A is local noetherian with maximal ideal m, by faithful flatness of Â = lim←−A/m
n over A,

∑̂
i ai =

∑
i âi.

So, the above argument can be applied to (t) ∈ m̂, Â and (̂A/ai).

This finishes the proof as

dim(
⋂
i

Spec (A/ai)) = dim(Spec (A/
∑
i

ai)) = dim(Spec (Â/
∑
i

âi)) = dim(
⋂
i

Spec (Â/âi)) ≥ dim(Â/(t)).

�

We are now ready to prove Theorem A.

Theorem 3.7 (p-rigidity). The partial Serre-Tate deformation space Ĝm ⊗Op is not a formal subscheme of
Spf(ÔX,x) (viewed inside Spf(ÔV,x)). Thus, Theorem A holds.

Proof. Suppose that it is a formal subscheme.

We now consider Z =
⋂
α∈Hx(Z(p))

α(X) (viewed inside V ). As above, recall that Z = lim←−ZK .

Note that Spf(Ôα(X),x) = α(Spf(ÔX,x)) (viewed inside Spf(ÔX,x)). It follows that if Ĝm ⊗ Op ⊂ Spf(ÔX,x),
then Ĝm ⊗ Op ⊂ Spf(Ôα(X),x) (cf. Corollary 3.5). In particular, we have Ĝm ⊗ Op ⊂ Spf(Ôα(X)K ,x). In the
last equality, α(X)K is the projection of α(X) to VK . By Lemma 3.6, ZK is positive dimensional. As the
projection πK : V → VK is étale, we conclude that Z itself is positive dimensional.

Thus, Z is a closed irreducible pro-subscheme of V containing x and stable under Hx(Z(p)). We conclude
that Z = V (cf. [19, Prop. 3.8]). It follows that b = 0. This is a contradiction for f being non-zero as noted
in the paragraph before Lemma 3.6.

�

We have the following immediate consequence.

Corollary 3.8. Let g be a p-adic modular form. Then,

µ(g) = µ(g|Ĝm⊗Op
).
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Proof. Let g be non-zero and defined over a p-adically complete local W -algebra C.

If g is a unit in OV,x, the corollary follows instantly. We thus suppose that g is a non-unit in OV,x.

In view of the t-expansion principle, we have

µ(g) = µ(g|∏
p Ĝm⊗ZpOp

).

Let c ∈ C such that µ(g/c) = 0. By definition, g/c modulo the maximal ideal mC is a non-zero mod p modular
form. In view of Theorem 3.7, it thus follows that

µ(g/c|Ĝm⊗Op
) = 0.

This finishes the proof. �

4. p-independence

In this section, we consider p-independence i.e. a linear independence of mod p modular forms restricted to
the partial Serre-Tate deformation space Ĝm ⊗ Op. In §4.1, we firstly state the formulation and in §4.2, we
prove the independence.

4.1. Formulation. In this subsection, we give a formulation of the linear independence of mod p modular
forms restricted to the partial Serre-Tate deformation space Ĝm ⊗Op.

Recall that x is a closed ordinary point in V with p∞-level structure η◦p . This gives rise to a closed point
x̃ = (x, η◦p) in the Igusa tower I over x and a canonical isomorphism

(4.1) Spf(ÔV,x) '
∏
p

Ĝm ⊗Zp Op

(cf. Theorem 3.1).

Recall that we have a canonical isomorphism ÔV,x ' ÔI,x̃ (cf. (Ét)). Thus, the p-completed stabiliser Hx(Zp)

acts on ÔI,x̃.

Let f be a mod p modular form and a ∈ Hx(Zp). Note that (a(f))|Ĝm⊗Op
= ap(f |Ĝm⊗Op

) (cf. Corollary
3.5). Here ap is as in §3.2.

To provide context for the following, note that there exists a ∈ Hx(Zp) such that api ∈ Hx(Z(p))pi and
apj /∈ Hx(Z(p))pj , for j 6= i. Indeed, Hx(Zp) = O×p =

∏
pO
×
p and we may choose a to be non-identity precisely

at the pi’th component.

For 1 ≤ i ≤ n, let ai ∈ Hx(Zp) such that (aia
−1
j )p /∈ Hx(Z(p))p for all i 6= j (cf. §3.2). Let f1, ..., fn be

n non-constant mod p modular forms on V (cf. §3.4).

Our formulation of the linear independence is the following.

Theorem 4.1 (p-independence). Suppose that (aia
−1
j )p /∈ Hx(Z(p))p for all i 6= j. Then, (ai,p ◦ (fi|Ĝm⊗Op

))i

are linearly independent in the partial Serre-Tate deformation space Ĝm ⊗Op.

Note that ai,p ◦ (fi|Ĝm⊗Op
) is not necessarily the restriction of a mod p modular form to Ĝm ⊗Op.
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4.2. p-independence. In this subsection, we prove the linear independence of mod pmodular forms restricted
to the partial Serre-Tate deformation space Ĝm ⊗Op.

The approach is based on p-rigidity and Chai’s theory of Hecke-stable subvarieties of a mod p Shimura variety
adopted for local algebraic stabilisers in [19, §3]. For a detailed treatment of the latter, we refer to [8], [9], [10]
and [19].

Let n be a positive integer. In this subsection, any tensor product is taken n-times.

We consider an F-algebra homomorphism

(4.2) φI : OI,x̃ ⊗F ...⊗F OI,x̃ → Ĝm ⊗Op

given by

(4.3) f1 ⊗ ...⊗ fn 7→
i=n∏
i=1

ai,p ◦ (fi|Ĝm⊗Op
).

As we are interested in the linear independence of (ai,p(fi|Ĝm⊗Op
))i, we consider bI := ker(φI).

Similarly, we consider an F-algebra homomorphism

(4.4) φ = φV : OV,x ⊗F ...⊗F OV,x → Ĝm ⊗Op

given by

(4.5) h1 ⊗ ...⊗ hn 7→
i=n∏
i=1

ai,p ◦ (hi|Ĝm⊗Op
).

In view of Theorem 3.7, it follows that φI and φV are both non-trivial.

(EQ) We note that φ is equivariant with the Hx(Z(p))-action.

Let bI = ker(φV ) and b = ker(φV ).

Lemma 4.2. We have bI = 0 if and only if b = 0.

Proof. In view of (Ét), we have an étale morphism πm : OV,x ⊗F ...⊗F OV,x → OI,x̃ ⊗F ...⊗F OI,x̃. Note
that bI is the unique prime ideal of OI,x̃ ⊗F ...⊗F OI,x̃ over b. This finishes the proof. �

As φ is equivariant with the Hx(Z(p))-action (cf. (EQ)), it follows that b is a prime ideal of OV,x⊗F ...⊗FOV,x
stable under the diagonal action of Hx(Z(p)). Let Y be the Zariski closure of Spec (OV,x ⊗F ... ⊗F OV,x/b)
in V n . Thus, Y is a closed irreducible subscheme of V n containing xn stable under the diagonal action of
Hx(Z(p)). We also have an analogue of the commutative diagram [19, (3.22)] with ÔS replaced by Ĝm ⊗Op.
For n ≥ 2, the subscheme Y thus satisfies the hypothesis in [19, Cor. 3.19].

Theorem 4.3. The subscheme Y equals V n.

Proof. When n = 1, this is nothing but [19, Prop. 3.8].

Now, suppose that n ≥ 2. From [19, Cor. 3.19], we have two possibilities namely Y = V n−2 × ∆α,β (up
to a permutation of the factors), for some α, β ∈ Hx(Z(p)) or Y = V n. The skewed diagonal ∆α,β is given by

∆α,β =
{

(α(v), β(v))
∣∣v ∈ V }.
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Suppose that Y = V n−2×∆α,β (up to a permutation of the factors). Let (t, t
′
) be the Serre-Tate co-ordinates

of the last two factors ∆α,β at (x, x), respectively. It follows that tβ
1−cx

= t
′α1−cx . On the other hand, from the

definition of Y it follows that tan,pp = t
′an−1,p
p . Thus, (ana

−1
n−1)p = (βα−1)1−cx

p ∈ Hx(Z(p))p. This contradicts
the hypothesis on ai’s. Thus, we conclude Y = V n.

�

We have the following immediate consequence.

Corollary 4.4. Theorem 4.1 holds.

Proof. In view of Theorem 4.3, it follows that b = 0. Thus, bI = 0 (cf. Lemma 4.2).
�

5. p-adic differential operators

In this section, we consider p-adic operators on the space of p-adic Hilbert modular forms. This is a p-adic
analogue of the Maass-Shimura differential operators on complex Hilbert modular forms. In §5.1, we give an
elementary construction of these operators. In §5.2, we compute their action on the t-expansion of a p-adic
Hilbert modular form around an ordinary point in terms of the partial Serre-Tate co-ordinates. For a more
detailed account of the elliptic modular case, we refer to [22, 1.3.6]. In §6, we will use these results to compute
the power series expansion of anticyclotomic Katz p-adic L-function.

5.1. Elementary construction. In this subsection, we give an elementary construction of p-adic differential
operators on the space of p-adic Hilbert modular forms.

For the geometric definition of classical and p-adic modular forms on Sh, we refer to [15, §4.2] and [19,
§4.1].

Recall that F denotes an algebraic closure of Fp, W the Witt ring W (F), ιp : Q ↪→ Cp a p-adic embed-
ding and ι∞ : Q ↪→ C a complex embedding. Let W denote ι−1

p (W ). Possibly enlarging W, we suppose that
τ(O) ⊂ W, for all τ ∈ Σ.

In this subsection, for simplicity we suppose that the prime to p level of classical or p-adic Hilbert modu-
lar forms is one.

Let Gκ(Γ1(pm),W) be the space of classical Hilbert modular forms of weight κ and level Γ1(npm) over W,
where κ ∈ Z≥0[Σ] and m is a non-negative integer. Let f ∈ Gκ(Γ1(pm),W) . Via ι∞, we regard f as a Hilbert
modular form over C. Let z = (zτ )τ∈Σ be the complex variables of the Hilbert modular Shimura variety or
those of HΣ , where H is the upper half plane (cf. [19, §4.1]). Let (a, b) be a pair giving rise to a cusp of the
Hilbert modular Shimura variety (cf. [loc. cit.,§4.1]). The Fourier expansion of f at the cusp corresponding
to (a, b) is given by f(z) =

∑
ξ∈O a(ξ)eF (ξz), where eF (ξz) = exp (2πi

∑
τ∈Σ τ(ξ)zτ ).

Let φ : O/prO →W be an arbitrary function with the normalised Fourier transform φ∗ given by

(5.1) φ∗(y) =
1

prd/2

∑
u∈O/prO

φ(u)eF (yu/pr),
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where y ∈ O/prO and eF (w) = exp (2πiTrF/Q(w)), for w ∈ F .

Let f |φ be the classical Hilbert modular form given by

(5.2) f |φ(z) =
∑

u′=(σ1(u),...,σd(u)),u∈O/prO

φ∗(−u)f(z + u′/pr),

where z + u′/pr = (zτ + τ(u)/pr)τ .

Note that f |φ ∈ Gκ(Γ1(ps),W), where s = max(m, 2r). In view of the Fourier inversion formula, it fol-
low that the Fourier expansion of f |φ at the cusp corresponding to (a, b) is given by

(5.3) f |φ(z) =
∑
ξ∈O

φ(ξ)a(ξ)eF (ξz).

Let (φσn : O/pnO → W)n be a sequence of functions such that φσn(ξ) ≡ σ(ξ) (mod pnW). In view of the q-
expansion principle, it follow that the sequence (f |φσn)n of classical Hilbert modular forms converges p-adically
to a p-adic Hilbert modular form dσf whose formal Fourier expansion at the the cusp corresponding to (a, b)
is given by

(5.4) dσf(z) =
∑
ξ∈O

σ(ξ)a(ξ)eF (ξz).

In other words, the operator dσ equals the Maass-Shimura differential operator δσ0 = 1
2πi

∂
∂zσ

onGκ(Γ1(pm),W).

This construction extends to the space of p-adic Hilbert modular forms over W as follows. Let V (W ) be the
space of p-adic Hilbert modular forms of prime-to-p level one over W . Via ιp, we can regard Gκ(Γ1(pm),W)
as a subspace of V (W ) (cf. [15, §8.1]). The space Gκ(Γ1(p∞),W) =

⋃
mGκ(Γ1(pm),W) is p-adically dense in

V (W ) (cf. [15, §8.1])). Thus, the differential operator dσ extends to V (W ).

Remark. In [25, Ch. II], the operator dσ is constructed based on the Gauss-Manin connection of the universal
abelian scheme over the Shimura variety. The above approach can be generalised for a class of PEL Shimura
varieties.

5.2. Action on the t-expansion. In this subsection, we compute the action of the differential operator dσ on
the t-expansion of a p-adic Hilbert modular form around a p-ordinary point in terms of the partial Serre-Tate
co-ordinates.

Let (ζpn = exp(2πi/pn))n ∈ Q be a compatible system of p-power roots of unity. Via ιp, we regard it as
a compatible system in Cp.

Let p be the prime corresponding to σ via ιp and Σp be the set of places above p in F . For q ∈ Σp, let
Σq ⊂ Σ be the subset giving rise to q under ιp.

Let Wn = W [µpn ] and mn be the maximal ideal. We have

(5.5) (Ĝm ⊗O∗p)(Wn) = (1 +mn)⊗O∗p
and

(5.6) Ĝm ⊗O∗q =
∏
τ∈Σq

Ĝm.

Let u ∈ O and α(u/pm) ∈ G(Af ) such that

α(u/pm)p =

[
1 u/pm

0 1

]
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and α(u/pm)l = 1, for l 6= p.

Let us recall some notation. Let π : Ig → Sh be the Igusa tower over W . Let x ∈ Shord/F be a closed point and

x̃ be a point above it in Sh. Let Ŝ/W be the deformation space of x̃. For q ∈ Σp, recall tq = t⊗ 1q ∈ Ĝm⊗Oq

is the Serre-Tate co-ordinate of the partial deformation space Ĝm⊗Oq (cf. §3.1). We regard 1⊗u ∈ Ĝm⊗Oq

via the image u ∈ Oq.

We start with a preparatory lemma.

Lemma 5.1. The isogeny action of α(u/pm) on the Igusa tower π : Ig → Sh/Wm
preserves the deformation

space Ŝ and induces tp 7→ ζpmt⊗ u (cf. (5.5)) and tp′ 7→ tp′ , for p′ 6= p.

Proof. Let xST = (Ax,−) be the universal deformation and x0 = (A0,−) be the origin of the deformation
space Ŝ. In particular, we have

(5.7) A0[pm] = µpm ⊗O∗p ⊕Op/p
mOp.

By the universal level structure, we have an exact sequence

0 > µpm ⊗O∗p > Ax[pm]
h
> Op/p

mOp > 0.

A section of the morphism h determines an Op-cyclic subgroup Cu isomorphic to Op/p
mOp defined over Wm,

which specialises at the origin A0 to a cyclic subgroup generated by (ζpm ⊗ u, γ0) in A0[pm] (cf. (5.7)). Here
γ0 denotes the image of 1 under the identification A0[pm]ét = Op/p

mOp.

The isogeny action α(u/pm) corresponds to the isogeny Ax → Ax,u := Ax/Cu. By an argument similar
to the proof of [1, Lem. 7.1 and Lem. 7.2], it follows that the p-Serre-Tate co-ordinates of Ax,u is given by
ζpmt ⊗ u. For p′ 6= p, in view of the construction of the Serre-Tate co-ordinates (cf. §3.1), it follows that the
p′-Serre-Tate co-ordinate is given by tp′ .

This finishes the proof.
�

For τ ∈ Σq, let tτq be the τ -component of tq (cf. (5.6)).

Proposition 5.2. The p-adic differential operator dσ acts as tσp
∂
∂tσp

on the deformation space Ŝ.

Proof. As a p-adic Hilbert modular form is a p-adic limit of classical Hilbert modular forms, it suffices to
verify the proposition for classical Hilbert modular forms.

Let f ∈ Gκ(Γ1(pm),W) and the t-expansion of f around x be given by

(5.8) f(t) =
∑
ω

a(ω)
∏
q∈Σp

t
ωq
q .

Here by tωq
q , we mean the character tωq (cf. §3.1) and the summation is over ω ∈ O (cf. [19, pp. 106-107]). To

emphasise the notion of t-expansion around a point, we use the indexing notation ω instead of the traditional
notation ξ for q-expansion around a cusp.

We have
f |φ =

∑
u∈O/prO

φ∗(−u)f |α(u/pr),
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as α(u/pm) acts on HΣ by z 7→ z + u′/pr (cf. (5.2)).

In view of Lemma 5.1, it follows that

(5.9) f |φσn(t) =
∑
ω

a(ω)
( ∑
u∈O/pnO

(φσn)∗(−u)ζ
TrF/Q(uωp)
pn

)
t
ωp
p

∏
p′ 6=p

t
ωp′

p′

=
∑
ω

φσn(ωp)a(ω)
∏
q∈Σp

t
ωq
q .

The last equality follows from the Fourier inversion formula.

Thus, we have

(5.10) dσf(t) = lim
n
f |φσn(t) =

∑
ω

σ(ωp)a(ω)
∏
q∈Σp

t
ωq
q = tp,σ

∂f

∂tp,σ
.

�

We have the following immediate consequence.

Corollary 5.3. The p-adic differential operator dσ is Ŝ-invariant.

Remark. The above corollary is proven in [26, §4.3] based on the computation of the Gauss-Manin connection
in terms of the Serre-Tate co-ordinates. The above approach can be generalised for a class of PEL Shimura
varieties.

6. Iwasawa µ-invariants

In this section, we consider Iwasawa µ-invariants as in Theorems B-D. In §6.1, we determine the µ-invariant
of certain anticyclotomic p-adic L-functions (cf. Theorem B). In §6.2, we determine the µ-invariant of the
cyclotomic derivative L′Σ,λ,p of Katz p-adic L-function, when the branch character λ is self-dual with the root
number −1 (cf. Theorem C). In §6.3, we prove a p-version of a conjecture Gillard regarding the vanishing of
the µ-invariant of Katz p-adic L-function (cf. Theorem D).

6.1. µ-invariant of anticyclotomic p-adic L-functions. In this subsection, we first obtain a formula for
the µ-invariant anticyclotomic Katz p-adic L-function (cf. Theorem B). Towards the end, we remark about a
similar formula for a class of Rankin-Selberg anticyclotomic p-adic L-function.

Let C be a prime-to-p ideal of K. Let Z(C) be the Ray class group of K modulo Cp∞. Let Z(C)− be
the anticyclotomic quotient. The reciprocity law recK : (Af

K)× → Z(C)− induces the isomorphism

recK : lim←−
n

K×(Af
F )×\(Af

K)×/UK(Cpn)
∼→ Z(C)−,

where UK = (OK ⊗ Ẑ)× and UK(Cpn) = {u ∈ UK | u ≡ 1 (mod Cpn)}. Let Γ− be the maximal Zp-free
quotient of Z(C)− and Γ−p be the p-part of Γ− (cf. §1).

Let Γ′ (resp. Γ′p) be the open subgroup of Γ− generated by the image ofO×p ×
∏
v|DK/F K

×
v (resp. O×p ×

∏
v|DK/F K

×
v )

via recK . Let Σp be the places above p in K induced by the p-ordinary CM type Σ. The reciprocity law recK
at Σp induces an injective map

recΣp : 1 + pOp ↪→ O×p = ⊕w∈ΣpO×Kw
recK−→ Z(C)−
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with finite cokernel as p - DF . It induces isomorphisms recΣp : 1 + pOp
∼→ Γ′ and recΣp : 1 + pOp

∼→ Γ′p. Via
these isomorphisms, we identify Γ′ (resp. Γ′p) with the subgroup recΣp(1 + pOp) (resp. recΣp(1 + pOp)) of the
anticyclotomic quotient Z(C)−.

In [25] and [14], a Zp-valued p-adic measure LC,Σ on Z(C) is constructed, interpolating critical Hecke L-
values (cf. [4]). Let λ be Hecke character over K with prime to p conductor C. Let L−Σ,λ (resp. L−Σ,λ,p) be
the p-adic measure on Γ− (resp. Γ−p ) obtained by the push-forward of LC,Σ along λ.

Recall that the µ-invariant µ(ϕ) of a Zp-valued p-adic measure ϕ on a p-adic group H is defined by

µ(ϕ) = inf
U⊂H open

vp(ϕ(U)).

The µ-invariants of the above measures are related by the following theorem.

Theorem 6.1.
µ(L−Σ,λ) = µ(L−Σ,λ,p).

Proof. Let L−Σ,λ (resp. L−Σ,λ,p) be the power series of L−Σ,λ (resp. L−Σ,λ,p) (cf. (1.3)).

We first suppose that p - h−K , where h−K is the relative class number given by h−K = hK/hF and h? is
the class number of ?, for ? = F,K.

Under the hypothesis, there are a finite number of classical Hilbert modular Eisenstein series (fλ,i)i such
that

(6.1) L−Σ,λ =
∑
i

ai ◦ (fλ,i(t)),

up to an automorphism of ZpJΓ−K, where fλ,i(t) is the t-expansion of fλ,i around a well chosen CM point x
with the CM type (K,Σ) on Sh and ai is an automorphism of the deformation space of x in Sh (cf. [19, Thm.
5.1] and [23, §5.2]). Moreover, ai’s satisfy the hypothesis in Theorem 4.1.

For κ ∈ Z≥0[Σ], let νκ be the p-adic character of Γ′ such that νκ(recΣp(y)) = yκ, for y ∈ 1 + pOp. Let
dκ be the p-adic differential operator corresponding to κ (cf. §5.1). Equation (6.1) follows from the fact that

(6.2) (dκ
∑
i

ai ◦ (fλ,i(t)))|t=1 =

∫
Γ−
νκ dL

−
Σ,λ.

In view of the linear independence of (ai ◦ (fλ,i))i (cf. [19, Thm. 3.20]), it follows that

(6.3) µ(L−Σ,λ) = min
i
µ(fλ,i(t)) = min

i
µ(fλ,i).

For a p-adic Hilbert modular form f , let f(tp) be obtained from f(t) by substituting tp′ = 1, for all p′ 6= p.

Let

(6.4) f−Σ,λ,p =
∑
i

ai,p ◦ (fλ,i(tp)).

Recall that Σp ⊂ Σ denotes the subset of infinite places of F corresponding to p, via ιp. For σ ∈ Σp, let dσ
′

be the formal differential operator given by f(tp) 7→ tσp
∂f
∂tσp

. In view of Proposition 5.2, it follows that

(6.5) dσ
′
(f(tp)) = (dσf)(tp).
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From now, let κ ∈ Z≥0[Σp]. Let dκ
′
be the corresponding formal differential operator.

We now have

(6.6) dκ
′
(f−Σ,λ,p)|tp=1 = (dκL−Σ,λ)|t=1 =

∫
Γ−
νκ dL

−
Σ,λ =

∫
Γ−p

νκ dL
−
Σ,λ,p.

The first two equalities follow from (6.5) and (6.2), respectively. The last equality follows from the fact that
for κ ∈ Z≥0[Σp], the character νκ factors through Γ−p .

In other words, dκ
′
(f−Σ,λ,p)|tp=1 interpolates the κ-th moment of the measure L−Σ,λ,p. Thus, f−Σ,λ,p = L−Σ,λ,p,

up to an automorphism of ZpJΓ−p K.

In view of the linear independence of (ai,p ◦ (fλ,i|Ĝm⊗Op
))i (cf. Theorem 4.1), it follows that

(6.7) µ(L−Σ,λ,p) = min
i
µ(fλ,i(tp)) = min

i
µ(fλ,i|Ĝm⊗Op

)).

In view of Corollary 3.8, this finishes the proof of the Theorem.

When p|h−K , the power series L−Σ,λ restricted to an explicit finite open cover of Γ− is still of the form (5.1)
(cf. [23, §5.2]). Thus, a similar argument proves the Theorem.

�

In most of the cases, µ(L−Σ,λ) has been explicitly determined (cf. [19] and [23]). Thus, we obtain a formula for
µ(L−Σ,λ,p).

Remark. A class of Rankin-Selberg anticyclotomic p-adic L-functions for Hilbert modular forms is constructed
in [24]. It also satisfies a property analogoues to (6.1) ([24, §6.2]). Thus, by an argument similar to the proof
of Theorem 6.1, we get an analogue of Theorem 6.1. In the near future, the first named author hopes to
consider Rankin-Selberg anticyclotomic p-adic L-functions for quaternionic modular forms.

6.2. µ-invariant of the cyclotomic derivative of Katz p-adic L-function. In this subsection, we deter-
mine the µ-invariant of the cyclotomic derivative of Katz p-adic L-function, when the branch character λ is
self-dual with the root number −1 (cf. Theorem C).

Let K+
∞ be the cyclotomic Zp-extension of K and Kp,∞ = K−p,∞K

+
∞. Let Γ = Gal(K−∞K

+
∞/K) and

Γp = Gal(Kp,∞/K). Let LΣ,λ (resp. LΣ,λ,p) be the p-adic measure on Γ (resp. Γp ) obtained by the
pull-back of LC,Σ (cf. §6.1) along λ. We call LΣ,λ,p as the Katz p-adic L-function with branch character λ.
Let LΣ,λ(T1, T2, ..., Td, S) ∈ ZpJΓK (resp. LΣ,λ,p(−, S) ∈ ZpJΓpK) be the power series of LΣ,λ (resp. LΣ,λ,p).
Here, T1, ..., Td are the anticyclotomic variables and S is the cyclotomic variable.

From now on, suppose that λ is self-dual i.e. λ|A×F = τK/F |.|AF
, where τK/F is the quadratic character

associated to K/F and |.|AF
is the adelic norm. In particular, the global root number of λ is ±1. Now,

suppose that the global root number is −1. In view of the functional equation of Hecke L-function, this root
number condition forces all the Hecke L-values appearing in the interpolation property of L−Σ,λ to vanish.
Accordingly, we have L−Σ,λ = 0. This also follows from the functional equation of LΣ,λ (cf. [14, §5]). In
particular, we have L−Σ,λ,p = 0.
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We can consider the cyclotomic derivatives

(6.8) L
′

Σ,λ = (
∂

∂S
LΣ,λ(T1, ..., Td, S))|S=0

and L
′

Σ,λ,p (defined analogously).

The µ-invariants of these functions are related by the following theorem.

Theorem 6.2. Suppose that p - h−K , where h
−
K is the relative class number given by h−K = hK/hF . Then,

µ(L
′

Σ,λ) = µ(L
′

Σ,λ,p).

Proof. We follow the notation in the proof of Theorem 6.1.

In the proof of [3, Thm. 3.2], it is shown there are p-adic Hilbert modular forms (f
′

λ,i)i such that

(6.9) L
′

Σ,λ =
1

logp(1 + p)

∑
i

ai ◦ (f
′

λ,i(t)),

up to an automorphism of ZpJΓ−K. More precisely, f
′

λ,i is the p-adic derivative of fλNs,i at s = 0. Being a
p-adic limit of classical Hilbert modular forms, it is a p-adic Hilbert modular form.

In view of (6.4), (6.6) and by a similar argument as in the proof of [loc. cit., Thm 3.2], it follows that

(6.10) L
′

Σ,λ,p =
1

logp(1 + p)

∑
i

ai,p ◦ (f
′

i,λ(tp)),

up to an automorphism of ZpJΓ−p K.

We finish the proof in the same way as in Theorem 6.1.
�

In most of the cases, µ(L′Σ,λ) has been explicitly determined (cf. [3, Thm. A]). Thus, we obtain a formula for
µ(L′Σ,λ,p).

Remark. When p|h−K , we do not know an expression for LΣ,λ in terms of the t-expansion of certain Hilbert
modular forms. Such an expression seems to be essential in the above proof.

6.3. p-version of a conjecture of Gillard. In this subsection, we prove a p-version of a conjecture Gillard
regarding the vanishing of the µ-invariant of Katz p-adic L-function (cf. Theorem D).

Recall that we have Katz p-adic L-function LΣ,λ,p ∈ ZpJΓpK (cf. §6.2). As a consequence of Theorem 6.1
and the results of [20] and [2], we prove a p-version of a conjecture of Gillard regarding the vanishing of the
µ-invariant of Katz p-adic L-function (cf. [12, Conj. (i)]). The conjecture was originally formulated for the
(d+ 1)-variable Katz p-adic L-function.
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Theorem 6.3. µ(LΣ,λ,p) = 0.

Proof. Let X+ be the set consisting of finite order characters ε : Γ+ → µp∞ . For every ε ∈ X+, we regard
ε as a Hecke character.

In [20] and [2], it has been shown that

(6.11) lim inf
ε∈X+

µ(L−Σ,λε) = 0.

In view of Theorem 6.1, this finishes the proof

(6.12) 0 ≤ µ(LΣ,λ,p) ≤ lim inf
ε
µ(L−Σ,λε).

�
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