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∗I would like to explain the motivation of my starting p-adic deformation
theory of modular forms and modular Galois representations and the main
points of the theory. All modular forms in this talk are elliptic either classical
or p-adic. We write X?(N) (? = 0,1) for compactified modular curves of
the level N groups Γ?(N) ⊂ SL2(Z), and Y?(N) = X?(N)−{cusps}. Here are
references:

[H13] Inventiones Math. 194 (2013), 1–40 (Image paper)
[H86a] Annals Sci. Ec Norm. Sup. 19 (1986) (Iwasawa module paper)
[H86b] Inventiones 85 (1986) (Galois representation paper)
[GME] Geometric Modular Forms and Elliptic Curves, World Scientific, 2012.
[EMI] Elementary Modular Iwasawa Theory, World Scientific, 2022.



§0. A fundamental question in 1980. Consider a homoge-

neous space X := GL2(Q)\GL2(A)/A× with a Haar measure dµ

and an L2 Hilbert space

L2
cusp := {f : X → C|

∫

X
|f |2dµ <∞,

∫

A
f(

(
1 u
0 1

)
h)du = 0 ∀h}.

By Harish-Chandra, the representation Π : GL2(A)→ AutC(L2
cusp)

given by Π(f)(h) = f(hg) is a discrete direct sum of irreducible

representations. Towards the end of 1980, I felt that having a

discrete spectrum is unfortunate. One cannot easily come close

to a harder irreducible constituent π ⊂ Π from another somehow

simpler π0 just by discreteness.

Question. Is there any other topology, keeping the information

of π and π0 to good extent, to have a continuous spectrum?



§1. Why not try p-adic topology? We need a p-adic re-
placement of L2

cusp: S(C) = GL2(Q)\GL2(A)/R×+SO2(R) is the
complex points of the Shimura curve (a pro-curve made of mod-
ular curves: Γ\H) defined over Z. Consider a holomorphic cusp
form f : H→ C of weight k on Γ. Writing j(

(
a b
c d

)
, τ) = cτ + d, f

satisfies f(γ(τ)) = f(τ)j(γ, τ)k for γ ∈ Γ. The automorphic fac-
tor g 7→ j(g, τ)k is a 1-cocycle having values in nowhere vanishing
holomorphic functions on H as j(gh, τ) = j(g, h(τ))j(g, τ). Thus
Γ\(H×C) by the action (τ, u) 7→ (γ(τ), j(γ, τ)ku) gives a cuspidal
line bundles ωkcusp ⊂ ω

k on Γ\H, which descends to Z canonically,

as ω = ϕ∗Ω1
E/S for the universal elliptic curve E

ϕ
−→ S/Z. Similarly,

writing L(n;A) = AXn+AXn−1Y + · · ·+AY n and letting SL2(Z)
acts on H× L(n;A) by (τ, P (X,Y )) 7→ (γ(τ), P ((X,Y )tγ−1)), we
have the sheaf L(n;A) of locally constant sections from Γ\H to
Γ\(H× L(n;A)). We replace L2 by the p-adic completion of




Vk := ̂lim−→α

H0(X1(Npα)/Zp, ω
k
cusp) coherent cohomology,

TJn := lim←−αH
1
et,!(Y1(Np

α),L(n; Zp)) pro-étale cohomology.

Here H1
! = Im(H1

c → H1).



§1. Why taking the limit for Y1(Np
n). Taking limit with

respect to pn is an analogue from Kummer and Iwasawa, as

Z×p = lim←−αΓ0(p
n)/Γ1(p

n), the modules V and TJn are Iwasawa

modules over Zp[[Γ]] ∼= Zp[[T ]] for Γ = Z×p /{torsion} = γZp. I

wanted to make a GL(2)-version of Iwasawa theory. Let

Γ̂0(N) :=
{(

a b
c d

)
∈ GL2(Ẑ)

∣∣∣c ∈ N Ẑ
}
,

Γ̂1(N) :=
{(

a b
c d

)
∈ Γ̂0(N)

∣∣∣a ≡ 1 mod N Ẑ
}
.

Then Y?(N) = S/Γ̂?(N) ∼= Γ?(N)\H. For each π ⊂ Π, there is

a minimal N with H0(Γ̂1(N), π) = Cfπ. If f is holomorphic, we

call π is holomorphic, and f =
∑∞
n=1 a(n, f)e(nτ). Decomposing

{
(
a b
c d

)
∈M2(Z)|ad − bc = n, a ≡ 1 mod N,N |c} =

⊔

i

αiΓ1(N),

define the Hecke operator T(n) by f |T(n)(g) =
∑
i f(gα

(∞)
i ), we

get f |T(n) = a(n, f)f if a(1, f) = 1 as H0(Γ̂1(N), π) = Cfπ, and

T(n) determines f and hence π. Therefore, it is sufficient to

take limit with respect to Γ1(Np
α).



§3. Weight reduction to the constant sheaf. Consider a

morphism I : L(n;Z/pαZ) → Z/pαZ sending P (X,Y ) 7→ P (1,0).

Note Γ1(p
α) 3 γ ≡

(
1 u
0 1

)
mod pα. Thus

I(γP (X,Y )) = P ((1,0)
(

1 0
−u 1

)
) = I(P (X,Y )),

and hence I : L(n; Z/pαZ) → Z/pnZ is an étale sheaf morphism

over Y0(p
α). Passing to the limit, we have a Galois and Hecke

equivariant map: TJn → TJ0. We have well defined Hecke oper-

ators T(n) and T(l) = U(l) for l|Np on H1
et.!, and I is also Hecke

equivariant. Define for k = n+ 2 and Λ := Zp[[Γ]] = Zp[[T ]] (by

〈γ〉 7→ 1 + T for the fixed generator γ of Γ)

hk(Np
∞; Zp) = Λ[[T(n) : 0 < n ∈ Z]] ⊂ EndΛ(TJn).

Independence Theorem: [EMI, Theorem 4.2.17]. We have a

canonical isomorphism i : hk(Np
∞;Zp) ∼= h2(Np

∞; Zp) such that

i(T(n)) = T(n), i(U(l)) = U(l) and i(〈z〉) = zn〈z〉 for z ∈ Z×p ,

where 〈z〉 ∈ lim←−Γ0(p
α)/Γ1(p

α) ∼= Z×p and zn ∈ Z×p ↪→ Qp.

Hereafter we just write h := h2(Np
∞; Zp).



§4. Finite level Hecke algebras. Define

hk(Np
α;Zp) = Zp[T(n)|0 < n ∈ Z] ⊂ EndQp

(H1
! (Y1(Np

α),L(n; Qp))).

Then by definition

h = lim←−
α

hk(Np
α; Zp) for all 2 ≤ k ∈ Z.

By the Eichler–Shimura Hecke equivariant isomorphism:

H1
! (X1(Np

α),L(n; C)) ∼= H0(X1(Np
α)/C, ω

k
cusp)⊕H

0(X1(Npα)/C, ω
k
cusp),

alternatively,

hk(Np
α;Zp) := Zp[T(n)|0 < n ∈ Z] ⊂ EndZp(H

0(X1(Np
α)/Zp, ω

k
cusp)).

Thus h acts on Vk.



§5. q-Expansion. The J-invariant has its q-expansion in q−1Z[[q]]

starting with q−1; so, J−1 = q + · · · ∈ Z[[q]]× gives rise to a pa-

rameter at∞ of X0(1) = P1(J)/Z. Since X1(N) is étale over∞ ∈

P1(J), ÔX1(N),∞/Z = Z[[q]]. Thus f ∈ H0(X1(Np
α)/Zp, ω

k
cusp) has

q-expansion f(q) =
∑∞
n=1 a(n, f)q

n ∈ Zp[[q]]. By the q-expansion

principle, we have Vk ↪→ Zp[[q]] as Zp[[q]] is p-adically complete.

Serre considered the space of p-adic modular forms as a p-adic

completion of
∑
kH

0(X1(N)/Zp, ω
k
cusp) ⊂ Zp[[q]] in 1973. Soon

after, Katz generalized this to the p-adic completion V (Npα) of
∑
kH

0(X1(N)/Qp
, ωkcusp) ∩ Zp[[q]] inside Zp[[q]], and via his notion

of geometric modular forms, he remarked

V (Npα) = V (N) inside Zp[[q]].

Duality Theorem: [EMI, §3.2.5]. We have a perfect duality

〈·, ·〉 : hk(Np
α; Zp)×H0(X1(Np

α)/Zp, ω
k
cusp)→ Zp given by 〈h, f〉 =

a(1, f |h) for α = 1, . . . ,∞, where we put H0(X1(Np
∞)/Zp, ω

k
cusp) :=

Vk. So, Vk = V2
Katz
= V (N) ⊂ Zp[[q]] by Independence theorem.



§6. Ordinary part. The algebra h is a little too big to have

an exact structure theorem. We consider the ordinary projection

e := limn→∞U(p)n! inside h. Write hordk = ehk and hord = eh.

Why e cuts down V (N) and h to a reasonable size?

For whatever α > 0, we have

Γ0(p
α)

(
1 0
0 p

)
Γ0(p

α) = Γ0(p
α)

(
1 0
0 p

)
Γ0(p

α−1) =
p−1⊔

u=0

Γ0(p
α)

(
1 u
0 p

)

independent of α; so, a power of U(p) reduces the level of f ∈

Sk(Γ1(p
α)) down to Γ1(p) as long as the Neben character is trivial

(contraction property of U(p)).

Control theorem:

h
ord/(〈γ〉 − γn)hord ∼= h

ord
k (Np;Zp) (k = n+ 2 ≥ 2).

This is, for example, proven as [EMI, Theorem 4.1.29], and hence

hord is Λ-free of rank equal to h2(Np;Zp) by ring theory.



§7. Galois representations.

Similarly TJ0 is also Λ-free of rank equal to rankZp eH
1
! (X1(Np),Zp),

which is a Galois module (Tate module of the Jacobian of X1(Np)).

By Eichler–Shimura, Frobl satisfies X2 − T(l)X + l〈l〉 = 0 on

TJ0 [GME, Theorem 4.2.2]. Indeed, TJord0 := eTJ0 fits into

the following connected-étale exact sequence of h-modules [H13,

Lemma 4.2]: 0→ hord→ TJord0
red
−−→ HomΛ(hord,Λ)→ 0. This fol-

lows by a property of reduction modulo p of X1(Np
α). Take a

local ring T of hord. If T ∼= HomΛ(T,Λ) (i.e., T is Gorenstein),

we have TJord0 ⊗
hord

T ∼= T2 and we get a Galois representation

unramified outside Np: ρT : Gal(Q/Q)→ GL2(T), and if T is not

Gorenstein, localize T into TP at a prime P of T to make TP
Gorenstein, we have ρT : Gal(Q/Q)→ GL2(TP ) such that

det(1− ρT(Frobl)X) = 1− T(l)|TX − l〈l〉X
2 for all primes l - Np,

where 〈l〉 is the image of l in lim←−αΓ0(Np
α)/Γ1(Np

α) ∼= Z×p ×

(Z/NZ)×.



§8. Λ-adic forms.

Pick λ ∈ HomΛ(hord,Λ). Consider a formal expansion Fλ :=
∑∞
n=1 λ(T(n))qn ∈ Λ[[q]]. By the duality and control theorem,

Fλ mod (〈γ〉 − γn) = Fλ(γ
n − 1)

=
∞∑

n=1

λ(T(n))(γn − 1)qn

∈ H0
cusp(X1(Np)/Zp, ω

k
cusp) =: Sk(Γ0(Np); Zp).

Thus Fλ is a Λ-adic form, and

HomΛ-alg(h
ord,Λ)⊗Λ Λ/(〈γ〉 − γn) ∼= Sk(Γ0(Np);Zp).

If the local ring T in §7 is equal to Λ and λ is a Λ-algebra homo-

morphism, then

ρT mod (〈γ〉 − γn) : Gal(Q/Q)→ GL2(Zp[ψ])

is the Galois representation of the Hecke eigenform Fλ(γ
n − 1).


