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*I would like to explain the motivation of my starting p-adic deformation
theory of modular forms and modular Galois representations and the main
points of the theory. All modular forms in this talk are elliptic either classical
or p-adic. We write X->(N) (? = 0,1) for compactified modular curves of
the level N groups N>(N) C SL2(Z), and Y>(N) = X7(IN) — {cusps}. Here are
references:

[H13] Inventiones Math. 194 (2013), 1-40 (Image paper)

[H86a] Annals Sci. Ec Norm. Sup. 19 (1986) (Iwasawa module paper)
[H86b] Inventiones 85 (1986) (Galois representation paper)

[GME] Geometric Modular Forms and Elliptic Curves, World Scientific, 2012.
[EMI] Elementary Modular Iwasawa Theory, World Scientific, 2022.



§0. A fundamental question in 1980. Consider a homoge-
neous space X = GLo(Q)\GL>(A)/A* with a Haar measure du
and an L2 Hilbert space

cusp =A{r: X_><C|/ |f|2d,u<00/f( h)du_OVh}

By Harish-Chandra, the representation N : GL>(A) — Aut@(Lcusp
given by M(f)(h) = f(hg) is a discrete direct sum of irreducible
representations. Towards the end of 1980, I felt that having a
discrete spectrum is unfortunate. One cannot easily come close
to a harder irreducible constituent = C 'l from another somehow
simpler mg just by discreteness.

Question. Is there any other topology, keeping the information
of m and mg to good extent, to have a continuous spectrum?



31. Why not try p-adic topology? We need a p-adic re-
placement of L2, S(C) = GL2(Q)\GL2(A)/RISO2(R) is the
complex points of the Shimura curve (a pro-curve made of mod-
ular curves: M\$) defined over Z. Consider a holomorphic cusp
form f:$H — C of weight kK on I'. Writing j(<g g) ,T) =cTr+d, f

satisfies f(v(7)) = f(7)j(~,7)* for v € . The automorphic fac-
tor g — j(g,7)F is a 1-cocycle having values in nowhere vanishing
holomorphic functions on $ as j(gh,7) = j(g,h(7))j(g,7). Thus
M\ (9 x C) by the action (r,u) — (v(7),j(y,7)*u) gives a cuspidal
line bundles wﬁusp C w® on \$, which descends to Z canonically,
as w = go*QI]E/S for the universal elliptic curve E 2, S/Z. Similarly,
writing L(n; A) = AX"+ AX" 1y +... 4+ AY" and letting SL»(Z)
acts on $ x L(n; A) by (7, P(X,Y)) — (v(7), P((X,Y)!y71)), we
have the sheaf L(n; A) of locally constant sections from M\ $ to
M\ ($ x L(n; A)). We replace L? by the p-adic completion of

Vi i=1im HO(Xl(Npa)/Zp,wéfusp) coherent cohomology,
TJp = lim_ Heltj!(Yl(NpO‘),ﬁ(n; Zp))  pro-étale cohomology.

Here H! =Im(H}! — HY).



§1. Why taking the limit for Y;(Np"). Taking limit with
respect to p" is an analogue from Kummer and Iwasawa, as
Ly = lim Mo(p™)/T1(p™), the modules V and TJ, are Iwasawa

modules over Zy[[I]] £ Zy[[T]] for I = ZX/{torsion} = yZr. I
wanted to make a GL(2)-version of Iwasawa theory. Let

Fo(N) :={(2}) € GLa(Z)|c € NZ},
F(V) :={(24)elo(N)a=1 mod NZ}.
Then Y2(N) = S/T»(N) £ I,(N)\$. For each = C I, there is

a minimal N with HO(F{(N),n) = Cfr. If f is holomorphic, we
call 7 is holomorphic, and f = 3>, a(n, f)e(nT). Decomposing

{<CCL 2) € M>(Z)|lad —bc =n,a =1 mod N, N|c} = uairl(N)7
1

define the Hecke operator T'(n) by f|T(n)(g) = Zif(gagoo)), we
get fIT(n) = a(n, f)f if a(1,f) =1 as HO(T1(N),n) = Cfr, and
T(n) determines f and hence w. Therefore, it is sufficient to
take limit with respect to M1 (Np%).



3. Weight reduction to the constant sheaf. Consider a
morphism I : L(n;Z/p*Z) — Z/p*Z sending P(X,Y) — P(1,0).
Note M1 (p%) >~ = (6 Tf) mod p%. Thus

I(yP(X,Y)) = P((1,0) ( %, 9)) = 1(P(X,Y)),

and hence I : L(n;Z/p*Z) — 7Z/p"Z is an €tale sheaf morphism
over Yp(p®). Passing to the limit, we have a Galois and Hecke
equivariant map: TJ, — T'Jy. We have well defined Hecke oper-
ators T'(n) and T'(I1) = U(l) for I|Np on Hét.!' and I is also Hecke

equivariant. Define for k =n 4 2 and A 1= Zp[[l']] = Zp[[T]] (by
(v) — 1 4T for the fixed generator v of IN)

h,.(Np™; Zp) = N[[T'(n) : 0 <n € Z]] C Enda(TJn).
Independence Theorem: [EMI, Theorem 4.2.17]. We have a
canonical isomorphism i : hp(Np°°; Zp) = ho(Np°°; Zp) such that
i(T'(n)) = T(n), i(UW)) = UW) and i((z)) = 2"(z) for z € Z,
where (z) € imTo(p®)/T1(p*) = Z; and 2" € Z; — Qp.

Hereafter we just write h := ho(Np®°; Zyp).



34. Finite level Hecke algebras. Define

hy(Np®; Zp) = Zp[T(n)|0 < n € Z] C Endg, (H{ (Y1(Np™), L(n; Qp))).
Then by definition

h = limh,(Np™, Zp) for all 2 <k e Z.

«

By the Eichler—=Shimura Hecke equivariant isomorphism:

HE(X1(Np®), £(n; ©)) & HO(X1(Np®) )¢, wh, o) DHO (X1 (NpY) /s wysp),
alternatively,

hy,(Np®; Zp) = Zp[T(n)|0 < n € Z] C Endy, (HO(X1(Np®) /7 ,wh o).
Thus h acts on V.



5. ¢g-Expansion. The J-invariant has its g-expansion in ¢~ 1Z[[q]]
starting with ¢—1; so, J-1 = ¢+ --- € Z[[¢]]* gives rise to a pa-
rameter at oo of Xg(1) = Pl(J)/Z. Since X1 (V) is étale over co €
PL(J), 6X1(N),OO/Z = Z[[g]]- Thus f € HO(X1(Np®),z,,wysp) has
g-expansion f(q) = >°2 1 a(n, f)q" € Zp[[q]]. By the g-expansion
principle, we have V. — Zp|[q]] as Zyllq]] is p-adically complete.
Serre considered the space of p-adic modular forms as a p-adic
completion of Y2, HO(X1(N),z,, weusp) C Zpllgl] in 1973. Soon
after, Katz generalized this to the p-adic completion V(Np%) of
Sk HO(Xl(N)/Qp,wé’usp) N Zp[[q]] inside Zy[[¢]], and via his notion
of geometric modular forms, he remarked

V(NpY) =V (N) inside Zp[[q]].

Duality Theorem: [EMI, §3.2.5]. We have a perfect duality
() by (Np®; Zp) x HO(X1(Np®) j7,, wensp) — Lp given by (h, f) =
a(1, flh) fora=1,..., 00, where we put HO(Xl(NpOO)/Zp,wlgusp) =

Vi.. So, Vi. = V5 “atz V(N) C Zpllg]l] by Independence theorem.



§6. Ordinary part. The algebra h is a little too big to have
an exact structure theorem. We consider the ordinary projection
e 1= liMp oo U(p)™ inside h. Write h¢"? = eh;, and h°"¢ = eh.

Why e cuts down V(NN) and h to a reasonable size?

For whatever o« > 0, we have

p—1
Fo™) (39) Fo@™ =To®@™ (§9) To*™H = | To@™ (5 3)
u=0
independent of «; so, a power of U(p) reduces the level of f &
S(M(p®)) down to I'{(p) as long as the Neben character is trivial

(contraction property of U(p)).
Control theorem:

hord/((y) — 40T 2 WU (Np; Z,) (k=n42 > 2).

Thisis, for example, proven as [EMI, Theorem 4.1.29], and hence
hord is A-free of rank equal to hs(Np; Zp) by ring theory.



7. Galois representations.
Similarly T'Jg is also A-free of rank equal to ranky eH{ (X1(Np),Zp),
which is a Galois module (Tate module of the Jacobian of X1 (Np)).
By Eichler—Shimura, Frob; satisfies X2 — T(1)X 4+ I{I) = 0 on
TJo [GME, Theorem 4.2.2]. Indeed, TJJ? := eTJy fits into
the following connected-étale exact sequence of h-modules [H13,
Lemma 4.2]: 0 — ho"d — TJgrd == ", Homa(hod, A) — 0. This fol-
lows by a property of reduction modulo p of X1(Np%). Take a
local ring T of ho™d, If T = Homa(T,A) (i.e., T is Gorenstein),
we have TJg'“d Rpord T = >~ T2 and we get a Galois representation
unramified outside Np: pr : Gal(Q/Q) — GLo(T), and if T is not
Gorenstein, localize T into Tp at a prime P of T to make Tp
Gorenstein, we have py : Gal(Q/Q) — GLo(Tp) such that

det(1 — pp(Frob)X) =1 — T()|rX — [{{)X? for all primes [ { Np,

where (I) is the image of [ in lim Fo(Np®)/T1(Np%) = Z; X
(Z/NZ)™.



§8. A-adic forms.
Pick A € Homa(h°?,A). Consider a formal expansion Fy :=
o1 AM(T'(n))q™ € A[[q]]. By the duality and control theorem,

Fy mod ((v) —+") = F\(v" —1)

= > MTn)(v" —1)q"

n=1

€ Housp(X1(NP) /7, weusp) = Sk(To(ND); Zp).

Thus F) is a A-adic form, and

Homa_aig(h” % A) @A A/ () — ™) = Sp(To(Np); Zp).

If the local ring T in §7 is equal to A and X is a A-algebra homo-
morphism, then

pr mod ((v) —~+™) : Gal(Q/Q) — GL(Zp[])

is the Galois representation of the Hecke eigenform F\(~4™ — 1).



