* Deformation of a modular form and modular Galois representations

Haruzo Hida
UCLA, Los Angeles, CA 90095-1555, U.S.A.
UCLA student seminar, September 27, 2022.

*I would like to explain the motivation of my starting p-adic deformation theory of modular forms and modular Galois representations and the main points of the theory. All modular forms in this talk are elliptic either classical or p-adic. We write $X_{?}(N)(?=0,1)$ for compactified modular curves of the level N groups $\Gamma_{?}(N) \subset \operatorname{SL}_{2}(\mathbb{Z})$, and $Y_{?}(N)=X_{?}(N)-\{c u s p s\}$. Here are references:
[H13] Inventiones Math. 194 (2013), 1-40 (Image paper)
[H86a] Annals Sci. Ec Norm. Sup. 19 (1986) (Iwasawa module paper)
[H86b] Inventiones 85 (1986) (Galois representation paper)
[GME] Geometric Modular Forms and Elliptic Curves, World Scientific, 2012.
[EMI] Elementary Modular Iwasawa Theory, World Scientific, 2022.
§0. A fundamental question in 1980. Consider a homogeneous space $X:=\mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}(\mathbb{A}) / \mathbb{A}^{\times}$with a Haar measure $d \mu$ and an L^{2} Hilbert space

$$
L_{\text {cusp }}^{2}:=\left\{f:\left.X \rightarrow \mathbb{C}\left|\int_{X}\right| f\right|^{2} d \mu<\infty, \int_{\mathbb{A}} f\left(\left(\begin{array}{cc}
1 & u \\
0 & 1
\end{array}\right) h\right) d u=0 \quad \forall h\right\} .
$$

By Harish-Chandra, the representation $\Pi: \mathrm{GL}_{2}(\mathbb{A}) \rightarrow \operatorname{Aut}_{\mathbb{C}}\left(L_{\text {cusp }}^{2}\right)$ given by $\Pi(f)(h)=f(h g)$ is a discrete direct sum of irreducible representations. Towards the end of 1980, I felt that having a discrete spectrum is unfortunate. One cannot easily come close to a harder irreducible constituent $\pi \subset \Pi$ from another somehow simpler π_{0} just by discreteness.

Question. Is there any other topology, keeping the information of π and π_{0} to good extent, to have a continuous spectrum?
$\S 1$. Why not try p-adic topology? We need a p-adic replacement of $L_{\text {cusp }}^{2}: S(\mathbb{C})=\mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}(\mathbb{A}) / \mathbb{R}_{+}^{\times} \mathrm{SO}_{2}(\mathbb{R})$ is the complex points of the Shimura curve (a pro-curve made of modular curves: $\ulcorner\backslash \mathfrak{H}$) defined over \mathbb{Z}. Consider a holomorphic cusp form $f: \mathfrak{H} \rightarrow \mathbb{C}$ of weight k on Γ. Writing $j\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \tau\right)=c \tau+d, f$ satisfies $f(\gamma(\tau))=f(\tau) j(\gamma, \tau)^{k}$ for $\gamma \in \Gamma$. The automorphic factor $g \mapsto j(g, \tau)^{k}$ is a 1 -cocycle having values in nowhere vanishing holomorphic functions on \mathfrak{H} as $j(g h, \tau)=j(g, h(\tau)) j(g, \tau)$. Thus $\Gamma \backslash(\mathfrak{H} \times \mathbb{C})$ by the action $(\tau, u) \mapsto\left(\gamma(\tau), j(\gamma, \tau)^{k} u\right)$ gives a cuspidal line bundles $\omega_{\text {cusp }}^{k} \subset \omega^{k}$ on $\Gamma \backslash \mathfrak{H}$, which descends to \mathbb{Z} canonically, as $\omega=\varphi_{*} \Omega \frac{1}{\mathbb{E} / S}$ for the universal elliptic curve $\mathbb{E} \xrightarrow{\varphi} S_{/ \mathbb{Z}}$. Similarly, writing $L(n ; A)=A X^{n}+A X^{n-1} Y+\cdots+A Y^{n}$ and letting $\mathrm{SL}_{2}(\mathbb{Z})$ acts on $\mathfrak{H} \times L(n ; A)$ by $(\tau, P(X, Y)) \mapsto\left(\gamma(\tau), P\left((X, Y)^{t} \gamma^{-1}\right)\right)$, we have the sheaf $\mathcal{L}(n ; A)$ of locally constant sections from $\Gamma \backslash \mathfrak{H}$ to $\Gamma \backslash(\mathfrak{H} \times L(n ; A))$. We replace L^{2} by the p-adic completion of

$$
\begin{cases}\left.V_{k}:=\lim _{\alpha} H^{0}\left(X_{1} \widehat{\left(N p^{\alpha}\right.}\right) / \mathbb{Z}_{p}, \omega_{c u s p}^{k}\right) & \text { coherent cohomology, } \\ T J_{n}:=\varliminf_{\alpha} H_{e t,!}^{1}\left(Y_{1}\left(N p^{\alpha}\right), \mathcal{L}\left(n ; \mathbb{Z}_{p}\right)\right) & \text { pro-étale cohomology. }\end{cases}
$$

Here $H_{!}^{1}=\operatorname{Im}\left(H_{c}^{1} \rightarrow H^{1}\right)$.
§1. Why taking the limit for $Y_{1}\left(N p^{n}\right)$. Taking limit with respect to p^{n} is an analogue from Kummer and Iwasawa, as $\mathbb{Z}_{p}^{\times}=\varliminf_{\alpha} \Gamma_{0}\left(p^{n}\right) / \Gamma_{1}\left(p^{n}\right)$, the modules V and $T J_{n}$ are Iwasawa modules over $\mathbb{Z}_{p}[[\Gamma]] \cong \mathbb{Z}_{p}[[T]]$ for $\Gamma=\mathbb{Z}_{p}^{\times} /\{$torsion $\}=\gamma^{\mathbb{Z}_{p}}$. I wanted to make a GL(2)-version of Iwasawa theory. Let

$$
\begin{aligned}
& \hat{\Gamma}_{0}(N):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(\widehat{\mathbb{Z}}) \right\rvert\, c \in N \hat{\mathbb{Z}}\right\}, \\
& \hat{\Gamma}_{1}(N):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \hat{\Gamma}_{0}(N) \right\rvert\, a \equiv 1 \quad \bmod N \widehat{\mathbb{Z}}\right\} .
\end{aligned}
$$

Then $Y_{?}(N)=S / \hat{\Gamma}_{?}(N) \cong \Gamma_{?}(N) \backslash \mathfrak{H}$. For each $\pi \subset \Pi$, there is a minimal N with $H^{0}\left(\hat{\Gamma}_{1}(N), \pi\right)=\mathbb{C} f_{\pi}$. If f is holomorphic, we call π is holomorphic, and $f=\sum_{n=1}^{\infty} a(n, f) \mathbf{e}(n \tau)$. Decomposing

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathbb{Z})|a d-b c=n, a \equiv 1 \quad \bmod N, N| c\right\}=\bigsqcup_{i} \alpha_{i} \Gamma_{1}(N)
$$

define the Hecke operator $T(n)$ by $f \mid T(n)(g)=\sum_{i} f\left(g \alpha_{i}^{(\infty)}\right)$, we get $f \mid T(n)=a(n, f) f$ if $a(1, f)=1$ as $H^{0}\left(\hat{\Gamma}_{1}(N), \pi\right)=\mathbb{C} f_{\pi}$, and $T(n)$ determines f and hence π. Therefore, it is sufficient to take limit with respect to $\Gamma_{1}\left(N p^{\alpha}\right)$.
§3. Weight reduction to the constant sheaf. Consider a morphism $I: L\left(n ; \mathbb{Z} / p^{\alpha} \mathbb{Z}\right) \rightarrow \mathbb{Z} / p^{\alpha} \mathbb{Z}$ sending $P(X, Y) \mapsto P(1,0)$. Note $\Gamma_{1}\left(p^{\alpha}\right) \ni \gamma \equiv\left(\begin{array}{ll}1 & u \\ 0 & 1\end{array}\right) \bmod p^{\alpha}$. Thus

$$
I(\gamma P(X, Y))=P\left((1,0)\left(\begin{array}{cc}
1 & 0 \\
-u & 1
\end{array}\right)\right)=I(P(X, Y)),
$$

and hence $I: \mathcal{L}\left(n ; \mathbb{Z} / p^{\alpha} \mathbb{Z}\right) \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ is an étale sheaf morphism over $Y_{0}\left(p^{\alpha}\right)$. Passing to the limit, we have a Galois and Hecke equivariant map: $T J_{n} \rightarrow T J_{0}$. We have well defined Hecke operators $T(n)$ and $T(l)=U(l)$ for $l \mid N p$ on $H_{e t .!}^{1}$, and I is also Hecke equivariant. Define for $k=n+2$ and $\wedge:=\mathbb{Z}_{p}[[\Gamma]]=\mathbb{Z}_{p}[[T]]$ (by $\langle\gamma\rangle \mapsto 1+T$ for the fixed generator γ of Γ)

$$
\mathbf{h}_{k}\left(N p^{\infty} ; \mathbb{Z}_{p}\right)=\wedge[[T(n): 0<n \in \mathbb{Z}]] \subset \operatorname{End}_{\wedge}\left(T J_{n}\right)
$$

Independence Theorem: [EMI, Theorem 4.2.17]. We have a canonical isomorphism $i: \mathbf{h}_{k}\left(N p^{\infty} ; \mathbb{Z}_{p}\right) \cong \mathbf{h}_{2}\left(N p^{\infty} ; \mathbb{Z}_{p}\right)$ such that $i(T(n))=T(n), i(U(l))=U(l)$ and $i(\langle z\rangle)=z^{n}\langle z\rangle$ for $z \in \mathbb{Z}_{p}^{\times}$, where $\langle z\rangle \in!\varliminf_{0} \Gamma_{0}\left(p^{\alpha}\right) / \Gamma_{1}\left(p^{\alpha}\right) \cong \mathbb{Z}_{p}^{\times}$and $z^{n} \in \mathbb{Z}_{p}^{\times} \hookrightarrow \mathbb{Q}_{p}$.

Hereafter we just write $\mathrm{h}:=\mathrm{h}_{2}\left(N p^{\infty} ; \mathbb{Z}_{p}\right)$.
§4. Finite level Hecke algebras. Define
$\mathrm{h}_{k}\left(N p^{\alpha} ; \mathbb{Z}_{p}\right)=\mathbb{Z}_{p}[T(n) \mid 0<n \in \mathbb{Z}] \subset \operatorname{End}_{\mathbb{Q}_{p}}\left(H_{!}^{1}\left(Y_{1}\left(N p^{\alpha}\right), \mathcal{L}\left(n ; \mathbb{Q}_{p}\right)\right)\right)$.
Then by definition

$$
\mathbf{h}={\underset{\alpha}{\lim }}_{\alpha} \mathbf{h}_{k}\left(N p^{\alpha} ; \mathbb{Z}_{p}\right) \text { for all } 2 \leq k \in \mathbb{Z} .
$$

By the Eichler-Shimura Hecke equivariant isomorphism:
$H_{!}^{1}\left(X_{1}\left(N p^{\alpha}\right), \mathcal{L}(n ; \mathbb{C})\right) \cong H^{0}\left(X_{1}\left(N p^{\alpha}\right)_{/ \mathbb{C}}, \omega_{c u s p}^{k}\right) \oplus \overline{H^{0}\left(X_{1}\left(N p^{\alpha}\right)_{/ \mathbb{C}}, \omega_{c u s p}^{k}\right)}$, alternatively,
$\mathbf{h}_{k}\left(N p^{\alpha} ; \mathbb{Z}_{p}\right):=\mathbb{Z}_{p}[T(n) \mid 0<n \in \mathbb{Z}] \subset \operatorname{End}_{\mathbb{Z}_{p}}\left(H^{0}\left(X_{1}\left(N p^{\alpha}\right)_{/ \mathbb{Z}_{p}}, \omega_{\text {cusp }}^{k}\right)\right)$.
Thus h acts on V_{k}.
§5. q-Expansion. The J-invariant has its q-expansion in $q^{-1} \mathbb{Z}[[q]]$ starting with q^{-1}; so, $J^{-1}=q+\cdots \in \mathbb{Z}[[q]]^{\times}$gives rise to a parameter at ∞ of $X_{0}(1)=\mathbf{P}^{1}(J)_{/ \mathbb{Z}}$. Since $X_{1}(N)$ is étale over $\infty \in$ $\mathbf{P}^{1}(J), \widehat{\mathcal{O}}_{X_{1}(N), \infty / \mathbb{Z}}=\mathbb{Z}[[q]]$. Thus $f \in H^{0}\left(X_{1}\left(N p^{\alpha}\right)_{/ \mathbb{Z}_{p}}, \omega_{\text {cusp }}^{k}\right)$ has q-expansion $f(q)=\sum_{n=1}^{\infty} a(n, f) q^{n} \in \mathbb{Z}_{p}[[q]]$. By the q-expansion principle, we have $V_{k} \hookrightarrow \mathbb{Z}_{p}[[q]]$ as $\mathbb{Z}_{p}[[q]]$ is p-adically complete. Serre considered the space of p-adic modular forms as a p-adic completion of $\sum_{k} H^{0}\left(X_{1}(N)_{/ \mathbb{Z}_{p}}, \omega_{\text {cusp }}^{k}\right) \subset \mathbb{Z}_{p}[[q]]$ in 1973. Soon after, Katz generalized this to the p-adic completion $V\left(N p^{\alpha}\right)$ of $\sum_{k} H^{0}\left(X_{1}(N) \mathbb{Q}_{p}, \omega_{\text {cusp }}^{k}\right) \cap \mathbb{Z}_{p}[[q]]$ inside $\mathbb{Z}_{p}[[q]]$, and via his notion of geometric modular forms, he remarked

$$
V\left(N p^{\alpha}\right)=V(N) \text { inside } \mathbb{Z}_{p}[[q]] .
$$

Duality Theorem: [EMI, §3.2.5]. We have a perfect duality $\langle\cdot, \cdot\rangle: \mathbf{h}_{k}\left(N p^{\alpha} ; \mathbb{Z}_{p}\right) \times H^{0}\left(X_{1}\left(N p^{\alpha}\right)_{\mathbb{Z}_{p}}, \omega_{c u s p}^{k}\right) \rightarrow \mathbb{Z}_{p}$ given by $\langle h, f\rangle=$ $a(1, f \mid h)$ for $\alpha=1, \ldots, \infty$, where we put $H^{0}\left(X_{1}\left(N p^{\infty}\right)_{\mathbb{Z}_{p}}, \omega_{\text {cusp }}^{k}\right):=$ V_{k}. So, $V_{k}=V_{2} \stackrel{\text { Katz }}{=} V(N) \subset \mathbb{Z}_{p}[[q]]$ by Independence theorem.
§6. Ordinary part. The algebra \mathbf{h} is a little too big to have an exact structure theorem. We consider the ordinary projection $e:=\lim _{n \rightarrow \infty} U(p)^{n!}$ inside \mathbf{h}. Write $\mathbf{h}_{k}^{\text {ord }}=e \mathbf{h}_{k}$ and $\mathbf{h}^{\text {ord }}=e \mathbf{h}$.

Why e cuts down $V(N)$ and h to a reasonable size?
For whatever $\alpha>0$, we have

$$
\Gamma_{0}\left(p^{\alpha}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \Gamma_{0}\left(p^{\alpha}\right)=\Gamma_{0}\left(p^{\alpha}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \Gamma_{0}\left(p^{\alpha-1}\right)=\bigsqcup_{u=0}^{p-1} \Gamma_{0}\left(p^{\alpha}\right)\left(\begin{array}{ll}
1 & u \\
0 & p
\end{array}\right)
$$

independent of α; so, a power of $U(p)$ reduces the level of $f \in$ $S_{k}\left(\Gamma_{1}\left(p^{\alpha}\right)\right)$ down to $\Gamma_{1}(p)$ as long as the Neben character is trivial (contraction property of $U(p)$).

Control theorem:

$$
\mathbf{h}^{\text {ord }} /\left(\langle\gamma\rangle-\gamma^{n}\right) \mathbf{h}^{\text {ord }} \cong \mathbf{h}_{k}^{\text {ord }}\left(N p ; \mathbb{Z}_{p}\right) \quad(k=n+2 \geq 2) .
$$

This is, for example, proven as [EMI, Theorem 4.1.29], and hence $\mathrm{h}^{\text {ord }}$ is Λ-free of rank equal to $\mathrm{h}_{2}\left(N p ; \mathbb{Z}_{p}\right)$ by ring theory.

§7. Galois representations.

Similarly $T J_{0}$ is also \wedge-free of rank equal to rank $\mathbb{Z}_{p} e H_{!}^{1}\left(X_{1}(N p), \mathbb{Z}_{p}\right)$, which is a Galois module (Tate module of the Jacobian of $X_{1}(N p)$). By Eichler-Shimura, Frob_{l} satisfies $X^{2}-T(l) X+l\langle l\rangle=0$ on $T J_{0}$ [GME, Theorem 4.2.2]. Indeed, $T J_{0}^{\text {ord }}:=e T J_{0}$ fits into the following connected-étale exact sequence of h-modules $[\mathrm{H} 13$, Lemma 4.2]: $0 \rightarrow \mathbf{h}^{\text {ord }} \rightarrow T J_{0}^{\text {ord }} \xrightarrow{\text { red }} \operatorname{Hom}_{\wedge}\left(\mathrm{h}^{\text {ord }}, \wedge\right) \rightarrow 0$. This follows by a property of reduction modulo p of $X_{1}\left(N p^{\alpha}\right)$. Take a local ring \mathbb{T} of $h^{\text {ord }}$. If $\mathbb{T} \cong \operatorname{Hom}_{\wedge}(\mathbb{T}, \wedge)$ (i.e., \mathbb{T} is Gorenstein), we have $T J_{0}^{\text {ord }} \otimes_{\text {hord }} \mathbb{T} \cong \mathbb{T}^{2}$ and we get a Galois representation unramified outside $N p: \rho_{\mathbb{T}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T})$, and if \mathbb{T} is not Gorenstein, localize \mathbb{T} into \mathbb{T}_{P} at a prime P of \mathbb{T} to make \mathbb{T}_{P} Gorenstein, we have $\rho_{\mathbb{T}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{T}_{P}\right)$ such that
$\operatorname{det}\left(1-\rho_{\mathbb{T}}\left(\mathrm{Frob}_{l}\right) X\right)=1-\left.T(l)\right|_{\mathbb{T}} X-l\langle l\rangle X^{2}$ for all primes $l \nmid N p$, where $\langle l\rangle$ is the image of l in $\varliminf_{\alpha} \Gamma_{0}\left(N p^{\alpha}\right) / \Gamma_{1}\left(N p^{\alpha}\right) \cong \mathbb{Z}_{p}^{\times} \times$ $(\mathbb{Z} / N \mathbb{Z})^{\times}$.
§8. \wedge-adic forms.
Pick $\lambda \in \operatorname{Hom}_{\wedge}\left(\mathbf{h}^{\text {ord }}, \wedge\right)$. Consider a formal expansion $F_{\lambda}:=$ $\sum_{n=1}^{\infty} \lambda(T(n)) q^{n} \in \wedge[[q]]$. By the duality and control theorem,

$$
\begin{aligned}
F_{\lambda} \bmod \left(\langle\gamma\rangle-\gamma^{n}\right) & =F_{\lambda}\left(\gamma^{n}-1\right) \\
& =\sum_{n=1}^{\infty} \lambda(T(n))\left(\gamma^{n}-1\right) q^{n} \\
& \in H_{\text {cusp }}^{0}\left(X_{1}(N p)_{\mathbb{Z}_{p}}, \omega_{\text {cusp }}^{k}\right)=: S_{k}\left(\Gamma_{0}(N p) ; \mathbb{Z}_{p}\right) .
\end{aligned}
$$

Thus F_{λ} is a Λ-adic form, and

$$
\operatorname{Hom}_{\wedge-\mathrm{alg}}\left(\mathrm{~h}^{o r d}, \wedge\right) \otimes_{\wedge} \wedge /\left(\langle\gamma\rangle-\gamma^{n}\right) \cong S_{k}\left(\Gamma_{0}(N p) ; \mathbb{Z}_{p}\right) .
$$

If the local ring \mathbb{T} in $\S 7$ is equal to Λ and λ is a Λ-algebra homomorphism, then

$$
\rho_{\mathbb{T}} \bmod \left(\langle\gamma\rangle-\gamma^{n}\right): \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{p}[\psi]\right)
$$

is the Galois representation of the Hecke eigenform $F_{\lambda}\left(\gamma^{n}-1\right)$.

