GALOIS DEFORMATION AND L-INVARIANT

HARUZO HIDA

1. LECTURE 2

The notation is as in the first lecture (£: a totally real field, p > 2 is a fixed prime).
For simplicity, we assume that p splits completely in F'//Q. We start with a Galois
representation pr : Gal(Q/F) — GLy(W) associated to a Hilbert modular form (on
GL(2),r) with coefficients in W. We assume the ordinarity of pp:

* : _
prlp, = (Op Oép) with [y # ap, Gyl =N*1 and ay(1y) =1

on the decomposition group and the inertia group I, C D, C Gal(Q/F) for all
prime factor p of p in F. Here N(0) € Z5 is the p-adic cyclotomic character with
exp(%)” = exp(%) for all n» > 0 and k > 1 is an integer. Again for simplicity,

we assume that p is unramified outside p.

We consider the universal nearly ordinary couple (R, p : Gal(Q/F) — GLy(R))
considered in the first lecture where R is a pro-Artinian local K-algebra. The couple
(R, p) is universal among Galois deformations p4 : Gal(Q/F) — GL2(A) (for Artinian
local K-algebras A with A/m4 = K) such that

(K1) unramified outside p;

(K2) PA|Ga1(@p/Fp) > (0ay,) With aap = ap mod my (and the local cyclotomy

condition if p does not split completely in F');

(K3) det(pa) = det pp;

(K4) pa = pr mod my.

—1
Recall I'y = 1+ pZ, = %Z” ' Gal(Fy[pp]/Fy). Identify W][[',]] with W[[X,]] by
Yo < 1+Xp. Since plgag, ) = (06, ), Opay " 1 Ty — R induces an algebra structure
on R over W[[X;]]. Thus R is an algebra over K[[Xy]],-
Here is the theorem we have seen in the first lecture:

Theorem 1.1 (Derivative). Suppose R = K[[X,|lpp- Then, if p o p = pp, for the
local Artin symbol |p, Fy] = Frob,, we have

[T tog, (e)an(lp, F)) ™

L(Ind$ Ad(pr)) = L(Ad(pr)) = det (M)
Py P

aXp/

X=0

Greenberg proposed a conjectural recipe of computing the L—invariant. When
V = Ad(pr), his definition goes as follows. Under some hypothesis, he found a
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unique subspace H C H'(F, Ad(pr)) of dimension e = [{p|p}| represented by cocycles
c:Gal(Q/F) — Ad(pr) such that

(1) ¢ is unramified outside p;
(2) c restricted to D, is upper triangular after conjugation for all p|p.

By the condition (2), c|;, modulo upper nilpotent matrices factors through the cyclo-
tomic Galois group Gal(Qp|pp~]/Q,) because F, = Q,, and hence ¢|p, modulo upper
nilpotent matrices becomes unramified everywhere over the cyclotomic Z,-extension
F./F; so, the cohomology class [c] is in Selg, (Ad(pr)) but not in Selp(Ad(pr)).
Take a basis {cp}pp of H over K. Write

~ —ap(o)  * ; !
cp(0) ( 0 ap(a)) for 0 € Dy with any p’|p.
Then a, : Dy — K is a homomorphism. His L-invariant is defined by

L(Ad(pr)) = det ((ap([p, Fy)y 1, (108,(0) @y, Fo]pwia) ")

The above value is independent of the choice of the basis {¢y},. As we remarked in
the first lecture, assuming the following condition:

(ns) p = (p mod my ) has nonsoluble image,

by using basically a result of Fujiwara and potential modularity of Taylor (plus a very
recent work of Lin Chen), we have R = K|[[X,]|,,- The following conjecture for the
arithmetic L-function is almost a theorem except for the nonvanishing £L(Ad(pr)) # 0
(see [HMI] Theorem 5.27 combined with (5.2.6) there):

Conjecture 1.2 (Greenberg). Suppose (ns). Let ? = arith,an. For L) (s, Ad(pr)) =
Parith(y1=s — 1), then L, (s, Ad(pr)) has zero of order equal to e = |{p|p}| and for the
constant L(Ad(pr)) € K* specified by the determinant as in the theorem, we have
L, (s, Ad(pr))
i e
s—1 (s —1)¢
If 7 = arith, the identity is up to units.

= L(Ad(pr))||Selg(IndF Ad(pp)*)H;l/[K:Qp].

The factor £7(Ad(p)) does not show up in the above formula. If pg is crystalline
at p, writing Sr(Ad(pr)*) for the Bloch-Kato Selmer group H(F, Ad(p)*), we have

[1Selg(Ind® Ad(pr)")|| ;"% = £+ (Ad(pr))||Sp(Ad(pr))]| " up to units,

and the value HSF Ad(p H_l/ Q] g directly related to the primitive complex

L-value L(1, Ad(pr)) up to a period (see [MFG] page 284). In the following section,
we describe the Selmer group and how to specify H.

1.1. Greenberg’s Selmer Groups. Write F®)/F for the maximal extension un-
ramified outside p and co. Put & = Gal(F® /F) and &, = Gal(F® /M). Let
V = Ad(pr). We fix a W-lattice T in V stable under &.

Write D = D, C & for the decomposition group of each prime factor p|p. Choosing
a basis of pr so that pr|p is upper triangular, we have a 3-step filtration:

(ord) VD F VD FVD{0},
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where F,°V' is made up of upper triangular matrices and .7-"; V' is made up of upper
nilpotent matrices, and on F V/]—"; V, D acts trivially (getting eigenvalue 1 for
Froby). Since V is self-dual, its dual V*(1) = Homg (V, K) ® N again satisfies (ord).

Let M/F be a subfield of F®) and put &, = Gal(F® /M). We write p for a
prime of M over p and q for general primes of M. We put

v
LP(V) = Ker(ReS . HI(MP, V) — Hl(Ip, m))
Define for the image L,(V/T') of L,(V) in Hl(Mp, V/T)
M
(1.1) Selpr(A) = Ker(H' (&), A H '“’ for A=V,V/T.

The classical Selmer group of V' is given by SelM(V/T). We define the “—” Selmer
group replacing L,(A) in the above definition by

§
G

Lemma 1.3 (Vanishing). Suppose R = K[[X,]]y,- Then Selp(V) = Homg (mg/m3, K)
and Selgp(V) = 0.

Proof. We consider the space Derg (R, K) of continuous K-derivations. Let K[e] =
K|t]/(t?) for the dual number ¢ = (¢ mod t?). Then writing K-algebra homomor-
phism ¢ : R — Kle| as ¢(r) = ¢o(r) + ¢1(r)e and sending ¢ to ¢1 € Derg (R, K),
we have Hompg (R, K[e]) =& Derk(R,K) = Homg(mgr/m%, K). Note here that
01 = %. By the universality of (R, p), we have

{p: Gal(Q/F) — GLy(K|[e])|p satisfies the condtions (K1-4)}

~Y

L, (V) =Ker(Res: H'(M,,V) — H'(I,

Hompg (R, K[e]) =

Pick p as above. Write p(0) = po(o) + p1(c)e. Note here again p; = %. Then
¢, = p1pp can be easily checked to be a 1-cocycle having values in My(K) D V.
Since det(p) = det(pr) = Tr(c,) = 0, ¢, has values in V. By the reducibility
condition (K2), [c,] € Selz(V). We see easily that p = p’ < [¢,| = [cy]. We can
reverse the above argument starting with a cocycle ¢ giving an element of Sel (V) to
construct a deformation p. with values in K[e]. Thus we have

{p:Gal(Q/F) — GLy(Kl[e])|p satisfies the condtions (K1-4)}

~Y

= Seln (V).

Since the algebra structure of R over W[ Xyl is given by dpa; !, the K-derivation
d : R — K corresponding to a K [¢]-deformation p is a W[[X,|]-derivation if and only
if p1lgaF, /5,y ~ (60), which is equivalent to [c,] € Selp(V'), because we already knew
that Tr(c,) = 0. Thus we have Selp(V') & Deryx,(R, K) = 0. O

If p|p, is isomorphic to (/(\]f §) ®n for a finite order character n of D, and a cocycle
§: Dy, — K(1) of the form £(0) = lim,_e( P’{/@p)”‘l for a non-unit ¢, € Fy, we
call p multiplicative at p. If p comes from an elliptic curve E,p, E has multlphcatlve
reduction modulo p if and only if it is multiplicative at p. We order primes p|p so
that p is multiplicative at p; if and only if ¢ < b. The number b can be zero.
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We need to have a slightly different definition of Selmer groups behaving well under
Tate duality. For each prime q € {p|p}, we put
(1.2)

(V)= {Ker(Hl(ij,V) — H'(F,,, %)) C Ly, (V) if q=p; with j <b,

Ly(V) otherwise

Once Lq(V) is defined, we define Ly(V*(1)) = Ly(V)* under the local Tate duality
between H'(F,, V) and H'(F,, V*(1)), where V*(1) = Homg(V,Q,(1)) as Galois
modules. Then we define the balanced Selmer group Selr(V) (resp. Selp(V*(1)))
by the same formula as in (1.1) replacing L,(V) (resp. Ly,(V*(1))) by Ly(V) (resp.
L,(V*(1))). By definition, Selp(V') C Selp(V).

Lemma 1.4 (Isomorphism). Let V' be Ad(pg). We have
o' (FP> V)

(V) Selp(V) = 0= H'(&,V) =[] 0
p

plp
Proof. Since Selp(V) C Selp(V), the assumption implies Selp(V) = 0. Then the
Poitou-Tate exact sequence tells us the exactness of the following sequence:
HY(F,V)

o) <o) TT 70

le{plp}

— Selp(V*(1))".

It is an old theorem of Greenberg (which assumes criticality at s = 1) that
dim Sel (V') = dim Selp(V*(1))*

(see [G] Proposition 2 or [HMI] Proposition 3.82); so, we have the assertion (V). In
[HIMI], Proposition 3.82 is formulated in terms of Selg(Ind% V') and Selg(Ind% V*(1))
defined in [HMI] (3.4.11), but this does not matter because we can easily verify
Selg(Ind$?) 2 Selp(?) (similarly to [HMI] Corollary 3.81). O

Actually, for the Selmer group with coefficients in a Galois representation of adjoint
type in characteristic 0, we will later prove (in the fourth lecture) that

2. GREENBERG’S L-INVARIANT
Here is Greenberg’s definition of £(V'): The long exact sequence of F V/F SV —
V/]:EV — V/F,V gives a homomorphism, noting F, = Q, and writing &p, =
Gal(F'y/Fy),
H'(F,, F, V/FFV) = Hom(&g , F, V/FV)
L Res
= H'(Fy, V) /Ly(V) = Im(H'(F,, V) — H'(Fy, V/FSV) = H'(I,, V/FV)).
Note that Hom(&g , F, V/F V) = (F,V/FFV)? = K? canonically by

6 (G2 ol B
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Here [z, F}] = [z, Q)] is the local Artin symbol (suitably normalized). Restricting to
I,, we lose one coordinate: ¢([p, Fy| (the Frobenius coordinate). Since

Lo(Fy VIFSV) = Kex(H'(Fy, Fy VIFSV) = H (1, FyVIFSV)),

the image of ¢, is isomorphic to F,- V/]—";V >~ K. By (V), we have a unique subspace
H of H'(®,V) projecting down onto

YF
H Im(zp) — H p’
Then by the restriction, H gives rise to a subspace L of

[[Hom(e, 7o v/Fiv) = [ (F, V/F V)
p

Res

isomorphic to [, (F, V/F; V). If a cocycle ¢ representing an element in H is unrami-
fied, it gives rise to an element in Selx(V'). By the vanishing of Selz(V') (Lemma 1.3),
this implies ¢ = 0; so, the projection of L to the first factor [[ (F, V/FSV) (via
¢+ (o([, Fy])/1og,(7))p) is surjective. Thus this subspace L is a graph of a K-linear
map L : [[, 7o V/FSV — [1, F, V/F;V. We then define L(V) = det(L) € K.

Let p : & — GLy(R) be the universal nearly ordinary deformation with p‘ b=

(; :;) Then ¢, = ;mezop}l is a 1-cocycle (by the argument proving Lemma 1.3)

giving rise to a class of H. By Lemma 1.3, H = Sel(V), and {c¢,}, gives a basis of H
over K. We have &([u, F]) = (1 + X,)'°8 /108,00 for ¢ € Oy = Z, . Writing

o) = (TN 0y) ore

we have a, = ' -2 |X —0, and from this we get the desired formula of L(Ad(pr)).

Write F for the cyclotomic Z,-extension of F. If one restricts ¢ € H to &
Gal(F®)/F,,), its ramification is exhausted by I' = Gal(F../F) (because F, = @p)
giving rise to a class [¢] € Selg,_ (V). The kernel of the restriction map: H'(&,V) —
HY (B, V) is given by HY{(T, H*(6,V)) = 0 because H’(&..,V) = 0. Thus the
image of H in Selr__ (V/T) gives rise to the order d exceptional zero of L* (s, Ad(pr))
at s = 1. We have proved

Proposition 2.1. For the number of prime factors d = [F : Q] of p in F', we have
ord,—; L;mh(s, Ad(pr)) > d.
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