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Lecture 7: We describe how to extend the Weil representation
w from SLo(Fpr) x Op,(A) to GLo(Fpp) x By, for each prime
pp of F splitting in E (pp = pp?). Then we define the local
(dual) Hecke operator action T;‘; through Bﬁ—action and T;'} ac-
tion through the metaplectic GLy(Fyp)-action on S(Dspr). For
split prime pgp, note that Dsp, C Bpp = Dpp X Dpp and by the
left projection Dgyp,. = Dyp,. Then assuming Dy, = Mo (Fp,), for
the characteristic function 1 of MQ(OFPF), we show 1|T} = 1IT§;
(local Hecke equivariance). We simply write F for Fyp and E
for Epp = F x F. Write O = Op, = Op,, (integer rings) with
uniformizer . Details are in Section 4.7.



0. Double coset decomposition. For S = SL,(0O) or GL»(0),
we have for a complete representative set U, of O/(w)j

Sdiag[w,1]S = | | ¢S with Tp:{(%?{))ueUl}u{@g)}.
€Ty,

We write X* = {¢71|¢ € X} for a subset X in GLo(F). We let act
GLo(F') on the column vector space V := My ,(F) by v+ v and
g € GL5(0) act on ¢ € S(V) by g-é(v) = ¢(¢g~1v). Particularly, if
¢ is S-invariant, we write ¢|p = w-¢. Let 1 be the characteristic
function of M5 ,(O) C V. Then

Lemma 1. We have for p := |w|p_]L = |Op/pFp|

1|Tp = 1+ pllp, 1Ty = 1jp~ ' + pl
and 1|1, = 1|1}, = 1p~! + (p — 1)1 + p21p.



1. Proof, Case n = 1:
We only prove the formula for Ty. The formula for T;‘; follows
from Ty = Ty op~l. We want to compute

1Ty = 3 1 0) = 3 1,00 -

gETp gETp

Forv € pOzp, v € Supp(1,2 ) for all € € Tp. Thus 1|Tp(v) = p+1

Ep

: 2 _ 2 2 2 _

if v e pOEp as |Ty| =p+1. Ifv e OEp—pO N then vOEp+pOEp —
£O?Ep for a unique ¢ € Tp. Thus

1|Tp = 1 + pllp.

The first remark to deal with the case n > 1 is:

The vector space Ms ,(Ep) is a left module over Dpg, = Mo (Ey)
and a right module over My(Eyp) via left and right matrix multi-
plication.



§2. Case n > 1. Write L := M>,(0O) C V. Pick a representative
set T for Sdiag[w, 1]S/S So, T = Ty, and elements of T act from
the left on L. Write F := O/p. Then for £ € T, consider the
set M := {((L)/pL C M, (F)} of Mn(OE )-right submodules of
M ,(F) = L ®0E F = L/pL Each element of M is a simple

(and irreducible) r|ght Mn(OE) module, and each such module
appears once in M: so, M is mdependent of the choice of T (so,
we may assume T = Ty). The set MU {0} U {L/pL} exhausts
all right Mn(OE) submodules in Mzn(IF) L/pL. Therefore

NeeT§L = pL. ertlng dl€(v) = ¢p(¢1v) for v e My ,(Ep) and a
left-S-invariant function ¢ on M5 ,,(Eyp), define 1|T = 3¢ 1|€ for

v € L, which is independent of the choice of T. Since 1|§ = l¢p,

1T, = T =p+1 if v e ﬂgeTfL = pL,
P71 if ve L but v &pL.
The formula is the same as in the case of n = 1, and writing
X1 :={ve MQ(OEPNN(’U) ~ pOEp} with its characteristic function
1x,,
1x, = 1|Tp — p1jp.



§3. GL(2) - GL(2) covering SL(2) — SL(2). Let K be a local
field. For y € K* and s = (; ;) € SLo(K), we define

1 if ¢ = 0,
v(y,s) = {(y,d) ife=0,

where (-,-) is the quadratic Hilbert symbol for K. Then write
sY := diag[1,y] lsdiag[l,y] and T := {diag[1,y]ly € K*}. By a
tedious computation of Kubota’'s cocycle, Kubota verified the
following fact [WRS, Proposition 2.6] essentially:

Proposition 1. The association SLo(K) 3 (s,¢) — (sY, ¢Cv(y, s)) €
SL,(K) induces an automorphism of SL»(K), and hence defining
a semi-direct product GL-(K) := T x SL»(K) under this action
of T, we get an extension us — GL»(K) — GLo(K).



§4. Extension to GL(2) from SL(2). The Weil representation
depends on the identification of X = X* for X = D, ,, Dy F, -
So far we have used the standard additive character er and its
local factor to do this by using the pairing {(z,z*) = ep(s(x,y))
or its local version. We can replace ep by ep g ‘= ep o 3 com-
posing any element 3 € Aut(X). Then we write wg for the Weil
representation associated to er g Or its local factor; so, wy is the
original representation with respect to ef.

By [AFG, Proposition 1.3] and GL, = T x SL», we can de-
scend wg to SLo(Fp) for V.= Dsyp for all prime p: The formula
is wg(diag[a,a 1])¢(v) = xgp(a)lalgé(av) and wg(J)p(v) = y¢(v*)
for an 8-th root of unity v and v =1 if p¢ OAp/p. If pp = pp°
(b #= p9) in E with DUaEpF = M>(Ep) by the projection to the
p-component, we identify DUaEpF and Mo (Eyp).

Since diag[g, 1]Jv(u) = v(Bu)diag[3,1], we add the action of
diag[s3, 1] intertwining wy to W51 Namely we extend w to GL»
combining all {wg}g.



§5. An explicit extension to GL(2) from SL(2). We define
locally w(gdiag[b, 1]) := |blpw,-1(g) as operators; in other words,

w(gdiag[b, 1])¢(v) = [blpw;,-1(g)¢(v)

for g € SLo(Fp,) and b € Fy,. The following is [AFG, 1.3 and
1.4] and [WRS, Proposition 2.27]:

Lemma 2. Assume that pp = pp° (p #= p?) in E With Dop, =
M>(Ey) by the projection to the p-component. Identify Dy y,. and
M>(Ep). The above extension w is a well defined representation,
and for a given ¢ € S(Dopr) (for Doy := D0>Fpp)'

(1) the stabilizer UfF of ¢ in GLx(Fp,) under the extended action
is an open subgroup of GLo(Fpr),;

(2) UfF contains GLo(Oypr) if ¢ is a characteristic function of
Dopr N Ry, for a maximal order Ry, of DEg,. and pr is prime to

20.



86. A corollary. Define L(h)¢(v) := ¢(h*vh?) and L'(h)p(v) =
¢(h~1vh?) for h € By, and ¢ € S(Do.Fy,.)-

Corollary 1. Let the notation and assumption be as in Lemma 2.
Then we have 1IT§; = 1|Ty and 1IT§; = 1|Ty under the action L'

ongp and 1|T]j;_, = 1|Ty; and 1|T;;_3* = 1|Ty under the action L of
Dgp, where we let GLo(Eyp) act on S(D, ,) as in Lemma 2.

Proof. Chnaging L’ to L brings Ty to T§, we prove the assertion
for T =Ty. Recall 1|Tp = 1 + pl|p. By the way of extending the
Weil representation to GLo(Fp,) in Lemma 2, writing (§ 1) =
v(w) diag[w, 1] and diag[l,w] = diag[w !, w]diag[w, 1], by the
extension of the Weil representation w in Lemma 2, we have

1|T," (v) = T1(v) + pl(w™ ')
for

Ti(v):=p 1 Y e(uw 'N(@)1(w).
u  mod p



7. Proof continues.
Note

0 if v Ma(Op,) or N(v) € Oxp,
1 ifoce MQ(OEP) and N(v) € pOE,-

Recall X7 = {U c MQ(OEPNN(U) c pOEp} Thus, Tl(?)) = 1X1-
Since 1x, = 1|Ty — pl[p as in §2, and 1|p(v) = 1(w 1v),

T (v) = {

1|T;" (v) = (1|Tp) (v) — pLl(w o) + pl(w o) = 1|Tp(v)

as desired. [ ]



8. Non-split primes. Here is a version of Lemma 2 for non-
split primes:

Lemma 3. Let pp be non-split in E or ramified in D, and write
Ap,p for the discriminant of E;p. Then for ¢ € S(Dopy), there

exists an open subgroup UfF of GL(Fyp) such that
0. xg odet is trivial on U?;

1. the action of SLy(Fp,) via w extends to SLQ(FpF)U]?F and
w(u)¢ = ¢ for all u € Uy, ;
2. If pp is prime to 20Ag - and ¢ is a characteristic function of

Dopr N Ry, for a maximal order Ry, of Dg, ., then UﬁF contains
GL2(Oyp;).

Consider U? = {u € Oy lo(uv) = ¢(v) for all v e Dy .} and

let S? be an open subgroup of {s € SLo(Opr)|w(s)p = ¢}. By the
smoothness of w, we may assume that S? is normalized by &y 1=
diag[l,u] for u € O}fF (i.e., a principal congruence subgroup).



9. Proof continues. Then
U=U?:= {séulu e U®, s e S}

is an open subgroup of GL(Op,) and can be taken to contain
GL2(Opg) if pp is prime to QBAE/F and ¢ is a characteristic
function of Dopp N Rpp TOr @ maximal order Ry, of D, . Let
w = wp_yp. (the local Weil representation on S(DavFPF))' We

extend w to U by w(d,)p = ¢ for uw € U®. For this identity, we
need xp(u) =1 as r(diaglu,u"1)¢(v) = xg(u)p(uv).

By the computation in the books [AFG, Lemma 1.4] and [WRS,
Proposition 2.27], the conjugation by §, induces an automor-
phism of §T_2(FpF) without changing the center if yg(u) = 1 and
pp is odd (if pp|2, we need to assume that w is square), and
therefore, this extension is consistent.



§10. Archimedean primes.

Lemma 4. Write GL;(FOO) for the identity connected compo-
nent of GL>(Fw). FoOr a character ¢ : FEX — C* and ¢ €
S(Dy ) With ¢oc(ev) = Yoo(€)poo(v) for all v € D, and
e € uo(Foo), We can extend w defined on SLo(Fs) to GL;L(FOO)
so that the central character of w at infinity is given by Y.

Proof. By GLo(Fx) = SLo(Fo) FE With SLo(Foo)NFL = po(Foo),
we require for ¢oo to satisfy w(gz)deo = Yl (2)peo for z € EX.
This gives the extension. [ ]



