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Lecture 6: We describe the adelic Fourier expansion of SL(2)-
modular forms. Combined with the adelic Fourier expansion of
metaplectic modular forms we covered in the last lecture, we
study Rankin product of metaplectic and elliptic modular forms.
We allow modular forms of mixed K-types for compact adelic
subgroups K:; so, at infinity, there may not be a well defined

weight.



§0. Adelic cusp form and classical one. Relation between the
adelic version f and classical one f € Slff(l‘o(C),go):

() flau) = ¢*(u) ™! f(uco (vV=1))j (oo, v=1F)7F

for a € SLo(Q) and u € To(C)SLo(R), where o*(u)~1 = o(u).
Then, in addition to cuspidality and holomorphy/anti-holomorphy,
we have the following automorphy

() f(azu) = *(u) ()] (uoo, vV=15) 7"

for all & € SL>(Q) and u € T5(C)SO5(R). SO5(R) is the stabilizer
++/—1. Write the expansion of f as f(7) = > ,ecq aa(fe(+nr™),
where aq(f) = 0 if either a < 0 or o« € Z. For g = <8a91) €
B(Z)B(R) with a € ZXRi, we get, for £7F = goo(4) = a2 itaccboo
and ¢(a) = ¢*(a)lal ",

f(9) = ¢ 1(a) Y aa(f) exp(—2mna,)e(£naccbos).



1. Integral weight Fourier expansion, summary. We de-
scribe briefly integral weight Fourier expansion on SL»>(A). Since
the proof is similar to and easier than the half integral weight
case, we only state the result. For b = v(w) diag[a,a"1] € B(A),
write f(a,u) := f(b). Since f(a,u + o) = f(v(a)b) = f(a,u) for
a € Q, we have the adelic Fourier expansion of f(a,u) over u € A:

f(a,u) = ) ap(a;a)e(au).
acQ
Defining

ag(z) := p(a)ag(a, a) exp(2rascas,) = aa(f),

which is equal to aa(f) if 0 < a € Z and a € Z*, and ag(r) =0
if © & Z_I_(ZXIR{X)Q. The coefficients ag(x) is independent of
chgoices and depends only on () Then we have

ar(z) = aa(f) = ag(at?) for t € ZXR* and z = aa?,

f(a,u) = ¢ a) ¥ ap(aa?)e(ascaiv/—1)e(+au).
acQ



§2. First step in the pure weight case. Let f € S, (Ig(C), »),
g € Myo(To(M), ) (C|M with 4[M), and lift it to SL(Q)\SL2(A).
Take a continuous @ : B(Q)\Mp(A) — C, and assume

(®1) Dz (24)) = (") "L(da)P(x) for (24) € To(M),

(©2) P (2 (100, (J (oo, 7)) = P(2)¢ T (oo, vV—1) ) (too, —v/=1)F
for (ueo, (J(uco, 7)) € Coo,

(®3) D[pay((2 ,21)) = (@*¥*)(a) for a € AX and b€ A.

Then for Coo = W&l(SOQ(R)) C Mp(A),

g(9)f(g)P(g9) = g(guw)t(gu)P(gu)
for all w € Tg(M)Cwso. Thus g — g(¢9)f(g)®(g) is a function of

g € B:= B(@Q)\B(A)o(M)Coo/To(M)Coc.

We want to compute first [5g(g)f(g)P(g)du(g) as an L-value.
Since B(A) = T'(A) x U(A) for T(A) = {diag[a,a"1]|la € A} and
U(A) = {v(u)|u € A}, by Q*Z*\A*X 2 R and (Q+ Z)\A = R/Z,

we have B = [0,1) x IR{j_.



§3. B(Q)\B(A)Csxo = SLo(Q)\Mp(A). We first show that this
is onto. By strong approximation, SL>(Q)K = SLQ(A(OO)) for
any open subgroup K of I:0(4) and by Iwasawa decomposition,
SLy(Q)B(A)KCx = Mp(A). Writing B := B(Q)\B(A)KCw,
this shows

i - B — SLo(Q)\Mp(A) = SLo(Q)\SL2(Q)B(A)KCxo

is onto. Passing to the projective limit with respect to K D B(Z),
we get surjectivity.

If m1(b) = w1 (b)) for b,b’ € B(A), then ~vb = bu for v € SL-(Q)
and u € B(Z)Cs. By projecting down to SL5(A), we find vb =
b'ma(u), comparing the finite part, we conclude v € B(Q); so, we
find w1 is an isomorphism.

See Lemma 5.3 for more details.



§4. Convolution. choose a fundamental domain F of Yp(M),
so that F ¢ B(Q)\B(A)/B(Z) £ [0,1) x Rj_ C $. So for B\SL, =
B(Q)\SL2(Q)

|J ~F is a fundamental domain of B(Q)\Mp(A)/Cossl o(M).
~vEB\SL>

Taking the invariant measure du on Mp(A) inducing the Dirac
measure on each point in SL»>(Q) with fFo(M)C du = 1, we have

JsL,@)\Mp(a) 89T (g)E(P)(g)du(g)
= [r2XyeB\sL, 8(Y9)E(v9)P(vg)du(g) = Ju 7 8(9)E(g9)P(g)du(g)

= IB@)\B(A) 8D (9)P(9)du(g) + Jr@)sBa) 8(9)E(g)P(g)du(g).
The last identity follows from

B(Q)\Mp(A)/Cool (M) = B(Q)\SL2(Q)B(A)Cool o(M)/Cool o(M)
= B(Q)\B(A)/B(Z) uT(Q)\JB(A)/B(Z),

which in turn follows from

SLo(K) = B(K) U B(K)JB(K).



§5. A vanishing condition. We assume

(V) Ir@)\g-Ba) 8(9)E(9)P(9)du(g) =0 (<= P|;.pa) =0).

This follows from ¢, in Choice B (see Lemma 5.28). Taking
dup, = du <8 afl) = d%a(®) g |a,oo|_1da,oo ® dz(®) & droo fOr the
Lebesgue measure daso and droo On R with fzda:(oo) = 1 and
d*a>®) with J5 % d*a(>®) =1, we have

L(s) = fB(@)\B(A)COOFO(M) g(g9)f(g)Ps(g)dug
= Jp@)\B(a), @) 8(LIE(L)Ps(b)dpy
= Ya,peQ Jax 0+ Jajgar(aa?)ag(Ba)e((a + fu)
+ exp(~2m( oo + fro)aZ.)dulal~ da
= 2a€Q, fAX/@x ag(aa?)ag(aa?) eXp(_47TO‘OOago)|a|12§_1da.



§6. L-value. With variable change: t = a2, we get

L(s) =2300 1 /5~ ag(n)ag(n) exp(—4mnt)|t|*t~ Lt
= 2(4m)" Sr(S)Z ~ 1 ag(n)ag(n)n™°
= 2(4m) "5 (s) Z?f:l an(f)an(g)n™* =: D(s; f,8).

Choose g to be 0(v) = 0;(¥) = X,z Y(n)nie(n?r) for j € {0,1}
with ¢ (— 1) = (—1)J and write D(s, f,9) 1= > 0L an(f)an(e)n_s
and o =Y~ XE = (é). Then 6 has weight ¢ —] —|— 5 and

L(s) = D(s; £, %) = Ty Lp(s) With Ly(s) := 552 o pur(p)a o (f)n .
Let Cg be given by the product of primes p ramified in E such
that ¢|Z;)< — XE|Z;,< and the p-primary factor of C' equals to the p-

conductor of xg. Write Cs(vy) for the product of prime factors p

2n—|—1 2n+1
of C' with either ap = 0 or ¢(p) = 0. Since a 2n.(f) = v g
for eigenvalues «, 8 of py(Froby), by computation (in §5.2.7), we
have

(O (25 +2 — 2k)D(s; f,v) = LE (s, P32 @ )
= (Il (1 — o Taytk=179)) L >@—k+1fumn®xa)



7. Mixed weight forms. Let K be a compact subgroup of
Mp(A). If C-valued automorphic forms {m(u)®(g) = ¢(gu)}uck
on SL>(Q)\Mp(A) generate an irreducible K-representation space
7 which contains p as a direct constituent, we say ¢ has K-type
p. If pis not irreducible, we say that ¢ has mixed K-type.

The modular form 0;(y)) = ¥,cz¢(n)n/e(n?r) with j > 1 has
mixed weight.

If K = CosNSLs(A), K is a two-fold covering of SO5(R) iso-

morphic to S1; so, for ¢ € K, we have ¢2 = r(0) with r(8) =
cos(0) —sin(0) N 0O0/—1 :

<Sm(0) cos(0) ) € SO>(R). If x(c%) = e for an integer ¢, we

say that ¢ has weight ¢/2 if it has K-type given by x as above. To

indicate the weight, we sometimes write X¢/2 for this x. The in-

teger ¢ is odd if x is non-trivial on Ker(w : K — SO>(R)) = {£1}.



8. Mixed weight Rankin convolution. We now enter the
description of the Rankin product method in the mixed weight
case. Suppose that we have a finite set of modular forms {g;} on
SL>(Q)\Mp(A) which have I'g(M)-type ¥* but may have a mixed
Cxo-type. By saying modular forms, we mean that they are slowly
increasing towards cusps in addition to the automorphic property.
We assume the index set of j is integers [0,k]NZ for O < k € Z.
By the definition of mixed weight automorphic forms on Mp(4A),
the right translations of g, by Mp(A) generate an admissible
representation of Mp(A); so, the right translations of g; by Cx
span a finite dimensional space of functions on SL,(Q)\Mp(A).
Thus g is a finite sum of cusp forms of different C~-types. For
example, g; can be 0, ; for 0 < j. We suppose to have {CDj}j
satisfying (V), (®1) and (»3) but not ($2).



9. Extra conditions. We suppose the following extra assump-
tions:

(P0) the SL»(A)-representation generated by the right transla-
tions of 3, g;E(P;) by SL,(Z) contains the trivial representa-
tion of SL»(Z),

(F) golp(a) has usual Fourier expansion for the index O,

(G) for a multiple M of C, £, g;E(®P;) factors through Yo(M) =
SL2(Q)\Mp(A)/To(M)Coo.

Lemma 1. Let ¢ be the automorphic representation ofGLQ(A(OO))
generated by . Assume that r¢ is irreducible cuspidal. The con-
dition (®0) implies the following matching condition:

(M) the representation w¢ has SL(Z)-type which is a contragre-
dient of one of the SLQ(Z)—types of the automorphic represen-
tation generated by the set {g,E(®;)}; of modular forms.



§10. Convolution again. As before, for [B] = B(Q)\B(A),

JiB1 £(9) 225 8(9)®;(9)dulg) = Ju ,7E(9) 25 8i(9)P;(g9)du(g)
= |75 X reB@)\sLy(@) F(19) 22, 8;(vg)®;(vg)du(g)

= [r(9) 25 85(9) X eB@)\sLy@) Pi(vg)du(g)

= Ny £25 8 E(Py)dp = [y 1) Tr(EX; g; E(P;))dp.

Now assume
(Key) ¢O|B(A)((8 aél)) = x(a) with a matching character x :
A*/Q* — C* for a € A" and b € A and ®;|p,y =0 if j # 0.

By (Key) and (V), the integral 13 f(g)>;8;(g)P;(g)du(g) is re-
duced to [ip f(b)go(b)|a(b)|ﬁsdu(b). Therefore, forany 0 < j € Z,
taking go to be the lift of 6,(¢), we get

(25 +2 = 2k)D(s; f,9) = LG (5, p"E2 @ )

= (ITjjcy (1 — o7 Tyt =179)) LG (s — k4 1, Ad(py) @ xD,,)-



§11. An example. Let (V,Q) be a quadratic space with a
decomposition (V,Q) = (Q,22) & (W, Q') as a quadratic space.
Take a Schwartz—Bruhat function ¢ on V, and suppose that the
Siegel-Weil theta series 8(¢) has To(M)-type * and a unique
Cxo-type k. Take
(i) ¢ = ${°°) @ oo for ¢(>) € S(Vj (o)) and ¢oo € S(Vi),
(i) oo = 00, ® dw,; for ¢g ;(2) = 2/ exp(—nz?) € S(R) and
¢W] S S(WR)
(i) ¢ = ¢G> gl for 65 € S(AC)) and ¢i?) € S(W ().
Let ¢ = cb(oo) ® ¢x.; for X = Q,W. We have a natural di-
agonal embedding of Og x Oy into Oy. Note that Og
{£1}; so, we may forget about it. Then we write 6(¢)(g,h)
k_o 06 (9)0(0V) (g, h) for g € Mp(A) and h € Oy (A). Con-
sider

(") (g, h)du(h).
/OW(@)\OW(A) (6 ) (g, h)du(h)



§12. We can take g to be 6; with any j > 0. By the Siegel—
Weil formula, for @®;(g) = (Ww(g)(bw)(()) this integral is the
Eisenstein series E(CD ), and

k
/OW(@\OW(A)Q(@@ ) = 2 0(d5_ ) (9 B(P;)(9)

is a modular form whose T q(M)- type is given by * and has
weight k£ as Coo-type. However 9(@5 ) with 7 > 1 does not have

a Coo-type. We compute 3, 9(¢?)(gu)E(¢])(gu) for u € Cuo:

Z Q(Cb;Q)(gU)E(CDj)(QU) = 0(¢)(gu, h)du(h)
J

/Ow(@)\ow(A)

_ _ Q | y
— OW(@)\OW(A)e(cp)(g,h)xg(u)du(h) = ZH(cbj Y(@)E(D;)(g)xe(u).

Choosing a cusp form f with the inverse I‘O(M)Coo—type and
putting g, = 9(@5 ), the pair {g;, P;}; satisfies the conditions

(»0) and (F). We will verify other conditions for a specific qs(oo)
later.



