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Lecture 6: We describe the adelic Fourier expansion of SL(2)-

modular forms. Combined with the adelic Fourier expansion of

metaplectic modular forms we covered in the last lecture, we

study Rankin product of metaplectic and elliptic modular forms.

We allow modular forms of mixed K-types for compact adelic

subgroups K; so, at infinity, there may not be a well defined

weight.



§0. Adelic cusp form and classical one. Relation between the

adelic version f and classical one f ∈ S±
k (Γ0(C), ϕ):

(∗) f(αu) = ϕ∗(u)−1f(u∞(
√
−1))j(u∞,

√
−1±)−k

for α ∈ SL2(Q) and u ∈ Γ̂0(C)SL2(R), where ϕ∗(u)−1 = ϕ(u).

Then, in addition to cuspidality and holomorphy/anti-holomorphy,

we have the following automorphy

(∗∗) f(αxu) = ϕ∗(u)−1f(x)j(u∞,
√
−1±)−k

for all α ∈ SL2(Q) and u ∈ Γ̂0(C)SO2(R). SO2(R) is the stabilizer

±
√
−1. Write the expansion of f as f(τ) =

∑
α∈Q aα(f)e(±nτ±),

where aα(f) = 0 if either α ≤ 0 or α 6∈ Z. For g =
(
a b
0 a−1

)
∈

B(Ẑ)B(R) with a ∈ Ẑ×R×
+, we get, for ±τ± = g∞(i) = a2∞i±a∞b∞

and ϕ(a) = ϕ∗(a)|a|−k
A

,

f(g) = ϕ−1(a)
∑

α
aα(f) exp(−2πna2∞)e(±na∞b∞).



§1. Integral weight Fourier expansion, summary. We de-

scribe briefly integral weight Fourier expansion on SL2(A). Since

the proof is similar to and easier than the half integral weight

case, we only state the result. For b = υ(u) diag[a, a−1] ∈ B(A),

write f(a, u) := f(b). Since f(a, u + α) = f(υ(α)b) = f(a, u) for

α ∈ Q, we have the adelic Fourier expansion of f(a, u) over u ∈ A:

f(a, u) =
∑

α∈Q

af(α; a)e(αu).

Defining

af(x) := ϕ(a)af(α, a) exp(2πα∞a2∞) = aα(f),

which is equal to aα(f) if 0 < α ∈ Z and a ∈ Ẑ×, and af(x) = 0

if x 6∈ Z+(Ẑ×R×)2. The coefficients af(x) is independent of

chgoices and depends only on x(∞). Then we have

af(x) = aα(f) = af(xt
2) for t ∈ Ẑ×R× and x = αa2,

f(a, u) = ϕ−1(a)
∑

α∈Q

af(αa
2)e(α∞a2∞

√
−1)e(±αu).



§2. First step in the pure weight case. Let f ∈ S−
k (Γ0(C), ϕ),

g ∈M`/2(Γ0(M), ψ) (C|M with 4|M), and lift it to SL2(Q)\SL2(A).

Take a continuous Φ : B(Q)\Mp(A) → C, and assume

(Φ1) Φ(x
(
a b
c d

)
) = (ϕ∗ψ∗)−1(dM)Φ(x) for

(
a b
c d

)
∈ Γ̂0(M),

(Φ2) Φ(x(u∞, ζJ(u∞, τ))) = Φ(x)ζ−`J(u∞,
√
−1)`j(u∞,−

√
−1)k

for (u∞, ζJ(u∞, τ)) ∈ C∞,

(Φ3) Φ|B(A)(
(
a b
0 a−1

)
) = (ϕ∗ψ∗)(a) for a ∈ A× and b ∈ A.

Then for C∞ = π−1
A

(SO2(R)) ⊂ Mp(A),

g(g)f(g)Φ(g) = g(gu)f(gu)Φ(gu)

for all u ∈ Γ̂0(M)C∞. Thus g 7→ g(g)f(g)Φ(g) is a function of

g ∈ B := B(Q)\B(A)Γ̂0(M)C∞/Γ̂0(M)C∞.

We want to compute first
∫
B g(g)f(g)Φ(g)dµ(g) as an L-value.

Since B(A) = T(A) n U(A) for T(A) = {diag[a, a−1]|a ∈ A} and

U(A) = {υ(u)|u ∈ A}, by Q×Ẑ×\A× ∼= R+ and (Q + Ẑ)\A = R/Z,

we have B ∼= [0,1)× R×
+.



§3. B(Q)\B(A)C∞ ∼= SL2(Q)\Mp(A). We first show that this

is onto. By strong approximation, SL2(Q)K = SL2(A
(∞)) for

any open subgroup K of Γ̂0(4) and by Iwasawa decomposition,

SL2(Q)B(A)KC∞ = Mp(A). Writing BK := B(Q)\B(A)KC∞,

this shows

πK : BK � SL2(Q)\Mp(A) = SL2(Q)\SL2(Q)B(A)KC∞

is onto. Passing to the projective limit with respect to K ⊃ B(Ẑ),

we get surjectivity.

If π1(b) = π1(b
′) for b, b′ ∈ B(A), then γb = b′u for γ ∈ SL2(Q)

and u ∈ B(Ẑ)C∞. By projecting down to SL2(A), we find γb =

b′πA(u), comparing the finite part, we conclude γ ∈ B(Q); so, we

find π1 is an isomorphism.

See Lemma 5.3 for more details.



§4. Convolution. choose a fundamental domain F of Y0(M),

so that F ⊂ B(Q)\B(A)/B(Ẑ) ∼= [0,1)× R×
+ ⊂ H. So for B\SL2 =

B(Q)\SL2(Q)
⋃

γ∈B\SL2

γF is a fundamental domain of B(Q)\Mp(A)/C∞Γ̂0(M).

Taking the invariant measure dµ on Mp(A) inducing the Dirac

measure on each point in SL2(Q) with
∫
Γ̂0(M)C∞

dµ = 1, we have

∫
SL2(Q)\Mp(A) g(g)f(g)E(Φ)(g)dµ(g)

=
∫
F

∑
γ∈B\SL2

g(γg)f(γg)Φ(γg)dµ(g) =
∫
∪γγF g(g)f(g)Φ(g)dµ(g)

=
∫
B(Q)\B(A) g(g)f(g)Φ(g)dµ(g) +

∫
T (Q)\JB(A) g(g)f(g)Φ(g)dµ(g).

The last identity follows from

B(Q)\Mp(A)/C∞Γ̂0(M) = B(Q)\SL2(Q)B(A)C∞Γ̂0(M)/C∞Γ̂0(M)

= B(Q)\B(A)/B(Ẑ) t T(Q)\JB(A)/B(Ẑ),

which in turn follows from

SL2(K) = B(K) tB(K)JB(K).



§5. A vanishing condition. We assume

(V)
∫
T (Q)\J·B(A) g(g)f(g)Φ(g)dµ(g) = 0 (⇐ Φ|J·B(A) = 0).

This follows from φ′c in Choice B (see Lemma 5.28). Taking

dµb = dµ
(
a x
0 a−1

)
= d×a(∞) ⊗ |a∞|−1da∞ ⊗ dx(∞) ⊗ dx∞ for the

Lebesgue measure da∞ and dx∞ on R with
∫
Ẑ
dx(∞) = 1 and

d×a(∞) with
∫
Ẑ× d

×a(∞) = 1, we have

L(s) :=
∫
B(Q)\B(A)C∞Γ̂0(M)

g(g)f(g)Φs(g)dµg

=
∫
B(Q)\B(A)/B(Ẑ)

g(b)f(b)Φs(b)dµb

=
∑
α,β∈Q

∫
A×/Q×

∫
A/Q af(αa

2)ag(βa2)e((α+ β)u)

× exp(−2π(−α∞ + β∞)a2∞)du|a|2s−1
A

da

=
∑
α∈Q+

∫
A×/Q× af(αa

2)ag(αa2) exp(−4πα∞a2∞)|a|2s−1
A

da.



§6. L-value. With variable change: t = a2∞, we get

L(s) = 2
∑∞
n=1

∫∞
0 af(n)ag(n) exp(−4πnt)|t|st−1dt

= 2(4π)−sΓ(s)
∑∞
n=1 af(n)ag(n)n−s

= 2(4π)−sΓ(s)
∑∞
n=1 an(f)an(g)n

−s =: D(s; f ,g).

Choose g to be θ(ψ) = θj(ψ) =
∑
n∈Zψ(n)nje(n2τ) for j ∈ {0,1}

with ψ(−1) = (−1)j and write D(s, f, ψ) :=
∑∞
n=1 an(f)an(θ)n

−s

and ϕ = ψ−1χE =
(
∆

)
. Then θ has weight ` = j + 1

2 and

L(s) = D(s; f , ψ) =
∏
pLp(s) with Lp(s) :=

∑∞
n=0ϕψ(pn)ap2n(f)n

−s.
Let C0 be given by the product of primes p ramified in E such

that ψ|
Z×
p

= χE|Z×
p

and the p-primary factor of C equals to the p-

conductor of χE. Write Cs(ψ) for the product of prime factors p

of C with either ap = 0 or ψ(p) = 0. Since ap2n(f) = α2n+1−β2n+1

α−β
for eigenvalues α, β of ρλ(Frobp), by computation (in §5.2.7), we

have

ζ(C)(2s+ 2 − 2k)D(s; f, ψ) = L(Cs(ψ))(s, ρ
sym⊗2
λ ⊗ ψ)

=
(∏

l|C0
(1 − α−1

l αll
k−1−s)

)
L(Cs(ψ))(s− k+ 1, Ad(ρλ) ⊗ χDσ).



§7. Mixed weight forms. Let K be a compact subgroup of

Mp(A). If C-valued automorphic forms {π(u)φ(g) = φ(gu)}u∈K
on SL2(Q)\Mp(A) generate an irreducibleK-representation space

π which contains ρ as a direct constituent, we say φ has K-type

ρ. If ρ is not irreducible, we say that φ has mixed K-type.

The modular form θj(ψ) =
∑
n∈Zψ(n)nje(n2τ) with j > 1 has

mixed weight.

If K = C∞ ∩ S̃L2(A), K is a two-fold covering of SO2(R) iso-

morphic to S1; so, for c ∈ K, we have c2 = r(θ) with r(θ) =(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
∈ SO2(R). If χ(c2) = e`θ

√
−1 for an integer `, we

say that φ has weight `/2 if it has K-type given by χ as above. To

indicate the weight, we sometimes write χ`/2 for this χ. The in-

teger ` is odd if χ is non-trivial on Ker(π : K → SO2(R)) ∼= {±1}.



§8. Mixed weight Rankin convolution. We now enter the

description of the Rankin product method in the mixed weight

case. Suppose that we have a finite set of modular forms {gj} on

SL2(Q)\Mp(A) which have Γ̂0(M)-type ψ∗ but may have a mixed

C∞-type. By saying modular forms, we mean that they are slowly

increasing towards cusps in addition to the automorphic property.

We assume the index set of j is integers [0, k] ∩ Z for 0 < k ∈ Z.

By the definition of mixed weight automorphic forms on Mp(A),

the right translations of gj by Mp(A) generate an admissible

representation of Mp(A); so, the right translations of gj by C∞
span a finite dimensional space of functions on SL2(Q)\Mp(A).

Thus gj is a finite sum of cusp forms of different C∞-types. For

example, gj can be θχ,j for 0 ≤ j. We suppose to have {Φj}j
satisfying (V), (Φ1) and (Φ3) but not (Φ2).



§9. Extra conditions. We suppose the following extra assump-

tions:

(Φ0) the SL2(A)-representation generated by the right transla-

tions of f
∑
j gjE(Φj) by SL2(Ẑ) contains the trivial representa-

tion of SL2(Ẑ),

(F) g0|B(A) has usual Fourier expansion for the index 0,

(G) for a multiple M of C, f
∑
j gjE(Φj) factors through Y0(M) =

SL2(Q)\Mp(A)/Γ̂0(M)C∞.

Lemma 1.Let πf be the automorphic representation of GL2(A
(∞))

generated by f . Assume that πf is irreducible cuspidal. The con-

dition (Φ0) implies the following matching condition:

(M) the representation πf has SL2(Ẑ)-type which is a contragre-

dient of one of the SL2(Ẑ)-types of the automorphic represen-

tation generated by the set {gjE(Φj)}j of modular forms.



§10. Convolution again. As before, for [B] = B(Q)\B(A),

∫
[B] f(g)

∑
j gj(g)Φj(g)dµ(g) =

∫
∪γγF f(g)

∑
j gj(g)Φj(g)dµ(g)

=
∫
F

∑
γ∈B(Q)\SL2(Q) f(γg)

∑
j gj(γg)Φj(γg)dµ(g)

=
∫
F f(g)

∑
j gj(g)

∑
γ∈B(Q)\SL2(Q) Φj(γg)dµ(g)

=
∫
Y0(M) f

∑
j gjE(Φj)dµ =

∫
Y0(1) Tr(f

∑
j gjE(Φj))dµ.

Now assume

(Key) Φ0|B(A)(
(
a b
0 a−1

)
) = χ(a) with a matching character χ :

A×/Q× → C× for a ∈ A× and b ∈ A and Φj|B(A) = 0 if j 6= 0.

By (Key) and (V), the integral
∫
[B] f(g)

∑
j gj(g)Φj(g)dµ(g) is re-

duced to
∫
[B] f(b)g0(b)|a(b)|2sA

dµ(b). Therefore, for any 0 ≤ j ∈ Z,

taking g0 to be the lift of θj(ψ), we get

ζ(C)(2s+ 2 − 2k)D(s; f, ψ) = L(Cs(ψ))(s, ρsym⊗2
λ ⊗ ψ)

=
(∏

l|C0
(1 − α−1

l αll
k−1−s)

)
L(Cs(ψ))(s− k+ 1, Ad(ρλ) ⊗ χDσ).



§11. An example. Let (V,Q) be a quadratic space with a

decomposition (V,Q) = (Q, z2) ⊕ (W,Q′) as a quadratic space.

Take a Schwartz–Bruhat function φ on VA and suppose that the

Siegel–Weil theta series θ(φ) has Γ̂0(M)-type ψ∗ and a unique

C∞-type k. Take

(i) φ = φ(∞) ⊗ φ∞ for φ(∞) ∈ S(V
A(∞)) and φ∞ ∈ S(VR),

(ii) φ∞ =
∑
j φQ,j ⊗ φW,j for φQ,j(z) = zj exp(−πz2) ∈ S(R) and

φW,j ∈ S(WR),

(iii) φ(∞) = φ
(∞)
Q

⊗φ(∞)
W for φ

(∞)
Q

∈ S(A(∞)) and φ
(∞)
W ∈ S(W

A(∞)).

Let φXj := φ
(∞)
X ⊗ φX,j for X = Q,W . We have a natural di-

agonal embedding of OQ × OW into OV . Note that OQ =

{±1}; so, we may forget about it. Then we write θ(φ)(g, h) =
∑k
j=0 θ(φ

Q
j )(g)θ(φWj )(g, h) for g ∈ Mp(A) and h ∈ OW(A). Con-

sider
∫

OW (Q)\OW (A)
θ(φWj )(g, h)dµ(h).



§12. We can take g0 to be θj with any j ≥ 0. By the Siegel–

Weil formula, for Φj(g) = (wW(g)φWj )(0), this integral is the

Eisenstein series E(Φj), and

∫

OW (Q)\OW (A)
θ(φ)(g, h)dµ(h) =

k∑

j=0

θ(φQ
k−j)(g)E(Φj)(g)

is a modular form whose Γ̂0(M)-type is given by ψ∗ and has

weight k as C∞-type. However θ(φQ
j ) with j > 1 does not have

a C∞-type. We compute
∑
j θ(φ

Q
j )(gu)E(Φj)(gu) for u ∈ C∞:

∑

j

θ(φQ
j )(gu)E(Φj)(gu) =

∫

OW (Q)\OW (A)
θ(φ)(gu, h)dµ(h)

=

∫

OW (Q)\OW (A)
θ(φ)(g, h)χ`(u)dµ(h) =

∑

j

θ(φQ
j )(g)E(Φj)(g)χ`(u).

Choosing a cusp form f with the inverse Γ̂0(M)C∞-type and

putting gj = θ(φQ
j ), the pair {gj,Φj}j satisfies the conditions

(Φ0) and (F). We will verify other conditions for a specific φ(∞)

later.


