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Lecture 4: We sketch the proof of the L-value formula for a

division quaternion algebra D/Q. The algebra D can be definite

or indefinite, though we describe mainly the details only for the

indefinite case. Let B = D⊗QE for a real semi-simple quadratic

extension E. The non-trivial automorphism σ ∈ Gal(E/Q) acts

on B through the factor E. Since the case E = Q × Q is easier,

we mainly assume that E is a field. A key point is the use of

the see-saw principle for the decomposition Dσ = Z ⊕D0, where

Dσ := {v ∈ B|vι = vσ} with the reduced norm N : Dσ → Q and

Z = Dσ ∩ E and D0 = {v ∈ Dσ|Tr(v) = 0}. We need to use the

Siegel–Weil formula for D0. For simplicity, we assume M = ∂.

The details are in Chapter 5, and the case M = M2(Q) is dealt

with in Section 5.5 of the notes.



§0. An idea of Waldspurger. For an elliptic cusp form f , an

idea of Waldspurger of computing the period of a theta lift of f
for a quadratic space V = W ⊕W⊥ over an orthogonal Shimura

subvariety SW × SW⊥ ⊂ SV is two-folds:

(S) Split θ(φ′)(τ, h, h⊥) = θ(φ)(τ, h) · θ(τ, φ⊥)(h⊥) (h? ∈ OW?(A))

for a decomposition φ′ = φ ⊗ φ⊥ (φ and φ⊥ Schwartz–Bruhat

functions on WA and W⊥
A );

(R) For the theta lift θ∗(φ)(f)(h) =
∫
X f(τ)θ(φ)(τ, h)dµ with an

SL(2)-Shimura curve X, the period P over the Shimura subva-

riety S × S⊥ (S for O(W ) and S⊥ for O(W⊥)) is given by:
∫

S×S⊥

∫

X
f(τ)θ(φ)(τ ; h)dµdh (dµ = η−2dξdη)

=
∫

X
f(τ)

(∫

S⊥
θ(φ⊥)(τ ; h⊥)dh⊥

)
·
(∫

S
θ(φ0)(τ ;h0)dh

)
dµ.

Then invoke the Siegel–Weil formula to convert inner integrals

into the Siegel-Weil Eisenstein series E(φ) and E(φ⊥), reaching

Rankin-Selberg integral

P =
∫

X
f(τ)E(φ⊥)E(φ0)dµ = L-value.



§1. Choice of V : For a Q-vector space V and a Q-algebra A,

write VA := V ⊗Q A. Let E := Q[
√

∆] be a quadratic extension

of Q with discriminant ∆. Pick a quaternion algebra D over

Q and put B := D ⊗Q E. We let 1 6= σ ∈ Gal(E/Q) act on B

through the factor E. Recall

V = Dσ := {v ∈ B|vσ = vι} for vι = TrB/E(v)− v.

The quadratic form is given by Q(v) = vvσ = N(v) ∈ Q. We have

two cases of isomorphism classes of (DR, ER). Note ER = R×R;

so, we have two cases Case I and Case H. The symbol “I” (resp.

“H”) indicate D is indefinite (resp. definite). The decomposition

we take is

V = Z ⊕D0 Z = Q with quadratic form QZ(z) = z2, and

D0 := {v0 ∈
√

∆D|TrD/Q(v) = 0} with Q0(v) = vvσ = N(v)

Signature of D0 is (1,2) in Case I and (3,0) in Case H, OD0
is

almost D× and the same for ODσ and B×.



§2. Bruhat functions and majorant. On Z = Q, for a

Dirichlet character ψ modulo N , we regard ψ as a function

supported on Ẑ ⊂ Z
A(∞) = A(∞). This ψ produces theta se-

ries
∑
n∈Zψ(n)nje(n2τ) on Γ0(4N

2) of character ψ
(−1

)
and of

weight j + 1
2.

Take a maximal order R of D and take the characteristic function

φ0 of D0,A ∩
√

∆R̂. Here for any lattice L, L̂ = L⊗Z Ẑ. This φ0

produces theta series on Γ0(4∂∆) of character
(−∆

)
.

The theta series for Dσ of ψ⊗φ0 has level M = [4N2,4∂∆]. We

choose M so that C|M for the conductor C of F .

A positive definite symmetric matrix P ∈Mn(R) (or the symmet-

ric bilinear form on VR associated to P ) is a positive majorant of

a symmetric matrix S if PS−1 = SP−1 (⇔ S−1P = P−1S).



§3. Schwartz function Ψ on Dσ,R in Case I. The recipe

of Hecke–Siegel is to put Ψ(v) = H(v)e(ξN(v) + P (v)η
√
−1) for

e(x) = exp(2π
√
−1x) and a harmonic polynomial H, where P (v) =

1
2p(v, v) with a positive majorant p of s(v, v′) = TrB/E(vιv′). All

positive majorants form the symmetric space S of ODσ.

We identify (Dσ,R, N) = (M2(R),det) by M2(R) 3 v 7→ (v, vι) ∈
Dσ,R ⊂ DR ×DR and put for (z, w) ∈ H×H on which B× ∼ GODσ

acts by α(z, w) = (α(z), ασ(w)). For (z, w) ∈ H × H, a stan-

dard harmonic polynomial of v ∈ Dσ of degree k is given by

[v; z, w]k = s(v, p(z, w))k for p(z, w) = ( z1 ) (w,1)J. For 0 < k ∈ Z,

Ψ(v; τ, z, w) = Im(τ) [v;z,w]k

(z−z)k(w−w)k
e(N(v)τ + i Im(τ)

2| Im(z) Im(w)||[v; z, w]|2),
for (α, β) ∈ GL2(R) ×GL2(R) (see §3.2.3),

αp(z, w)βι = p(α(z), β(w))j(α, z)j(β, w).

This formula is due to Shimura. This function is not a tensor

product of functions on ZR and D0,R which causes some difficulty

later. For simplicity, we assume k = 2. See Section 3.2 for Ψ.



§4. Theta kernel. Let φ be a Schwartz-Bruhat function on

Dσ,A. Let Mp(A) � SL2(A) be the metaplectic cover constructed

by Weil, and φ 7→ w(g)φ the Weil representation. Noting B× �

GODσ by v 7→ hιvhσ, Siegel–Weil theta series θ(g; h) is

∑

α∈Dσ
(w(g)φ)(hιαhσ) : SL2(Q)\Mp(A) ×B×\B×

A
→ C.

Write Γ̂ = Γ̂φ = {u ∈ B×
A(∞)|θ(g, uιhuσ) = θ(g, h)}.

In Case I, choose φ = (ψ ⊗ φ0)Ψ(v;
√
−1,

√
−1,

√
−1) and for

gτ = η−1/2
(
η ξ
0 1

)
(τ = ξ + η

√
−1 ∈ H), we specialize g to gτ and

h to (gz, gw) for (τ, z, w) ∈ H × H × H. Then

θ(τ ; z, w) := θ(gτ ; gz, gw) =
∑

α∈Dσ
(ψ ⊗ φ0)(α)Ψ(α; τ, z, w).

Set θ∗(φ)(f) :=
∫
X0(M) f(τ)θ(φ)(τ ; z, w)ηk−2dξdη (k = 2). Then

θ∗(φ)(f) is a weight 2 quaternionic modular form on B× holomor-

phic in z and anti-holomorphic in w for f ∈ S−
2 (Γ0(M), ψ−1

(
∆

)
).



§5. Theta differential form. To compute the period on

ShD = D×
+\(D×

A(∞) × H) ⊂ ShB = B×\(B×
A(∞) × ZB), we convert

θ(τ ; z, w) into a sheaf valued differential 2–form. If n = k−2 > 0,

the sheaf comes from the B×-module

LE(n;A) =
∑

0≤i,j≤n
AXn−jY jX′n−iY ′i

with B×-action γP (X,Y ;X′, Y ′) = P ((X,Y )tγι; (X′, Y ′)tγσι). As

we assumed k = 2 (i.e., n = 0), we have L(n;A) = A.

By putting Θ = θ(φ)(τ ; z, w)dz ∧ dw for n = k−2, we get C-valued

Γφ-invariant differential form. The period we like to compute is

P = P1(θ
∗(φ)(f)) =

∫

ShD

∫

X0(M)
f(−τ)Θ(τ ; z, z)dξdη.

We integrate over ShD by a measure dµ given by y−2dxdy over

H and
∫
Γ̂
dµ = 1.



§6. Siegel–Weil Eisenstein series; §4.4.2. Recall the explicit

section r : B ↪→ Mp of the representation w as follows:

r(diag[a, a−1])φ(v) = |a|3/2
A

φ(av), r

(
1 u
0 1

)
φ(v) = e(uN(v))φ(v).

For the standard Borel subgroup B ⊂ SL2, the function g 7→
(r(g)φ)(0) is left B(Q) invariant. Siegel–Weil Eisenstein series is

E(φ)(g; s) =
∑

γ∈B(Q)\SL2(Q)

(w(γg)φ)(0)|a(γg)|sA,

where g = diag[a(g), a(g)−1]
(
1 u
0 1

)
c for an element c in the max-

imal compact subgroup by Iwasawa decomposition.

The Siegel–Weil formula by Kudla-Rallis and Sweet is

E(φ)(g; 0) =

∫

S
θ(φ)(g, h)dω for the Tamagawa measure dω.

The ratio m = m(Γ̂) = dµ/dω is the mass of Siegel–Shimura, which

is an arithmetic rational number times ζ(2)/π in Case I and

ζ(2)/π2 in Case H. Later we describe the Tamagawa measure,

the metaplectic group and Weil representation in more details.



§7. Conclusion in Case I; §5.3. Decomposing v = a⊕ v0 in

Dσ = Z ⊕D0, we have for k = 2

[a+ v0; z, z]
k = ([a; z, z] + [v0; z, z])

k =
k∑

j=0

(k
j

)
(a(z − z))k−j[v0; z, z]

j.

Thus we have φ =
∑k
j=0

(
k
j

)
φZk−jφ

D0
j with infinity part Ψ?

j of φ?
j

given by

Ψ
D0
j := (z − z)−j[v0; z, z]je(N(x)τ +

i Im(τ)|[v0;z,z]|2
2 Im(z)2

),ΨZ
j := aje(a2τ)

with (w(b)φ
D0
j )(0) = 0 and E(φ

D0
j )|B(A) = 0 unless j = 0, and we

reach Rankin convolution of θ(φZk ) =
∑
n∈Zψ(n)nke(n2z) and f

over B(Q)\B(A)/B(Ẑ) ∼= [0,1)×R×
+, which produces (see [Sh75])

ζ(2)P = m2−2k ∗ (2π)−kΓ(k)L(s)(1, Ad(ρf) ⊗
(
∆

)
)

with a simple constant ∗. Here L(s) means we remove Euler

factors at p|C with either f |U(p) = 0 or ψ(p) = 0.



§8. Conclusion in Case H; §5.2. The choice of the Bruhat

function φ is the same as in Case I. As a C-valued function, set

Ψ(τ ; v;x) = e(N(v)τ).

Again in exactly the same way, for

θ∗(φ)(f) :=
∫

X0(M)
θ(φ)(τ ; g)f(τ)ηk−2dξdη (k = 2)

and P =
∫
S θ

∗(φ)(f)dµ, we conclude for a simple constant c′

ζ(2)P = 2m ∗′ (2π)−k+1Γ(k)L(s)(1, Ad(ρf)⊗
(
∆

)
).

Writing the point set S = {x}x∈ShR, m(Γ̂) =
∑
x∈ShR e

−1
x + ζ(2)

for ex = |Γ̂ ∩ OD0
(Q)| and P +

∑
x∈ShR e

−1
x θ∗(φ)(f)(x).

Thus the period formula is an adjoint analogue of the mass for-

mula of Siegel–Shimura. The determination of m(Γ̂) was finished

by Shimura in 1999 for an arbitrary quadratic space over a totally

real field (see §5.2.8 for the explicit formula for the mass).



§9. Schwartz–Bruhat functions; §3.1.3. For a Q-vector space

V , write Vp := V ⊗Z Zp (which is a vector space over a local field

Qp). A Bruhat function on Vp is a locally constant compactly

supported function with values in C. Write S(Vp) for the space

of Bruhat functions on Vp. For a real vector space V∞, we define

S(V∞) to be the Schwartz space of functions on V∞. Thus

S(V∞) is made of C∞–class functions with all derivatives rapidly

decreasing as Euclidean norm of v ∈ V∞ grows. In other words,

φ ∈ S(V∞) if and only if φ is of C∞–class and for any polynomial

P (v) and any m–th derivative Φ of φ, |P (v)Φ(v)| goes to 0 as

|x| → ∞. Writing VA for the adelization. We pick a lattice L of V

and put L̂ =
∏
pLp ⊂ V

A(∞) with Lp = L⊗ZZp. A Schwartz-Bruhat

function on VA is a finite linear combination of the function of the

form φ(x) =
∏
v φv(xv) with φv ∈ S(Vv) and φp is the characteristic

function of Lp for almost all p.



§10. Weil representation. Let υ(u) =
(

1 u
0 1

)
, diag[a, b] =

(
a 0
0 b

)

and J =
(

0 −1
1 0

)
. Let e : A/Q → S1 be the additive character with

e(x∞) := exp(2π
√
−1x∞). We put ev := e|Qv

and for a number

field F , we write eF = e ◦ TrF/Q and eFv = ev ◦ TrFv/Qv
. Let

Q : V → F be a non-degenerate quadratic form with symmetric

bilinear form s(v, w) = Q(v + w) − Q(v) − Q(w) over a number

field F . We have the following operator r(g) ∈ Aut(S(V?)) for

m = dimF V , ? = v,A with u ∈ Fv or FA and a ∈ F×
v :

r(υ(u)) = eF(uQ(v))φ(v), r(diag[a, a−1]φ(v) = |a|m/2FA
φ(av) and

r(J)φ(v) = φ̂(−v) :=
∫
V?

eF (s(w,−v))φ(w)dw (Fourier transform),

where dw is normalized so that
̂̂
φ(v) = φ(−v). If b, b′ ∈ B(FA) (up-

per triangular Borel subgroup), we extend r to Ω = B(FA)JB(FA)

by r(bJb′) := r(b)r(J)r(b′). Then if g, h ∈ SL2(F?) either unipo-

tent, diagonal or J, r(gh) = κ(g, h)r(g)r(h) for a 2-cocycle κ

on SL2 with values in S1. Write Mp(F?) ⊂ Aut(S(V?)) for the

group generated by these operators. We have an extension (∗)
1 → S1 → Mp(F?)

π?−→ SL2(F?) → 1 with Mp 3 w(g) 7→ g ∈ SL2.

Therefore, the group Mp acts on S(V?) by a representation w.



§11. Weil’s theta series. The extension (∗) is split in the fol-

lowing cases:

1. dimF V is even (the section is unique and if V = Dσ,F?

b 7→ χV (a)r(b) over B(FA) if b = υ(u) diag[a, a−1]);

2. b 7→ r(b) and also b 7→ χV (a)r(b) as above over B(FA);

3. Over Γ̂0(4) (canonical);

4. Over SL2(F ) (canonical and coincides with b 7→ r(b) over

B(F ).

For the orthogonal group OV for V and φ ∈ S(VA), we define a

function on Mp(FA)×OV (FA) by θ(φ)(g, h) =
∑
α∈V w(g)L(h)φ(α),

where (L(h)φ)(v) = φ(vh) (as usual, O(FA) acts on VFA
from the

right). Weil showed that θ(φ)(g, h) is real analytic on Mp(F∞)×
OV (F∞), left invariant under SL2(F )×OV (F ) and right invariant

under an open subgroup of Mp(F
A(∞))×OV (F

A(∞)); in short, an

automorphic form on Mp × OV .

All the details are in Chapter 4.


