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Lecture 4: \We sketch the proof of the L-value formula for a
division quaternion algebra D/@. The algebra D can be definite
or indefinite, though we describe mainly the details only for the
indefinite case. Let B = D®@E for a real semi-simple quadratic
extension E. The non-trivial automorphism o € Gal(E/Q) acts
on B through the factor E. Since the case E = Q x QQ is easier,
we mainly assume that E is a field. A key point is the use of
the see-saw principle for the decomposition Dy = Z & Dg, where
Dy := {v € B|v* = v?} with the reduced norm N : D, — Q and
Z = DsNFE and Dg = {v € Ds|Tr(v) = 0}. We need to use the
Siegel-Weil formula for Dg. For simplicity, we assume M = 0.
The details are in Chapter 5, and the case M = M»(Q) is dealt
with in Section 5.5 of the notes.



0. An idea of Waldspurger. For an elliptic cusp form f, an
idea of Waldspurger of computing the period of a theta lift of f
for a quadratic space V =W & WL over an orthogonal Shimura
subvariety Sy x S wl C Sy is two-folds:

(S) Split 0(6)(, by h) = 6(8) (= h) - 0(7, &) (h) (k' € Oyr2(A))
for a decomposition ¢’ = ¢ ® cb (¢ and qS Schwartz—Bruhat
functions on W, and W );

(R) For the theta lift 9*(¢)(f)(h) = [x f(7)0(¢) (1, h)dp with an
SL(2)-Shimura curve X, the period P over the Shimura subva-
riety S x S+ (S for O(W) and S+ for O(W-)) is given by:

[ o [ 50 Wdpdn (dps = 1~ 2dgdn)
— /X f(r) (/SL 9(¢l)(7-; hl)dhl) : (/S 0(0) (7 ho)dh) dyi.

Then invoke the Siegel—Weil formula to convert inner integrals
into the Siegel-Weil Eisenstein series E(¢) and E(¢+), reaching
Rankin-Selberg integral

P = /X F(N)E(GH)E(b)du = L-value.



1. Choice of V: For a QQ-vector space V and a QQ-algebra A,
write V4 :=V ®gA. Let £ = Q[v/A] be a quadratic extension
of @ with discriminant A. Pick a quaternion algebra D over
Q and put B:=D®gE. We let 1 # o € Gal(£/Q) act on B
through the factor E. Recall

V = Ds :={v € B|v? =v'} for v = TFB/E(U) — .

The quadratic form is given by Q(v) = vv? = N(v) € Q. We have
two cases of isomorphism classes of (Dg, Eg). Note EFp = R x R;
so, we have two cases Case I and Case H. The symbol “I" (resp.
“H" ) indicate D is indefinite (resp. definite). The decomposition
we take is

V=72®Dyg Z=Q with quadratic form Qz(z) = 22 and

Do :={vg € VAD|Trp p(v) = 0} with Qo(v) = vv” = N(v)

Signature of Dg is (1,2) in Case I and (3,0) in Case H, Op, is
almost D* and the same for Op_ and B*.



§2. Bruhat functions and majorant. On Z = (Q, for a
Dirichlet character iy modulo N, we regard  as a function

AN

supported on Z C ZA(OO) = A(®)  This 1 produces theta se-
ries Y,,cz ¥ (n)nfe(n?r) on Mo(4N?) of character Qp(_—l) and of
weight j + 3.

Take a maximal order R of D and take the characteristic function
¢o of Dg o NVAR. Here for any lattice L, L = L ®z Z. This ¢

produces theta series on Ng(40A) of character <i)

The theta series for D, of 1 ® ¢g has level M = [4N?2,40A]. We
choose M so that C'|M for the conductor C' of F.

A positive definite symmetric matrix P € M, (R) (or the symmet-
ric bilinear form on Vg associated to P) is a positive majorant of
a symmetric matrix S if PS ! =5p 1 (&« s1p=p-19).



83. Schwartz function WV on D,y in Case I. The recipe
of Hecke—Siegel is to put W(v) = H(v)e(éN(v) + P(v)n/—1) for
e(z) = exp(2mv/—1zx) and a harmonic polynomial H, where P(v) =
%p(v,v) with a positive majorant p of s(v,v’) = TrB/E(va’). All
positive majorants form the symmetric space & of Op_.

We identify (D, g, N) = (M2(R),det) by Mo(R) > v — (v,v") €
D,r C Dr x D and put for (z,w) € $ x $ on which B* ~ GOp_
acts by a(z,w) = (a(z),a’(w)). For (z,w) € H x H, a stan-
dard harmonic polynomial of v € D, of degree k is given by
[v; z, w]* = s(v, p(z, w))* for p(z,w) = (§) (w,1)J. For 0 < k € Z,
W(oi 7, 2,w) = IM(1) B e (N ()T + iy 125 5 @12,
for (a,8) € GL>(R) x GL>(R) (see §3.2.3),

ap(z, w)B" = p(a(z), B(w))j(a, 2)7 (8, w).
This formula is due to Shimura. This function is not a tensor
product of functions on Zi and Dg g which causes some difficulty
later. For simplicity, we assume k = 2. See Section 3.2 for V.




84. Theta kernel. Let ¢ be a Schwartz-Bruhat function on
D, 5. Let Mp(A) — SL>(A) be the metaplectic cover constructed
by Weil, and ¢ — w(g)¢ the Weil representation. Noting B* —»
GOp,_ by v — htvh?, Siegel-Weil theta series 6(g; h) is

Y. (w(g)p)(h'ah?) : SL2(Q)\Mp(A) x B*\B; — C.
o€ Dy

Write T = Iﬁ(b = {u € Bg(oo)|9(g, uthu®) = 60(g, h)}.

In Case I, choose ¢ = (Y ® ¢pg)V(v;/—1,/—1,v/—1) and for
gr = n~1/2 <8 %) (r =¢4+nv/—1 € 9), we specialize g to gr and
h to (gz,g9w) for (r,z,w) € H x H x H. Then

9(7-1 va) L= 9(97" gzvg’w) — Z (¢ & gbo)(&)W(O&, Tasz)'
a€EDgs

Set 0%(¢)(f) ‘= Jx ) f(T)O(@)(7; z,w)n*~2dedn (k = 2). Then
0* () (f) is a weight 2 quaternionic modular form on B* holomor-
phic in z and anti-holomorphic in w for f € SQ_(I‘O(M),w_1 <é)).



§5. Theta differential form. To compute the period on
Shp = Dj_\(Dg(oo) X $)) C Shg = BX\(BX(OO) X 35), we convert
O(7; z,w) into a sheaf valued differential 2—form. If n =k—-2 > 0,
the sheaf comes from the B*-module

Lp(n;A)= Y AX"Iyix™'y"

0<i,j<n

with B*-action vP(X,Y: X" Y") = P((X,Y)n*: (X', Y)4). As
we assumed k£ =2 (i.e., n = 0), we have L(n;A) = A.

By putting © = 0(¢)(7; z, w)dz A dw for n = k—2, we get C-valued
F¢—invariant differential form. The period we like to compute is

P=P@ @)= [, [ FCDO(rz 2)dedn

We integrate over Shp by a measure du given by y_zdxdy over
$H and fF du = 1.



§6. Siegel—Weil Eisenstein series; §4.4.2. Recall the explicit
section r : B — Mp of the representation w as follows:

3/2

r(diagla,a  Ne(v) = laly “(av), r(§ 1) d(v) = e(uN () (v).

For the standard Borel subgroup B C SLo, the function g +—
(r(g)o)(0) is left B(Q) invariant. Siegel—Weil Eisenstein series is

E($)(g;s) = > (Ww(v9)#)(0)]a(vg)|a
veB(Q)\SL2(Q)

where g = diag[a(g),a(g) 1] <é 7{) c for an element c in the max-
imal compact subgroup by Iwasawa decomposition.

The Siegel—Weil formula by Kudla-Rallis and Sweet is
E(¢)(g;0) = /Se(qb)(g,h)dw for the Tamagawa measure dw.

The ratiom = m(IN) = du/dw is the mass of Siegel-Shimura, which
is an arithmetic rational number times ((2)/x in Case I and
¢(2)/72 in Case H. Later we describe the Tamagawa measure,
the metaplectic group and Weil representation in more details.



§7. Conclusion in Case I; §5.3. Decomposing v =a ® vg in
De = Z & Dg, we have for k=2
k E_ e [k k—j '
o+ vo; 2,21" = (la; 2,2 + [vo; 2, 2D = (J.)(a(z—z» “Ivo; 2,21,
7=0
_ <k K\ .Z Do itk infini 7 7
Thus we have ¢ = ijo (j)cpk_quj with infinity part \Uj of qu
given by

; ; 1 vg;2z,2] |2 ‘
W0 = (2 — )7 [ug; 2 We(N (o) + DI W2 = gie(a?r)

with (w(b)¢"°)(0) = 0 and E(¢;°)|5(4) = O unless j = 0, and we
reach Rankin convolution of 0(¢7) =, cz¢¥(n)n*e(n?z) and f
over B(Q)\B(A)/B(Z) = [0,1) xRX , which produces (see [Sh75])

¢(2)P = m272k 5 2m) Tk (k) L) (1, Ad(ps) ® (é>)

with a simple constant *x. Here L() means we remove Euler
factors at p|C with either f|U(p) = 0 or ¢(p) = 0.



§8. Conclusion in Case H; §5.2. The choice of the Bruhat
function ¢ is the same as in Case I. As a C-valued function, set
V(r;v;x) =e(N(v)T).

Again in exactly the same way, for
* = - "2dedn (k=2
D) = [ IOt 2dedn (k=2)
and P = [56*(¢)(f)du, we conclude for a simple constant ¢

¢(2)P = 2m+" (2m) *TIr (k)L (1, Ad(ps) ® (é>).

Writing the point set S = {z},con,, M(F) = Y,esnyext =<¢(2)
for ez = |[F NOp (Q)| and P = 3 cgp,. ex 05 () (f) ().

Thus the period formula is an adjoint analogue of the mass for-
mula of Siegel-Shimura. The determination of m(I:) was finished
by Shimura in 1999 for an arbitrary quadratic space over a totally
real field (see §5.2.8 for the explicit formula for the mass).



§9. Schwartz—Bruhat functions; §3.1.3. For a Q-vector space
V, write V, := V ®y Zp (Which is a vector space over a local field
Qp). A Bruhat function on V, is a locally constant compactly
supported function with values in C. Write S(V,) for the space
of Bruhat functions on Vj,. For a real vector space V, we define
S(Vx) to be the Schwartz space of functions on V. Thus
S(Vx) is made of C°—class functions with all derivatives rapidly
decreasing as Euclidean norm of v € Vo grows. In other words,
o € S(Vxo) if and only if ¢ is of C°°—class and for any polynomial
P(v) and any m-—th derivative ® of ¢, |P(v)®(v)| goes to 0 as
x| — oo. Writing V, for the adelization. We pick a lattice L of V
and put L = [[, Lp C V} () With Ly = L®zZp. A Schwartz-Bruhat
function on Vy is a finite linear combination of the function of the
form ¢(z) = [, ¢v(xv) With ¢y € S(V) and ¢y is the characteristic
function of L, for almost all p.



§10. Weil representation. Let v(u) = <6 1_{) diag[a, b] = <8 8)

and J = <_? —01). Let e : A/Q — S1 be the additive character with
e(roo) = exp(2mv/—1zoc). We put e, := e|g, and for a number
field ', we write ep = eo Trp/g and e, = eyo Trg g, . Let
Q :V — F be a non-degenerate quadratic form with symmetric
bilinear form s(v,w) = Qv + w) — Q(v) — Q(w) over a number
field F'. We have the following operator r(g) € Aut(S(V;)) for

m=dimpV, ?=v,A with u € F,, or F, and a € F;*:
r(v(w) = ep(uQ(v))é(v), r(diagla,a=¢(v) = la|f/ *¢(av) and

A
r(JNo(v) = ¢(—v) 1= Jv,er(s(w, —v))¢(w)dw (Fourier transform),
where dw is normalized so that ¢(v) = ¢(—v). If b,/ € B(F,) (up-
per triangular Borel subgroup), we extend r to 2 = B(Fy)JB(Fy)
by r(bJb") :=r(b)r(J)r(b'). Then if g,h € SLo(F%) either unipo-
tent, diagonal or J, r(gh) = k(g,h)r(g)r(h) for a 2-cocycle
on SL, with values in S1. Write Mp(F?) C Aut(S(V»)) for the
group generated by these operators. We have an extension (x)
1 — ST — Mp(F5) =5 SLo(F5) — 1 with Mp 3 w(g) — g € SLo.
Therefore, the group Mp acts on S(V7) by a representation w.



§11. Weil’s theta series. The extension (%) is split in the fol-
lowing cases:

1. dimpV is even (the section is unique and if V.= D, g,
b — xy (a)r(b) over B(Fy) if b = v(w) diag[a,a"1]); |
2. b—r1(b) and also b +— xy (a)r(b) as above over B(Fy);

3. Over g(4) (canonical);

4. Over SLo(F) (canonical and coincides with b — r(b) over
B(F).

For the orthogonal group Oy for V and ¢ € S(V,), we define a
function on Mp(Fy ) xOy (Fy) by 0(¢)(g,h) = > ney w(g)L(h)p(a),
where (L(h)¢)(v) = ¢(vh) (as usual, O(Fy) acts on Vg, from the
right). Weil showed that 6(¢)(g, h) is real analytic on Mp(Fx) X
Oy (Fxo), left invariant under SL>(F) x Oy (F') and right invariant
under an open subgroup of I\/Ip(FA(OO)) X OV(FA(OO)); in short, an
automorphic form on Mp x Oy, .

All the details are in Chapter 4.



