Adjoint class number formula in the simplest case

Haruzo Hida Department of Mathematics, UCLA, Lecture no.2 at NCTS, March 26, 2024

Lecture 2: Definite quaternions. For a Hecke eigenform f, we recall the adjoint L-value formula relative to each definite quaternion algebra D over \mathbb{Q} with discriminant ∂ and reduced norm N. A key to prove the formula is the theta correspondence for the quadratic \mathbb{Q} -space (D, N). Under the $\mathcal{R} = \mathbb{T}$ -theorem, p-part of the Bloch-Kato conjecture is known; so, the formula is an adjoint Selmer class number formula. The main reference is Chapter 5.

§0. Setting of the simplest case. For $E = \mathbb{Q} \times \mathbb{Q}$, $D_{\sigma} = \{(v, v^{\iota}) | v \in D\} \cong D$ by $(v, v^{\iota}) \mapsto v$ as quadratic spaces. Assume that D is definite. Let $G_D(\mathbb{Q}) = \{(h_l, h_r) \in D^{\times} \times D^{\times} | N(h_l) = N(h_r)\}$ which acts on D by $v \mapsto h_l^{-1} v h_r$; so, $SO_D(\mathbb{Q}) = G_D(\mathbb{Q})/Z_D(\mathbb{Q})$ for the center $Z_D \subset G_D$. For a Bruhat function ϕ on $D_A^{(\infty)}$ and $\tau \in \mathfrak{H}$ (the upper half complex plane), the theta kernel

$$\theta(\phi;\tau;h_l,h_r) = \sum_{\alpha \in D} \phi(h_l^{-1} \alpha h_r) \mathbf{e}(N(\alpha_{\infty})\tau) \quad \text{on } \mathfrak{H} \times G_D(\mathbb{A})$$

can be extended to an automorphic form on $Y_{\Gamma} \times Sh \times Sh$ for $Sh := D^{\times} \setminus D_{\mathbb{A}}^{\times} / D_{\infty}^{\times}$ and $Y_{\Gamma} := \Gamma \setminus \mathfrak{H}$ for a suitable congruence subgroup Γ of $SL_2(\mathbb{Z})$. An *A*-integral automorphic form \mathcal{F} on *Sh* of level \hat{R}^{\times} is a function $\mathcal{F} : Sh/\hat{R}^{\times} \to A$ with $\int_{Sh_R} \mathcal{F} d\mu = 0$ whose space is written as S(A). For $f \in S_2(\Gamma)$ and $\mathcal{F}, \mathcal{G} \in S(\mathbb{C})$, we define

$$\theta^{*}(\phi)(f)(h_{l},h_{r}) = \int_{Y_{\Gamma}} f(\tau)\theta(\phi)(\tau;h_{l},h_{r})y^{-2}dxdy \text{ (lift)},$$

$$\theta_{*}(\phi)(\mathcal{F}\otimes\mathcal{G})(\tau) = \int_{Sh\times Sh} \theta(\phi)(\tau;h_{l},h_{r})\mathcal{F}(h_{l})\cdot\mathcal{G}(h_{r})d\mu_{l}d\mu_{r} \text{ (descent)}.$$

§1. Two good choices of ϕ . Let *R* be an Eichler order of level *M*; so, $M = \partial N_0$ with $(N_0, \partial) = 1$.

Choice A: At N_0 , we identify $R/N_0R = \{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \in M_2(\mathbb{Z}/N_0\mathbb{Z}) \}$. Let ϕ_R be the characteristic function of

$$\left\{x \in \widehat{R} | x \mod N_0 \widehat{R} = \left(\begin{smallmatrix} * & * \\ 0 & d \end{smallmatrix}\right), \ d \in \left(\mathbb{Z}/N_0 \mathbb{Z}\right)^{\times}\right\}.$$

Then the first choice is $\Phi(v) = \phi_R(v^{(\infty)}) \mathbf{e}(N(v_{\infty})\tau)$ as a Schwartz-Bruhat function on $D_{\mathbb{A}}$. We have $\Gamma = \Gamma_0(M)$, as the level M = N of a lattice for L is the smallest integer such that $M \cdot N(L^*) \subset \mathbb{Z}$ (see §3.1.4).

Choice B: Let ϕ_L be the characteristic function of \hat{L} . Choose $0 < c \in \mathbb{Z}$ and $L := \mathbb{Z} \oplus R_0$ for $R_0 = \{v \in R | \operatorname{Tr}(v) = 0\}$, and put $\phi'_{R_0} = (1 - c^3)^{-1}(\phi_{R_0} - \phi_{cR_0})$. Then we define, writing $v = z \oplus w$ with $z \in Z_A$ and $w \in D_{0,A}$

$$\phi'(v) = \phi'_c(v) = \phi_{\mathbb{Z}}(z^{(\infty)})\phi'_{R_0}(w^{(\infty)})\mathbf{e}(N(v_\infty)\tau).$$

We have $\Gamma = \Gamma_0(4c^2M)$.

§2. Two theorems. Let $Sh_R = Sh/\hat{R}^{\times}$ and $\delta(Sh_R)$ is the diagonal image of Sh_R in $Sh_R \times Sh_R = Sh_B/(\hat{R}^{\times} \times \hat{R}^{\times})$.

Theorem A: Assume that $\int_{Sh_R} \mathcal{F}d\mu = \int_{Sh_R} \mathcal{G}d\mu = 0$. Take Φ as in Choice A. Then $\theta_*(\Phi)(\mathcal{F} \otimes \mathcal{G}) = \sum_{n=1}^{\infty} (\mathcal{F}, \mathcal{G}|T(n))q^n$ for $q = \exp(2\pi i\tau)$ with $(\mathcal{F}, \mathcal{G}) = \int_{\delta(Sh_R)} \mathcal{F}(h)\mathcal{G}(h)d\mu_h$. So $\theta_*(\Phi)$ and $\theta^*(\Phi)$ are Hecke equivariant.

Theorem B: If f is a Hecke eigen new form of $S_2(\Gamma_0(M))$, then for the canonical period Ω_{\pm} of f,

$$\prod_{p|\partial} (1-p^{-2})^{-1} \mathfrak{m}_1 \frac{L(1, Ad(\rho_f))}{2\pi^3 \Omega_+ \Omega_-} = \int_{\delta(Sh_R)} \frac{\theta^*(\phi')(f)(h)}{\Omega_+ \Omega_-} d\mu,$$

where \mathfrak{m}_1 is the mass factor of $L \cap D_0$: $\mathfrak{m}_1 \frac{\zeta(2)}{\pi^2} = \int_{Sh_R} d\mu \in \mathbb{Q}$ (Siegel's mass formula) and if $\partial = p$ with $N_0 = 1$, $\mathfrak{m}_1 = (p-1)/2$.

Theorem B is independent of c. Here $\int_{\widehat{R}^{\times}} d\mu = 1$.

§3. Canonical periods. If $D = M_2(\mathbb{Q})$, Sh_R is a Shimura curve $X_0(M)$. Let \mathcal{W} be a DVR at a prime \mathfrak{p} such that $\mathbb{Z}[\lambda] = \mathbb{Z}[\lambda(T(n))|n \in \mathbb{Z}] \subset \mathcal{W} \subset \mathbb{Q}[\lambda]$ for the Hecke field $\mathbb{Q}[\lambda]$ of f (i.e., $f|T(n) = \lambda(T(n))f$). Write $\mathbb{F} := \mathcal{W}/\mathfrak{m}_{\mathcal{W}}$. Define f_{\pm} by

 $H_{\lambda} = H_{\lambda}^{\pm} := H^1(X_0(M), \mathcal{W})[\lambda, \pm] = \mathcal{W}[f_{\pm}],$

where \pm indicate the \pm -eigenspace of complex conjugation on Sh_R . Put $H := H^1(X_0(M), \mathcal{W})[\pm]$.

Define f by $H^0(X_0(M), \Omega_{X_0(M)/\mathcal{W}})[\lambda] = \mathcal{W}\omega_f$ $(f \in S_2(\Gamma_0(M); \mathcal{W}))$ for $\omega_f = 2\pi i f(\tau) d\tau$. We project it to a unique element $\omega^{\pm}(f) = \omega_f \pm c^* \omega_f \in H^1(X_0(M), \mathbb{C})[\lambda, \pm]$ for complex conjugation $c : \tau \mapsto -\overline{\tau}$ and define the period $\Omega_{\pm} \in \mathbb{C}^{\times}$ as $\omega^{\pm}(f) = \Omega_{\pm}[f_{\pm}]$. Let $W = \varprojlim_n \mathcal{W}/\mathfrak{m}_{\mathcal{W}}^n$ and put

 $H(W) := W[T(n)|n = 1, 2, \dots] \subset \mathsf{End}_W(S(W))$

as a W-algebra.

§4. $\mathcal{R} = \mathbb{T}$. For simplicity, assume $N_0 = 1$. Let

 $S(\mathcal{W})_{\lambda} = S(\mathcal{W})[\lambda], \quad S(\mathcal{W})^{\lambda} = \{\mathcal{G} \in S(\mathbb{Q}(\lambda)) | (\mathcal{G}, S(\mathcal{W})_{\lambda}) \subset \mathcal{W}\}.$ Define the *D*-congruence module by $C^{D}(\lambda; \mathcal{W}) := S(\mathcal{W})^{\lambda}/S(\mathcal{W})_{\lambda}.$ Write *p* for the residual characteristic of \mathcal{W} and $\mathbb{Q}^{(p\partial)}$ for the maximal extension of \mathbb{Q} unramified outside $p\partial$. Let $\rho_{\lambda} : \mathfrak{g} \to GL_2(\mathcal{W})$ for $\mathfrak{g} := Gal(\mathbb{Q}^{(p\partial)}/\mathbb{Q})$ be the Galois representation of λ . Put $\overline{\rho} := \rho_{\lambda} \mod \mathfrak{m}_{\mathcal{W}} : \mathfrak{g} \to GL_2(\mathbb{F}).$ Suppose p > 3 and that $\lambda(T(p)) \in \mathcal{W}^{\times}$ and that $\overline{\rho}$ ramifies at $l|p\partial$. It is known that $\rho_{\lambda}|_{D_l} \cong \begin{pmatrix} \varepsilon_{\lambda,l} & u_{\lambda,l} \\ 0 & \delta_{\lambda,l} \end{pmatrix}$ with unramified δ_l such that $\delta_{\lambda,l}(\operatorname{Frob}_l) = \lambda(U(l))$ for each prime $l|p\partial$. Let \mathcal{R} be the universal minimal deformation ring unramified outside $p\partial$ and \mathbb{T} be the local component of H(W) through which λ factors. See [EMI, Section 9.3] for

 $\mathcal{R} = \mathbb{T}$ Theorem (Taylor–Wiles, Mazur). Suppose absolute irreducibility of $\overline{\rho}$, $\delta_{\lambda,p} \not\equiv \varepsilon_{\lambda,p} \mod \mathfrak{m}_W$ and $u_{\lambda,l} \mod \mathfrak{m}_W \neq 0$ for $l|p\partial$. Then $\mathcal{R} \cong \mathbb{T}$, $S(W) \otimes_{H(W)} \mathbb{T} \cong \mathbb{T}$, and

$$|C^{D}(\lambda; \mathcal{W})| \stackrel{\mathsf{T}-\mathsf{W}}{=} |\Omega_{\mathbb{T}/W} \otimes_{\mathbb{T},\lambda} W| \stackrel{\mathsf{M}}{=} |\mathsf{Sel}(Ad(\rho_{\lambda}))|$$

for the minimal ordinary Selmer group $Sel(Ad(\rho_{\lambda}))$.

§5. Universal ring \mathcal{R} . A Galois representation $\rho : \mathfrak{g} \to \operatorname{GL}_2(A)$ for a local profinite W-algebra with $A/\mathfrak{m}_A = \mathbb{F}$ is called a minimal ordinary deformation of $\overline{\rho}$ if $\rho \mod \mathfrak{m}_A \cong \overline{\rho}$, ρ is unramified outside $p\partial$, $\det(\rho)$ is the cyclotomic character $\nu : \mathfrak{g} \to W^{\times}$ composed with the structure morphism: $W \to A$ and $\rho|_{D_l} \cong \begin{pmatrix} \varepsilon_l & u_l \\ 0 & \delta_l \end{pmatrix}$ keeping the upper triangular form over D_l for all $l|p\partial$. A profinite local W-algebra \mathcal{R} with $\mathcal{R}/\mathfrak{m}_{\mathcal{R}} = \mathbb{F}$ is called minimal (ordinary) universal ring if

(i) we have a minimal ordinary deformation $\rho : \mathfrak{g} \to \operatorname{GL}_2(\mathcal{R})$ unramified outside $p\partial$ with $\rho|_{D_l} \cong \begin{pmatrix} \varepsilon_l & \mathbf{u}_l \\ 0 & \delta_l \end{pmatrix}$,

(ii) for any minimal ordinary deformation $\rho : \mathfrak{g} \to GL_2(A)$ for a local profinite W-algebra with $A/\mathfrak{m}_A = \mathbb{F}$ such that

 $\rho \mod \mathfrak{m}_A \cong \overline{\rho}$

in $GL_2(\mathbb{F})$, there is a unique *W*-algebra homomorphism $\varphi : \mathcal{R} \to A$ such that $\varphi \circ \rho \cong \rho$ with $\varphi \circ \delta_l = \delta_l$.

Since \mathbb{T} carries a minimal ordinary deformation $\rho_{\mathbb{T}}$ satisfying $\operatorname{Tr}(\rho_{\mathbb{T}}(\operatorname{Frob}_{l})) = T(l) \in \mathbb{T}$ for $l \nmid p\partial$, the isomorphism ι in $\mathcal{R} = \mathbb{T}$ theorem is canonical with $\iota \circ \rho \cong \rho_{\mathbb{T}}$.

§6. Selmer group. Define a representation $Ad(\rho_{\lambda})$ acting on $\mathfrak{sl}_{2}(W)$ by $x \mapsto \rho_{\lambda}(\sigma)x\rho_{\lambda}^{-1}(\sigma)$. Let $T := \mathfrak{sl}_{2}(W) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}/\mathbb{Z}_{p}$. At primes $l|p\partial$, fixing decomposition group and inertia group $D_{l} \supset I_{l}$, we have $T_{l,-}$ such that D_{l} acts by $\varepsilon_{l}\delta_{l}^{-1}$ and put $T_{l,+} = T_{l}/T_{l,-}$. Define

$$\mathsf{Sel}(Ad(\rho_{\lambda})) := \mathsf{Ker}(H^{1}(\mathfrak{g},T) \to \prod_{l|p\partial} H^{1}(I_{l},T_{l,+})).$$

We need a more general definition of the Selmer group to relate $Sel(Ad(\rho_{\lambda}))$ and $\Omega_{\mathbb{T}/W} \otimes_{\mathbb{T},\lambda} W$. Let X be a finite A-module and consider $A[X] := A \oplus X$ as an A-algebra so that $X^2 = 0$. The ring A[X] is still local profinite. Write $\mathcal{D}(A)$ for the set of all deformations with values in $GL_2(A)$ modulo isomorphisms and taking $A = \mathcal{R}$, put

$$\Phi(X) = \frac{\{\rho : \mathfrak{g} \to \mathsf{GL}_2(\mathcal{R}[X]) | (\rho \mod X) = \rho, [\rho] \in \mathcal{D}(\mathcal{R}[X]) \}}{1 + M_2(X)}.$$

§7. Local conditions. Write $\rho \in \Phi(X)$ as $\rho = \rho \oplus u'$ for u': $G \to M_2(X)$ as $\operatorname{GL}_2(\mathcal{R}[X]) = \operatorname{GL}_2(\mathcal{R}) \oplus M_2(X)$. By computation, writing $u(g) = u'(g)\rho(g)^{-1}$, $\rho(gh) = \rho(g)\rho(h)$ produces the relation $u'(gh) = \rho(g)u'(h) + u'(g)\rho(h) \Leftrightarrow Ad(g)u(h) + u(g)$; so, u is a 1-cocycle with values in $M_2(X) = M_2(\mathcal{R}) \otimes_{\mathcal{R}} X$. By $\det(\rho) =$ $\det(\rho) = \nu$, we find $1 = \det(\rho\rho^{-1}) = \det(1 \oplus u) = 1 + \operatorname{Tr}(u)$ as $X^2 = 0$. Thus u has values in $\mathfrak{sl}_2(X) := \mathfrak{sl}_2(\mathcal{R}) \otimes_{\mathcal{R}} X$. Writing $u|_{I_l} = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, by unramifiedness of δ_l and $\operatorname{Tr}(u) = 0$, we find $u|_{I_l}$ is upper nilpotent; so, verifying the equivalence classes in $\Phi(X)$ corresponds cohomology classes, we find $\Phi(X) \hookrightarrow H^1(\mathfrak{g}, Ad(X))$ and

$$\Phi(X) = \operatorname{Sel}(Ad(X)) := \operatorname{Ker}(H^1(\mathfrak{g}, Ad(X)) \to \prod_{l|p\partial} H^1(I_l, T_{l,+}^X)),$$

where $T_{l,-}^X \subset Ad(X)$ is the maximal subspace on which D_l acts by $\varepsilon_l \delta_l^{-1}$ and $T_{l,+}^X = Ad(X)/T_{l,-}^X$. Now writing $T = \lim_{N \to \infty} \mathfrak{sl}_2(W_n)$ and applying the above result to each $X = W_n := p^{-n}W/W$,

$$\operatorname{Sel}(Ad(\rho_{\lambda})) = \varinjlim_{n} \Phi(W_{n}).$$

§8. $\Phi(X)$ and differentials. Let $\varphi = \operatorname{id}_{\mathcal{R}} \oplus \delta_{\varphi} : \mathcal{R} \to \mathcal{R}[X]$ be an \mathcal{R} -algebra homomorphism. Since $(r \oplus x)(r' \oplus x') = rr' \oplus (rx' + r'x)$ for $r, r' \in \mathcal{R}$ and $x, x' \in X$, we find φ projected to X written as δ_{φ} satisfies $\delta_{\varphi}(rr') = r\delta_{\varphi}(r') + r'\delta_{\varphi}(r)$; so, it is an \mathcal{R} -derivation with values in X. Thus byn definition,

 $\operatorname{Sel}(Ad(W_n)) \cong \Phi(W_n) \cong \operatorname{Hom}_W(\Omega_{\mathcal{R}/W} \otimes_{\mathcal{R},\lambda} W_n, W_n),$

and passing to the injectve limit

Sel $(Ad(\rho_{\lambda})) = \operatorname{Hom}_{W}(\Omega_{\mathcal{R}/W} \otimes_{\mathcal{R},\lambda} W, W \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}/\mathbb{Z}_{p}) = (\Omega_{\mathcal{R}/W} \otimes_{\mathcal{R},\lambda} W)^{*}$ with "*" indicating Pontryagin dual. Since \mathbb{T} is reduced finite flat over W, $\Omega_{\mathcal{R}/W} \otimes_{\mathcal{R},\lambda} W$ is finite, and we conclude Mazur's result

 $|\operatorname{Sel}(Ad(\rho_{\lambda}))| = |\Omega_{\mathcal{R}/W} \otimes_{\mathcal{R},\lambda} W|.$

§9. Congruence module. Replacing $S(\mathcal{W})$ by $S_2^{new}(\Gamma_0(M); \mathcal{W}) = S_2^{new}(\Gamma_0(M)) \cap \mathcal{W}[[q]]$ in the definition of $C^D(\lambda; \mathcal{W})$ for $M = [p, \partial]$, we define $C(\lambda; \mathcal{W})$ (the congruence module for $M_2(\mathbb{Q})$). Let $H_2(W) := W[T(n)|n = 1, 2, ...] \subset \operatorname{End}(S_2^{new}(\Gamma_0(M); \mathcal{W}))$ for $S_2^{new}(\Gamma_0(M); \mathcal{W}) = S_2^{new}(\Gamma_0(M); \mathcal{W}) \otimes_{\mathcal{W}} \mathcal{W} \subset \mathcal{W}[[q]]$. By Jacquet–Langlands correspondence, $H_2(\mathcal{W}) \cong H(\mathcal{W})$ by $T(n) \mapsto T(n)$; so, \mathbb{T} is a factor of $H_2(\mathcal{W})$. Again by Taylor–Wiles argument, we get

 $\mathcal{R} = \mathbb{T}$ Theorem 2. Let the assumption be as in $\mathcal{R} = \mathbb{T}$ Theorem. Then $\mathcal{R} \cong \mathbb{T}$, $S_2^{new}(\Gamma_0(p\partial); W) \otimes_{H_2(W)} \mathbb{T} \cong \mathbb{T} \cong H^{\pm}_{\lambda} \otimes_{\mathcal{W}} W$, and

 $|C(\lambda; W)| = |C^{D}(\lambda; W)| = |\Omega_{\mathbb{T}/W} \otimes_{\mathbb{T},\lambda} W| = |\operatorname{Sel}(Ad(\rho_{\lambda}))|$ for the minimal ordinary Selmer group $\operatorname{Sel}(Ad(\rho_{\lambda}))$.

Since the congruence modules only depends on \mathbb{T} -module structure of $S_2^{new}(\Gamma_0(p\partial); W) \otimes_{H_2(W)} \mathbb{T}$ and $S(W) \otimes_{H(W)} \mathbb{T}$, the identity $|C(\lambda; W)| = |C^D(\lambda; W)|$ follows from $S_2^{new}(\Gamma_0(p\partial); W) \otimes_{H_2(W)} \mathbb{T} \cong \mathbb{T} \cong S(W) \otimes_{H(W)} \mathbb{T}$. §10. $|C_0^D(\lambda; W)|$. If $S(W)_{\lambda} = W\mathcal{F}$, then $|C^D(\lambda; W)| = |(\mathcal{F}, \mathcal{F})|_p^{-1}$, where choosing a representative set $S \subset D_{\mathbb{A}(\infty)}^{\times}$ for Sh_R and writing $R_h := h\widehat{R}h^{-1} \cap D$ (another Eichler order) and $e_h = |R_h^{\times}|$,

$$(\mathcal{F},\mathcal{G}) = \sum_{h \in S} \mathcal{F}(h)\mathcal{G}(h)/e_h = \int_{Sh_R} \mathcal{F}\mathcal{G}d\mu.$$

Similarly, ignoring powers of π for simplicity,

$$|C(\lambda;W)| = |\langle [f_+], [f_-] \rangle|_p^{-1} = \left| \frac{(f,f)}{\Omega_+ \Omega_-} \right|_p^{-1} \overset{\text{H, 1981}}{=} \left| \frac{L(1, Ad(\rho_\lambda))}{\Omega_+ \Omega_-} \right|_p^{-1}.$$

By Hecke equivariance, $\theta^*(\Phi)(f) = \Omega^D(\mathcal{F} \otimes \mathcal{F})$ ($\Omega^D \in \mathbb{C}$); so,

$$|C(\lambda; \mathcal{W})| = \frac{L(1, Ad(\rho_{\lambda}))}{\Omega_{+}\Omega_{-}}$$
$$= \int_{Sh_{R}} \frac{\theta^{*}(\Phi)(f)}{\Omega_{+}\Omega_{-}} d\mu = \frac{\Omega^{D}}{\Omega_{+}\Omega_{-}} (\mathcal{F}, \mathcal{F}) = \frac{\Omega^{D}}{\Omega_{+}\Omega_{-}} |C^{D}(\lambda; \mathcal{W})|$$

up to ${\mathcal W}$ units. We conclude from p-adic limit $\Phi \doteqdot \lim_{n \to \infty} \phi'_{p^n}$

Period Theorem. $\Omega^D = \Omega_+ \Omega_-$ up to W-units.

§11. Adjoint Selmer class number formula. We have

$$|\mathsf{Sel}(Ad(\rho_{\lambda}))| \doteq \mathfrak{m}_1 \frac{L(1, Ad(\rho))}{2\pi^3 \Omega_+ \Omega_- (1 - p^{-2})} = \sum_{h \in S} e_h^{-1} \frac{\theta^*(f)(h, h)}{\Omega_+ \Omega_-}$$

The above formula is an adjoint generalization of the mass formula of Siegel:

$$\mathfrak{m}_1 \frac{\zeta(2)}{\pi^2} = \sum_{h \in S} e_h^{-1},$$

and also an obvious generalization of the Dirichlet class number formula for an imaginary quadratic field $K := \mathbb{Q}[\sqrt{-d}]$ with discriminant -d < 0:

$$\frac{\sqrt{d} \cdot L(1, \left(\frac{-d}{e}\right))}{2\pi} = \frac{h(-d)}{e} = \sum_{\mathfrak{a} \in Cl_K} e^{-1},$$

where Cl_K is the class group of K, $h(-d) := |Cl_K|$ and e is the number of roots of unity in K.