Adjoint class number formula in the simplest case

Haruzo Hida
Department of Mathematics, UCLA,
Lecture no. 2 at NCTS, March 26, 2024

Lecture 2: Definite quaternions. For a Hecke eigenform f, we recall the adjoint L-value formula relative to each definite quaternion algebra D over \mathbb{Q} with discriminant ∂ and reduced norm N. A key to prove the formula is the theta correspondence for the quadratic \mathbb{Q}-space (D, N). Under the $\mathcal{R}=\mathbb{T}$-theorem, p-part of the Bloch-Kato conjecture is known; so, the formula is an adjoint Selmer class number formula. The main reference is Chapter 5.
$\S 0$. Setting of the simplest case. For $E=\mathbb{Q} \times \mathbb{Q}, D_{\sigma}=$ $\left\{\left(v, v^{\iota}\right) \mid v \in D\right\} \cong D$ by $\left(v, v^{\iota}\right) \mapsto v$ as quadratic spaces. Assume that D is definite. Let $G_{D}(\mathbb{Q})=\left\{\left(h_{l}, h_{r}\right) \in D^{\times} \times D^{\times} \mid N\left(h_{l}\right)=N\left(h_{r}\right)\right\}$ which acts on D by $v \mapsto h_{l}^{-1} v h_{r}$; so, $\mathrm{SO}_{D}(\mathbb{Q})=G_{D}(\mathbb{Q}) / Z_{D}(\mathbb{Q})$ for the center $Z_{D} \subset G_{D}$. For a Bruhat function ϕ on $D_{\mathbb{A}}^{(\infty)}$ and $\tau \in \mathfrak{H}$ (the upper half complex plane), the theta kernel

$$
\theta\left(\phi ; \tau ; h_{l}, h_{r}\right)=\sum_{\alpha \in D} \phi\left(h_{l}^{-1} \alpha h_{r}\right) \mathrm{e}\left(N\left(\alpha_{\infty}\right) \tau\right) \quad \text { on } \mathfrak{H} \times G_{D}(\mathbb{A})
$$

can be extended to an automorphic form on $Y_{\Gamma} \times S h \times S h$ for $S h:=D^{\times} \backslash D_{\mathbb{A}}^{\times} / D_{\infty}^{\times}$and $Y_{\Gamma}:=\Gamma \backslash \mathfrak{H}$ for a suitable congruence subgroup Γ of $\mathrm{SL}_{2}(\mathbb{Z})$. An A-integral automorphic form \mathcal{F} on $S h$ of level \hat{R}^{\times}is a function $\mathcal{F}: S h / \hat{R}^{\times} \rightarrow A$ with $\int_{S h_{R}} \mathcal{F} d \mu=0$ whose space is written as $S(A)$. For $f \in S_{2}(\Gamma)$ and $\mathcal{F}, \mathcal{G} \in S(\mathbb{C})$, we define

$$
\begin{aligned}
\theta^{*}(\phi)(f)\left(h_{l}, h_{r}\right) & =\int_{Y_{\Gamma}} f(\tau) \theta(\phi)\left(\tau ; h_{l}, h_{r}\right) y^{-2} d x d y \text { (lift), } \\
\theta_{*}(\phi)(\mathcal{F} \otimes \mathcal{G})(\tau) & =\int_{S h \times S h} \theta(\phi)\left(\tau ; h_{l}, h_{r}\right) \mathcal{F}\left(h_{l}\right) \cdot \mathcal{G}\left(h_{r}\right) d \mu_{l} d \mu_{r} \text { (descent). }
\end{aligned}
$$

§1. Two good choices of ϕ. Let R be an Eichler order of level M; so, $M=\partial N_{0}$ with $\left(N_{0}, \partial\right)=1$.

Choice A: At N_{0}, we identify $R / N_{0} R=\left\{\binom{*}{0} \in M_{2}\left(\mathbb{Z} / N_{0} \mathbb{Z}\right)\right\}$. Let ϕ_{R} be the characteristic function of

$$
\left\{x \in \widehat{R} \left\lvert\, x \bmod N_{0} \widehat{R}=\left(\begin{array}{c}
* \\
0 \\
d
\end{array}\right)\right., d \in\left(\mathbb{Z} / N_{0} \mathbb{Z}\right)^{\times}\right\} .
$$

Then the first choice is $\Phi(v)=\phi_{R}\left(v^{(\infty)}\right) \mathbf{e}\left(N\left(v_{\infty}\right) \tau\right)$ as a SchwartzBruhat function on $D_{\mathbb{A}}$. We have $\Gamma=\Gamma_{0}(M)$, as the level $M=N$ of a lattice for L is the smallest integer such that $M \cdot N\left(L^{*}\right) \subset \mathbb{Z}$ (see §3.1.4).

Choice B: Let ϕ_{L} be the characteristic function of \hat{L}. Choose $0<c \in \mathbb{Z}$ and $L:=\mathbb{Z} \oplus R_{0}$ for $R_{0}=\{v \in R \mid \operatorname{Tr}(v)=0\}$, and put $\phi_{R_{0}}^{\prime}=\left(1-c^{3}\right)^{-1}\left(\phi_{R_{0}}-\phi_{c R_{0}}\right)$. Then we define, writing $v=z \oplus w$ with $z \in Z_{\mathbb{A}}$ and $w \in D_{0, \mathbb{A}}$

$$
\phi^{\prime}(v)=\phi_{c}^{\prime}(v)=\phi_{\mathbb{Z}}\left(z^{(\infty)}\right) \phi_{R_{0}}^{\prime}\left(w^{(\infty)}\right) \mathbf{e}\left(N\left(v_{\infty}\right) \tau\right)
$$

We have $\Gamma=\Gamma_{0}\left(4 c^{2} M\right)$.
§2. Two theorems. Let $S h_{R}=S h / \widehat{R}^{\times}$and $\delta\left(S h_{R}\right)$ is the diagonal image of $S h_{R}$ in $S h_{R} \times S h_{R}=S h_{B} /\left(\widehat{R}^{\times} \times \widehat{R}^{\times}\right)$.

Theorem A: Assume that $\int_{S h_{R}} \mathcal{F} d \mu=\int_{S h_{R}} \mathcal{G} d \mu=0$. Take Φ as in Choice A. Then $\theta_{*}(\Phi)(\mathcal{F} \otimes \mathcal{G})=\sum_{n=1}^{\infty}(\mathcal{F}, \mathcal{G} \mid T(n)) q^{n}$ for $q=\exp (2 \pi i \tau)$ with $(\mathcal{F}, \mathcal{G})=\int_{\delta\left(S h_{R}\right)} \mathcal{F}(h) \mathcal{G}(h) d \mu_{h}$. So $\theta_{*}(\Phi)$ and $\theta^{*}(\Phi)$ are Hecke equivariant.

Theorem B: If f is a Hecke eigen new form of $S_{2}\left(\Gamma_{0}(M)\right)$, then for the canonical period $\Omega_{ \pm}$of f,

$$
\prod_{p \mid \partial}\left(1-p^{-2}\right)^{-1} \mathfrak{m}_{1} \frac{L\left(1, A d\left(\rho_{f}\right)\right)}{2 \pi^{3} \Omega_{+} \Omega_{-}}=\int_{\delta\left(S h_{R}\right)} \frac{\theta^{*}\left(\phi^{\prime}\right)(f)(h)}{\Omega_{+} \Omega_{-}} d \mu,
$$

where \mathfrak{m}_{1} is the mass factor of $L \cap D_{0}: \mathfrak{m}_{1} \frac{\zeta(2)}{\pi^{2}}=\int_{S h_{R}} d \mu \in \mathbb{Q}$ (Siegel's mass formula) and if $\partial=p$ with $N_{0}=1, \mathfrak{m}_{1}=(p-1) / 2$.

Theorem B is independent of c. Here $\int_{\widehat{R}^{\times}} d \mu=1$.
§3. Canonical periods. If $D=M_{2}(\mathbb{Q}), S h_{R}$ is a Shimura curve $X_{0}(M)$. Let \mathcal{W} be a DVR at a prime \mathfrak{p} such that $\mathbb{Z}[\lambda]=$ $\mathbb{Z}[\lambda(T(n)) \mid n \in \mathbb{Z}] \subset \mathcal{W} \subset \mathbb{Q}[\lambda]$ for the Hecke field $\mathbb{Q}[\lambda]$ of f (i.e., $f \mid T(n)=\lambda(T(n)) f)$. Write $\mathbb{F}:=\mathcal{W} / \mathfrak{m}_{\mathcal{W}}$. Define $f_{ \pm}$by

$$
H_{\lambda}=H_{\lambda}^{ \pm}:=H^{1}\left(X_{0}(M), \mathcal{W}\right)[\lambda, \pm]=\mathcal{W}\left[f_{ \pm}\right]
$$

where \pm indicate the \pm-eigenspace of complex conjugation on $S h_{R}$. Put $H:=H^{1}\left(X_{0}(M), \mathcal{W}\right)[\pm]$.

Define f by $H^{0}\left(X_{0}(M), \Omega_{X_{0}(M) / \mathcal{W}}\right)[\lambda]=\mathcal{W} \omega_{f}\left(f \in S_{2}\left(\Gamma_{0}(M) ; \mathcal{W}\right)\right)$ for $\omega_{f}=2 \pi i f(\tau) d \tau$. We project it to a unique element $\omega^{ \pm}(f)=$ $\omega_{f} \pm c^{*} \omega_{f} \in H^{1}\left(X_{0}(M), \mathbb{C}\right)[\lambda, \pm]$ for complex conjugation $c: \tau \mapsto$ $-\bar{\tau}$ and define the period $\Omega_{ \pm} \in \mathbb{C}^{\times}$as $\omega^{ \pm}(f)=\Omega_{ \pm}\left[f_{ \pm}\right]$. Let $W=\varliminf_{n} \mathcal{W} / \mathfrak{m}_{\mathcal{W}}^{n}$ and put

$$
H(W):=W[T(n) \mid n=1,2, \ldots\} \subset \operatorname{End}_{W}(S(W))
$$

as a W-algebra.
§4. $\mathcal{R}=\mathbb{T}$. For simplicity, assume $N_{0}=1$. Let

$$
S(\mathcal{W})_{\lambda}=S(\mathcal{W})[\lambda], \quad S(\mathcal{W})^{\lambda}=\left\{\mathcal{G} \in S(\mathbb{Q}(\lambda)) \mid\left(\mathcal{G}, S(\mathcal{W})_{\lambda}\right) \subset \mathcal{W}\right\} .
$$

Define the D-congruence module by $C^{D}(\lambda ; \mathcal{W}):=S(\mathcal{W})^{\lambda} / S(\mathcal{W})_{\lambda}$. Write p for the residual characteristic of \mathcal{W} and $\mathbb{Q}^{(p \partial)}$ for the maximal extension of \mathbb{Q} unramified outside $p \partial$. Let $\rho_{\lambda}: \mathfrak{g} \rightarrow$ $\mathrm{GL}_{2}(W)$ for $\mathfrak{g}:=\operatorname{Gal}\left(\mathbb{Q}^{(p \partial)} / \mathbb{Q}\right)$ be the Galois representation of λ. Put $\bar{\rho}:=\rho_{\lambda} \bmod \mathfrak{m}_{\mathcal{W}}: \mathfrak{g} \rightarrow \mathrm{GL}_{2}(\mathbb{F})$. Suppose $p>3$ and that $\lambda(T(p)) \in \mathcal{W}^{\times}$and that $\bar{\rho}$ ramifies at $l \mid p \partial$. It is known that $\left.\rho_{\lambda}\right|_{D_{l}} \cong$ $\left(\begin{array}{c}\varepsilon_{\lambda, l} \\ 0\end{array} \frac{u}{\lambda, l}^{\lambda_{\lambda, l}}\right.$) with unramified δ_{l} such that $\delta_{\lambda, l}\left(\mathrm{Frob}_{l}\right)=\lambda(U(l))$ for each prime $l \mid p \partial$. Let \mathcal{R} be the universal minimal deformation ring unramified outside $p \partial$ and \mathbb{T} be the local component of $H(W)$ through which λ factors. See [EMI, Section 9.3] for
$\mathcal{R}=\mathbb{T}$ Theorem (Taylor-Wiles, Mazur). Suppose absolute irreducibility of $\bar{\rho}, \delta_{\lambda, p} \not \equiv \varepsilon_{\lambda, p} \bmod \mathfrak{m}_{W}$ and $u_{\lambda, l} \bmod \mathfrak{m}_{W} \neq 0$ for $l \mid p \partial$. Then $\mathcal{R} \cong \mathbb{T}, S(W) \otimes_{H(W)} \mathbb{T} \cong \mathbb{T}$, and

$$
\left|C^{D}(\lambda ; \mathcal{W})\right|^{\top} \stackrel{\mathrm{W}}{=}\left|\Omega_{\mathbb{T} / W} \otimes_{\mathbb{T}, \lambda} W\right| \stackrel{\mathrm{M}}{=}\left|\operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{\lambda}\right)\right)\right|
$$

for the minimal ordinary Selmer group $\operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{\lambda}\right)\right)$.
§5. Universal ring \mathcal{R}. A Galois representation $\rho: \mathfrak{g} \rightarrow \mathrm{GL}_{2}(A)$ for a local profinite W-algebra with $A / \mathfrak{m}_{A}=\mathbb{F}$ is called a minimal ordinary deformation of $\bar{\rho}$ if $\rho \bmod \mathfrak{m}_{A} \cong \bar{\rho}, \rho$ is unramified outside $p \partial, \operatorname{det}(\rho)$ is the cyclotomic character $\nu: \mathfrak{g} \rightarrow W^{\times}$composed with the structure morphism: $W \rightarrow A$ and $\left.\rho\right|_{D_{l}} \cong\left(\begin{array}{cc}\varepsilon_{l} & u_{l} \\ 0 & \delta_{l}\end{array}\right)$ keeping the upper triangular form over D_{l} for all $l \mid p \partial$. A profinite local W-algebra \mathcal{R} with $\mathcal{R} / \mathfrak{m}_{\mathcal{R}}=\mathbb{F}$ is called minimal (ordinary) universal ring if
(i) we have a minimal ordinary deformation $\rho: \mathfrak{g} \rightarrow G L_{2}(\mathcal{R})$ unramified outside $p \partial$ with $\left.\rho\right|_{D_{l}} \cong\left(\begin{array}{c}\varepsilon_{l} \\ \mathbf{u}_{l} \\ 0\end{array} \delta_{l}\right)$,
(ii) for any minimal ordinary deformation $\rho: \mathfrak{g} \rightarrow \mathrm{GL}_{2}(A)$ for a local profinite W-algebra with $A / \mathfrak{m}_{A}=\mathbb{F}$ such that

$$
\rho \bmod \mathfrak{m}_{A} \cong \bar{\rho}
$$

in $\mathrm{GL}_{2}(\mathbb{F})$, there is a unique W-algebra homomorphism $\varphi: \mathcal{R} \rightarrow A$ such that $\varphi \circ \rho \cong \rho$ with $\varphi \circ \delta_{l}=\delta_{l}$.
Since \mathbb{T} carries a minimal ordinary deformation $\rho_{\mathbb{T}}$ satisfying $\operatorname{Tr}\left(\rho_{\mathbb{T}}\left(\mathrm{Frob}_{l}\right)\right)=T(l) \in \mathbb{T}$ for $l \nmid p \partial$, the isomorphism ι in $\mathcal{R}=\mathbb{T}$ theorem is canonical with $\iota \circ \rho \cong \rho_{\mathbb{T}}$.
\S 6. Selmer group. Define a representation $\operatorname{Ad}\left(\rho_{\lambda}\right)$ acting on $\mathfrak{s l}_{2}(W)$ by $x \mapsto \rho_{\lambda}(\sigma) x \rho_{\lambda}^{-1}(\sigma)$. Let $T:=\mathfrak{s l}_{2}(W) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p} / \mathbb{Z}_{p}$. At primes $l \mid p \partial$, fixing decomposition group and inertia group $D_{l} \supset I_{l}$, we have $T_{l,-}$ such that D_{l} acts by $\varepsilon_{l} \delta_{l}^{-1}$ and put $T_{l,+}=T_{l} / T_{l,-}$. Define

$$
\operatorname{Sel}\left(A d\left(\rho_{\lambda}\right)\right):=\operatorname{Ker}\left(H^{1}(\mathfrak{g}, T) \rightarrow \prod_{l \mid p \partial} H^{1}\left(I_{l}, T_{l,+}\right)\right)
$$

We need a more general definition of the Selmer group to relate $\operatorname{Sel}\left(A d\left(\rho_{\lambda}\right)\right)$ and $\Omega_{\mathbb{T} / W} \otimes_{\mathbb{T}, \lambda} W$. Let X be a finite A-module and consider $A[X]:=A \oplus X$ as an A-algebra so that $X^{2}=0$. The ring $A[X]$ is still local profinite. Write $\mathcal{D}(A)$ for the set of all deformations with values in $\mathrm{GL}_{2}(A)$ modulo isomorphisms and taking $A=\mathcal{R}$, put

$$
\Phi(X)=\frac{\left\{\rho: \mathfrak{g} \rightarrow \operatorname{GL}_{2}(\mathcal{R}[X]) \mid(\rho \bmod X)=\rho,[\rho] \in \mathcal{D}(\mathcal{R}[X])\right\}}{1+M_{2}(X)}
$$

$\S 7$. Local conditions. Write $\rho \in \Phi(X)$ as $\rho=\boldsymbol{\rho} \oplus u^{\prime}$ for u^{\prime} : $G \rightarrow M_{2}(X)$ as $\mathrm{GL}_{2}(\mathcal{R}[X])=\mathrm{GL}_{2}(\mathcal{R}) \oplus M_{2}(X)$. By computation, writing $u(g)=u^{\prime}(g) \rho(g)^{-1}, \rho(g h)=\rho(g) \rho(h)$ produces the relation $u^{\prime}(g h)=\rho(g) u^{\prime}(h)+u^{\prime}(g) \rho(h) \Leftrightarrow \operatorname{Ad}(g) u(h)+u(g)$; so, u is a 1-cocycle with values in $M_{2}(X)=M_{2}(\mathcal{R}) \otimes_{\mathcal{R}} X$. By $\operatorname{det}(\rho)=$ $\operatorname{det}(\rho)=\nu$, we find $1=\operatorname{det}\left(\rho \rho^{-1}\right)=\operatorname{det}(1 \oplus u)=1+\operatorname{Tr}(u)$ as $X^{2}=0$. Thus u has values in $\mathfrak{s l}_{2}(X):=\mathfrak{s l}_{2}(\mathcal{R}) \otimes_{\mathcal{R}} X$. Writing $\left.u\right|_{I_{l}}=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$, by unramifiedness of δ_{l} and $\operatorname{Tr}(u)=0$, we find $\left.u\right|_{I_{l}}$ is upper nilpotent; so, verifying the equivalence classes in $\Phi(X)$ corresponds cohomology classes, we find $\Phi(X) \hookrightarrow H^{1}(\mathfrak{g}, \operatorname{Ad}(X))$ and

$$
\Phi(X)=\operatorname{Sel}(A d(X)):=\operatorname{Ker}\left(H^{1}(\mathfrak{g}, \operatorname{Ad}(X)) \rightarrow \prod_{l \mid p \partial} H^{1}\left(I_{l}, T_{l,+}^{X}\right)\right),
$$

where $T_{l,-}^{X} \subset A d(X)$ is the maximal subspace on which D_{l} acts by $\varepsilon_{l} \delta_{l}^{-1}$ and $T_{l,+}^{X}=\operatorname{Ad}(X) / T_{l,-}^{X}$. Now writing $T=\lim _{-n} \mathfrak{s l}_{2}\left(W_{n}\right)$ and applying the above result to each $X=W_{n}:=p^{-n} W / W$,

$$
\operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{\lambda}\right)\right)=\underset{n}{\lim } \Phi\left(W_{n}\right) .
$$

§8. $\Phi(X)$ and differentials. Let $\varphi=\mathrm{id}_{\mathcal{R}} \oplus \delta_{\varphi}: \mathcal{R} \rightarrow \mathcal{R}[X]$ be an \mathcal{R}-algebra homomorphism. Since $(r \oplus x)\left(r^{\prime} \oplus x^{\prime}\right)=r r^{\prime} \oplus\left(r x^{\prime}+r^{\prime} x\right)$ for $r, r^{\prime} \in \mathcal{R}$ and $x, x^{\prime} \in X$, we find φ projected to X written as δ_{φ} satisfies $\delta_{\varphi}\left(r r^{\prime}\right)=r \delta_{\varphi}\left(r^{\prime}\right)+r^{\prime} \delta_{\varphi}(r)$; so, it is an \mathcal{R}-derivation with values in X. Thus byn definition,

$$
\operatorname{Sel}\left(\operatorname{Ad}\left(W_{n}\right)\right) \cong \Phi\left(W_{n}\right) \cong \operatorname{Hom}_{W}\left(\Omega_{\mathcal{R} / W} \otimes_{\mathcal{R}, \lambda} W_{n}, W_{n}\right)
$$

and passing to the injectve limit
$\operatorname{Sel}\left(A d\left(\rho_{\lambda}\right)\right)=\operatorname{Hom}_{W}\left(\Omega_{\mathcal{R} / W} \otimes_{\mathcal{R}, \lambda} W, W \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)=\left(\Omega_{\mathcal{R} / W} \otimes_{\mathcal{R}, \lambda} W\right)^{*}$ with " $*$ " indicating Pontryagin dual. Since \mathbb{T} is reduced finite flat over $W, \Omega_{\mathcal{R} / W} \otimes_{\mathcal{R}, \lambda} W$ is finite, and we conclude Mazur's result

$$
\left|\operatorname{Sel}\left(A d\left(\rho_{\lambda}\right)\right)\right|=\left|\Omega_{\mathcal{R} / W} \otimes_{\mathcal{R}, \lambda} W\right| .
$$

§9. Congruence module. Replacing $S(\mathcal{W})$ by $S_{2}^{\text {new }}\left(\Gamma_{0}(M) ; \mathcal{W}\right)=$ $S_{2}^{\text {new }}\left(\Gamma_{0}(M)\right) \cap \mathcal{W}[[q]]$ in the definition of $C^{D}(\lambda ; \mathcal{W})$ for $M=$ $[p, \partial]$, we define $C(\lambda ; \mathcal{W})$ (the congruence module for $M_{2}(\mathbb{Q})$). Let $H_{2}(W):=W[T(n) \mid n=1,2, \ldots] \subset \operatorname{End}\left(S_{2}^{\text {new }}\left(\Gamma_{0}(M) ; W\right)\right)$ for $S_{2}^{\text {new }}\left(\Gamma_{0}(M) ; W\right)=S_{2}^{\text {new }}\left(\Gamma_{0}(M) ; \mathcal{W}\right) \otimes_{\mathcal{W}} W \subset W[[q]]$. By Jacquet-Langlands correspondence, $H_{2}(W) \cong H(W)$ by $T(n) \mapsto$ $T(n)$; so, \mathbb{T} is a factor of $H_{2}(W)$. Again by Taylor-Wiles argument, we get
$\mathcal{R}=\mathbb{T}$ Theorem 2. Let the assumption be as in $\mathcal{R}=\mathbb{T}$ Theorem. Then $\mathcal{R} \cong \mathbb{T}, S_{2}^{\text {new }}\left(\Gamma_{0}(p \partial) ; W\right) \otimes_{H_{2}(W)} \mathbb{T} \cong \mathbb{T} \cong H_{\lambda}^{ \pm} \otimes_{\mathcal{W}} W$, and

$$
|C(\lambda ; \mathcal{W})|=\left|C^{D}(\lambda ; \mathcal{W})\right|=\left|\Omega_{\mathbb{T} / W} \otimes_{\mathbb{T}, \lambda} W\right|=\left|\operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{\lambda}\right)\right)\right|
$$

for the minimal ordinary Selmer group $\operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{\lambda}\right)\right)$.
Since the congruence modules only depends on \mathbb{T}-module structure of $S_{2}^{\text {new }}\left(\Gamma_{0}(p \partial) ; W\right) \otimes_{H_{2}(W)} \mathbb{T}$ and $S(W) \otimes_{H(W)} \mathbb{T}$, the identity $|C(\lambda ; \mathcal{W})|=\left|C^{D}(\lambda ; \mathcal{W})\right|$ follows from $S_{2}^{\text {new }}\left(\Gamma_{0}(p \partial) ; W\right) \otimes_{H_{2}(W)} \mathbb{T} \cong$ $\mathbb{T} \cong S(W) \otimes_{H(W)} \mathbb{T}$.
§10. $\left|C_{0}^{D}(\lambda ; W)\right|$. If $S(\mathcal{W})_{\lambda}=\mathcal{W} \mathcal{F}$, then $\left|C^{D}(\lambda ; W)\right|=|(\mathcal{F}, \mathcal{F})|_{p}^{-1}$, where choosing a representative set $S \subset D_{\mathbb{A}}^{\times}(\infty)$ for $S h_{R}$ and writing $R_{h}:=h \widehat{R} h^{-1} \cap D$ (another Eichler order) and $e_{h}=\left|R_{h}^{\times}\right|$,

$$
(\mathcal{F}, \mathcal{G})=\sum_{h \in S} \mathcal{F}(h) \mathcal{G}(h) / e_{h}=\int_{S h_{R}} \mathcal{F} \mathcal{G} d \mu .
$$

Similarly, ignoring powers of π for simplicity,
$|C(\lambda ; W)|=\left|\left\langle\left[f_{+}\right],\left[f_{-}\right]\right\rangle\right|_{p}^{-1}=\left|\frac{(f, f)}{\Omega_{+} \Omega_{-}}\right|_{p}^{-1} \mathrm{H}, \stackrel{1981}{=}\left|\frac{L\left(1, \operatorname{Ad}\left(\rho_{\lambda}\right)\right)}{\Omega_{+} \Omega_{-}}\right|_{p}^{-1}$.
By Hecke equivariance, $\theta^{*}(\Phi)(f)=\Omega^{D}(\mathcal{F} \otimes \mathcal{F})\left(\Omega^{D} \in \mathbb{C}\right)$; so,

$$
\begin{aligned}
& |C(\lambda ; \mathcal{W})|=\frac{L\left(1, A d\left(\rho_{\lambda}\right)\right)}{\Omega_{+} \Omega_{-}} \\
& \quad=\int_{S h_{R}} \frac{\theta^{*}(\Phi)(f)}{\Omega_{+} \Omega_{-}} d \mu=\frac{\Omega^{D}}{\Omega_{+} \Omega_{-}}(\mathcal{F}, \mathcal{F})=\frac{\Omega^{D}}{\Omega_{+} \Omega_{-}}\left|C^{D}(\lambda ; \mathcal{W})\right|
\end{aligned}
$$

up to \mathcal{W} units. We conclude from p-adic limit $\Phi \doteqdot \lim _{n \rightarrow \infty} \phi_{p^{n}}^{\prime}$
Period Theorem. $\Omega^{D}=\Omega_{+} \Omega_{-}$up to \mathcal{W}-units.
§11. Adjoint Selmer class number formula. We have

$$
\left|\operatorname{Sel}\left(A d\left(\rho_{\lambda}\right)\right)\right| \doteqdot \mathfrak{m}_{1} \frac{L(1, A d(\rho))}{2 \pi^{3} \Omega_{+} \Omega_{-}\left(1-p^{-2}\right)}=\sum_{h \in S} e_{h}^{-1} \frac{\theta^{*}(f)(h, h)}{\Omega_{+} \Omega_{-}}
$$

The above formula is an adjoint generalization of the mass formula of Siegel:

$$
\mathfrak{m}_{1} \frac{\zeta(2)}{\pi^{2}}=\sum_{h \in S} e_{h}^{-1}
$$

and also an obvious generalization of the Dirichlet class number formula for an imaginary quadratic field $K:=\mathbb{Q}[\sqrt{-d}]$ with discriminant $-d<0$:

$$
\frac{\sqrt{d} \cdot L\left(1,\left(\frac{-d}{}\right)\right)}{2 \pi}=\frac{h(-d)}{e}=\sum_{\mathfrak{a} \in C l_{K}} e^{-1}
$$

where $C l_{K}$ is the class group of $K, h(-d):=\left|C l_{K}\right|$ and e is the number of roots of unity in K.

