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Lecture 2: Definite quaternions. For a Hecke eigenform f,
we recall the adjoint L-value formula relative to each definite
quaternion algebra D over Q with discriminant 0 and reduced
norm N. A Key to prove the formula is the theta correspondence
for the quadratic Q-space (D,N). Under the R = T-theorem,
p-part of the Bloch-Kato conjecture is known; so, the formula is
an adjoint Selmer class number formula. The main reference is
Chapter 5.



§0. Setting of the simplest case. For £ = Q x Q, Dy =
{(v,v")|lv € D} = D by (v,v*) — v as quadratic spaces. Assume
that D is definite. Let Gp(Q) = {(h;,hr) € D* x D*|N(h;) = N(hy)}
which acts on D by v — hl_lvhr; so, SOp(Q) =Gp(Q)/Zp(Q)

for the center Zp C Gp. For a Bruhat function ¢ on Dgfo) and
T € $ (the upper half complex plane), the theta kernel

0(d; T, hy, hr) = Z qﬁ(hl_lahr)e(N(aoo)T) on H x Gp(A)
aceD

can be extended to an automorphic form on Y x Sh x Sh for
Sh := D*\Dj /D%, and Y :=I'\$) for a suitable congruence sub-
group I of SL»(Z). An A-integral automorphic form F on Sh of
level RX is a function F : Sh/RX — A with [g), Fdu = 0 whose
space is written as S(A). For f € Sy(IN) and F,G € S(C), we
define

0" (D) ()t h)= [ F()0(0) (7 by, hr)y~2dady (if),

r

0+(0)(F @G)(7)= /thShQ(qﬁ)(T: hi, he)F(hy) - G(he)dpydpr (descent).



1. Two good choices of ¢. Let R be an Eichler order of level
M; so, M = ONg with (Ng,9) = 1.

Choice A: At Ng, we identify R/NogR = {({§ 5) € M>(Z/NoZ)}.
Let ¢p be the characteristic function of

{:1: € Rlz mod NoR= (%), de (Z/NOZ)X}.

Then the first choice is ®(v) = ¢p(v(%))e(N (vso)7) as a Schwartz-
Bruhat function on Dy. We have " =1 g(M), asthelevel M = N
of a lattice for L is the smallest integer such that M - N(L*) C Z
(see §3.1.4).

Choice B: Let ¢; be the characteristic function of L. Choose
O<ceZ and L:=7Z® Ry for Rog = {v € R|Tr(v) = 0}, and put

Ry = (1 — )" (pr, — dery). Then we define, writing v = 2w
with z € ZA and w € DO,A

¢ (v) = Pl(v) = (L) P (W))e(N (voo)T).
We have M = g(4c2M).



§2. Two theorems. Let Shp = Sh/R* and §(Shp) is the
diagonal image of Shp in Shp x Shp = Shy/(R* x RX).

Theorem A: Assume that [g, Fdp = [g,9du = 0. Take
® as in Choice A. Then 0+(P)(F ®G) = >0 (F,G|T(n))q"™ for
g = exp(2mit) with (F,G) = Js(Shp) F(h)G(h)duy. So 8+(P) and
0*(d) are Hecke equivariant.

Theorem B: If f is a Hecke eigen new form of S>(I'g(M)), then
for the canonical period €2+ of f,

_ov—1 L(1,Ad(py)) 0" (¢") (f)(h)
]%(1—;9 )™ 21304 Q_ _/(S(ShR) QL s

where mq IS the mass factor of L N Dg: mli—g) = fShR du € Q
(Siegel's mass formula) and if @ = p with Ng =1, m1 = (p—1)/2.

Theorem B is independent of ¢. Here fﬁx du = 1.



§3. Canonical periods. If D = M>(Q), Shgr is a Shimura
curve Xg(M). Let W be a DVR at a prime p such that Z[\] =
ZIAN(T(n))|n € Z] C W C Q[A] for the Hecke field Q[A] of f (i.e.,
fIT(n) = X(T'(n))f). Write F :=W/my,. Define fi by

Hy = Hy := HY(Xo(M), W)\, +] = W[f4l],

where + indicate the 4-eigenspace of complex conjugation on
Shp. Put H := HY(Xo(M), W)[£].

Define f by HO(Xo(M), QLxo () WA = Wwy (f € S2(To(M); W)
for wy = 2mif(T)dT. We project it to a unique element wi(f) =
wrtcfwy € HI(Xq(M),C)[\, £] for complex conjugation ¢ : 7 —
—7 and define the period Q4+ € C* as w™(f) = Q+[f+]. Let
W = mn W/ml,, and put

HW) := W[T(n)n = 1,2,...} C Endy (S(W))

as a W-algebra.



4. R = T. For simplicity, assume Ng = 1. Let

SW)y = SOV, SN = {G € S(QM)) (G, SW),) € W

Define the D-congruence module by CP(\; W) := S(OWV)}/S(W),.
Write p for the residual characteristic of W and Q(Pa) for the
maximal extension of @Q unramified outside po. Let p) : g —
GLo(W) for g := GaI(Q(Pa)/Q) be the Galois representation of
A. Put p:=py, mod my : g — GLo(F). Suppose p > 3 and that

A(T(p)) € WX and that p ramifies at l|pd. It is known that py|p, =

<€g’l g’i;) with unramified ¢; such that 6, ;(Frob;) = A(U(l)) for

each prime [|lp0. Let R be the universal minimal deformation ring
unramified outside pd and T be the local component of H(W)
through which X\ factors. See [EMI, Section 9.3] for

R = T Theorem (Taylor—Wiles, Mazur). Suppose absolute ir-
reducibility of p, 0y, Z €xp mod my, and uy; mod my, = 0 for
[|l]p0. Then R =T, S(W) R (W) T=T, and

T-W M
ICP W) =" Qi @1, W = [Sel(Ad(py)]
for the minimal ordinary Selmer group Sel(Ad(py)).



§5. Universal ring R. A Galois representation p: g — GL>(A)
for a local profinite W-algebra with A/m, = F is called a mini-
mal ordinary deformation of p if p mod m4 = p, p is unramified
outside po, det(p) is the cyclotomic character v : g — W* com-
posed with the structure morphism: W — A and p|p, = <%l 1;;)
keeping the upper triangular form over D, for all [|p0. A profinite
local W-algebra R with R/mp = F is called minimal (ordinary)
universal ring if

(i) we have a minimal ordinary deformation p:g— GL>(R) un-
ramified outside pd with p[p, = <%l gf)

(ii) for any minimal ordinary deformation p: g — GL>(A) for a

local profinite W-algebra with A/m4 = F such that

pmod my=7p

in GL»(IF), there is a unique W-algebra homomorphism ¢ : R — A
such that po p = p with o d; = ;.

Since T carries a minimal ordinary deformation p satisfying
Tr(prp(Frob;)) =T() € T for I 1 pd, the isomorphism ¢ in R =T
theorem is canonical with to p = pr.



§6. Selmer group. Define a representation Ad(p),) acting on
slo (W) by o — pA(a)xpxl(a). Let T := slr(W) ®7, Qp/Zyp. At
primes [|pd, fixing decomposition group and inertia group D; D I;,
we have T; _ such that D; acts by €l5l_1 and put T, 4 =1;/T; _.
Define

Sel(Ad(py)) = Ker(H(g,T7) — [[ H* (1, Tj ).

l|po
We need a more general definition of the Selmer group to relate
Sel(Ad(py)) and Qryy @7\ W. Let X be a finite A-module and
consider A[X]:= A® X as an A-algebra so that X2 = 0. The
ring A[X] is still local profinite. Write D(A) for the set of all
deformations with values in GL>(A) modulo isomorphisms and
taking A = R, put

ip: g — GLo(RIX])[(p mod X) = p, [p] € D(RIX])}

PX) = 1+ M>(X)




§7. Local conditions. Write p € ®(X) as p = p @ ' for v’ :
G — M>(X) as GLo(R[X]) = GL(R)DM>(X). By computation,
writing w(g) = «/(¢)p(g9)~ 1, p(gh) = p(g)p(h) produces the rela-
tion v'(gh) = p(g)u'(h) +u'(g)p(h) < Ad(g)u(h) + u(g); SO, u is
a 1-cocycle with values in M>(X) = M>(R) ®r X. By det(p) =
det(p) = v, we find 1 = det(pp~1) =det(1®w) =1+ Tr(uw) as
X2 = 0. Thus u has values in slo(X) = sl>(R) ®p X. Writing
ulp, = <0 d) by unramifiedness of §; and Tr(u) = 0, we find u|,
is upper nilpotent; so, verifying the equivalence classes in ®(X)
corresponds cohomology classes, we find ®(X) — H1(g, Ad(X))
and

®(X) = Sel(Ad(X)) = Ker(H' (g, Ad(X)) — [[ H'(1;, T}})),
[|po
where TZX_ C Ad(X) is the maximal subspace on which D; acts
by elél_l and TZX—I— = Ad(X)/T* . Now writing T = Iiiqnstg(Wn)
and applying the above result to each X = W, ;= p "W/W,

Sel(Ad(py)) = lim > (Wy).



§8. ®(X) and differentials. Let ¢ = idg ®d, : R — R[X] be an
R-algebra homomorphism. Since (r®z)(r'@z') = r' & (ra’ +7'2)
for r,r’ € R and z,2’ € X, we find ¢ projected to X written as é,
satisfies d,(rr") = ré (r") +1r'6,(r); so, it is an R-derivation with
values in X. Thus byn definition,

Sel(Ad(Wy)) = d(W,) = HomW(QR/W QR A W, Wh),
and passing to the injectve limit

Sel(Ad(py)) = Homy (U /i @r A WW @z Qp/Zp) = (U /w @ W)

with “x" indicating Pontryagin dual. Since T is reduced finite
flat over W, Qp y @r x W is finite, and we conclude Mazur’s
result

Sel(Ad(px))| = (2w @r A W]



§9. Congruence module. Replacing S(W) byS W(o(M); W) =

SHEW(Fo(M)) N WIlq]] in the definition of cP (>\ W) for M =
[p, 0], we define C(\; W) (the congruence module for M>(Q)).
Let Hoy(W) = W[T(n)ln = 1,2,...] C End(S5¢“(IMo(M); W))
for SHEU(Fo(M), W) = Sgew(ro(M) W) ew W C Wllg]]. By
Jacquet—Langlands correspondence, Hy(W) = H(W) by T(n) —
T(n); so, T is a factor of H>(W). Again by Taylor—Wiles argu-
ment, we get

R =T Theorem 2. Let the assumption be as in R = T Theo-
rem. Then R =T, S5¢“(Mo(pd); W) @,y T=T = H/\jE Qw W,
and

[COW)| = [CPAW)| = Q2 @1\ W = [Sel(Ad(py))]
for the minimal ordinary Selmer group Sel(Ad(py)).

Since the congruence modules only depends on T-module struc-
ture of S5¢(Mo(p0); W)®p,(w)T and S(W)® gy T, the identity
|C(>\ W)| = |CP(x; W) follows from SEU(Fo(pd); W)@, () T £
T=S(W) W) T.



§10. |[CH (N W)|. If SOW)\ = WEF, then |0D(/\ W) = |(F, )|y,
where choosing a representative set S C DA(OO) for Shr and writ-

ing Ry, := hRh~1 N D (another Eichler order) and e, = |R/|,

CFQ)—-XIFUOQUOAm—-/ PG

hes
Similarly, ignoring powers of = for S|mpI|C|ty,
—1 —1
N (f H, 1981 |L(1, Ad(py))
C\W)| = Do = =22 = :
OO = KL+ D1 = 570" oo

By Hecke equivariance, 6*(®)(f) = QP(F e F) (QFP € C); so,
L(1,Ad(py))

[CAW)| = 2o
(@)(f), _ P QP

up to W units. We conclude from p-adic limit ® = limy—oo cb;n

Period Theorem. QY = Q. Q_ up to W-units.



§11. Adjoint Selmer class number formula. We have

L(1, Ad(p)) — Y. ~107(f)(h, h)
27130, Q_(1 —p- v Taial

Sel(Ad(py))| = mq
hes

The above formula is an adjoint generalization of the mass for-
mula of Siegel:

¢(2) _
m1—2 ehl,
@ hes
and also an obvious generalization of the Dirichlet class num-
ber formula for an imaginary quadratic field K := Q[+/—d] with

discriminant —d < O:

Vd-L(L (=) n(=d) _

27T e

> e

CLECZK

where Cly is the class group of K, h(—d) := |Clg| and e is the
number of roots of unity in K.



