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Lecture 2: Definite quaternions. For a Hecke eigenform f ,

we recall the adjoint L-value formula relative to each definite

quaternion algebra D over Q with discriminant ∂ and reduced

norm N . A key to prove the formula is the theta correspondence

for the quadratic Q-space (D, N). Under the R = T-theorem,

p-part of the Bloch-Kato conjecture is known; so, the formula is

an adjoint Selmer class number formula. The main reference is

Chapter 5.



§0. Setting of the simplest case. For E = Q × Q, Dσ =

{(v, vι)|v ∈ D} ∼= D by (v, vι) 7→ v as quadratic spaces. Assume

that D is definite. Let GD(Q) = {(hl, hr) ∈ D× ×D×|N(hl) = N(hr)}
which acts on D by v 7→ h−1

l vhr; so, SOD(Q) = GD(Q)/ZD(Q)

for the center ZD ⊂ GD. For a Bruhat function φ on D
(∞)
A and

τ ∈ H (the upper half complex plane), the theta kernel

θ(φ; τ ;hl, hr) =
∑

α∈D

φ(h−1
l αhr)e(N(α∞)τ) on H×GD(A)

can be extended to an automorphic form on YΓ × Sh × Sh for

Sh := D×\D×A/D×∞ and YΓ := Γ\H for a suitable congruence sub-

group Γ of SL2(Z). An A-integral automorphic form F on Sh of

level R̂× is a function F : Sh/R̂× → A with
∫
ShR
Fdµ = 0 whose

space is written as S(A). For f ∈ S2(Γ) and F ,G ∈ S(C), we

define

θ∗(φ)(f)(hl, hr)=
∫

YΓ

f(τ)θ(φ)(τ ; hl, hr)y
−2dxdy (lift),

θ∗(φ)(F ⊗ G)(τ)=
∫

Sh×Sh
θ(φ)(τ ; hl, hr)F(hl) · G(hr)dµldµr (descent).



§1. Two good choices of φ. Let R be an Eichler order of level

M ; so, M = ∂N0 with (N0, ∂) = 1.

Choice A: At N0, we identify R/N0R = {( ∗ ∗0 ∗ ) ∈M2(Z/N0Z)}.
Let φR be the characteristic function of

{
x ∈ R̂|x mod N0R̂ = ( ∗ ∗0 d ) , d ∈ (Z/N0Z)×

}
.

Then the first choice is Φ(v) = φR(v(∞))e(N(v∞)τ) as a Schwartz-

Bruhat function on DA. We have Γ = Γ0(M), as the level M = N

of a lattice for L is the smallest integer such that M ·N(L∗) ⊂ Z
(see §3.1.4).

Choice B: Let φL be the characteristic function of L̂. Choose

0 < c ∈ Z and L := Z⊕R0 for R0 = {v ∈ R|Tr(v) = 0}, and put

φ′R0
= (1− c3)−1(φR0

− φcR0
). Then we define, writing v = z⊕w

with z ∈ ZA and w ∈ D0,A

φ′(v) = φ′c(v) = φZ(z(∞))φ′R0
(w(∞))e(N(v∞)τ).

We have Γ = Γ0(4c2M).



§2. Two theorems. Let ShR = Sh/R̂× and δ(ShR) is the

diagonal image of ShR in ShR × ShR = ShB/(R̂× × R̂×).

Theorem A: Assume that
∫
ShR
Fdµ =

∫
ShR
Gdµ = 0. Take

Φ as in Choice A. Then θ∗(Φ)(F ⊗ G) =
∑∞

n=1(F ,G|T(n))qn for

q = exp(2πiτ) with (F ,G) =
∫
δ(ShR)F(h)G(h)dµh. So θ∗(Φ) and

θ∗(Φ) are Hecke equivariant.

Theorem B: If f is a Hecke eigen new form of S2(Γ0(M)), then

for the canonical period Ω± of f ,

∏

p|∂
(1− p−2)−1m1

L(1, Ad(ρf))

2π3Ω+Ω−
=

∫

δ(ShR)

θ∗(φ′)(f)(h)

Ω+Ω−
dµ,

where m1 is the mass factor of L ∩ D0: m1
ζ(2)
π2 =

∫
ShR

dµ ∈ Q

(Siegel’s mass formula) and if ∂ = p with N0 = 1, m1 = (p−1)/2.

Theorem B is independent of c. Here
∫
R̂× dµ = 1.



§3. Canonical periods. If D = M2(Q), ShR is a Shimura

curve X0(M). Let W be a DVR at a prime p such that Z[λ] =

Z[λ(T(n))|n ∈ Z] ⊂ W ⊂ Q[λ] for the Hecke field Q[λ] of f (i.e.,

f |T(n) = λ(T(n))f). Write F :=W/mW. Define f± by

Hλ = H±λ := H1(X0(M),W)[λ,±] =W[f±],

where ± indicate the ±-eigenspace of complex conjugation on

ShR. Put H := H1(X0(M),W)[±].

Define f by H0(X0(M), ΩX0(M)/W)[λ] =Wωf (f ∈ S2(Γ0(M);W))

for ωf = 2πif(τ)dτ . We project it to a unique element ω±(f) =

ωf ± c∗ωf ∈ H1(X0(M), C)[λ,±] for complex conjugation c : τ 7→
−τ and define the period Ω± ∈ C× as ω±(f) = Ω±[f±]. Let

W = lim←−n
W/mn

W and put

H(W ) := W [T(n)|n = 1,2, . . . } ⊂ EndW(S(W ))

as a W -algebra.



§4. R= T. For simplicity, assume N0 = 1. Let

S(W)λ = S(W)[λ], S(W)λ = {G ∈ S(Q(λ))|(G, S(W)λ) ⊂ W}.
Define the D-congruence module by CD(λ;W) := S(W)λ/S(W)λ.
Write p for the residual characteristic of W and Q(p∂) for the

maximal extension of Q unramified outside p∂. Let ρλ : g →
GL2(W ) for g := Gal(Q(p∂)/Q) be the Galois representation of

λ. Put ρ := ρλ mod mW : g → GL2(F). Suppose p > 3 and that
λ(T(p)) ∈ W× and that ρ ramifies at l|p∂. It is known that ρλ|Dl

∼=
( ελ,l uλ,l

0 δλ,l

)
with unramified δl such that δλ,l(Frobl) = λ(U(l)) for

each prime l|p∂. Let R be the universal minimal deformation ring

unramified outside p∂ and T be the local component of H(W )
through which λ factors. See [EMI, Section 9.3] for

R = T Theorem (Taylor–Wiles, Mazur). Suppose absolute ir-

reducibility of ρ, δλ,p 6≡ ελ,p mod mW and uλ,l mod mW 6= 0 for

l|p∂. Then R ∼= T, S(W )⊗H(W) T ∼= T, and

|CD(λ;W)| T-W
= |ΩT/W ⊗T,λ W | M= |Sel(Ad(ρλ))|

for the minimal ordinary Selmer group Sel(Ad(ρλ)).



§5. Universal ring R. A Galois representation ρ : g → GL2(A)

for a local profinite W -algebra with A/mA = F is called a mini-

mal ordinary deformation of ρ if ρ mod mA
∼= ρ, ρ is unramified

outside p∂, det(ρ) is the cyclotomic character ν : g → W× com-

posed with the structure morphism: W → A and ρ|Dl
∼=

( εl ul
0 δl

)

keeping the upper triangular form over Dl for all l|p∂. A profinite

local W -algebra R with R/mR = F is called minimal (ordinary)

universal ring if

(i) we have a minimal ordinary deformation ρ : g→ GL2(R) un-

ramified outside p∂ with ρ|Dl
∼=

( εl ul
0 δl

)
,

(ii) for any minimal ordinary deformation ρ : g → GL2(A) for a

local profinite W -algebra with A/mA = F such that

ρ mod mA
∼= ρ

in GL2(F), there is a unique W -algebra homomorphism ϕ : R→ A

such that ϕ ◦ ρ ∼= ρ with ϕ ◦ δl = δl.

Since T carries a minimal ordinary deformation ρT satisfying

Tr(ρT(Frobl)) = T(l) ∈ T for l - p∂, the isomorphism ι in R = T

theorem is canonical with ι ◦ ρ ∼= ρT.



§6. Selmer group. Define a representation Ad(ρλ) acting on

sl2(W ) by x 7→ ρλ(σ)xρ−1
λ (σ). Let T := sl2(W ) ⊗Zp

Qp/Zp. At

primes l|p∂, fixing decomposition group and inertia group Dl ⊃ Il,

we have Tl,− such that Dl acts by εlδ
−1
l and put Tl,+ = Tl/Tl,−.

Define

Sel(Ad(ρλ)) := Ker(H1(g, T)→
∏

l|p∂

H1(Il, Tl,+)).

We need a more general definition of the Selmer group to relate

Sel(Ad(ρλ)) and ΩT/W ⊗T,λ W . Let X be a finite A-module and

consider A[X] := A⊕X as an A-algebra so that X2 = 0. The

ring A[X] is still local profinite. Write D(A) for the set of all

deformations with values in GL2(A) modulo isomorphisms and

taking A = R, put

Φ(X) =
{ρ : g→ GL2(R[X])|(ρ mod X) = ρ, [ρ] ∈ D(R[X])}

1 + M2(X)
.



§7. Local conditions. Write ρ ∈ Φ(X) as ρ = ρ ⊕ u′ for u′ :
G→M2(X) as GL2(R[X]) = GL2(R)⊕M2(X). By computation,

writing u(g) = u′(g)ρ(g)−1, ρ(gh) = ρ(g)ρ(h) produces the rela-

tion u′(gh) = ρ(g)u′(h) + u′(g)ρ(h)⇔ Ad(g)u(h) + u(g); so, u is

a 1-cocycle with values in M2(X) = M2(R) ⊗R X. By det(ρ) =

det(ρ) = ν, we find 1 = det(ρρ−1) = det(1 ⊕ u) = 1 + Tr(u) as

X2 = 0. Thus u has values in sl2(X) := sl2(R) ⊗R X. Writing

u|Il
=

(
a b
0 d

)
, by unramifiedness of δl and Tr(u) = 0, we find u|Il

is upper nilpotent; so, verifying the equivalence classes in Φ(X)

corresponds cohomology classes, we find Φ(X) ↪→ H1(g, Ad(X))

and

Φ(X) = Sel(Ad(X)) := Ker(H1(g, Ad(X))→
∏

l|p∂

H1(Il, T
X
l,+)),

where TX
l,− ⊂ Ad(X) is the maximal subspace on which Dl acts

by εlδ
−1
l and TX

l,+ = Ad(X)/TX
l,−. Now writing T = lim−→n

sl2(Wn)

and applying the above result to each X = Wn := p−nW/W ,

Sel(Ad(ρλ)) = lim−→
n

Φ(Wn).



§8. Φ(X) and differentials. Let ϕ = idR⊕δϕ : R → R[X] be an

R-algebra homomorphism. Since (r⊕x)(r′⊕x′) = rr′⊕(rx′+r′x)
for r, r′ ∈ R and x, x′ ∈ X, we find ϕ projected to X written as δϕ

satisfies δϕ(rr′) = rδϕ(r′)+ r′δϕ(r); so, it is an R-derivation with

values in X. Thus byn definition,

Sel(Ad(Wn))
∼= Φ(Wn)

∼= HomW(ΩR/W ⊗R,λ Wn, Wn),

and passing to the injectve limit

Sel(Ad(ρλ)) = HomW(ΩR/W ⊗R,λ W,W ⊗Zp
Qp/Zp) = (ΩR/W ⊗R,λ W )∗

with “∗” indicating Pontryagin dual. Since T is reduced finite

flat over W , ΩR/W ⊗R,λ W is finite, and we conclude Mazur’s

result

|Sel(Ad(ρλ))| = |ΩR/W ⊗R,λ W |.



§9. Congruence module. Replacing S(W) by Snew
2 (Γ0(M);W) =

Snew
2 (Γ0(M)) ∩ W[[q]] in the definition of CD(λ;W) for M =

[p, ∂], we define C(λ;W) (the congruence module for M2(Q)).

Let H2(W ) := W [T(n)|n = 1,2, . . . ] ⊂ End(Snew
2 (Γ0(M);W ))

for Snew
2 (Γ0(M);W ) = Snew

2 (Γ0(M);W) ⊗W W ⊂ W [[q]]. By

Jacquet–Langlands correspondence, H2(W ) ∼= H(W ) by T(n) 7→
T(n); so, T is a factor of H2(W ). Again by Taylor–Wiles argu-

ment, we get

R = T Theorem 2. Let the assumption be as in R = T Theo-

rem. Then R ∼= T, Snew
2 (Γ0(p∂);W )⊗H2(W) T ∼= T ∼= H±λ ⊗W W ,

and

|C(λ;W)| = |CD(λ;W)| = |ΩT/W ⊗T,λ W | = |Sel(Ad(ρλ))|
for the minimal ordinary Selmer group Sel(Ad(ρλ)).

Since the congruence modules only depends on T-module struc-

ture of Snew
2 (Γ0(p∂);W )⊗H2(W)T and S(W )⊗H(W)T, the identity

|C(λ;W)| = |CD(λ;W)| follows from Snew
2 (Γ0(p∂);W )⊗H2(W)T

∼=
T ∼= S(W )⊗H(W) T.



§10. |CD
0 (λ;W )|. If S(W)λ =WF, then |CD(λ;W )| = |(F ,F)|−1

p ,

where choosing a representative set S ⊂ D×
A(∞) for ShR and writ-

ing Rh := hR̂h−1 ∩D (another Eichler order) and eh = |R×h |,

(F ,G) =
∑

h∈S

F(h)G(h)/eh =
∫

ShR

FGdµ.

Similarly, ignoring powers of π for simplicity,

|C(λ;W )| = |〈[f+], [f−]〉|−1
p =

∣∣∣∣∣
(f, f)

Ω+Ω−

∣∣∣∣∣

−1

p

H, 1981
=

∣∣∣∣∣
L(1, Ad(ρλ))

Ω+Ω−

∣∣∣∣∣

−1

p

.

By Hecke equivariance, θ∗(Φ)(f) = ΩD(F ⊗ F) (ΩD ∈ C); so,

|C(λ;W)| = L(1, Ad(ρλ))

Ω+Ω−

=
∫

ShR

θ∗(Φ)(f)

Ω+Ω−
dµ =

ΩD

Ω+Ω−
(F ,F) =

ΩD

Ω+Ω−
|CD(λ;W)|

up to W units. We conclude from p-adic limit Φ + limn→∞ φ′pn

Period Theorem. ΩD = Ω+Ω− up to W-units.



§11. Adjoint Selmer class number formula. We have

|Sel(Ad(ρλ))| + m1
L(1, Ad(ρ))

2π3Ω+Ω−(1− p−2)
=

∑

h∈S

e−1
h

θ∗(f)(h, h)

Ω+Ω−
.

The above formula is an adjoint generalization of the mass for-

mula of Siegel:

m1
ζ(2)

π2
=

∑

h∈S

e−1
h ,

and also an obvious generalization of the Dirichlet class num-

ber formula for an imaginary quadratic field K := Q[
√
−d] with

discriminant −d < 0:
√

d · L(1,
(−d

)
)

2π
=

h(−d)

e
=

∑

a∈ClK

e−1,

where ClK is the class group of K, h(−d) := |ClK| and e is the

number of roots of unity in K.


