Tate conjecture for quaternionic Shimura varieties Haruzo Hida Department of Mathematics, UCLA, Lecture no.13 at NCTS, June 11, 2024

Lecture 13: We list our results towards the Tate conjecture and give a sketch of a proof. Pick an indefinite quaternion algebra B over a totally real field E.

§0. Introduction. We prove partially the Tate conjecture for 2r-dimensional Shimura varieties Sh_B for a quaternion algebra $B_{/E}$ over a totally real field E under some restrictive conditions. Decompose

 $H^{2e}_{cusp}(Sh_B,\overline{\mathbb{Q}}_l) = \bigoplus_{\pi \in \mathcal{A}_B}(\Pi_{\pi} \otimes \pi^{(\infty)})$

for $e \leq 2r$, Let X be a finite real extension of E and π is a cuspidal automorphic representation of $B_{\mathbb{A}}^{\times}$ contributing Tate classes. Pick a member ρ in the 2-dimensional compatible system ρ_{π} of π and define ${}^{\nu}\rho(g) := \rho(\nu^{-1}g\nu)$ for $\nu, g \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Here is a list of our results a bit oversimplified (i.e., some assumptions are not stated here):

(1) Take $D_{/F}$ with dim $Sh_D = 1$ and put $B = D^r = D \otimes_F E$ with $E = F^r$. Then $Sh_B = Sh_D^r$ and $\mathcal{A}_B = \mathcal{A}_D \otimes \cdots \otimes \mathcal{A}_D$, and the Tate space $H^0(X, \Pi_{\pi}(e))$ in the factor $\Pi_{\pi}(e)$ for $H_{cusp}^{2e}(Sh_B^r, \overline{\mathbb{Q}}_l(e))$ with $0 \le e \le r$ is generated by the image of Shimura sub-varieties in Sh_B^r of codimension e (those are essentially partial Hecke correspondences) as long as π does **not** have an automorphic induction factor.

$\S1$. List for low dimesional cases.

(2) If Sh_B is a Shimura surface and $B = D \otimes_F E$ for a subfield $F \subset E$ with [E : F] = 2, $H^0(X, H^2_{cusp}(Sh_B, \overline{\mathbb{Q}}_l(1)))$ is spanned by Shimura sub-curves. This is already done in Lecture 11.

(3) For $Sh_B \times Sh_B$ for Sh_B as in (2), $H^0(X, \prod_{\pi \otimes \pi'}(e))$ with $\pi, \pi' \in \mathcal{A}_B$ is generated by Shimura sub-varieties in $Sh_B \times Sh_B$ of appropriate codimension as long as π and π' are **not** automorphic induction from a CM extension (non-CM).

(4) Assume that E is Galois over the reflex field \mathcal{E} of Sh_B and $Gal(E/\mathcal{E}) \cong {\pm 1}^2$ acting transitively on I_B . If Sh_B is a Shimura fourfold such that $B = D \otimes_{\mathcal{E}} E$ for a quaternion algebra $D_{/\mathcal{E}}$ producing a Shimura curve Sh_D , $H^0(X, \Pi_{\pi}(2)) \subset H^4(Sh_B, \overline{\mathbb{Q}}_l(2))$ is generated by Shimura sub-varieties in Sh_B of codimension 2 as long as π is non-CM.

§2. General case. (5) Suppose $2r = \dim Sh_B \ge 4$ and E/\mathcal{E} for the reflex field \mathcal{E} is a Galois extension with $Gal(E/\mathcal{E})$ acting transitively on I_B . By transitivity of the Galois action on I_B , replacing B by a Galois conjugate over \mathcal{E} , we may assume that the identity embedding ι is in I_B . Then $H^0(X, \Pi_{\pi}(r))$ is non-trivial for an appropriate extension $X_{/E}$ if and only if the partition $I_B =$ $\bigsqcup_i J_i$ given by $\nu, \mu \in J_i \Leftrightarrow {}^{\nu}\!\rho_{\pi} \cong {}^{\mu}\!\rho_{\pi}$ over X satisfies the condition that $|J_i|$ is even. In this case, $|J_i|$ is independent of *i*. Write J_1 for the part containing ι . Assuming further $|J_1| = 2$ (a genericity condition), there exists a unique subfield $F \subset E$ such that $J_1 =$ Gal(E/F), and if $B \cong D \otimes_F E$ for a quaternion F-subalgebra D of B, $H^0(X, \Pi_{\pi}(r))$ is generated by Shimura subvarieties $Sh_{D'}$ in Sh_B of codimension r, where D' runs over quaternion F-subalgebras of B. This contains the assertion (2) as a particular case.

\S **3. Some definitions.**

Definition 1. For each $\pi \in A_B$, we consider the collection \mathfrak{F}_{π} of the following subfields F of E satisfying

(1) [E : F] = 2; (2) Writing σ_F for the generator of Gal(E/F), $I_B \sigma_F = I_B$; (3) $JL_E(\pi \otimes \xi)$ for a suitable finite order Hecke character ξ of E is a base change from $\mathcal{A}_{M_2(F)}$ (so, $\pi \otimes \xi \in \mathcal{A}_B^{\sigma_F}$). The set \mathfrak{F}_{π} can be empty. Put $\mathfrak{F} = \mathfrak{F}_B = \bigcup_{\pi \in \mathcal{A}_B} \mathfrak{F}_{\pi}$.

Definition 2. For each $F \in \mathfrak{F}$, write \mathfrak{Q}_F for the collection of quaternion subalgebras of B over F. Then we put $\mathfrak{Q} = \bigcup_{F \in \mathfrak{F}} \mathfrak{Q}_F$. **Definition 3.** Choose $\Phi \subset I_B$ with $I_B = \Phi \sqcup \Phi \sigma_F$, and define $\epsilon_{\Phi} : \{\pm 1\}^{I_B} \to \{\pm\}$ by $\epsilon_{\Phi}(\epsilon_{\nu}) = 1 \Leftrightarrow \nu \in \Phi$. For $\mathcal{F} \in S_2^{\epsilon_{\Phi}}(U)$, put $\omega_{\Phi}(\mathcal{F}) = \mathcal{F} \wedge_{\nu \in \Phi}(dz_{\nu} \land d\overline{z}_{\nu \sigma_F})$ and $H^{\Phi}(Sh_B, \mathbb{C})$ to be the span of classes of $\omega_{\Phi}(\mathcal{F})$ and $H^{\sigma_F}(Sh_B, \mathbb{C}) = \sum_{\Phi} H^{\Phi}(Sh_B, \mathbb{C})$ for U running over open compact subgroups of $B_{\mathbb{A}(\infty)}^{\times}$.

The action of $\pi^{(\infty)}$ (Hecke action) is already incorporated in the decomposition in §0. The only remaining automorphic action comes from π_{∞} as we will see in the next section.

§4. Archimedean Hecke operators. Write C_{∞} for the stabilizer of $\mathbf{i}_B = (\sqrt{-1}, \dots, \sqrt{-1}) \in \mathfrak{Z}_B$ in the norm 1 group B^1_{∞} , and $\mathfrak{Z}_B = B_{\infty+}^{\times}/E_{\infty}^{\times}C_{\infty}$. We then have a unique positive majorant P_0 of s such that $C_{\infty} = SO_{P_0}(F_{\infty})$. Let $\tilde{C}_{\infty} = O_{P_0}(\mathbb{R})$. An element $\epsilon \in \widetilde{C}_{\infty}$ acts on \mathfrak{Z}_B by $z(E_{\infty}^{\times}C_{\infty}) \mapsto z\epsilon(E_{\infty}^{\times}C_{\infty})$. This action factors through $\tilde{C}_{\infty}/C_{\infty} \cong \{\pm 1\}^{I_B}$. We identify $\tilde{C}_{\infty}/C_{\infty}$ with set of functions $\epsilon: I_B \to \{\pm\}$ as above, and for an automorphic form \mathcal{F} on $B^{\times}_{\mathbb{A}}/B^{\times}$, we write $\mathcal{F}|T_{\epsilon}(h) = \mathcal{F}(h\epsilon)$. For a choice of Φ with $I_B = \Phi \sqcup \Phi \sigma_F$, we define a character $\operatorname{sgn}_F^{\Phi} : \{\pm 1\}^{I_D} \to \{\pm 1\}$ by $\operatorname{sgn}_{F}^{\Phi}(\epsilon) = \prod_{\nu \in \Phi} \epsilon_{\nu}$. Then $\operatorname{sgn}_{F}^{\Phi}$ is independent of the lift Φ of I_D , and we write sgn_F for sgn^{Φ} for a choice of Φ and regard it as a character of $\{\pm 1\}^{I_D} \cong \operatorname{Inf}_F^E \{\pm 1\}^{I_D}$. **Lemma 1.** Let the notation as above. In $H^{2r}(Sh_B, \mathbb{C})$, T_{ϵ} for $\epsilon \in \text{Inf}_{F}^{E}\{\pm 1\}^{I_{D}}$ acts on the fundamental class $[Sh_{D}]$ $(D \in \mathfrak{Q}_{F})$ by

a character sgn_F; i.e., $T_{\epsilon}([Sh_D]) = \text{sgn}_F(\epsilon)[Sh_D]$.

$\S5$. Tate cycles coming from F.

Proposition 1. The image $\Pi_{\pi}[\operatorname{sgn}_{F}]$ of $H^{\sigma_{F}}(Sh_{B}, \mathbb{C}))[\operatorname{sgn}_{F}]$ in Π_{π} has dimension 1, and hence the projection to $\Pi_{\pi} \otimes \pi^{(\infty)}$ of the subspace of $H^{0}(X, H^{2r}(Sh_{B}, \overline{\mathbb{Q}}_{l}(r)))$ spanned by the fundamental classes of Sh_{D} has dimension at most 1, where D runs over \mathfrak{Q}_{F} .

Assuming (Sp) in Lecture 10 for a fixed $F \in \mathfrak{F}$. Then if $\pi \in \mathcal{A}_B^{\sigma_F}$, we know that by the descent theorem combined with the L-value formula, we find $\Pi_{\pi}[\operatorname{sgn}_F] \neq 0$ containing the non-zero image of Sh_D for $D \in \mathfrak{Q}_F$. Thus

Corollary 1. Assume (Sp) for $F \in \mathfrak{F}_B$ and $\mathfrak{Q}_F \neq \emptyset$. Then $\Pi_{\pi}[\operatorname{sgn}_F] \neq 0$ for $\pi \in \mathcal{A}_B^{\sigma_F}$ and is spanned by the image of $[Sh_D]$ for an appropriate $D \in \mathfrak{Q}_F$.

§6. Group theory. We start giving a sketch of a proof of the general case (5).

We take the PE-partition $I_B = \bigsqcup_i J_i$ associated to ρ , and write \overline{H}'_i for the stabilizer $\overline{H}'_i = \{h \in \overline{H}' | hJ_i = J_i\}$ with $\operatorname{Gal}(E/\mathcal{E}_i) = \overline{H}'_i$. Pick a representative $\nu_i \in J_i$, and put $H_i := \nu_i H \nu_i^{-1}$, $H'_i := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathcal{E}_i)$ and $N_i := \bigcap_{\nu \in J_i} \nu H \nu^{-1}$. By the key lemma in the last lecture, we may assume that $|J_i| = 2e_i$ with $e_i \in \mathbb{Z}$ for all *i*. Just by a group theory, we can prove

Lemma 2. Suppose (B) with $|J_i| = 2e_i$ and $\overline{H}' = \text{Gal}(E/\mathcal{E})$ acts on J transitively. Then (1) $\overline{H}_i = \nu_i \overline{H}'_1 \nu_i^{-1}$ acts on J_i transitively, (2) e_i is independent of i and $J_i = \nu_i J_1$ for some $\nu_i \in \text{Gal}(E/\mathcal{E})$. §7. Theorem Let X be a sufficiently large finite extension of \mathcal{E} with the following property:

(nc) $X_{/\mathcal{E}}$ has real X^{cm} if π is an automorphic induction. Assume that $|J_i| = 2e_i$ (as other wise no Tate cycles in Π_{π}) and that E is a Galois extension of \mathcal{E} . Here is a detailed restatement of the result (5):

Theorem 1. Let the notation and the assumptions as above. Let $\pi \in \mathcal{A}_B$ of weight 2 and $\rho \in \rho_{\pi}$ be an *l*-adic member. If $\text{Gal}(E/\mathcal{E})$ acts transitively on $J := I_B$ with $\iota \in J_1$ and $|J_1| = 2$, then modifying π by a suitable character twist, \mathfrak{F}_{π} is a singleton $\{F\}$ with $J_1 = \{\iota, \iota\sigma_F\}, \pi \in \mathcal{A}_B^{\sigma_F}$ and assuming $\mathfrak{Q}_F \neq \emptyset, H^0(X, \Pi_{\pi}(r)))$ is generated by the $\pi^{(\infty)}$ -projection of the fundamental classes of Sh_{α} with α running over $\{\alpha \in D_{\sigma_F} | N(\alpha) \gg 0\}$.

By Lecture 12, §3, dim $H^0(X, \Pi_{\pi}(r)) \leq 1$. Then the theorem follows from Corollary 1 in §5.

§8. r-Product of copies of Shimura curves.

Theorem 2. Suppose that Sh_D is a Shimura curve over \mathcal{E} and $Sh_B = Sh_D^r$ for $B = D \otimes_{\mathcal{E}} E$ for $E = \widetilde{\mathcal{E} \times \cdots \times \mathcal{E}}$. Then the Tate space $H^0(X, \Pi_{\pi}(e))$ in the factor $\Pi_{\pi}(e)$ for $H^{2e}_{cusp}(Sh_B, \overline{\mathbb{Q}}_l(e))$ with $0 \leq e \leq r$ is generated by the image of Shimura sub-varieties in Sh_B of codimension e (those are essentially partial Hecke correspondences) as long as π does **not** have an automorphic induction factor.

The symmetric group $\mathfrak{S}_r = \mathfrak{S}_{I_B}$ acts on $Sh_B = Sh_D^{I_B}$ permuting factors Sh_D . Basically in the same way as in §4 of Lecture 12, for each $\pi = \bigotimes_{\nu \in I_B} \pi_{\nu}$ for $\pi_{\nu} \in \mathcal{A}_B$, the corresponding Galois representation is $\bigotimes_{\nu \in I_B} \rho_{\nu}$ for $\rho_{\nu} = \rho_{\pi_{\nu}}$. Decomposing $I_B = \bigsqcup_i J_i$ so that $\mu, \nu \in J_i \Leftrightarrow P\rho_{\nu} \cong P\rho_{\mu}$. Since $\bigotimes_{\nu \in J_i} \rho_{\nu}$ with the permutation action of \mathfrak{S}_{J_i} , assuming $|J_i| = 2e_i$ for all i, we find that 1dimensional factor of $\bigotimes_{\nu \in I_B} \rho_{\nu}$ corresponds to $\bigotimes_i W_{e_i,e_i}$ and hence $H^0(X, \Pi_{\pi}(r))$ is irreducible under the action of $\prod_i \mathfrak{S}_{J_i}$. This essentially shows the result as it contains non-trivial image of a Shimura subvariety.

\S 9. Open questions.

(1) Remove the assumption that $E_{/\mathcal{E}}$ is Galois acting I_B transitively.

By scrutinizing my proof, perhaps one can determine the dimension of the subspace of Π_{π} spanned by Shimura subvarieties. In lucky cases, this shows the motivic Tate conjecture.

(2) Remove the assumption of non-automorphic induction.

One need to introduce perhaps new type of subvarieties. If $Sh_B = Sh_D^r$ with dim $Sh_D = 1$, perhaps twisting operators provide them.

(3) Try to treat higher weight modular forms.

If *B* is totally indefinite (i.e., it is the case also for *D* if $B = D \otimes_F E$), then Sh_B carries a universal abelian variety with *B*-multiplication. Then try Kuga-Sato varieties associated to it. If *B* is not totally indefinite, going up to a CM quadratic field $M_{/E}$, Sh_B gives components of a unitary Shimura variety, which carries the universal abelian variety of unitary type (which depends on *M*). We have L-value formula and Descent theorem in this case.

$\S10$. More difficult open questions.

(4) Try prove the L-value formula and descent Fourier expansion theorem for Shimura variety associated to O(2n, 2).

This is perhaps doable, though computationally demanding.

(5) The case O(2n + 1, 2) is more difficult, as the standard L-value at the central value could shows up as in the case O(2, 1) done by Waldspurger. However Siegel modular variety can be included as $O(3, 2) \cong Sp(4)$.

(6) Extend the question (4) to unitary Shimura varieties of U(m, n).

First try U(n, 1) which even have nontrivial H^1 but perhaps the easiest case.

(7) Try find good subvarieties which span the Tate space on Sh_B when B is a quaternion algebra which does not have any quaternion subalgebras.

Absolutely a new idea necessary.