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Lecture 12: We determine the dimension of H0(X,Ππ(r)) for

each π ∈ AB contributing to Tate cycles, assuming that E/E is

Galois and IB = Gal(E/E). Some other cases are also treated.



§0. Serre’s theory of l-adic Lie algebras; [LLG]. Let K be an

l-adic field. A profinite K-analytic group chunk of dimension n

is an analytic profinite space G together with a neutral element

e ∈ G, and an analytic open neighborhood U ↪→ On
K of e in

G and a pair of analytic maps U × U → G; (u, v) 7→ u · v and

U → U;u 7→ u−1 such that

(i) for a neighborhood V1 ⊂ U of e, x ∈ V1 ⇒ x = x · e = e · x;

(ii) for a neighborhood V2 of e in U, x ∈ V2 ⇒ e = x·x−1 = x−1 ·x;

(iii) for a neighborhood V3 of e in U, V3 · V3 ⊂ U and for all

x, y, z ∈ V3, x · (y · z) = (x · y) · z.

By analyticity, x · y = F (x, y) for a power series F ∈ K[[X,Y ]]

for X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) and x′ = I(X) for

I(X) ∈ K[[X]]. Write

F (X, Y ) = X+Y +B(X, Y )+ terms of homogeneous degree ≥ 3,

and define [X, Y ] := B(X, Y ) − B(Y, X). Then the bracket [·, ·]

gives rise to a Lie algebra structure on Kn. We write L0(G) for

this Lie K-algebra.



§1. Lie structure. If G is a profinite Zl-analytic subgroup of

SL2(K), GL2(K) or GL2(K), we define L(G) to be the K-span

of L0(G); so, L(G) is a Lie K-algebra even if G is just an l-adic

analytic subgroup.

By [LLG, Part II, V.4, V.7],

Theorem 1 (Serre). If g is a finite dimensional Lie K-algebra,

there exists a K-analytic group chunk G such that L0(G) = g. If

G1 and G2 are K-analytic group chunks with L0(G1)
∼= L0(G2),

then G1 and G2 have isomorphic open subgroups.

The Lie algebra sl2(K) has four types of non-trivial K-subalgebras:

1. sl2(K); 2. Normalizer of K× ⊂ GL2(K) of a semi-simple

quadratic extension of K (Cartan subalgebra); 3. Conjugate of

the upper triangular subalgebra (Borel subalgebra); 4. Conjugate

of the upper nilpotent subalgebra (nilpotent subalgebra).

Corollary 1. If L(G) = sl2(K), G contains an open subgroup of

SL2(Zl) up to conjugation in SL2(K).



§2. Image of modular Galois representations. Let ρπ be the

2-dim compatible system of cuspidal π with coefficients in its

Hecke field T .

Proposition 1. If ρ|
Gal(Q/M0)

is reducible over a finite extension

M0 of E for an l-adic member ρ ∈ ρπ, ρ ∼= IndE
M ηl for a member

ηl of a compatible system η̂ of characters associated to an arith-

metic Hecke character η of a CM quadratic extension M/E inside

M0.

This follows from Frobenius reciprocity.

Proposition 2. If JLE(π) for π ∈ AB is not an automorphic

induction from a CM quadratic extension of E, then for any l-

adic member ρ = ρl of ρπ, Im(ρ) contains an inner conjugate

of an open subgroup of SL2(Zl) for the residual characteristic

l of l (i.e., L(Im(Pρ)) = sl2(Tl)). Moreover the adelic image

Im(ρπ) := Im(
∏

l ρl) ⊂ GL2(T
(∞)
A

) contains an adelic conjugate of

an open subgroup of SL2(Ẑ).



§3. Proof of Proposition 2. Let G := Im(ρ). Then, by Propo-

sition 1, its Lie algebra L(G) cannot be a Cartan subalgebra as

it is not an automorphic induction. It is neither a Borel subal-

gebra nor nilpotent as ρ is irreducible. Thus L(G) is sl2(K) for

K = Tl/Ql. In particular, L0(G) contains sl2(Zl) up to conjugate

and therefore an open subgroup of SL2(Zl) up to conjugation by

Corollary 1.

Write ρl := ρl mod l. By Dimitrov [D05, Proposition 0.1], except

for finitely many ls, Im(ρl) ⊃ SL2(Fl). This is sufficient to know

that SL2(Zl) ⊂ G up to conjugation.

Write P : GL(2) � PGL(2) for the projection. Let ρ ∈ ρπ be

an l-adic member for a compatible system ρπ for π ∈ AB. We

define an equivalence relation on IB so that ν ∼ µ ⇔ Pµρ ∼= P νρ.

Decompose IB = J1 t J2 t · · · t Jr for equivalence classes Ji.



§4. Projective equivalence. For a finite extension X
/Ẽ

, sup-

pose the following condition if π is an automorphic induction:

(nc) X
/Ẽ

has real Xcm if π is an automorphic induction.

Proposition 3. (i) If there exists Ji such that |Ji| is odd, then

Ππ|Gal(Q/X)
does not have one dimensional constituent for a fi-

nite extension X/E as above.

(ii) Suppose that every |Ji| = 2ei is even. If π is not an auto-

morphic induction, the number of one dimensional factors ap-

pearing in Πss
π |

Gal(Q/X)
counting with multiplicity is given by

∏e
i=1

((
2ei
ei

)
−

(
2ei

ei−1

))
.

(iii) If π is an automorphic induction, the number of characters

with value −1 at complex conjugation c is given by
∏e

i=1

((
2ei
ei

)
/2

)
.

To prove the proposition, we need Goursat’s lemma which is

valid for groups and Lie algebras. We state it for groups.



§5. Goursat’s lemma. Here is the original Goursat’s lemma:

Lemma 1. Let B1 and B2 be groups and suppose that A is a

subgroup of B1 × B2 for which the two projections πj : A → Bj

are surjective. Then the image of A in B1/Ker(π2)×B2/Ker(π1)

is the graph of an isomorphism B1/Ker(π2)
∼= B2/Ker(π1).

Proof. Let A be the image of A in B1/Ker(π2) × B2/Ker(π1).

By symmetry it is enough to show that the projection A →

B1/Ker(π2) is an isomorphism. By hypothesis, the projection

is surjective. To show that it is injective is to show that the

two maps A → A → B1/Ker(π2) and A → A have the same

kernel. The kernels of the two maps are respectively {(u, u′) ∈

A|u ∈ Ker(π2)} and {(u, u′) ∈ A|u ∈ Ker(π2), u
′ ∈ Ker(π1)}. But

if (u, u′) ∈ A and u ∈ Ker(π2), we know that (u,1) ∈ A. Thus

(1, u′) ∈ A, so u′ ∈ Ker(π1). In other words, (u, u′) ∈ Ker(π2) ×

Ker(π1), which shows that the two kernels are equal.



§6. Multiple Goursat’s lemma.

Lemma 2 (K. Ribet). Let S1, . . . , Sn be profinite groups with no

non-trivial abelian quotients and N a closed normal subgroup of

S1 × · · · × Sn such that the projections N → Si (1 ≤ i ≤ n) are

surjective. Then N = S1 × · · · × Sn.

Proof. We argue inductively. By induction, the two projections

N → Sn = B2 and N → S1 × · · · × Sn−1 = B1 are surjective. Let

K and K ′ be their kernels, respectively, so that K ′ ⊂ Sn = B2,

K ⊂ S1 × · · · × Sn−1. Then by Lemma 1, the image N of N in

B1/K × B2/K ′ is the graph of an isomorphism B1/K ∼= B2/K ′.

Since N is normal in the product, B2/K ′ must be abelian. By

hypothesis K ′ = B2, and thus N = B1 × B2 = S1 × · · · × Sn.



§7. A corollary.

Corollary 2. Let S1, . . . , Sn be profinite groups with finite abelian

quotients and N a closed normal subgroup of S1 × · · · × Sn such

that the projections N → Si (1 ≤ i ≤ n) have finite cokernel.

Then N is an open subgroup in S1 × · · · × Sn.

Proof. Again we argue inductively. The projection p2 : N → Sn

has finite cokernel. By induction, the projection p1 : N → S1 ×

· · · × Sn−1 has finite cokernel. Let Bj := Im(pj) for j = 1,2. Let

K and K ′ be their kernels, respectively, so that K ′ ⊂ B2, K ⊂ B1.

Then by Lemma 1, the image N of N in B1/K × B2/K ′ is the

graph of an isomorphism B1/K ∼= B2/K ′. Since N is normal in

the product, B2/K ′ must be abelian. By hypothesis B2/K ′ and

B1/K are finite, and thus N is open in B1 × B2, which is in turn

open in S1 × · · · × Sn. Thus N is open in S1 × · · · × Sn.



§8. Representations of PGL(2) and Sm. Let V be two di-

mensional vector space over a characteristic 0 field K on which

GL(V) ∼= GL2(K) act by the identity representation r. Consider

the tensor representation r⊗J =
J︷ ︸︸ ︷

r ⊗ · · · ⊗ r acting on

J︷ ︸︸ ︷
V ⊗ · · · ⊗ V

for J := {1,2, . . . , m}. Plainly the action of r⊗J and the permuta-

tion action of s ∈ SJ := (v1 ⊗ · · · ⊗ vm) 7→ (vs−1(1) ⊗ · · · ⊗ vs−1(m))

commutes each other. As seen in [RTF, §4.1] from a result

of Weyl and Schur, each absolutely irreducible representation

W(e1,...,ek)
of SJ is rational and has a canonical one-to-one cor-

respondence to a Young diagram, which is a decreasing integer

partition m = e1 + e2 + · · · + ek (e1 ≥ e2 ≥ · · · ≥ ek > 0). In V⊗J,

since dimV = 2, W(e1,e2)
only for 2-part partitions (e1, e2) in-

cluding (m,0) shows up [RTF, Theorem 6.3 (1)]. Each W(e1,e2)

factor is a sum of a unique irreducible representation ρe1,e2 of

GL(2). Then dim ρe1,e2 = 1 ⇔ e1 = e2 = e (i.e., m = 2e), and

dimW(e,e) =
(2e

e

)
−

( 2e

e − 1

)
.



§9. Key lemma. Let G = Gal(Q/Q), H = Gal(Q/E), H′ =

Gal(Q/E) and N = Gal(Q/Ẽ). Here Ẽ is the field fixed by the

stabilizer of every place in IB. Write τ :=
⊗

ν∈IB
νρ and τi =

⊗
ν∈Ji

νρi. For a class Ji with index i, picking νiH ∈ Ji, we write

ρi for νiρ as a representation of Hi := νiHν−1
i .

Lemma 3. Let the notation be as above. Assume that ρi|Ni
is

absolutely irreducible and that H′
i = {g ∈ Gal(Q/Q)|gJi ⊂ Ji} acts

transitively on Ji.

(1) If L(Im(Pρi)) = sl2(K) for i = 1,2, . . . , n, Im(τi|N) contains

an open subgroup Si of SL2(Zp) for each i and hence Im(τ |N)

contains
∏n

i=1 Si accordingly.

(2) If |Ji| is odd for at least one index i and L(Im(ρ)) = sl2(K),

the representation τ |N ′ does not have one dimensional constituent

for all open subgroups N ′ of N .



§10. Proof. Since Pτi|N
∼=

|Ji|︷ ︸︸ ︷
Pρi ⊗ · · · ⊗ Pρi for a character χ, we

can apply the theory of Schur-Weyl in §8 as Im(ρi) contains an

open subgroup of SL2(Zl).

Since Pτ |N = (Pτ1 ⊗ · · · ⊗ Pτe)|N , by Ribet’s Corollary 2 applied

to Im(τ) ⊂ S1 × · · · × Se with Si := Im(τi), Im(τ) ⊃ S for an open

subgroup S of S1 × · · · × Se.

We now prove the assertion (2). Since ρi(N) contains an open

subgroup Si of SL2(Zl), we regard τi as a representation of Si.

Then as seen in §8, τi does not contain any one dimensional

representation as a constituent. Since τ |S = τ1|S1
⊗· · ·⊗ τn|Sn for

S = S1 × · · · × Sn and τ(N ′) ∩ S is open in S, the representation

τ |N ′ itself cannot contain one dimensional constituent if |Ji| is

odd.


