Galois action

Haruzo Hida Department of Mathematics, UCLA, Lecture no.11 at NCTS, May 28, 2024

Lecture 11: For a quaternion algebra $D_{/F}$ over a general totally real field F and its base change $B := D \otimes_F E$ to a totally real quadratic extension E/F, we state the period integral formula over the Shimura subvariety $Sh_1 = \varprojlim_U D^{\times} \backslash D_{F_A}^{\times} / U$ of $Sh_B =$ $\varprojlim_S B^{\times} \backslash B_A^{\times} / S$ as the adjoint L-value $L(1, Ad(\rho_f) \otimes \chi_E)$ and the descent Fourier expansion formula involving Sh_{α} . Then we make explicit the Galois action Π_{π}^{ss} in terms of ρ_{π} .

§0. Notation. Choose $0 \neq \Delta \in O_F$ so that $E = F[\sqrt{\Delta}]$. For each finite place \mathfrak{l} of F ramified in E, we choose $\Delta_{\mathfrak{l}}^{-} \in O_{F_{\mathfrak{l}}}$ such that $\sqrt{\Delta_{l}}$ is a uniformizer of $O_{E_{l}}$. If l is odd inert unramified in $E_{\mathfrak{l}}$, we choose a unit $\Delta_{\mathfrak{l}}^- \in O_{F_{\mathfrak{l}}}^{\times}$ so that $O_{E_{\mathfrak{l}}} = O_{F_{\mathfrak{l}}}[\sqrt{\Delta_{\mathfrak{l}}^-}]$. If \mathfrak{l} is even inert unramified in $E_{\mathfrak{l}}$, we choose a unit $\Delta_{\mathfrak{l}}^- \in O_{F_{\mathfrak{r}}}^{\times}$ so that $E_{\mathfrak{l}} = F_{\mathfrak{l}}[\sqrt{\Delta_{\mathfrak{l}}^{-}}]$. If $E_{\mathfrak{l}} \cong F_{\mathfrak{l}} \oplus F_{\mathfrak{l}}$, we take a unit $\Delta_{\mathfrak{l}}^{-} := 1$ so that $O_{E_{\mathfrak{l}}} = O_{F_{\mathfrak{l}}} \oplus O_{F_{\mathfrak{l}}} = O_{F_{\mathfrak{l}}}[\sqrt{\Delta_{\mathfrak{l}}^{-}}]$ (this means $\sqrt{\Delta_{\mathfrak{l}}^{-}} = (1, -1) \in$ $O_{F_{\mathrm{f}}} \oplus O_{F_{\mathrm{f}}}$). Write Δ for the relative discriminant of E/F and $\Delta^$ for its square-free part. Then $(\Delta)/\Delta^-$ is a square integral ideal. Define $\Delta_r^+ = \sqrt{\Delta_r^+} = 1$ and $\sqrt{\Delta^-}$ to be the O_E -ideal such that $\sqrt{\Delta^{-2}} = \Delta^{-}O_E$. We then define $\sqrt{\Delta_{-}} := \{\xi \in \sqrt{\Delta^{-}} | \xi^{\sigma} = -\xi\}$ which is an O_F -projective module of rank 1. We put $\sqrt{\Delta^+} := O_E$ and $\sqrt{\Delta_+} := O_F$. For an adele or idele a in $F_{\mathbb{A}}$, the projection to $\prod_{\mathfrak{l}|\mathfrak{n}} F_{\mathfrak{l}}$ is written as $a_{\mathfrak{n}}$ for a formal product \mathfrak{n} of places (including Archimedean places) which can be identified with an integral ideal if it consists of finite places.

§1. Notation continues. Let $I_X = \text{Isom}_{\text{field}}(X, \mathbb{C})$ for a number field X. Choose $\Sigma \subset I_E$ so that $I_E = \Sigma \sqcup \Sigma \sigma$. Define $I^D = \{\nu \in I_F | D \otimes_{F,\nu} \mathbb{R} \cong \mathbb{H}\}, I_D = \{\nu \in I_F | D \otimes_{F,\nu} \mathbb{R} \cong M_2(\mathbb{R})\},$ $J_{\mathbb{R}} = \{\nu \in \Sigma | D \otimes_{F,\nu} \mathbb{R} \cong \mathbb{H}\}, I_{\mathbb{R}} = \{\nu \in \Sigma | D \otimes_{F,\nu} \mathbb{R} \cong M_2(\mathbb{R})\}.$ We lift $I_B = I_{\mathbb{R}} \sqcup I_{\mathbb{R}}\sigma$ and $I^B = J_{\mathbb{R}} \sqcup J_{\mathbb{R}}\sigma$. We identify the corresponding symmetric domains as described below:

$$\mathfrak{Z}_F = \prod_{\nu \in I_F} \mathfrak{H}, \mathfrak{Z}_D = \prod_{\nu \in I_D} \mathfrak{H}, \mathfrak{Z}_B = \prod_{\nu \in I_{\mathbb{R}}} \mathfrak{H}_{\nu} \times \mathfrak{H}_{\nu\sigma}.$$

Here $\mathfrak{H}_{\nu} = \mathfrak{H}$ for $\nu \in I_B$. The standard Schwartz functions in $S(D_{\sigma,F_{\nu}})$ at the place ν is $\Psi_{\nu}(v_{\nu};\tau_{\nu}) = e_{\nu}(N(v_{\nu})\tau_{\nu})$ $(e_{\nu}(x) = \exp(2\pi i x)$ with $x \in F_{\nu}$) if $D_{\nu} \cong \mathbb{H}$, and $\Psi_{\nu}(v_{\nu};\tau_{\nu},z_{\nu},z_{\nu\sigma})$ if $D_{\nu} \cong M_2(\mathbb{R})$ as defined in §1 in Lecture 9, where $\tau_{\nu} = \xi_{\nu} + \eta_{\nu}\sqrt{-1} \in \mathfrak{H}_{\nu}$. Then $\phi = \phi^{(\infty)}\Psi \in S(D_{\sigma,F_A})$ with

$$\Psi(v;\tau,z) := \prod_{\nu \in I_D} \Psi_{\nu}(v_{\nu};\tau_{\nu},z_{\nu},z_{\nu\sigma}) \times \prod_{\nu \in I^D} \Psi_{\nu}(v_{\nu};\tau_{\nu}) \in \mathcal{S}(D_{\sigma,\infty}).$$

§2. Local factors We follow the path described in the fundamental example in §11 of Lecture 6 for the decomposition $D_{\sigma} = Z \oplus D_0$ of $\{\mathbf{g}_j\}_j$ and $\{\Phi_j\}_j$, adjusting the setting to our base totally real field. For $\epsilon : I_B \to \{\pm\}$, write $S_2^{\epsilon}(\mathfrak{N}, \varphi)$ for the space of adelic quaternionic cusp form on $B_{\mathbb{A}}^{\times}$ of weight 2 of central character φ holomorphic in z_{ν} if $\epsilon(\nu) > 0$ and anti-holomorphic in z_{ν} if $\epsilon(\nu) < 0$. A natural choice of ϵ depending on the choice of $I_{\mathbb{R}}$ is $\epsilon(\nu) = + \Leftrightarrow \nu \in I_{\mathbb{R}}$, which is denoted by ϵ_0 . We write $S_2^-(\mathfrak{N}, \varphi)$ for the space of Hilbert modular form anti-holomorphic everywhere. Pick a Hecke eigen new form $\mathbf{f} \in S_2^-(C, \varphi)$ and write

$$L(s,\mathbf{f}) = \prod_{\mathfrak{l}} \left[(1 - \alpha_{\mathfrak{l}} N(\mathfrak{l})^{-s}) (1 - \beta_{\mathfrak{l}} N(\mathfrak{l})^{-s}) \right]^{-1}$$

This is normalized so that the symmetry is $s \leftrightarrow 2-s$. Let \mathfrak{M} be the ideal of definition of ψ and C_P (resp. C_s) be given by the product of primes $\mathfrak{l}|\mathfrak{M}$ with $|\alpha_{\mathfrak{l}}| = N(\mathfrak{l})^{1/2}$ if $\beta_{\mathfrak{l}} = 0$ and $C(\chi_{E,\mathfrak{l}}\psi_{\mathfrak{l}}^{-1}) = C_{\mathfrak{l}}$ (resp. $\mathfrak{l}|\mathfrak{M}$ or $\alpha_{\mathfrak{l}}\beta_{\mathfrak{l}} = 0$). Define

$$E(s) := \prod_{\mathfrak{l}|C_P} (1 - \alpha_{\mathfrak{l}}^{-1} \overline{\alpha}_{\mathfrak{l}} \psi(\mathfrak{l}) N(\mathfrak{l})^{-1-2s}).$$

 \S **3. Period.** Define the quaternionic period by

$$P_{\alpha}(\mathcal{F}) := \int_{Sh_{\alpha}} \omega(\mathcal{F}) = ([Sh_{\alpha}], [\omega(\mathcal{F})])$$

for $\mathcal{F} \in S_2^{\epsilon_0}(C, \psi)$ and $\omega(\mathcal{F}) := \mathcal{F}(z) \wedge_{\nu \in I_{\mathbb{R}}} dz_{\nu} \wedge d\overline{z}_{\nu\sigma}$. Write w_{ν} for $z_{\nu\sigma}$. When $\alpha = 1 \in Z$, we write $P_D(\mathcal{F}) := P_1(\mathcal{F})$. Recall the Eichler order $R(\mathfrak{N})$ of level \mathfrak{N} . Take two lattices in D_0 which are

$$L = R_0 = \{ v \in \sqrt{\Delta_-} R(\mathfrak{N}) | v + v^{\iota} = 0 \} \subset D_0 \text{ and } \beta L \subset D_0$$

for $0 \ll \beta \in O_F$, As before, let $L = O_F \oplus R_0$ for the Eichler order R of level $\mathfrak{N} = \partial \mathfrak{N}_0$ with $\mathfrak{N}_0 + \partial = O_F$. Take $\phi = \phi^{(\infty)} \Psi$ so that $\phi^{(\infty)} = \psi \otimes \phi_0^{(\infty)}$ for a character ψ of $Cl_F(\mathfrak{N}_0)$ and

$$\phi_0^{(\infty)} = \frac{\phi_{\hat{R}_0} - N(\beta)^3 \phi_{\beta \hat{R}_0}}{1 - N(\beta)^3} \text{ and } \phi_0 = \phi_0^{(\infty)} \cdot \phi_\infty.$$

Then $\Gamma_{\tau} = \Gamma_0(M)$ for $M = 4\mathfrak{N}^2 \cap 4\beta^2 \Delta^- \mathfrak{N}\partial$. This choice guarantees the condition (V) (see Lemma 5.28), and $\theta(\phi)$ with $\phi_Z^{(\infty)} = \psi$ has Neben character $\psi \chi_E$.

§4. Adjoint L-value formula.

Theorem 1. Let f be a Hilbert modular primitive Hecke eigenform of conductor C in $S_2^-(M, \psi^{-1}\chi_E)$ on $GL_2(F_A)$, and put $f := f|_{SL_2(F_A)}$. Then we have for E(s) as in §2 in this lecture

$$P_D(\theta^*(\phi)(f)) = c \cdot \mathfrak{m} \cdot \Gamma_F(2) E(0) \frac{L^{(C_s)}(1; Ad(\rho_f) \otimes \chi_E)}{\zeta_F^{([C,M])}(2)} \neq 0.$$

Here \mathfrak{m} is the mass factor $\mathfrak{m}(\widehat{\Gamma}_D)$, c is a product of local constant $c = \prod_{\nu \in I_F} c_{\nu}$ at infinite places given below, and the theta lift $\theta^*(\phi)(f)$ is the SL(2) theta lift of f. The constants are given by

$$c_{\nu} = \begin{cases} (-2\sqrt{-1})^3 & \text{if } \nu \in I_{\mathbb{R}}, \\ 2^3 & \text{if } \nu \in J_{\mathbb{R}}, \end{cases}$$
$$\Gamma_F(2) := \prod_{\nu \in I_{\mathbb{R}}} 2^{-1} (4\pi)^{-2} \Gamma(2) \cdot \prod_{\nu \in J_{\mathbb{R}}} 2^{-1} (4\pi)^{-1}.$$

The proof is the same as Lecture 4.

§5. Descent Theorem.

Theorem 2. Suppose $\phi_{\infty} = \Psi(\tau; z, w)$ as in §1 and that $\mathcal{F} \in S_2^{B,\epsilon_0}(\widehat{\Gamma}_{\phi})$ is a cusp form on $SO_{D_{\sigma}}(F_{\mathbb{A}})$ of weight 2 anti-holomorphic in w and holomorphic in z as above. Then

 $\theta_{SL,*}(\phi)(\mathcal{F})(\tau) = \int_{\Gamma_{\phi} \setminus \mathfrak{Z}_{B}} \theta(\phi)(\tau; z, w) \mathcal{F}(z, w)(z - \overline{z})^{2I_{\mathbb{R}}}(w - \overline{w})^{2I_{\mathbb{R}}}\sigma_{\omega_{inv}}$ $= (4\sqrt{-1})^{-|I_{\mathbb{R}}|} \sum_{\alpha \in D_{\sigma}/\Gamma_{\phi}; N(\alpha) \gg 0} \phi^{(\infty)}(\alpha) P_{\alpha}(\mathcal{F}) \mathbf{e}_{F}(N(\alpha)\tau),$

where $\mathbf{e}_F(N(\alpha)\tau) = \mathbf{e}(\sum_{\nu \in I_F} N(\alpha)^{\nu} \tau_{\nu})$ and

$$\omega_{inv} := \bigwedge_{\nu \in I_{\mathbb{R}}} ((z_{\nu} - \overline{z}_{\nu})^{-2} (w_{\nu\sigma} - \overline{w}_{\nu\sigma})^{-2} dz_{\nu} \wedge d\overline{z}_{\nu} \wedge dw_{\nu\sigma} \wedge d\overline{w}_{\nu\sigma}).$$

As long as $\mathcal{F} \neq 0$ is in the image of the theta lift, for a good choice of ϕ , $\theta_{SL,*}(\phi)(\mathcal{F}) \neq 0$.

The proof is basically the same as in Lecture 9.

§6. Reflex field. For a quaternion algebra Q over a totally real field $K \subset \overline{\mathbb{Q}}$, a formal definition of the *reflex field* \mathcal{E}_Q of the Shimura variety associated to Q^{\times} is given as follows.

Definition 1. Let $H = \text{Gal}(\overline{\mathbb{Q}}/K)$ and identify $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})/H$ with I_K . Consider $H' := \{\nu \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) | \nu I_Q = I_Q\}$. Then

 $\mathcal{E}_Q = H^0(H', \overline{\mathbb{Q}}).$

Write \mathcal{E} for \mathcal{E}_B .

E_Q is generated over Q by Σ_{ν∈IQ} ν(ξ) for ξ running over K; so, *E_{τ(Q)}* = τ(*E_Q*) for τ ∈ Gal(Q/Q) and τ(Q) = Q ⊗_{K,τ} τ(K). *E_D* = *E_B* if B = D ⊗_F E.

Examples: Let D be a quaternion algebra over F.

1. If $I_D = \{\nu\}$, then $\mathcal{E}_D = \nu(F)$ for a quaternion algebra $D_{/F}$.

2. If $F_{/F_0}$ is Galois with $I_D = \text{Gal}(F/F_0)$, then $\mathcal{E}_D = F_0 \subset F$.

3. If $F_{/\mathbb{Q}}$ is non-Galois of degree 3 and $I_D = \{ id, \tau \}$, then \mathcal{E}_D is the Galois closure $F_{/\mathbb{Q}}^{gal}$; so, $\mathcal{E}_D \supset F$.

§7. Quaternionic Shimura variety. We define $Sh_Q(\mathbb{C}) = Q_+^{\times} \setminus (Q_{\mathbb{A}(\infty)}^{\times} \times \mathfrak{Z}_Q)$. By Shimura, Sh_Q has a canonical model Sh_{Q/\mathcal{E}_Q} defined over \mathcal{E}_Q . Writing ∂_Q (resp. Δ_K) for the discriminant of $Q_{/K}$ (resp. $K_{/\mathbb{Q}}$), for a level subgroup S of level \mathfrak{N} , $Sh_S := Sh_Q/S$ has good reduction outside $\mathfrak{N}\Delta_K\partial_Q$ as proven by Deligne and Carayol. See [PAF, Chapter 7].

If $I_D = I_F$, Sh_D carries a universal abelian scheme with Dmultiplication of dimension $[D : \mathbb{Q}]/2 = 2[F : \mathbb{Q}]$ (cf. [PAF, Section 7.1]). Otherwise, it is not a moduli of abelian schemes (see [PAF, Section 7.2]).

By definition, the Galois closure $F^{gal} \supset \mathcal{E}_D = \mathcal{E}_B$. As before, writing dim $Sh_D = r > 0$ ($\Leftrightarrow \dim Sh_B = 2r$), we decompose

$$H^{2r}_{cusp}(Sh_B, \overline{\mathbb{Q}}_l) = \bigoplus_{\pi \in \mathcal{A}_B} \Pi_{\pi} \otimes \pi^{(\infty)}$$

for 2^{2r} -dimensional representation Π_{π} of $Gal(\overline{\mathbb{Q}}/\mathcal{E}_D)$ associated to π .

§8. Automorphic Galois action. Yoshida invented a functorial way of a tensor-multiplicatively inducing a compatible system of n-dimensional Galois representation ρ on GL(V) of $Gal(\overline{\mathbb{Q}}/E)$ to a n^{2r} -dimensional system $\bigotimes_{I_B} \operatorname{Ind}_H^{H'} \rho$ of $Gal(\overline{\mathbb{Q}}/\mathcal{E})$ (see §8.2.5). Here $H := \operatorname{Gal}(\overline{\mathbb{Q}}/E)$ and $H' := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathcal{E}_B)$. Then we have

Theorem 3 (Langlands, Reimann, Yoshida). Let the notation be as above. Let Π_{π}^{ss} be the compatible system of the Galois representations associated to the cuspidal automorphic representation π . Then we have $\Pi_{\pi} \cong \bigotimes_{I_B} \operatorname{Ind}_{H}^{H'} \rho_{\pi}$ as compatible systems.

An important point we need is (*) $\prod_{\pi}^{ss}|_{\text{Gal}(\overline{\mathbb{Q}}/F^{gal})} \cong \bigotimes_{\nu \in I_B} \nu_{\rho_{\pi}},$ where $\nu_{\rho}(g) = \rho(\nu^{-1}g\nu).$

 \S **9. History.** Langlands [L79] and Reimann [SZQ] and [Re00] try to identify the Hasse–Weil zeta function of $Sh_{B,S}$ with a product of Langlands L-functions of the form $L(s-2r,\pi,r_1)$ for a 2^{2r} dimensional representation r_1 of the L-group associated to G^B . More precisely, Langlands proved this assuming a conjectural description of the set of points $Sh_{B,S}$ with values in $\overline{\mathbb{F}}_p$ together with the action of the Frobenius automorphism. Since this assumption of Langlands is verified by Zink and Reimann, Reimann in [SZQ] and [Re00] obtained the desired identity of the local factors at least for primes unramified in B and E. Brylinsky and Labesse [BL84] covered the Hilbert modular case earlier than Reimann. By Chebotarev density and strong multiplicity one, Yoshida in [Y94] via his tensor induction method created a compatible system of Galois representations out of ρ_{f} and identified the Hasse–Weil L-function with the L-function of $\bigotimes_{I_R} \operatorname{Ind}_H^{H'} \rho_{\mathbf{f}}$ without any assumption on the ramification in E and B.

§10. Shimura surfaces. Assume

(Sp) all primes of \mathcal{E} above 2 splits in E.

(nc) $X_{/\mathcal{E}}$ is finite and its maximal *c*-field X^{cm} is real.

Here on a *c*-field, ic = ci for any $i : X \hookrightarrow \mathbb{C}$.

Let D be a quaternion algebra over a totally real field F and $B = D \otimes_F E$ for a totally real quadratic extension $E_{/F}$. Assume $I_B = \{\nu, \mu = \nu\sigma\}$; thus, dim $Sh_B = 2$ and $\mathcal{E} = \nu(F)$. We say that $X_{/\mathcal{E}}$ is sufficiently large for a level subgroup S if for any $\pi \in \mathcal{A}_B^{\sigma}$ with $H^0(S, \pi^{(\infty)}) \neq 0$, $\nu \rho_{\pi} \cong \mu \rho_{\pi}$ over $Gal(\overline{\mathbb{Q}}/X)$ and det ρ_{π} is the cyclotomic character over $Gal(\overline{\mathbb{Q}}/X)$. We now state

Theorem 4. Let the notation and the assumption be as above. Let *S* be a level subgroup of $G^B(\mathbb{A}^{(\infty)})$. For a sufficiently large finite extension $X_{/\mathcal{E}}$ for *S* satisfying (nc), $H^0(X, H^2_{cusp}(Sh_B/S, \overline{\mathbb{Q}}_l(1)))$ is spanned by the fundamental class of Sh_{α} for $\alpha \in D_{\sigma}$ with totally positive $N(\alpha)$.