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Lecture 11: For a quaternion algebra D/F over a general totally

real field F and its base change B := D ⊗F E to a totally real

quadratic extension E/F , we state the period integral formula

over the Shimura subvariety Sh1 = lim←−U D
×\D×FA

/U of ShB =

lim←−S B
×\B×

A
/S as the adjoint L-value L(1, Ad(ρf) ⊗ χE) and the

descent Fourier expansion formula involving Shα. Then we make

explicit the Galois action Πssπ in terms of ρπ.



§0. Notation. Choose 0 6= ∆ ∈ OF so that E = F [
√

∆]. For

each finite place l of F ramified in E, we choose ∆−
l
∈ OFl

such

that
√

∆−
l

is a uniformizer of OEl
. If l is odd inert unramified

in El, we choose a unit ∆−
l
∈ O×Fl

so that OEl
= OFl

[
√

∆−
l
]. If

l is even inert unramified in El, we choose a unit ∆−
l
∈ O×Fl

so

that El = Fl[
√

∆−
l
]. If El

∼= Fl ⊕ Fl, we take a unit ∆−
l

:= 1 so

that OEl
= OFl

⊕ OFl
= OFl

[
√

∆−
l
] (this means

√
∆−

l
= (1,−1) ∈

OFl
⊕OFl

). Write ∆ for the relative discriminant of E/F and ∆−

for its square-free part. Then (∆)/∆− is a square integral ideal.

Define ∆+
l

=
√

∆+
l

= 1 and
√

∆− to be the OE-ideal such that√
∆−2 = ∆−OE. We then define

√
∆− := {ξ ∈

√
∆−|ξσ = −ξ}

which is an OF -projective module of rank 1. We put

√
∆+ := OE

and
√

∆+ := OF . For an adele or idele a in FA, the projection to
∏

l|n Fl is written as an for a formal product n of places (including

Archimedean places) which can be identified with an integral

ideal if it consists of finite places.



§1. Notation continues. Let IX = Isomfield(X,C) for a number

field X. Choose Σ ⊂ IE so that IE = Σ tΣσ. Define

ID = {ν ∈ IF |D ⊗F,ν R ∼= H}, ID = {ν ∈ IF |D ⊗F,ν R ∼= M2(R)},
JR = {ν ∈ Σ|D ⊗F,ν R ∼= H}, IR = {ν ∈ Σ|D ⊗F,ν R ∼= M2(R)}.
We lift IB = IR t IRσ and IB = JR t JRσ. We identify the corre-

sponding symmetric domains as described below:

ZF =
∏

ν∈IF
H,ZD =

∏

ν∈ID
H,ZB =

∏

ν∈IR
Hν × Hνσ.

Here Hν = H for ν ∈ IB. The standard Schwartz functions in

S(Dσ,Fν) at the place ν is Ψν(vν; τν) = eν(N(vν)τν) (eν(x) =

exp(2πix) with x ∈ Fν) if Dν
∼= H, and Ψν(vν; τν, zν, zνσ) if Dν

∼=
M2(R) as defined in §1 in Lecture 9, where τν = ξν+ην

√
−1 ∈ Hν.

Then φ = φ(∞)Ψ ∈ S(Dσ,FA
) with

Ψ(v; τ, z) :=
∏

ν∈ID
Ψν(vν; τν, zν, zνσ)×

∏

ν∈ID
Ψν(vν; τν) ∈ S(Dσ,∞).



§2. Local factors We follow the path described in the fun-

damental example in §11 of Lecture 6 for the decomposition

Dσ = Z⊕D0 of {gj}j and {Φj}j, adjusting the setting to our base

totally real field. For ε : IB → {±}, write Sε2(N, ϕ) for the space

of adelic quaternionic cusp form on B×
A

of weight 2 of central

character ϕ holomorphic in zν if ε(ν) > 0 and anti-holomorphic

in zν if ε(ν) < 0. A natural choice of ε depending on the choice

of IR is ε(ν) = +⇔ ν ∈ IR, which is denoted by ε0. We write

S−2 (N, ϕ) for the space of Hilbert modular form anti-holomorphic

everywhere. Pick a Hecke eigen new form f ∈ S−2 (C,ϕ) and write

L(s, f) =
∏

l

[
(1− αlN(l)−s)(1− βlN(l)−s)

]−1
.

This is normalized so that the symmetry is s ↔ 2 − s. Let M

be the ideal of definition of ψ and CP (resp. Cs) be given by

the product of primes l|M with |αl| = N(l)1/2 if βl = 0 and

C(χE,lψ
−1
l

) = Cl (resp. l|M or αlβl = 0). Define

E(s) :=
∏

l|CP
(1− α−1

l
αlψ(l)N(l)−1−2s).



§3. Period. Define the quaternionic period by

Pα(F) :=
∫

Shα
ω(F) = ([Shα], [ω(F)])

for F ∈ S
ε0
2 (C,ψ) and ω(F) := F(z)

∧
ν∈IR dzν ∧ dzνσ. Write wν

for zνσ. When α = 1 ∈ Z, we write PD(F) := P1(F). Recall the

Eichler order R(N) of level N. Take two lattices in D0 which are

L = R0 = {v ∈
√

∆−R(N)|v+ vι = 0} ⊂ D0 and βL ⊂ D0

for 0� β ∈ OF , As before, let L = OF ⊕R0 for the Eichler order

R of level N = ∂N0 with N0 + ∂ = OF . Take φ = φ(∞)Ψ so that

φ(∞) = ψ ⊗ φ(∞)
0 for a character ψ of ClF (N0) and

φ
(∞)
0 =

φ
R̂0
−N(β)3φ

βR̂0

1−N(β)3
and φ0 = φ

(∞)
0 · φ∞.

Then Γτ = Γ0(M) for M = 4N2∩4β2∆−N∂. This choice guaran-

tees the condition (V) (see Lemma 5.28), and θ(φ) with φ
(∞)
Z = ψ

has Neben character ψχE.



§4. Adjoint L-value formula.

Theorem 1. Let f be a Hilbert modular primitive Hecke eigen-

form of conductor C in S−2 (M,ψ−1χE) on GL2(FA), and put

f := f |SL2(FA). Then we have for E(s) as in §2 in this lecture

PD(θ∗(φ)(f)) = c ·m · ΓF(2)E(0)
L(Cs)(1;Ad(ρf)⊗ χE)

ζ
([C,M])
F (2)

6= 0.

Here m is the mass factor m(Γ̂D), c is a product of local constant

c =
∏
ν∈IF cν at infinite places given below, and the theta lift

θ∗(φ)(f) is the SL(2) theta lift of f . The constants are given by

cν =





(−2
√
−1)3 if ν ∈ IR,

23 if ν ∈ JR,

ΓF(2) :=
∏

ν∈IR
2−1(4π)−2Γ(2) ·

∏

ν∈JR

2−1(4π)−1.

The proof is the same as Lecture 4.



§5. Descent Theorem.

Theorem 2. Suppose φ∞ = Ψ(τ ; z, w) as in §1 and that F ∈
S
B,ε0
2 (Γ̂φ) is a cusp form on SODσ(FA) of weight 2 anti-holomorphic

in w and holomorphic in z as above. Then

θSL,∗(φ)(F)(τ) =
∫

Γφ\ZB
θ(φ)(τ ; z, w)F(z, w)(z − z)2IR(w − w)2IRσωinv

= (4
√
−1)−|IR|

∑

α∈Dσ/Γφ;N(α)�0

φ(∞)(α)Pα(F)eF (N(α)τ),

where eF (N(α)τ) = e(
∑
ν∈IF N(α)ντν) and

ωinv :=
∧

ν∈IR
((zν − zν)−2(wνσ − wνσ)−2dzν ∧ dzν ∧ dwνσ ∧ dwνσ).

As long as F 6= 0 is in the image of the theta lift, for a good

choice of φ, θSL,∗(φ)(F) 6= 0.

The proof is basically the same as in Lecture 9.



§6. Reflex field. For a quaternion algebra Q over a totally

real field K ⊂ Q, a formal definition of the reflex field EQ of the

Shimura variety associated to Q× is given as follows.

Definition 1. Let H = Gal(Q/K) and identify Gal(Q/Q)/H with

IK. Consider H′ := {ν ∈ Gal(Q/Q)|νIQ = IQ}. Then

EQ = H0(H′,Q).

Write E for EB.

• EQ is generated over Q by
∑
ν∈IQ ν(ξ) for ξ running over K; so,

Eτ(Q) = τ(EQ) for τ ∈ Gal(Q/Q) and τ(Q) = Q⊗K,τ τ(K).

• ED = EB if B = D ⊗F E.

Examples: Let D be a quaternion algebra over F .

1. If ID = {ν}, then ED = ν(F ) for a quaternion algebra D/F .

2. If F/F0
is Galois with ID = Gal(F/F0), then ED = F0 ⊂ F .

3. If F/Q is non-Galois of degree 3 and ID = {id, τ}, then ED is

the Galois closure F gal
/Q

; so, ED ⊃ F .



§7. Quaternionic Shimura variety. We define ShQ(C) =

Q×+\(Q
×
A(∞) × ZQ). By Shimura, ShQ has a canonical model

ShQ/EQ defined over EQ. Writing ∂Q (resp. ∆K) for the dis-

criminant of Q/K (resp. K/Q), for a level subgroup S of level N,

ShS := ShQ/S has good reduction outside N∆K∂Q as proven by

Deligne and Carayol. See [PAF, Chapter 7].

If ID = IF , ShD carries a universal abelian scheme with D-

multiplication of dimension [D : Q]/2 = 2[F : Q] (cf. [PAF,

Section 7.1]). Otherwise, it is not a moduli of abelian schemes

(see [PAF, Section 7.2]).

By definition, the Galois closure F gal ⊃ ED = EB. As before,

writing dimShD = r > 0 (⇔ dimShB = 2r), we decompose

H2r
cusp(ShB,Ql) =

⊕

π∈AB
Ππ ⊗ π(∞)

for 22r-dimensional representation Ππ of Gal(Q/ED) associated

to π.



§8. Automorphic Galois action. Yoshida invented a functorial

way of a tensor-multiplicatively inducing a compatible system of

n-dimensional Galois representation ρ on GL(V ) of Gal(Q/E) to

a n2r-dimensional system
⊗
IB

IndH
′

H ρ of Gal(Q/E) (see §8.2.5).

Here H := Gal(Q/E) and H′ := Gal(Q/EB). Then we have

Theorem 3 (Langlands, Reimann, Yoshida).Let the notation be

as above. Let Πssπ be the compatible system of the Galois repre-

sentations associated to the cuspidal automorphic representation

π. Then we have Ππ
∼= ⊗

IB
IndH

′
H ρπ as compatible systems.

An important point we need is

(∗) Πssπ |Gal(Q/F gal)
∼= ⊗

ν∈IB
νρπ,

where νρ(g) = ρ(ν−1gν).



§9. History. Langlands [L79] and Reimann [SZQ] and [Re00] try

to identify the Hasse–Weil zeta function of ShB,S with a product

of Langlands L-functions of the form L(s − 2r, π, r1) for a 22r-

dimensional representation r1 of the L-group associated to GB.

More precisely, Langlands proved this assuming a conjectural de-

scription of the set of points ShB,S with values in Fp together

with the action of the Frobenius automorphism. Since this as-

sumption of Langlands is verified by Zink and Reimann, Reimann

in [SZQ] and [Re00] obtained the desired identity of the local

factors at least for primes unramified in B and E. Brylinsky and

Labesse [BL84] covered the Hilbert modular case earlier than

Reimann. By Chebotarev density and strong multiplicity one,

Yoshida in [Y94] via his tensor induction method created a com-

patible system of Galois representations out of ρf and identified

the Hasse–Weil L-function with the L-function of
⊗
IB

IndH
′

H ρf
without any assumption on the ramification in E and B.



§10. Shimura surfaces. Assume

(Sp) all primes of E above 2 splits in E.

(nc) X/E is finite and its maximal c-field Xcm is real.

Here on a c-field, ic = ci for any i : X ↪→ C.

Let D be a quaternion algebra over a totally real field F and

B = D ⊗F E for a totally real quadratic extension E/F . Assume

IB = {ν, µ = νσ}; thus, dimShB = 2 and E = ν(F ). We say that

X/E is sufficiently large for a level subgroup S if for any π ∈ AσB
with H0(S, π(∞)) 6= 0, νρπ

∼= µρπ over Gal(Q/X) and det ρπ is the

cyclotomic character over Gal(Q/X). We now state

Theorem 4. Let the notation and the assumption be as above.

Let S be a level subgroup of GB(A(∞)). For a sufficiently large fi-

nite extensionX/E for S satisfying (nc), H0(X,H2
cusp(ShB/S,Ql(1)))

is spanned by the fundamental class of Shα for α ∈ Dσ with to-

tally positive N(α).


