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Lecture 11: For a quaternion algebra D/F over a general totally
real field F' and its base change B := D ®r E to a totally real
quadratic extension E/F, we state the period integral formula
over the Shimura subvariety Sh; = li_mUDX\D;iA/U of Shpg
lim, B*\Bj /S as the adjoint L-value L(1, Ad(pf) ® xg) and the
descent Fourier expansion formula involving Sh,. Then we make
explicit the Galois action 3% in terms of px.



§0. Notation. Choose 0 # A € Op so that E = F[VA]. For
each finite place [ of F' ramified in E, we choose A[_ S OF[ such

that \/E is @ uniformizer of OE[. If [ is odd inert unramified
in FEy, we choose a unit A~ € O;i[ so that O, = OF[[\/?[]. If
[ is even inert unramified in Ey, we choose a unit A[_ S O;i[ SO
that B = FM/E]. If Ef = F{® F|, we take a unit A (=1 so

that O, = O @ O = OF[[\/E] (this means \/E =(1,-1) ¢
OF[@OF[). Write A for the relative discriminant of E/F and A™
for its square-free part. Then (A)/A™ is a square integral ideal.
Define A[’" = \/E = 1 and VA~ to be the Opg-ideal such that
VA~2 = A~Op. We then define VA_ = {¢ € VA~|¢7 = —¢}
which is an Op-projective module of rank 1. We put \/Ai = 0Og
and A_|_ = Op. For an adele or idele a in F), the projection to
Hiln Fy is written as ay for a formal product n of places (including
Archimedean places) which can be identified with an integral
ideal if it consists of finite places.



§1. Notation continues. Let Iy = Isomsiqq(X,C) for a number
field X. Choose > C Ig so that I = 2 U 2 0. Define

I° ={velp|D®p, REH}, Ip={velpDp, R My(R)}
Jr={veZ|Dr, R=H}, In={veX|DQpr, R=M>(R)}.
We lift Iz = Iy Ll Ipo and IP = Jp U Jro. We identify the corre-
sponding symmetric domains as described below:

3r = II $9,3p = II 9,3p= II Hv X Hue-

velp velp velp
Here $H, = $ for v € Ig. The standard Schwartz functions in
S(Dys ,) at the place v is Wy (vy; 7v) = ev(N(vy)7m) (ev(x)
exp(2mix) with x € Fy) if D, = H, and VY, (vy; 1v, 2v, 2ve) if Dy
M>(R) as defined in §1 in Lecture 9, where 1, = &+ 1/ —1 € Hu.
Then ¢ = ¢V € S(D, f,) with

12l

V(v T,2) = H WV, (vy; Tv, 2u, Zve) X H Wy (vy; v) € S(Do,oo)-
velp vell



2. Local factors We follow the path described in the fun-
damental example in §11 of Lecture 6 for the decomposition
Do = Z®Dg of {g;}; and {®;},, adjusting the setting to our base
totally real field. For e : Igp — {£}, write Sg(m, ) for the space
of adelic quaternionic cusp form on Bg of weight 2 of central
character ¢ holomorphic in z, if e(v) > 0 and anti-holomorphic
in z, if e(v) < 0. A natural choice of ¢ depending on the choice
of Ip is e(v) = 4+ < v € I, which is denoted by ¢;. We write
S5 (1, ) for the space of Hilbert modular form anti-holomorphic
everywhere. Pick a Hecke eigen new form f € S, (C, ¢) and write

L(s, ) =T |(1 = e N()™5)(1 = BN (D) )]

[
This is normalized so that the symmetry is s < 2 —s. Let IN
be the ideal of definition of ¢ and Cp (resp. Cg) be given by
the product of primes [ with |oq| = N(DY/2 if 3, = 0 and
CXE, by = Cp (resp. [|9t or By = 0). Define

E(s) = [] (1 — oy tap(ON(D)~12%).

[Cp

—1



§3. Period. Define the quaternionic period by
Pa(F) = [ w(F) = ([Sha], lw(F)))

for F € S5°(C,v) and w(F) = F(2) Aver, dzv A dzuvo. Write wy
for zus. When a =1 € Z, we write Pp(F) := P1(F). Recall the
Eichler order R(O1) of level 91. Take two lattices in Dg which are

L=Ryg={ve /A_RM)|v+v*"=0} C Dy and BL C Dg

for 0 < 8 € Op, As before, let L = Op ® R for the Eichler order
R of level M = &My with Ng+ 8 = Op. Take ¢ = ¢ W so that
H(®) = ® ¢(gm) for a character ¢ of Clp(9g) and

~ 34 -
Jo0) _ Pha = N5,
0 1— N(3)3
Then M = Mo(M) for M = 4M2N482A~N. This choice guaran-
tees the condition (V) (see Lemma 5.28), and 0(¢) with qS(ZOO) =
has Neben character ¥xg.

and ¢o = ¢4 - goo.



84. Adjoint L-value formula.

Theorem 1. Let f be a Hilbert modular primitive Hecke eigen-
form of conductor C in S5 (M,vy~txg) on GLa(Fy), and put
fi="flsL,(r,)- Then we have for E(s) as in §2 in this lecture

(Cs)(1-
Pp(0*(@)() = c-m - Tp(2)E(0)" ﬁffj}f{if XE) 2 o,

Here m is the mass factor m(I:D), c Is a product of local constant
c = H,/HF cy at infinite places given below, and the theta lift
0*(o)(f) is the SL(2) theta lift of f. The constants are given by

{(—2\/—1)3 if v € Ig,
Cy —

23 ifve Jp,

Tr(2) = ] 27 @4m)2r@)- [ 27 1(4m) L

velg vedp

The proof is the same as Lecture 4.



§5. Descent Theorem.

Theorem 2. Suppose ¢oo = W(r;2z,w) as in §1 and that F €
SE’GO(Ii(b) is a cusp form on SO p_(Fy) of weight 2 anti-holomorphic
in w and holomorphic in z as above. Then

_ . 2T _~\2Ipo, .
O51,.+(6)(F)(r) = /rd)\gB@(WT'Z“‘“)“Z“‘”)(Z—Z> R (w — W) 2R Wiy,
= (4y/—=1) IRl 3 ¢ (@) Pa(F)ep (N (a)T),

a€Dqs /T 4 N(a)>0
where ep(N(a)71) = e(Xyer, N(a)Y1v) and

Winw ' = N ((zv — Z0) "2 (Wyo — Wye) 2dzy A dZy A dwpe A dyg).
I/EIR

As long as F # 0 is in the image of the theta lift, for a good
choice of ¢, 0gr, .(¢)(F) # O.

The proof is basically the same as in Lecture 9.



6. Reflex field. For a quaternion algebra () over a totally
real field K C Q, a formal definition of the reflex field €Q of the
Shimura variety associated to @ is given as follows.
Definition 1. Let H = Gal(Q/K) and identify Gal(Q/Q)/H with
Ix. Consider H' := {v € Gal(Q/Q)|vig = Igp}. Then

Eo = HO(H', Q).

Write £ for &p.
o £g is generated over Q by Z,/EIQ v (&) for £ running over K; so,

57.(@) = 7‘(5@) for T € Gal(@/@) and 7(Q) = Q®K,7‘ T(K).
e Ep=¢pif B=DQpkFE.

Examples: Let D be a quaternion algebra over F'.

1. If Ip ={v}, then & = v(F') for a quaternion algebra D,p.

2. If F/p, is Galois with Ip = Gal(F/Fyp), then Ep = Fy C F.

3. If F/@ is non-Galois of degree 3 and Ip = {id, 7}, then &p is

the Galois closure F/gél; so, £p D F.



§7. Quaternionic Shimura variety. We define Shp(C) =
Qi\(Qg(m) x 3g). By Shimura, Shg has a canonical model
ShQ/g defined over <‘ZQ Writing 8Q (resp. Ay ) for the dis-
crlmmant of Q/K (resp. K/@) for a level subgroup S of level M,
Shg 1= ShQ/S has good reduction outside mAKaQ as proven by
Deligne and Carayol. See [PAF, Chapter 7].

If Ip = Irp, Shp carries a universal abelian scheme with D-
multiplication of dimension [D : Q]/2 = 2[F : Q] (cf. [PAF,
Section 7.1]). Otherwise, it is not a moduli of abelian schemes
(see [PAF, Section 7.2]).

By definition, the Galois closure F9¢ > &5 = £z. As before,
writing dimShp =r > 0 (<& dimShg = 2r), we decompose

H2r (Shp, Q) = @ MNre x>
TEAR

for 22"-dimensional representation M, of Gal(Q/Ep) associated
to .



§8. Automorphic Galois action. Yoshida invented a functorial
way of a tensor-multiplicatively inducing a compatible system of
n-dimensional Galois representation p on GL(V) of Gal(Q/E) to
a n?"-dimensional system Q1 Indg/p of Gal(Q/&) (see §8.2.5).
Here H := Gal(Q/FE) and H' := Gal(Q/Ep). Then we have

Theorem 3 (Langlands, Reimann, Yoshida). Let the notation be
as above. Let I13° be the compatible system of the Galois repre-
sentations associated to the cuspidal automorphic representation
7. Then we have N = ®[BIndg/ pr as compatible systems.

An important point we need is
(*) I_I;STS|Ga|(@/Fgal) = ®I/E[B VIOT"?
where “p(g) = p(v1gv).



§9. History. Langlands [L79] and Reimann [SZQ] and [Re0O0] try
to identify the Hasse—Weil zeta function of ShB,S with a product
of Langlands L-functions of the form L(s — 2r,m,r1) for a 22"-
dimensional representation r1 of the L-group associated to GB.
More precisely, Langlands proved this assuming a conjectural de-
scription of the set of points ShB,S with values in Fp together
with the action of the Frobenius automorphism. Since this as-
sumption of Langlands is verified by Zink and Reimann, Reimann
in [SZQ] and [Re00] obtained the desired identity of the local
factors at least for primes unramified in B and E. Brylinsky and
Labesse [BL84] covered the Hilbert modular case earlier than
Reimann. By Chebotarev density and strong multiplicity one,
Yoshida in [Y94] via his tensor induction method created a com-
patible system of Galois representations out of pg and identified
the Hasse—Weil L-function with the L-function of ®r,Ind¥ p
without any assumption on the ramification in £ and B.



§10. Shimura surfaces. Assume

(Sp) all primes of £ above 2 splits in E.

(nc) X g is finite and its maximal c-field X" is real.

Here on a c-field, ic = ci for any 7 : X — C.

Let D be a quaternion algebra over a totally real field F and
B =D ®p E for a totally real quadratic extension E,p. Assume
Ip =A{v,up =vo}, thus, dimShg =2 and £ = v(F'). We say that
X/g IS sufficiently large for a level subgroup S if for any « € A‘é
with HO(S, 7(®)) =£ 0, Ypr = Hp, over Gal(Q/X) and det py is the
cyclotomic character over Gal(Q/X). We now state

Theorem 4. Let the notation and the assumption be as above.
Let S be a level subgroup ofGB(A(OO)). For a sufficiently large fi-
nite extension X ;¢ for S satisfying (nc), H2(X, Hz,,(Shp/S, Q;(1)))
is spanned by the fundamental class of Sho for o« € Dy With to-
tally positive N(«).



