Adjoint L-value and the Tate conjecture

Haruzo Hida
Department of Mathematics, UCLA, Lecture no. 1 at NCTS, March 19, 2024

Lecture 0: Strategy. We describe the Tate conjecture for varieties over number fields and its back ground. Then we sketch the strategy to prove the conjecture for a good amount of quaternionic Shimura varieties. A key point is a twisted adjoint L-value formula relative to each quaternion algebra $D_{/ F}$ for a totally real field F and its scalar extension $B=D \otimes_{F} E$ for a totally real quadratic extension $E_{/ F}$. The theta base-change lift \mathcal{F} of a Hilbert modular form f to B^{\times}has period integral over the Shimura subvariety $S h_{D} \subset S h_{B}$ given by $L\left(1, A d(f) \otimes\left(\frac{E / F}{}\right)\right) \neq 0$; so, $S h_{D}$ gives rise to a non-trivial Tate cycle in $H^{2 r}\left(S h_{B}, \mathbb{Q}_{l}(r)\right)$ for $r=\operatorname{dim} S h_{D}=\operatorname{dim} S h_{B} / 2$. All quoted section numbers without specification are from the book manuscript.
§0. Algebraic Cycles. Let S be a projective variety of dimension r defined over a number field $K \subset \mathbb{C}$. Let $T \subset S$ be a closed subvariety of codimension e; so, $T(\mathbb{C})$ is of real dimension $2 r-2 e$. Regard $S(\mathbb{C})$ as a complex manifold of dimension r; so, it is a real manifold of dimension $2 r$. For a closed smooth differential form ω of degree $2 r-2 e$, the integration $\omega \mapsto \int_{T} \omega$ induces a linear form $[T]: H_{D R}^{2 r-2 e}(S, \mathbb{C}) \rightarrow \mathbb{C}$ sending the de Rham cohomology class $[\omega]$ to its integral $\int_{T} \omega$. By Poincaré duality: $H_{D R}^{2 r-2 e}(S(\mathbb{C}), \mathbb{C}) \times H_{D R}^{2 e}(S(\mathbb{C}), \mathbb{C}) \rightarrow \mathbb{C}$, we view $[T]=[T]_{\infty} \in H_{D R}^{2 e}(S(\mathbb{C}), \mathbb{C})$. This class $[T]$ is called the algebraic cycle associated to T. Write $\operatorname{Alg}^{e}(S, A)$ for the A-span inside $H_{D R}^{2 e}(S(\mathbb{C}), \mathbb{C})$ of $[T]$ for T running over all closed subvarieties of $S_{/ \mathbb{C}}$ of codimension e. Here A is a subring of \mathbb{C}
§1. Hodge Cycles. An obvious question is:
Is there any good characterization of $\operatorname{Alg}^{e}(S, \mathbb{Q})$?
Define $H^{e, e}(S(\mathbb{C}), \mathbb{C})$ to be the degree (e, e) subspace of the Hodge decomposition $H^{2 e}(S(\mathbb{C}), \mathbb{C})=\oplus_{i+j=2 e} H^{i, j}(S(\mathbb{C}), \mathbb{C})$. The Hodge conjecture [D06] tells us
(H) $\quad \operatorname{Alg}^{e}(S, \mathbb{Q}) \stackrel{?}{=} \operatorname{Hdg}^{e}(S):=H^{e, e}(S(\mathbb{C}), \mathbb{C}) \cap H^{2 e}(S(\mathbb{C}), \mathbb{Q})$.

The Hodge conjecture (H) is known for divisors by Lefschetz [PAG, 1.2] and some small number of cases. Of course, one can further ask to find an explicit set of subvarieties which span $\operatorname{Hdg}^{e}(S)$.
§2. Étale Poincaré duality. Fix an algebraic closure $\bar{K} \subset \mathbb{C}$ and put $\bar{S}=S \otimes_{K} \bar{K}$. Let μ_{N} (resp. $\mathbb{Z} / N \mathbb{Z}$) be the sheaf of N-th roots of unity (resp. the constant sheaf of $\mathbb{Z} / N \mathbb{Z}$) on S; so, $\mu_{N}=$ $\operatorname{Spec}_{S}\left(\mathcal{O}_{S}[t] /\left(t^{N}-1\right)\right)$. Then the pairing $\mu_{N} \times \mathbb{Z} / N \mathbb{Z} \ni(\zeta, a) \mapsto$ $\zeta^{a} \in \mu_{N}$ induces $\operatorname{End}_{S-\mathrm{gp}}\left(\mu_{N}\right) \cong \mathbb{Z} / N \mathbb{Z}$ canonically; i.e., the pairing is perfect. Let $\mathbb{Z} / N \mathbb{Z}(e)=\operatorname{Hom}(\overbrace{\mu_{N} \otimes \cdots \otimes \mu_{N}}, \mathbb{Z} / N \mathbb{Z})$ (the Pontryagin dual). By cup product, writing $H^{2 e}(?):=H_{e t}^{2 e}(\bar{S}, ?)$, we have a perfect pairing

$$
H_{e t}^{2 r}(\mathbb{Z} / N \mathbb{Z}(r)) \times H_{e t}^{0}(\mathbb{Z} / N \mathbb{Z}) \rightarrow H_{e t}^{2 r}(\mathbb{Z} / N \mathbb{Z}(r))
$$

By the comparison isomorphism between étale cohomology and Betti cohomology, $H_{e t}^{2 r}(\mathbb{Z} / N \mathbb{Z}(r))$ is free of rank 1 over $\mathbb{Z} / N \mathbb{Z}$, and the paring is perfect, inducing a canonical isomorphism Tr : $H_{e t}^{2 r}(\mathbb{Z} / N \mathbb{Z}(r)) \cong \mathbb{Z} / N \mathbb{Z}$. By an abstract non-sence, this perfect duality extends to

$$
H_{e t}^{2 e}(\mathbb{Z} / N \mathbb{Z}(e)) \times H_{e t}^{2 r-2 e}(\mathbb{Z} / N \mathbb{Z}) \rightarrow \mathbb{Z} / N \mathbb{Z} \quad(0 \leq e \leq r)
$$

§3. Tate conjecture. The immersion $i: T \hookrightarrow S$ induces $i^{*}: H^{2 r-2 e}(\mathbb{Z} / N \mathbb{Z}(r-e)) \rightarrow H^{2 r-2 e}(\bar{T}, \mathbb{Z} / N \mathbb{Z}(r-e)) \cong \mathbb{Z} / N \mathbb{Z}$. By Poincaré duality, we have an inclusion $i_{*}: \mathbb{Z} / N \mathbb{Z} \hookrightarrow H^{2 e}(\mathbb{Z} / N \mathbb{Z}(e))$. So we have the fundamental class $[T]=[T]_{N}=i_{*}(1)$. Taking $N=l^{n}$ for a prime l and passing to the limit, $[T]_{e t}=$ $\varliminf_{n}[T]_{l^{n}} \in H_{e t}^{2 e}\left(\mathbb{Z}_{l}(e)\right)=\varliminf_{n} H^{2 e}\left(\mathbb{Z} / l^{n} \mathbb{Z}(e)\right)$. Extending scalars to $\overline{\mathbb{Q}}_{l}$ and identifying $\overline{\mathbb{Q}}_{l}$ with \mathbb{C}, by the comparison isomorphism, $H_{e t}^{2 e}\left(\overline{\mathbb{Q}}_{l}(e)\right) \ni[T]_{e t} \leftrightarrow[T]_{\infty} \in H^{2 e}(\mathbb{C})$. Thus we may regard $\operatorname{Alg}_{K}^{e}(S ; \mathbb{Q}) \subset H_{e t}^{2 e}\left(\overline{\mathbb{Q}}_{l}(e)\right)$. We define $\operatorname{Tate}_{K}^{e}(S)=\overline{\mathbb{Q}}_{l} \cdot \operatorname{Alg}_{K}^{e}(S ; \mathbb{Q})$ (the $\overline{\mathbb{Q}}_{l}$-span of $\mathrm{Alg}_{K}^{e}(S ; \mathbb{Q})$ inside $H_{e t}^{2 e}\left(\overline{\mathbb{Q}}_{l}(e)\right)$. The Tate conjecture states,

$$
\begin{equation*}
\operatorname{Tate}^{e}(S) \stackrel{?}{=} H^{0}\left(\bar{K} / K, H_{e t}^{2 e}\left(\overline{\mathbb{Q}}_{l}(e)\right)\right) \tag{T}
\end{equation*}
$$

Here $H^{0}(\bar{K} / K$, ? $)=H^{0}(\operatorname{Gal}(\bar{K} / K)$, ?) for a Galois module ?. Replacing $\operatorname{Tate}_{K}^{e}(S)$ by $\mathbb{Q}_{l} \cdot \operatorname{Alg}_{K}^{e}(S)$, we ask the same question for \mathbb{Q}_{l} in place of $\overline{\mathbb{Q}}_{l}$.

§4. Known cases.

1. Divisors on abelian varieties, K3 surfaces and products of two curves (Faltings) [Ta94b, §5],
2. Hilbert modular surfaces by Harder-Langlands-Rapoport [HLR], Murty-Ramakrishnan [MR87] and Klingenberg [K87] (increasingly general cases),
3. non-CM motives on Hilbert modular fourfolds [R04] when the base totally real field is a Galois extension of \mathbb{Q},
4. Picard surfaces by Blasius and Rogawski [BR92],
5. General Hilbert modular motives under some restrictive conditions by Getz and Hahn [GH14],
6. Good motives occurring on a product of a Hilbert-Siegel variety and a Hilbert modular variety by Sweeting [S22].

The results of [HLR], [GH14] and [S22] are explicit in the sense that Shimura subvarieties span $\operatorname{Tate}_{K}^{1}(S)$, and in all the other cases, we do not know the generators explicitly.
§5. Explicit analog for Shimura varieties. If S is a Shimura variety associated to a reductive group G defined over the reflex field \mathcal{E}, the finite adele $G\left(\mathbb{A}^{(\infty)}\right)$ acts on S which induces an action of $G\left(\mathbb{A}^{(\infty)}\right)$ on $H_{e t}^{2 e}\left(\overline{\mathbb{Q}}_{l}\right)$ commuting with the Galois action. We can then decompose

$$
H_{e t}^{2 e}\left(\overline{\mathbb{Q}}_{l}\right)=\bigoplus_{\pi} \Pi_{\pi} \otimes \pi^{(\infty)}
$$

for automorphic representations π of $G(\mathbb{A})$ with its finite part $\pi^{(\infty)}$ and associated l-adic Galois representation Π_{π}. Then

$$
H^{0}\left(X, H_{e t}^{2 e}\left(\overline{\mathbb{Q}}_{l}(e)\right)=\bigoplus_{\pi} H^{0}\left(X, \sqcap_{\pi}(e)\right) \otimes \pi^{(\infty)}\right.
$$

for $\Pi_{\pi}(e)=\Pi_{\pi} \otimes_{\mathbb{Q}_{l}} \mathbb{Q}_{l}(e)$, where $H^{0}(X, ?)=H^{0}(\bar{X} / X$, ?) for a finite extension $X_{/ \mathcal{E}}$ with algebraic closure \bar{X}. As Langlands suggested, we may describe well Π_{π} from the automorphic data; so, we might be able to compute the space $H^{0}\left(X, \Pi_{\pi}(e)\right)$ of Tate cycles, or at least, we ask how much of it is spanned by Shimura subvarieties [S_{H}] for reductive subgroups $H \subset G$.
§6. Quaternionic Shimura varieties. In this series of lectures, we try to answer the questions in $\S 5$ for G given by G^{B} for a quaternion algebra B over the totally real field E, as we have an explicit description of Π_{π} as a tensor induction of 2-dimensional compatible system ρ_{π}. Our method is the use of the theta correspondence exploiting the following facts:

1. An appropriate theta lift $\theta^{*}(\phi)(f)$ of a Hilbert modular form f gives the Doi-Naganuma lift of f to a quaternionic automorphic form over a quadratic extension $E_{/ F}$ (see Section 4.7);
2. The integral over the Shimura subvariety $S h_{D}$ of appropriate dimension in the quaternionic Shimura variety $S h_{B}$ is equal to a nonzero twisted adjoint L-value of f (see Chapter 5);
3. The theta descent $\theta_{*}(\phi)(\mathcal{F})$ of each quaternionic automorphic form \mathcal{F} has Hilbert modular Fourier expansion whose coefficients are the integral of \mathcal{F} over appropriate Shimura subvarieties $S h_{\alpha}$.
§7. Twisted 4-dimensional quadratic spaces. In the earlier lectures, we assume $F=\mathbb{Q}$. Let $D_{/ \mathbb{Q}}$ be a quaternion algebra with discriminant ∂. Choose a semi-simple quadratic extension $E=\mathbb{Q}[\sqrt{\Delta}]_{\mathbb{Q}}$ including $E=\mathbb{Q} \times \mathbb{Q}$ with $\sqrt{\Delta}=(1,-1)$, and let $B:=D \otimes_{\mathbb{Q}} E$. Write simply $\delta=\sqrt{\Delta}$ with square-free $\Delta \in \mathbb{Z}$. Let $\langle\sigma\rangle=\operatorname{Gal}(E / \mathbb{Q})$ act on B through the factor E. Then $D_{\sigma}:=\left\{v \in B \mid v^{\sigma}=v^{\iota}\right\}$ for $v+v^{\iota}=\operatorname{Tr}(v)$ is a 4-dimensional quadratic space with a quadratic \mathbb{Q}-form induced by the reduced norm $N: B \rightarrow E$. We have an orthogonal decomposition $D_{\sigma}=Z \oplus D_{0}$ where $Z=E \cap D_{\sigma}=\left(\mathbb{Q}, z^{2}\right)$ and

$$
D_{0}:=\left\{v \in D_{\sigma} \mid \operatorname{Tr}(v)=0\right\}=\{\sqrt{\Delta} w \mid w \in D, \operatorname{Tr}(w)=0\} .
$$

When $E=\mathbb{Q} \times \mathbb{Q}, \sigma(x, y)=(y, x)$ and $D_{\sigma}=\left\{\left(x, x^{l}\right) \mid x \in D\right\} \cong D$ by $\left(x, x^{l}\right) \leftrightarrow x$.

Let R be a Eichler order of level N of B; so, $N=\partial N_{0}$ with N_{0} prime to ∂, maximal outside ∂ and $R / N_{0} R \cong\left\{\left(\begin{array}{c}* \\ 0 \\ *\end{array}\right)\right\}$. Let $\widehat{R}=\varliminf_{N} R / N R$ (the profinite completion).
§8. Quaternion subalgebras of B. For each $\alpha \in D_{\sigma} \cap B^{\times}$, define the α-twist σ_{α} of σ by $v \mapsto \alpha v^{\sigma} \alpha^{-1}=: v^{\sigma_{\alpha}}$. Then σ_{α} is another action of $\operatorname{Gal}(E / \mathbb{Q})$ on B, and $D_{\alpha}=H^{0}(E / F, B)$ under this twisted action is a quaternion subalgebra of B.

- All quaternion \mathbb{Q}-subalgebras of B are realized as D_{α} for some $\alpha \in D_{\sigma}$, and $D_{z}=D \Leftrightarrow z \in Z$;
- $\alpha=\xi^{-1} \beta \xi^{-\iota \sigma}$ for $\xi \in B^{\times} \Leftrightarrow D_{\alpha} \cong D_{\beta}$ with $\xi D_{\alpha} \xi^{-1}=D_{\beta}$;
- $D_{\alpha} \cong D_{\beta}$ by an inner automorphism of B if $N(\alpha)=N(\beta)$ and $D_{E_{\infty}} \cong M_{2}\left(E_{\infty}\right)$ (strong approximation);
- The even Clifford group G_{α} of $D_{\alpha, 0}=\left\{v \in D_{\sigma_{\alpha}} \mid \operatorname{Tr}(v)=0\right\}$ is D_{α}^{\times}and B^{\times}is a covering of the similitude group $\mathrm{GO}_{D_{\sigma}}$ of D_{σ}.

Let $\hat{\Gamma}_{\phi}=\left\{h \in D_{E_{\mathrm{A}}^{(\infty)}}^{\times} \mid \phi^{(\infty)}\left(h^{-1} v h^{-\iota \sigma}\right)=\phi^{(\infty)}(v), \forall v \in D_{\sigma, \mathbb{A}(\infty)}\right\}$ for each Schwartz-Bruhat function ϕ on $D_{\sigma, \mathbb{A}}(\infty)$.
Let $S h_{B}=B^{\times} \backslash D_{E_{\mathbb{A}}}^{\times} / E_{\mathbb{A}}^{\times} \widehat{\Gamma}_{\phi} C_{\infty}$ be the Shimura variety for B^{\times}of level $\hat{\Gamma}_{\phi}$, and $S h_{\alpha}$ be the image of $D_{\alpha, \mathbb{A}}^{\times}$in $S h_{B}$ for $\alpha \in D_{\sigma}$. Let $d=\operatorname{dim}_{\mathbb{R}} S h_{\alpha} \in\{0,2\}$. Regard $S h_{\alpha} \in H_{d}\left(S h_{B}, \mathbb{Z}\right)$ and write $(\cdot, \cdot): H^{d} \times H_{d} \rightarrow \mathbb{C}$ for the Poincaré duality.
9. Two formulas. Write $f \mapsto \theta^{*}(\phi)(f)=\int_{Y_{0}(N)} \theta(\phi)(\tau, g) f(\tau) d \mu_{\tau}$ for the theta lift of $f \in S_{2}^{n e w}\left(\Gamma_{0}(N)\right)$ to G and $\theta_{*}(\phi)(\mathcal{F}) \in$ $S_{2}\left(\Gamma_{0}(N)\right)$ for the theta descent of a cuspidal harmonic differential form \mathcal{F} on $S h_{B}$ of degree d. The lift $\theta^{*}(\phi)(f)$ is such a differential form of matching degree d^{\prime} or d with $d^{\prime}+d=\operatorname{dim}_{\mathbb{R}} S h_{B}$.

Theorem A: $\theta_{*}(\Phi)(\mathcal{F})=* \sum_{0<n \in \mathbb{Q}}^{\infty} \sum_{\alpha, N(\alpha)={ }_{n}} \Phi(\alpha)\left(\mathcal{F}, S h_{\alpha}\right) q^{n}$ for $q=\exp (2 \pi i \tau)$, where $*=(8 \sqrt{-1})^{-1}$ if $E_{\mathbb{R}}:=E \otimes_{\mathbb{Q}} \mathbb{R}=\mathbb{R} \times \mathbb{R}$ and $*=4$ if $E_{\mathbb{R}}=\mathbb{C}$. If $E_{\mathbb{R}}=\mathbb{C}$, only α with $\operatorname{dim} S h_{\alpha}=1$ appears.

Note $\left(\mathcal{F}, S h_{\alpha}\right)=\int_{S h_{\alpha}} \mathcal{F}$. The Tate conjectures only concern D and E with $D_{\mathbb{R}}=M_{2}(\mathbb{R})$ and $E_{\mathbb{R}}=\mathbb{R} \times \mathbb{R}$.

Theorem B: $i^{-3} E \mathfrak{m}_{1} \frac{L\left(1, A d\left(\rho_{f}\right) \otimes \chi_{E}\right)}{2^{2} \pi^{3}}=\left(\theta^{*}\left(\phi^{\prime}\right)(f), S h_{1}\right)$ for an explicit constant $E \neq 0$. Here choosing a Haar measure $d \mu_{1}$ on $D_{\mathbb{A}}^{\times}$ so that it is Dirac on D^{\times}and having volume 1 on $\widehat{\Gamma}_{\phi^{\prime}} \cap D_{\mathbb{A}}^{\times} C_{\infty}$, $\mathfrak{m}=\mathfrak{m}_{1} \zeta(2) / \pi$ is defined by $d \mu_{1}=(\mathfrak{m} / 2) d \omega$ for the Tamagawa measure. Note $0<\mathfrak{m}_{1} \in \mathbb{Q}^{\times}$by Siegel.
§10. Strategy.

1. We prove that $f \mapsto \theta^{*}(\phi)(f)$ is Hecke equivariant for $T(p)$ with p splitting in E / \mathbb{Q} if we choose a Schwartz-Bruhat function $\phi: D_{\sigma, \mathbb{A}} \rightarrow \mathbb{C}$ well.
2. By Chebotarev density, Item 1 is sufficient to see $\mathcal{F}=\theta^{*}(\phi)(f)$ is a Hecke eigenform for $T(\mathfrak{p})$ for all prime \mathfrak{p} of E giving the DoiNaganuma lift. Non-vanishing $\mathcal{F} \neq 0$ comes out from Theorem A and Rallis' work (a bit over-simplified).
3. Analyze the Galois representation Π_{π} for the automorphic representation π generated by a general Hecke eigenform \mathcal{F} on $S h_{B}$ to see that $\operatorname{dim} \operatorname{Tate}_{K}^{1}\left[\pi^{(\infty)}\right]$ has dimension 1 only when $\mathcal{F}=\theta^{*}(\phi)(f)$ for some f.
4. By Theorem B, if $\left(S h_{\alpha}, \mathcal{F}\right)=0$ for all $\alpha \in D_{\sigma} \cap B^{\times}, \theta_{*}(\phi)(\mathcal{F})=$ 0 , contradicting to $\theta^{*}(\phi)(f) \neq 0$. This proves $\sum_{\alpha} \overline{\mathbb{Q}}_{l}\left[S h_{\alpha}\right] \supset$ $\operatorname{dim} \operatorname{Tate}_{K}^{1}\left[\pi^{(\infty)}\right]$, proving the conjecture.
§11. Further generalizations. As we already mentioned, Sweeting [S22] applied theta correspondence to show the Tate conjecture to some extent for a product of a Hilbert-Siegel modular variety of genus 2 and a Hilbert modular variety.

The use of the theta correspondence for this type of problems seems quite effective. The case of orthogonal Shimura variety associated to quadratic forms of signature $(2 n, 2)$ or $(2 n, 0)$ at different infinite places of a totally real field F can be treated to some extent; at least, an analog of the adjoint L-value formula is expected in these cases.

