* Local p-indecomposability

of modular *p*-adic Galois representations.

Haruzo Hida Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A. Second talk at TIFR, November 24, 2022.

*Abstract: A question of R. Greenberg asks if a modular 2-dimensional *p*-adic Galois representation of a cusp form of weight larger than or equal to 2 is indecomposable over the *p*-inertia group unless it is induced from an imaginary quadratic field. I start with a survey of the known results and try to reach a brief description of new cases of indecomposability.

§0. Set-up, assumptions and notations. Fix a prime $p \ge 3$. • Fix an absolutely irreducible odd representation $\overline{\rho}$: $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{F})$ ($\mathbb{F}_{/\mathbb{F}_p}$ finite). $F(\rho) := \overline{\mathbb{Q}}^{\operatorname{Ker}(\rho)}$ for a representation ρ . (S) $\overline{\rho}|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} = \overline{\epsilon} \oplus \overline{\delta}$ (split locally at p); $\overline{\delta} \neq \overline{\epsilon}$; $\overline{\delta}|_{I_p} = 1$. (T) Ramification index of primes in $F(\overline{\rho})_{/\mathbb{Q}}$ is prime to p; • \mathfrak{F} : the maximal p-profinite extension of $F(\overline{\rho})$ unramified outside $p, \ \mathcal{G} := \operatorname{Gal}(\mathfrak{F}/\mathbb{Q})$ and $\mathcal{H} := \operatorname{Gal}(\mathfrak{F}/F(\overline{\rho}))$. Fix a decomposition subgroup $D = D_l \subset \mathcal{G}$ of l with inertia I_l .

• The *p*-ordinary universal deformation $(R, \rho : \mathcal{G} \to GL_2(R))$ over the category CL of local *p*-profinite *W*-algebras with residue field \mathbb{F} . Let $W = W(\mathbb{F})$ (Witt vectors). So the functor $\mathcal{D}(A)$ given by

 $\{\rho: \mathcal{G} \to \mathsf{GL}_2(A) | \rho \mod \mathfrak{m}_A = \overline{\rho}, \ \rho|_{D_p} = \begin{pmatrix} \epsilon & u_\rho \\ 0 & \delta \end{pmatrix}, \delta|_{I_p} = 1\} / \Gamma(\mathfrak{m}_A)$

is isomorphic to $A \mapsto \text{Hom}_{CL}(R, A)$. We assume $\boxed{R = \mathbb{T}}$ for a Hecke algebra \mathbb{T} ; so, $\boxed{R \text{ is free of finite rank over } \Lambda}$.

• ν_p : Gal($\mathbb{Q}[\mu_p \infty]/\mathbb{Q}$) $\twoheadrightarrow \mathbb{Z}_p^{\times}$: the *p*-adic cyclotomic character.

§1. Greenberg's conjecture: If f of weight $k \ge 2$ without CM, then its p-adic Galois representation $\rho_f|_{I_p} \in \mathcal{D}(W(\overline{\mathbb{F}}_p))$ is indecomposable.

Let $\mathfrak{m} = \{x \in W(\overline{\mathbb{F}}_p) : |x|_p < 1\}$. For an ordinary elliptic curve $E_{/W(\overline{\mathbb{F}}_p)}$ with $\overline{E}_{/\overline{\mathbb{F}}_p} = E \otimes_{W(\overline{\mathbb{F}}_p)} \overline{\mathbb{F}}_p$, by Serre and Tate, $\mathcal{D}_E := \frac{\{\mathcal{E}_{/W(\overline{\mathbb{F}}_p)} : \text{ elliptic curve} | \mathcal{E} \mod \mathfrak{m} \cong \overline{E}\}}{\text{isomorphisms}} \xrightarrow{\sim}_i (1 + \mathfrak{m}).$ Any $\mathcal{E} \in \mathcal{D}_E$ has Galois representation $\rho_{\mathcal{E}} : \text{Gal}(\overline{\mathbb{Q}}_p/K) \to \text{GL}_2(\mathbb{Z}_p)$ $(K := \text{Frac}(W(\overline{\mathbb{F}}_p))$ such that $\rho_{\mathcal{E}} = \begin{pmatrix} e_{\mathcal{E}} & u_{\mathcal{E}} \\ 0 & \delta_{\mathcal{E}} \end{pmatrix}$ with 1-cocycle $u_{\mathcal{E}}$ with values in $\mathbb{Z}_p(1)_{/W(\overline{\mathbb{F}}_p)}$. If $i(\mathcal{E}) = u$, $u_{\mathcal{E}} \mod p^n$ is a Kummer cocycle over the *p*-inertia subgroup associated to $p_{\sqrt[n]}^n \overline{u}$ for all n; so $i(\mathcal{E}) = 0 \Leftrightarrow \mathcal{E}$ has CM by an order maximal at *n* of an imaginary

so, $i(\mathcal{E}) = 0 \Leftrightarrow \mathcal{E}$ has CM by an order maxmal at p of an imaginary quadratic field.

$$(1+\mathfrak{m}):$$
 ----- 1 ---- 1 ---- E ------.

§2. Abelian variety of type GL(2). Assume that an abelian variety A over a number field K is of GL(2)-type (i.e., $O_A := \text{End}(A_{/\overline{\mathbb{Q}}})$ is the integer ring of another number field with degree dim A). Let $\rho_{\mathfrak{p}}$: Gal($\overline{\mathbb{Q}}/K$) \rightarrow GL₂($O_{\mathfrak{p}}$) be the \mathfrak{p} -adic Galois representation of A for a prime $\mathfrak{p}|p$ of O_A .

Theorem 1 (H., JAMS 26 (2013), Zhao AIF 64 (2014)). If $\rho_{\mathfrak{p}} = \begin{pmatrix} \epsilon_A & u_A \\ 0 & \delta_A \end{pmatrix}$ over a decomposition group at p with unramified δ_A , then $\rho_{\mathfrak{p}}$ is indecomposable over p-inertia group. So if f has weight 2 without CM, then $\rho_f|_{I_p}$ is indecomposable.

Such abelian varieties are parameterized $\mathcal{D}_A = (1 + \mathfrak{m}) \otimes_{\mathbb{Z}} O_A = \prod_{\mathfrak{p}} (1 + \mathfrak{m}) \otimes_{\mathbb{Z}_p} O_{\mathfrak{p}}$ which has axis corresponding \mathfrak{p} 's. So one needs to show that A is not on any of the axis (so, the proof is far involved via the use of rationality of Hilbert modular variety).

§3. Local one generator theorem. Choosing $\phi \in \mathcal{G}$ with $\phi|_{\mathbb{Q}_p^{ab}} = [p, \mathbb{Q}_p]$, we have $\rho_{\mathbb{T}}(\phi) = \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix}$. Let $\Lambda[a^2] \subset \mathbb{T}$ be the closed $\mathbb{Z}_p[[T]]$ -subalgebra generated by a^2 inside \mathbb{T} . By Iwasawa's local one generator theorem (1973), for the wild inertia subgroup $I_p^w \subset I_p$, we know

 $\rho_{\mathbb{T}}(I_p^w) = \left\{ \begin{pmatrix} t^{\mathbb{Z}_p} \wedge [a^2]\theta \\ 0 & 1 \end{pmatrix} \right\} \text{ for } \theta \in \mathbb{T}, \quad \text{What is this } \theta?$ Then I_p -indecomposability for $\rho_{\lambda} = \lambda \circ \rho_{\mathbb{T}}$ is equivalent to: for any $\lambda \in \text{Hom}_{CL}(\mathbb{T}, A)$ of weight $k \geq 2$,

 $\mathsf{Ker}(\lambda) \nmid \theta \Leftrightarrow \lambda(\theta) \neq 0.$

The density of weight 2 forms combined with Zhao's local indecomposability theorem, θ is a non-zero divisor of the non-CM component \mathbb{T}^{ncm} of \mathbb{T} , and hence there is only finitely many $\lambda \in \operatorname{Spec}(\mathbb{T}^{ncm})(\overline{\mathbb{Q}}_p)$ with $\lambda(\theta) = 0$. This slightly generalizes a result of Ghate–Vatsal in 2004:

Theorem 2. Without assuming (S) and (T), for almost all $\lambda \in$ Spec $(\mathbb{T}^{ncm})(\overline{\mathbb{Q}}_p)$, if ρ_{λ} is non CM, then $\rho_{\lambda}|_{I_p}$ is indecomposable. §4. Global one generator theorem. The number r of generators of \mathbb{T} over Λ is given by $r = \dim_{\mathbb{F}} \operatorname{Sel}_{\mathbb{Q}}(Ad(\overline{\rho}))$, where $Ad(\overline{\rho})$ is the Lie algebra $\mathfrak{sl}_2(\mathbb{F})$ with Galois action $x \mapsto \overline{\rho}(g)x\overline{\rho}(g)^{-1}$. The Selmer group $\operatorname{Sel}_M(Ad(\rho))$ for $M \subset \mathfrak{F}$ with $\mathcal{G}_M := \operatorname{Gal}(\mathfrak{F}/M)$ is

$$\mathsf{Sel}_M(Ad(\overline{\rho})) := \mathsf{Ker}(H^1(\mathcal{G}_M, Ad(\overline{\rho}))) \to \prod_{\mathfrak{p}|p} \frac{H^1(D_{\mathfrak{p}}, Ad(\overline{\rho}))}{F_-^+ H^1(D_{\mathfrak{p}}, Ad(\overline{\rho}))}),$$

where $F_{-}^{+}H^{1}(D_{\mathfrak{p}}, Ad(\overline{\rho}))$ is made of cohomology classes upper triangular over $D_{\mathfrak{p}}$ and upper nilpotent over $I_{\mathfrak{p}}$. Let $F := F(Ad(\overline{\rho}))$ with integer ring O. Let $\widehat{O_{p}^{\times}} = \varprojlim_{n} O_{p}^{\times}/(O_{p}^{\times})^{p^{n}}$. **Theorem 3.** Suppose $\overline{\epsilon}\overline{\delta}^{-1} \neq \mathbb{F}(1)$ and $Cl_{F} \otimes_{\mathbb{Z}[G]} Ad(\overline{\rho}) = 0$ for $G := \operatorname{Gal}(F/\mathbb{Q})$, where Cl_{F} is the class group of F. Then $r \leq 1$, and if r = 1, $\mathbb{T} = \Lambda[X]/(D(X)) = \Lambda[\Theta]$ for the characteristic polynomial D(X) of $\mathbb{T} \ni x \mapsto \Theta x$ for $\Theta \in \mathfrak{m}_{\mathbb{T}}$.

What is this Θ ? Are there infinitely many locally split p for a given f? Is the vanishing of $Cl_F[Ad(\overline{p})] := Cl_F \otimes_{\mathbb{Z}[G]} Ad(\overline{p}) = 0$ true for infinitely many locally split p?

§5. Proof/example. By CFT, $\hat{O}_p^{\times} \to \mathcal{G}_F^{ab} \to Cl_{F,p} \to 0$ and $0 = \operatorname{Hom}_{\mathbb{Z}[G]}(Cl_F, Ad(\overline{\rho})) \hookrightarrow \operatorname{Sel}_F(Ad(\overline{\rho}))^G \xrightarrow{\pi} \operatorname{Hom}_{\mathbb{Z}_p[G]}(O_p^{\times}, Ad(\overline{\rho}))$ for $\widehat{O}_p^{\times} = \lim_{n \to \infty} (O_p^{\times}) / (O_p^{\times})^{p^n}$ are exact. By tameness of p in F/\mathbb{Q} and $\mu_p(\overline{\mathbb{Q}}_n) \not\subset O_n^{\times}$, $O_p^{\times} \cong \mathbb{Z}_p[G] = \operatorname{Ind}_1^G \mathbb{Z}_p$. By Shapiro's lemma $\operatorname{Hom}_{\mathbb{Z}_p[G]}(O_p^{\times}, Ad(\overline{\rho})) = \operatorname{Hom}_{\mathbb{Z}_p}(\mathbb{Z}_p, Ad(\overline{\rho})) \cong Ad(\overline{\rho})$ where $\pi(\operatorname{Sel}(Ad(\overline{\rho}))) \hookrightarrow \mathfrak{n} = \{ \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix} \} \subset Ad(\overline{\rho}).$ An example: Let $K = \mathbb{Q}[\sqrt{D}]$ be a quadratic field with split $(p) = \mathfrak{p}\mathfrak{p}^{\sigma}$. Take $\overline{\rho} = \operatorname{Ind}_{K}^{\mathbb{Q}}\overline{\varphi} \ (\Rightarrow p \nmid [F : \mathbb{Q}]).$ **Theorem 4.** Assume K real with a fundamental unit ε . Then $r \geq 1$ and $\theta | (\langle \varepsilon \rangle - 1)$ (t = 1 + T) for $\langle \varepsilon \rangle = t^{\log_p(\varepsilon) / \log_p(1+p)} \in \Lambda$;

so, ρ_f in $\mathcal{D}(W)$ is indecomposable over I_p if $k \ge 2$. If r = 1, $(\theta) = (\Theta)$.

$\S6$. Real quadratic field.

Let $K = \mathbb{Q}[\sqrt{D}]$ be real with $\alpha := \binom{K/\mathbb{Q}}{2}$ in which p splits into $\mathfrak{p}\mathfrak{p}^{\sigma}$. Assume $\overline{\rho} = \operatorname{Ind}_{K}^{\mathbb{Q}} \overline{\varphi}$ (so, p is tame in $F(\overline{\rho})$). Since $\overline{\rho} \otimes \alpha \cong \overline{\rho}$, $\rho_{\mathbb{T}} \otimes \alpha$ is still in $\mathcal{D}(\mathbb{T})$; so, we have an involution ι : Aut $(\mathbb{T}_{/\Lambda})$ such that $\iota \circ \rho_{\mathbb{R}} \cong \rho_{\mathbb{T}} \otimes \alpha$. The $R \cong \mathbb{T}$ implies $\operatorname{Sel}(Ad(\rho_{\lambda}))^{\vee} \cong \Omega_{\mathbb{T}/\Lambda} \otimes_{\mathbb{T},\lambda} A$. If $\rho_{\lambda} \leftrightarrow f \in S_{k}$ with weight $k \geq 2$, $\rho_{\lambda} \otimes \alpha \ncong \rho_{\lambda}$; so, $\iota \neq \operatorname{id}$; hence $\mathbb{T} \neq \Lambda$ implying $0 < \dim_{\mathbb{F}} \Omega_{\mathbb{T}/\Lambda} \otimes_{\mathbb{T}} \mathbb{F} = \dim_{\mathbb{F}} \operatorname{Sel}(Ad(\overline{\rho}))$.

Put $\overline{\varphi}^{-}(g) = \overline{\varphi}(g)\overline{\varphi}(\sigma g \sigma^{-1})^{-1}$ for $\sigma \in \mathcal{G}$ non-trivial over K. Since $Ad(\overline{\rho}) = \overline{\alpha} \oplus \operatorname{Ind}_{K}^{\mathbb{Q}} \overline{\varphi}^{-}$, $\operatorname{Sel}(Ad(\overline{\rho})) = \operatorname{Sel}(\overline{\alpha}) \oplus \operatorname{Sel}(\operatorname{Ind}_{K}^{\mathbb{Q}} \overline{\varphi}^{-})$ with $\iota = 1$ on $\operatorname{Sel}(\overline{\alpha})$ and -1 on $\operatorname{Sel}(\operatorname{Ind}_{K}^{\mathbb{Q}} \overline{\varphi}^{-})$, and if $p \nmid h_{F}$,

 $\operatorname{Sel}(\alpha) \cong \operatorname{Hom}(Cl_K, \mathbb{F}) = 0$ with $\operatorname{Sel}(\operatorname{Ind}_K^{\mathbb{Q}} \overline{\varphi}^-) = \mathbb{F}d\Theta \neq 0$. We may assume that for the image Θ of X in \mathbb{T} , $\iota(\Theta) = -\Theta$. §7. $D(0) = \langle \varepsilon \rangle - 1$. Let $I = \mathbb{T}(\iota - 1)\mathbb{T} = (\Theta)$ (the different of \mathbb{T} over $\mathbb{T}_{\pm} = \mathbb{T}^{\iota = \pm 1}$). If $\rho \in \mathcal{D}(\mathbb{T}/I)$, then $\rho \otimes \alpha \cong \iota \circ \rho = \rho$, which implies $\rho = \operatorname{Ind}_{K}^{\mathbb{Q}} \phi$. By $\rho \leftrightarrow \phi$, writing $\rho_{\mathbb{T}} \mod I = \operatorname{Ind}_{K}^{\mathbb{Q}} \Phi$, $(\mathbb{T}/I, \Phi)$ is the universal ring deforming $\overline{\varphi}$ unramified outside \mathfrak{p} . Under $p \nmid h_{F}$, Φ induces $C := Cl(\mathfrak{p}^{\infty}) \otimes_{\mathbb{Z}} \mathbb{Z}_{p} \cong \widehat{O_{\mathfrak{p}}^{\times}} / \varepsilon^{(p-1)\mathbb{Z}_{p}} \cong \Gamma / \Gamma^{\log_{p}(\varepsilon) / \log_{p}(1+p)}$. So,

 $\mathbb{T}/(\Theta) = \mathbb{T}/I \cong W[C] \cong W[[T]]/(\langle \varepsilon \rangle - 1).$

We may assume that D(X) is a monic distinguished polynomial by Weierstrass preparation theorem for $\Lambda[[X]]$. Then

$$\Lambda/(\langle \varepsilon \rangle - 1) \cong \mathbb{T}/(\Theta) = \Lambda[[X]]/(X, D(X)) = \Lambda/(D(0)).$$

Thus we may assume that $D(0) = \langle \varepsilon \rangle - 1$.

Decompose $\mathbb{T} = \mathbb{T}_+ \oplus \mathbb{T}_-$ for the \pm -eigenspace of ι .

§8. D(X) is an Eisenstein polynomial. For t = 1 + T, we have $(\langle \varepsilon \rangle - 1) = (t^{p^m} - 1)$ for the minimal m such that $\varepsilon^{(p-1)} \equiv 1 \mod p^m$. Thus $(\langle \varepsilon \rangle - 1)$ is square-free non-trivial, $m = 0 \Leftrightarrow \mathbb{T} = W[[\Theta]]$, and $\mathbb{T}/\sqrt{(\langle \varepsilon \rangle - 1)} \cong \Lambda/(\langle \varepsilon \rangle - 1)$ for the radical $\sqrt{(\langle \varepsilon \rangle - 1)}$ of $(\langle \varepsilon \rangle - 1)$ in \mathbb{T} . Thus \mathbb{T} fully ramifies in $\mathbb{T}_{/\Lambda}$. After localizing at $P|(\langle \varepsilon \rangle - 1)$, $\mathbb{T}_P = \mathbb{T} \otimes_{\Lambda} \Lambda_P$ has rank over Λ_P equal to $e = \operatorname{rank}_{\Lambda} \mathbb{T} = \deg D(X)$; so, D(X) is the characteristic polynomial of $x \mapsto \Theta x$ on \mathbb{T}/Λ and also \mathbb{T}_P/Λ_P . We find $\mathbb{T}_P = \Lambda_P[X]/(D(X))$ and Weierstrass preparation applied to Λ_P , we find D(X) is an Eisenstein polynomial with respect to P; so, $\mathbb{T}[\frac{1}{p}]$ is a Dedekind domain.

For j = diag[-1, 1], normalize $\rho_{\mathbb{T}} \cdot \alpha = j\iota \circ \rho_{\mathbb{T}} j^{-1}$. So, $\rho_{\mathbb{T}}|_{\text{Ker}(\alpha)}$ has values in $\begin{pmatrix} \mathbb{T}_+ & \mathbb{T}_- \\ \mathbb{T}_- & \mathbb{T}_+ \end{pmatrix} = \begin{pmatrix} \mathbb{T}_+ & \Theta \mathbb{T}_+ \\ \Theta \mathbb{T}_+ & \mathbb{T}_+ \end{pmatrix}$; so, $\theta = \Theta u$ for $u \in \mathbb{T}_+$. Thus $(\Theta \mathbb{T}_+ / \theta \mathbb{T}_+) \otimes_{\mathbb{T}_+} \mathbb{F} = \mathbb{T}_+ / ((u) + \mathfrak{m}_{\mathbb{T}_+}) \hookrightarrow \text{Hom}_{\mathbb{Z}_p[G]}(Cl_F, Ad(\overline{\rho})).$ If $Cl_F[Ad(\overline{\rho})] = 0$, u is a unit; so, $\boxed{Cl_F[Ad(\overline{\rho})] = 0 \Rightarrow \Theta = \theta}$ and without $Cl_F[Ad(\overline{\rho})] = 0$, we can actually show $(\theta)|(\langle \varepsilon \rangle - 1)$. §9. Wall-Sun-Sun primes (Zhi-Hong Sun and Zhi-Wei Sun). \mathbb{T} is a regular local ring $\Leftrightarrow \langle \varepsilon \rangle - 1$ is a prime $\Leftrightarrow \mathfrak{p} \parallel \varepsilon^{p-1} - 1$. So \mathbb{T} is non-regular $\Leftrightarrow \mathfrak{p}^2 | \varepsilon^{p-1} - 1$.

Take $K = \mathbb{Q}[\sqrt{5}]$. Note that $\mathfrak{p}^2 | \varepsilon^{p-1} - 1 \Leftrightarrow \mathfrak{p}^2 | \varepsilon^{2(p-1)} - 1$, and $\varepsilon^{2(p-1)} - 1 = \varepsilon^{p-1}(\varepsilon^{p-1} - \varepsilon^{\sigma(p-1)}) = \varepsilon^{p-1}f_{p-1}\sqrt{5}$

for Fibonacci number f_{p-1} of index p-1; so,

 \mathbb{T} is non-regular $\Leftrightarrow p^2 | f_{p-1} \Leftrightarrow p$ is a Wall-Sun-Sun prime. No Wall-Sun-Sun prime is known up to 2.6×10^{17} .

However for $K = \mathbb{Q}[\sqrt{10}]$, p = 191,643 satisfies $\mathfrak{p}^2|\varepsilon^{p-1} - 1$. An analytic number theorist (J. Klaška) conjectures that there are infinitely many Wall-Sun-Sun primes (but density 0). If true, for the Artin representation $\operatorname{Ind}_K^{\mathbb{Q}}\varphi$, \mathbb{T} is non-regular for infinitely many but very thinly populated primes.

$\S10$ What happens if K is imaginary?

As in the real case, we assume that $(p) = \mathfrak{p}\overline{\mathfrak{p}}$ in imaginary K. Let $L_{\mathfrak{p}}$ be the anticyclotomic Katz p-adic L-function with branch character $\overline{\varphi}^{-}(g) = \overline{\varphi}(g)\overline{\varphi}(cgc)^{-1}$ for complex conjugation c, giving the characteristic ideal of the Iwasawa module unramified outside \mathfrak{p} over the anti-cyclotomic tower. The power series lives in $\Lambda_{\overline{W}} := \overline{W}[[T]] = \Lambda \widehat{\otimes}_{\mathbb{Z}_p} \overline{W}$ for the Witt vector ring \overline{W} of $\overline{\mathbb{F}}_p$.

In this case, $\operatorname{Spec}(\mathbb{T}) = \operatorname{Spec}(\mathbb{T}^{cm}) \cup \operatorname{Spec}(\mathbb{T}^{ncm})$ with $\operatorname{Spec}(\mathbb{T}^{cm})$ is a union of CM components. We still have the involution ι with $\mathbb{T}(\iota - 1)\mathbb{T} = (\Theta) \subset \mathbb{T}^{ncm}$ if $\operatorname{Cl}_F[\operatorname{Ad}(\overline{\rho})] = 0$. We need to extend scalar to W and to replace $\langle \varepsilon \rangle - 1$ by the anticyclotomic Katz p-adic L-function L_p Then $\mathbb{T}^{ncm} = \Lambda[\Theta]$ as before for Θ with $\Theta^{\iota} = -\Theta$. §11. Imaginary K. For simplicity, assume $\overline{\varphi}^-$ has order \geq 3.

Another Greenberg's conjecture: $W[[T]]/(L_{\mathfrak{p}}, L_{\overline{\mathfrak{p}}})$ is finite for the Katz *p*-adic $L_{?}$ for the Coates Wiles tower unramified outside $? = \mathfrak{p}, \overline{\mathfrak{p}}.$

Theorem 5. Assume $\mathbb{T}^{ncm} \neq 0$.

(1) If $Cl_F[Ad(\overline{\rho})] = 0$, $\mathbb{T}^{ncm} = \Lambda[X]/(D(X))$ is an integral domain, $(\theta) = (\Theta)$, $(\theta)|(L_{\mathfrak{p}})$ and $\rho_f|_{I_p}$ is indecomposable if ρ_f does not have CM.

(2) Suppose the above conjecture. Then $\rho_f|_{I_p}$ is indecomposable if ρ_f does not have CM.

When K is real, we always have $\mathbb{T} \neq \Lambda$. When K is imaginary and $p \nmid h_K$, $\mathbb{T} \neq \Lambda \Leftrightarrow \mathbb{T}^{ncm} \neq 0$. For a fixed finite order character φ with ordinary $\operatorname{Ind}_K^{\mathbb{Q}} \varphi$, are there infinitely many p such that $\mathbb{T} \neq \Lambda$?