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§1. Notation

To describe the cyclotomic ordinary big p-adic Hecke algebra, we

introduce some notation. Fix

• A prime p (we assume p is odd for simplicity);

• a positive integer N prime to p;

• two field embeddings C←↩ Q ↪→ Qp;

• Γ = 1 + pZp ⊂ Z×p .

Consider H = {z ∈ C| Im(z) > 0} and

Γ1(Npr) =
{(

a b
c d

)

∈ SL2(Z)
∣

∣

∣d− 1 ≡ c ≡ 0 mod N
}

.

Take the open curve Yr(C) := Y1(Npr)(C) = Γ1(Npr)\H and the

compactified one Xr(C) := X1(Npr)(C) = Γ1(Npr)\(HtP
1(Q)).
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§2. Classification.

The curve Yr/Q := Y1(Npr)/Q classifies elliptic curves E with

an embedding φ : µNpr ↪→ E[pr] = Ker(pr : E → E). Choosing

a primitive root of unity ζNpr ∈ µNpr, we identify Z/NprZ with

µpr(C) by m 7→ ζm
Npr. This is plain for z ∈ Γ1(Npr)\H is mapped

to (C/2πi(Z + Zz)
exp
= C×/qZ, µNpr(C) ⊂ C×) (q = exp(2πiz)).

The completed curve Xr/Q := X1(Npr) is the normalization of

P
1(j) in the function field of Yr/Q.

Let Ri = Z(p)[µpi] and Ki = Q[µpi] (i = 1,2, . . . ,∞). We fix an

isomorphism Zp(1) = lim←−r
µpr(R∞) choosing a coherent sequence

of primitive roots of unity ζpr ∈ µpr(Rr) such that ζp
pr+1 = ζpr for

all r, and therefore, Ri has a specific primitive root of unity

denoted by ζpi. We suppose ζNpr = ζNζpr. Write R for Ri and K

for its quotient field.



§3. Diamond operators

The group z ∈ (Z/prZ)× acts on Xr/Q by φ(ζ) 7→ φ(ζz), as

Aut(µNpr) ∼= (Z/NprZ)×.

Thus Γ = 1+pZp = γZp (γ = 1+p) acts on Xr (and its Jacobian

Jr/Q) through its image in (Z/NprZ)×.

For s > r ≥ 0, we define another modular curve Y r
s/Q

by the

quotient of Ys by (1 + prZp)/(1 + psZp) ⊂ (Z/NpsZ)× and define

Xr
s/R to be the normalization of P(j)/R in the function field

K(Y r
s/Q

).

Xr
s/Q

(C) is given by Γr
s\(H t P

1(Q)) for Γr
s = Γ1(Npr) ∩ Γ0(p

s)

(s > r ≥ 0).



§4. Hecke operators

H 3 z 7→ z/p induces a projection π′ : Xr
r+1 → Xr. Then

for a prime divisor [P ] on Xr and for the natural projection

π : Xr
r+1 � Xr, the map [P ] 7→

∑

Q∈π−1(P)[π
′(Q)] give a Hecke

operator U(p) ∈ End(Jr).

For each congruence subgroup Γ ⊂ SL2(Z), we define the mod-

ular curve X(Γ)(C) = Γ\(H t P1(Q)). In this setting, we always

assume Γ = Γ1(Npr) ∩ Γ0(l
m) for a prime l, and then X(Γ) is

canonically defined over Q.

Write Nl for the l-primary part of N . Similarly for the two projec-

tions πl, π
′
l : X(Γ0(lNl) ∩ Γ1(Npr))

−→
−→ Xr gives rise to the Hecke

operator T(l) ∈ End(Jr/Q). Writing Γ
(

1 0
0 l

)

Γ =
⊔

α Γα, lifting P

to z ∈ H, T(l) sends a divisor [z] to
∑

α[α(z)] in Jr.



§5. U-isomorphisms.

For Z[U]-modules M and M ′, we call a Z[U]-linear map f : M →

M ′ a U-injection (resp. a U-surjection) if Ker(f) is killed by a

power of U (resp. Coker(f) is killed by a power of U).

If f is an U-injection and U-surjection, we call f is a U-isomorphism.

In other words, f is a U-injection (resp. a U-surjection, a U-

isomorphism) if after tensor with Z[U, U−1], it becomes an in-

jection (resp. a surjection, an isomorphism). In terms of U-

isomorphisms, we describe briefly the facts we study.



§6. Coset identity.

We have the following coset identity:

Γr
s\Γ

r
s

(

1 0
0 ps−r

)

Γ1(Npr) =

{

(

1 a
0 ps−r

)

∣

∣

∣

∣

a mod ps−r
}

= Γ1(Npr)\Γ1(Npr)
(

1 0
0 ps−r

)

Γ1(Npr).

Write Us
r(p

s−r) : Js
r → Jr for the Hecke operator of Γs

rαs−rΓ1(Npr)

for αm =
(

1 0
0 pm

)

.

The Hecke operator of this coset is induced by the correspon-

dence of divisors

Div(X(Γ)) 3 [z] 7→
∑

a

[

z + a

ps−r

]

∈ Div(X(Γ′))

for (Γ,Γ′) = (Γr
s,Γ1(Npr)) and (Γ1(Npr),Γ1(Npr)).



§7. U(p)-isomorphism.

The above coset identity implies the following commutative di-

agram from the above identity, first over C, then over Q:

Jr/K
π∗
−→ Jr

s/K

↓ u ↙ u′ ↓ u′′

Jr/K
π∗
−→ Jr

s/K,

(1)

where the middle u′ is given by Us
r(p

s−r) and u and u′′ are U(ps−r).

Here π∗([P ]) =
∑

Q∈π−1(P)[Q]. Thus

π∗ : Jr/K → Jr
s/K is a U(p)-isomorphism (u)

(for the projection π : Xr
s → Xr).



§8. Jacobians

For a curve X/k over an algebraically closed field, each meromor-

phic function f : X → P1(k) gives divisor div(f) =
∑

P ordP(f)[P ]

for the order ordP (f) of poles and zeros of f at P .

Then J(X) = Div0(X)/P (X), where P (X) = {div(f)|f ∈ k(X)}

and Div0(X) = {D =
∑

P mP [P ]|deg(D) =
∑

P mP = 0}.

Cover X(C) =
⋃

i Ui by a simply connected open sets Ui, a divisor

D restricted to Ui is of the form D ∩Ui = div(fi) for a meromor-

phic function fi : Ui → P1(C). Then (fi/fj ∈ O
×
X(Ui ∩ Uj))i,j is a

Čech 1-cocycle; so, Div(X)/P (X) ∼= Ȟ1(X,O×X). From the exact

sequence of sheaf cohomology 0 → Z → OX
exp(2πi )
−−−−−−−→ O×X → 0

we have a long sequence

0→ H1(X, Z)→ H1(X,OX)→ H1(X,O×X)
deg
−−→ H2(X, Z) = Z.

Thus J(X)(C) = H1(X,OX)/H1(X, Z).



§9. Hodge sequence.

By the Hodge sequence

0→ H0(X,ΩX/C)→ H1
DR(X, C)→ H1(X,OX)→ 0,

we have H1(X,OX) ∼= H1(X, R) as real vector space; so,

J(X)(C) ∼= H1(X, R)/H1(X, Z)

as a topological group. This combined wirh the exact sequence

0→ H1(X, Z)→ H1(X, R)→ H1(X,T)
deg
−−→ H2(X, Z) = Z,

we have J(X)(C) ↪→ H1(X,T) for T = R/Z.



§10. Inflation-Restriction.

Since Γr
s . Γ1(Nps) = Γs

s, we may consider the finite cyclic quo-

tient group C :=
Γr

s
Γ1(Nps)

. By the inflation restriction sequence,

we have the following commutative diagram with exact rows:

H1(C,T)
↪→
−−→ H1(Y r

s ,T) −→ H1(Ys,T)γpr−1
=1 −→ H2(C,T)

‖

x







‖

x







‖

x







x







‖

H1(C,T)
↪→
−−→ H1(Γr

s,T) −→ H1(Γs
s,T)γpr−1

=1 −→ H2(C,T)
x







∪

x







x







∪

x







? −→ Jr
s(C) −→ Js(C)[γpr−1

− 1] −→ ?.



§11. Another U(p)-isomorphism.

Since C is a finite cyclic group of order ps−r (with generator g)

acting trivially on T, we have H1(C,T) = Hom(C,T) ∼= C and

H2(C,T) = T/(1 + g + · · ·+ gps−r−1)T = T/ps−r
T = 0.

By the same token, for Tp := Qp/Zp, we get H2(C, Tp) = 0. By

computing explicitly the double coset action of U(p), we confirm

that U(p) acts on H1(C,T) and H1(C, Tp) via multiplication by its

degree p, and hence U(p)s−r kill H1(C,T) and H1(C, Tp). Hence

Jr
s

π∗
−→ Js[γ

pr−1
− 1] is a U(p)-isomorphism over Q (u1)

for Js[γpr−1
− 1] = Ker(γpr−1

− 1) = Js(C)Γ
pr−1

. If we replace T

by Tp, we get an U(p)-isomorphism of p-divisible groups also

Jr
s [p
∞]

π∗
−→ Js[γ

pr−1
− 1][p∞] (U(p)-isomorphism over Q).



§12. Ind-Barsotti–Tate groups.

Let

Jr[p
∞] = {x ∈ Jr(C)|pnx = 0∃n > 0} ↪→ H1(Xr, Tp).

Define the ordinary projector e in End(Jr[p∞]) = End(Jr) ⊗Z Zp

by e = limn→∞U(p)n!, which is an idempotent (i.e., e2 = e).

More generally, for any Zp-module M on which U(p) and e acts,

we put Mord = e(M); so, Mord is a direct summand of M . If we

have an U(p)-isomorphism M → L, then Mord ∼= Lord.

Put Gr = Jr[p∞]ord which is a Barsotti–Tate group over Q (i.e.,

a p-divisible group with an action of Gal(Q/Q)). Put G = lim−→r
Gr

over which

Λ = Zp[[Γ]] = lim←−
m

Zp[Γ/Γpm
] ∼= Zp[[T ]]

(γ = 1 + p 7→ t = 1 + T) acts by endomorphsms.



§13. U(p)-isomorphisms Jr
s → Jr and Js[γpr−1

− 1]→ Jr
s .

From the two U(p)-isomorphisms Jr
s → Jr and Js[γpr−1

−1]→ Jr
s ,

we get the controllability

Gs[γ
pr−1
− 1] = Js[p

∞][γpr−1
− 1]ord = Jr[p

∞]ord = Gr.

For each character ε : Γ/Γpr−1
→ µp∞, by the inflation and re-

striction sequence, we have that

GQ[pn](Q)⊗Z Z[ε][γ − ε(γ)] ∼= Jr[p
n](Q)ord ⊗Z Z[ε][γ − ε(γ)]

∼= H1(X1
r , Tp(ε))

ord,

where Tp(ε) is a Γ1
r -module isomorphic to Tp⊗Z Z[ε] on which Γ1

r

acts by ε. Thus the group GQ(Q) ⊗ Z[ε][γ − ε(γ)] is a nontrivial

p-divisible group.



§14. Co-freeness over Λ

Taking the Pontryagin dual T := G(Q)∗, the residue module

T/mT for the maximal ideal m of Λ is the dual of J1[p]
ord.

By Nakayama’s lemma, we find a surjection π : Λ2j
� T for

2j = dimFp
J1[p]

ord. Then for a prime P = Pε := (γ − ε(γ)) ∩ Λ,

T/PT is the dual of GQ[P ] which is Zp-free of rank 2j.

Thus Ker(π) ⊂ PεΛ2j. Moving ε around, from
⋂

ε PεΛ2j = {0},

we find that T ∼= Λ2j; so, we get a Galois representation

Gal(Q/Q)→ AutΛ(T) ∼= GL2j(Λ).



§15. Hecke algebra

Let

h = Λ[T(l), U(p)|l primes different from p}.

Then h/(γpr−1
− 1)h ↪→ End(Gr) essentially by Gr = G[γpr−1

− 1].

Thus

h/(γpr−1
− 1)h ∼= hord

r and h⊗Λ,t7→ε(γ) Zp[ε]
∼= hord

ε ,

where hε = Zp[ε][U(p), T(l)]l ⊂ EndZp
(H1(Xr, Tp)) and hr =

Zp[T(l), U(p)]l ⊂ End(Jr)⊗Z Zp.

Thus for any algebra homomorphism P : h → Qp ∈ Spec(h)(Qp)

with P (γpr−1
−1) = 0, we have a Hecke eigenform fP ∈ S2(Γ1(Npr))

such that fP |T(l) = P (T(l))fP for all prime l with

fP =
∑

n≥1

P (T(n))qn.

Such point P is called arithmetic.



§16. Analytic families

Each irreducible component Spec(I) ⊂ Spec(h) gives rise to a

family of Hecke eigenform

FI = {fP |P ∈ Spec(I)(Qp)}

whose q-expansion coefficients are p-adic nalytic on Spf(I).

Each fP for arithmetic P has Galois representation

ρP : Gal(Q/Q)→ GL2(I/P )

unramified outside Np satisfying

Tr(ρP (Frobl)) = P (T(l)) = a(l, fP).

This is the Galois representation of fP constructed by Eichler–

Shimura if P is arithmetic.



§17. Big representations.

In most cases, TI := T ⊗h I ∼= I2 and by the Galois action on T ,

we get

ρI : Gal(Q/Q)→ GL2(I)

unramified outside Np. By definition,

P ◦ ρI
∼= ρP .

Then Tr(ρI(Frobl)) = T(l)|TI
for all primes l.

Thus we get a family of Galois representations

ΦI = {ρP |P ∈ Spec(I)}

for all point P ∈ Spec(I)


