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§1. Notation

To describe the cyclotomic ordinary big p-adic Hecke algebra, we
introduce some notation. Fix

A prime p (we assume p is odd for simplicity);
a positive integer N prime to p;

two field embeddings C « Q — Q,;
r=1+pZ, CZ;.

Consider $ = {z € C|Im(z) > 0} and

ri(Np") ={(24) € SLy(Z)[d—~1=c=0 mod N}.

Take the open curve Y. (C) :=Y7(Np")(C) =T 1(Np")\$H and the
compactified one X,(C) := X1 (Np")(C) = M (NpH\(HLUPL(Q)).



§2. Classification.

The curve Y, g = Yl(NpT)/@ classifies elliptic curves E with
an embedding ¢ : uyny — Elp"] = Ker(p" : E — E). Choosing
a primitive root of unity (npr € uny,r, We identify Z/Np"Z with

ppr(C) by m — g‘]"(}pr. This is plain for z € T{(Np")\$H is mapped
exp

to (C/2mi(Z + 7Zz) = (CX/qZ,,uNpr((C) C C*) (q = exp(2miz)).

The completed curve X, g 1= X1(Np") is the normalization of
P1(j) in the function field of Y, q.

Let R;, = Z(p)['upi] and K; = Q[,LLpi] (Z = 1,2,...,00). We fix an
isomorphism Z,(1) = lim_ ppr(Roo) ChoOsing a coherent sequence
of primitive roots of unity {,r € pyr(Ry) such that C£r+1 = (,r for
all », and therefore, R; has a specific primitive root of unity
denoted by g‘pi. We suppose CNpr = (nGpr- Write R for R; and K
for its quotient field.



3. Diamond operators

The group z € (Z/p"Z)* acts on X,/ by o(C) — o¢(¢?), as
Aut(unyr) = (Z/Np"Z)*.

Thus I = 1+4pZ, = % (v = 1+p) acts on X, (and its Jacobian
Jr/@) through its image in (Z/Np"7Z)*.

For s > r > 0, we define another modular curve YST/@ by the

quotient of Ys by (1 +p"Zy)/(1 4+ p*Zy) C (Z/Np°Z)™ and define

X;“/R to be the normalization of P(j)/R in the function field
T

K(YS/@).

X7,0(C) is given by TE\(H UPHQ)) for Iy = F1(Np") N To(p®)

(s >r>0).



84. Hecke operators

$H > z — z/p induces a projection =7’ : X,jj_|_1 — X,. Then
for a prime divisor [P] on X, and for the natural projection
T X/ > Xr, the map [P] — ZQew—l(P)[W/(Q)] give a Hecke
operator U(p) € End(J;).

For each congruence subgroup I C SL»(Z), we define the mod-
ular curve X(MN)(C) = N\(HuPL(Q)). In this setting, we always
assume I = IM{(Np") N Tg(I™) for a prime [, and then X(I) is
canonically defined over Q.

Write N for the [-primary part of N. Similarly for the two projec-
tions m, ) 1 X(Fo(IN;) N1 (Np")) — X, gives rise to the Hecke
operator T(1) € End(J,q). Writing T ((1) 9) r =1, a, lifting P
to z € H, T(l) sends a divisor [z] to > ,[a(z)] in Jp.



§5. U-isomorphisms.

For Z[U]-modules M and M’', we call a Z[U]-linear map f: M —
M'" a U-injection (resp. a U-surjection) if Ker(f) is killed by a
power of U (resp. Coker(f) is killed by a power of U).

If fisan U-injection and U-surjection, we call f isa U-isomorphism.

In other words, f is a U-injection (resp. a U-surjection, a U-
isomorphism) if after tensor with Z[U,U~1], it becomes an in-
jection (resp. a surjection, an isomorphism). In terms of U-
isomorphisms, we describe briefly the facts we study.



§6. Coset identity.

We have the following coset identity:

FNCE (6 poor ) T1(ND") = {(é i)

= M1 (NP )\F1(NDP") (g poor ) T1(NPD).

a mod pS_T}

Write UZ(p®~") : J3 — J, for the Hecke operator of M as—rM1(Np")
for am = <(1)p0 )

The Hecke operator of this coset is induced by the correspon-
dence of divisors

Div(X (M) 3 [z] — > [';Jr @

a

e Div(X ()

for (', 1) = (I's, T1(Np")) and (M1 (Np"), M1 (Np")).



§7. U(p)-isomorphism.

The above coset identity implies the following commutative di-
agram from the above identity, first over C, then over Q:

7'('*

Sk — gk
lu o [ d” (1)
JT/K 7T_> g/Ka
where the middle v/ is given by UZ(p*~") and v and u” are U(p*~T").
Here n*([P]) = > Qen—1(P) [Q]. Thus

£

UMM AY) e J;“/K is a U(p)-isomorphism (u)

(for the projection =« : XTI — X ).



8. Jacobians

For a curve X/E over an algebraically closed field, each meromor-

phic function f : X — P1(k) gives divisor div(f) = X p ord p(f)[P]
for the order ordp(f) of poles and zeros of f at P.

Then J(X) = DiVO(X)/P(X), where P(X) = {div(f)|f € E(X)}
and DiVO(X) = {D = ¥ pmp[P]|deg(D) = X pmp = 0}.

Cover X(C) = |; U; by a simply connected open sets U;, a divisor
D restricted to U; is of the form DNU; = div(f;) for a meromor-
phic function f; : U; — PY(C). Then (f;/f; € Ox(U;NU;));; is a
Cech 1-cocycle; so, Div(X)/P(X) £ H1(X,0%). From the exact
exp(2mi ) O;é 0

sequence of sheaf cohomology 0 — Z — Oy
we have a long sequence

0 — HY(X,Z) — HY(X,0x) — H (X,0%) L% H2(X,2) = Z.
Thus J(X)(C) = HI(X,0x)/HY (X, 7).



9. Hodge sequence.

By the Hodge sequence
0 — H(X,Qx/c) — Hpr(X,C) —» HY(X,0x) — 0,
we have HI(X,0y) & HI(X,R) as real vector space; so,
J(X)(C) = HI(X,R)/HY(X,7)
as a topological group. This combined wirh the exact sequence
0— HY(X,Z) —» HY(X.R) — HY(X,T) 2% H2(X.7) = Z,
we have J(X)(C) — HI(X,T) for T =R/Z.



§10. Inflation-Restriction.

Since N> (Np°) = I$, we may consider the finite cyclic quo-
tient group C = %. By the inflation restriction sequence,
we have the following commutative diagram with exact rows:

r—1
Hl(C,T) — H'(YI,T) — HY(Y;,T)" =! — H?(C,T)

1| 1| 1| [i

r—1
H(c,T) — HYW(L,T) — HYrs,T)Y =t — H?(C,T)

| J | T

7 —  JNC) — JLORT -1 — 7



§11. Another U(p)-isomorphism.

Since C is a finite cyclic group of order p*~" (with generator g)
acting trivially on T, we have H}(C,T) = Hom(C,T) £ C and

H2(C,T)=T/(14+g+---+g¢° HT=T/p>"T =0.

By the same token, for T, := Qp/Z,, we get H?(C,T,) = 0. By
computing explicitly the double coset action of U(p), we confirm
that U(p) acts on H1(C, T) and H(C,T,) via multiplication by its
degree p, and hence U(p)*~" kill H1(C,T) and H(C,T,). Hence

J T, Js[vpr_l — 1] is a U(p)-isomorphism over Q (ul)

r— r— r—1
for Js[+P . 1] = Ker(~P L 1) = Jo(C)” . If we replace T

by Tp, we get an U(p)-isomorphism of p-divisible groups also

J [p™] T, Js[ypr_1 — 1][p°°] (U(p)-isomorphism over Q).



312. Ind-Barsotti—Tate groups.

Let

Jr[p™®] = {z € J-(C)|p"z = 03n > 0} — H(X,,T,).

Define the ordinary projector e in End(J-[p*°]) = End(Jr) ®z Zyp
by e = limn—oo U(p)™, which is an idempotent (i.e., €2 = e).
More generally, for any Z,-module M on which U(p) and e acts,
we put M9 = e(M); so, M°"9 is a direct summand of M. If we
have an U(p)-isomorphism M — L, then M©rd = pord

Put G, = J-[p>°]°"¥ which is a Barsotti—Tate group over Q (i.e.,
a p-divisible group with an action of Gal(Q/Q)). Put G = lim_Gr
over which

A = Zp[[T1] = lim Zp[/T7"] 2 Z[[T]]

%
m

(y=14+p—t=1+41T) acts by endomorphsms.



1

§13. U(p)-isomorphisms J' — J,. and Js[y? ~ —1] — J.

1

From the two U(p)-isomorphisms JI — J, and Js[y? ~ —1] — J7,

we get the controllability

Gy — 1] = Jp®)? T — 1] = . [p™]° = g,

For each character ¢ : I‘/I‘pr_1 — ppoo, by the inflation and re-

striction sequence, we have that

GolP" (@) ®7 Zlelly — ()] £ Jr[p™(@)°" @y Zle] [y — ()]
= H (X}, Tp(e))°,

where Tp(¢) is a I't-module isomorphic to T, ®7 Z[e] on which I}
acts by . Thus the group Q@(@) ® Zlel[y — ()] is a nontrivial
p-divisible group.



314. Co-freeness over A

Taking the Pontryagin dual T := G(Q)*, the residue module
T /mT for the maximal ideal m of A is the dual of Jy[p]°d.

By Nakayama’s lemma, we find a surjection =« : A2J — T for
2j = dimg, J1[p]°"9. Then for a prime P = P- := (v — (7)) N A,
T/PT is the dual of Gg[P] which is Zy-free of rank 2j.

Thus Ker(r) C P-A%J. Moving ¢ around, from (. P-A% = {0},
we find that T = /\Qj; SO, we get a Galois representation

Gal(@/@) — Aut/\(T) = GLQJ'(/\).



315. Hecke algebra

Let

h = A[T(l),U(p)|l primes different from p}.
Then h/(?" " — 1)h < End(G,) essentially by G, = G[v*" " — 1].
Thus

r—1 ~ ~
h/(37 " = Dh = % and h@p 4.c(y) Zple] = h",

where he = Zp[e][U(p), T(D]; C Endy (H'(Xr,Tp)) and hy =
ZplT(D), U(p)]; C End(Jr) ®7 Zp.

Thus for any algebra homomorphism P : h — @p C Spec(h)(@p)
with P(ypr_l—l) = 0, we have a Hecke eigenform fp € So(IM1(Np"))
such that fp|T'(1) = P(T'(l))fp for all prime [ with
fp= > P(T(n))q".
n>1
Such point P is called arithmetic.



§16. Analytic families

Each irreducible component Spec(l) C Spec(h) gives rise to a
family of Hecke eigenform

Fi1={fp|P € Spec(I)(Qy)}

whose g-expansion coefficients are p-adic nalytic on Spf(l).

Each fp for arithmetic P has Galois representation

pp : Gal(Q/Q) — GL(I/P)

unramified outside Np satisfying

Tr(pp(Froby)) = P(T(1)) = a(l, fp).

This is the Galois representation of fp constructed by Eichler—
Shimura if P is arithmetic.



§17. Big representations.

In most cases, T1 ' =T ®, [ = 12 and by the Galois action on T,
we get

p1 - Gal(Q/Q) — GLx(I)

unramified outside Np. By definition,

Popp = pp.
Then Tr(pp(Froby)) = T(l)|TH for all primes I.

Thus we get a family of Galois representations

Py = {pp|P € Spec(l)}
for all point P € Spec(l)



