* Big Galois representations

Haruzo Hida Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A.

*A graduate student seminar talk at TIFR. The author is partially supported by the NSF grant: DMS 1464106.

$\S1.$ Notation

To describe the cyclotomic ordinary big p-adic Hecke algebra, we introduce some notation. Fix

- A prime p (we assume p is odd for simplicity);
- a positive integer N prime to p;
- two field embeddings $\mathbb{C} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$;
- $\Gamma = 1 + p\mathbb{Z}_p \subset \mathbb{Z}_p^{\times}.$

Consider $\mathfrak{H} = \{z \in \mathbb{C} | \operatorname{Im}(z) > 0\}$ and

$$\Gamma_1(Np^r) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \middle| d - 1 \equiv c \equiv 0 \mod N \right\}.$$

Take the open curve $Y_r(\mathbb{C}) := Y_1(Np^r)(\mathbb{C}) = \Gamma_1(Np^r) \setminus \mathfrak{H}$ and the compactified one $X_r(\mathbb{C}) := X_1(Np^r)(\mathbb{C}) = \Gamma_1(Np^r) \setminus (\mathfrak{H} \sqcup \mathbf{P}^1(\mathbb{Q})).$

\S **2.** Classification.

The curve $Y_{r/\mathbb{Q}} := Y_1(Np^r)_{/\mathbb{Q}}$ classifies elliptic curves E with an embedding $\phi : \mu_{Np^r} \hookrightarrow E[p^r] = \operatorname{Ker}(p^r : E \to E)$. Choosing a primitive root of unity $\zeta_{Np^r} \in \mu_{Np^r}$, we identify $\mathbb{Z}/Np^r\mathbb{Z}$ with $\mu_{p^r}(\mathbb{C})$ by $m \mapsto \zeta_{Np^r}^m$. This is plain for $z \in \Gamma_1(Np^r) \setminus \mathfrak{H}$ is mapped to $(\mathbb{C}/2\pi i(\mathbb{Z} + \mathbb{Z}z) \stackrel{\text{exp}}{=} \mathbb{C}^{\times}/q^{\mathbb{Z}}, \mu_{Np^r}(\mathbb{C}) \subset \mathbb{C}^{\times})$ $(q = \exp(2\pi iz)).$

The completed curve $X_{r/\mathbb{Q}} := X_1(Np^r)$ is the normalization of $\mathbf{P}^1(j)$ in the function field of $Y_{r/\mathbb{Q}}$.

Let $R_i = \mathbb{Z}_{(p)}[\mu_{p^i}]$ and $K_i = \mathbb{Q}[\mu_{p^i}]$ $(i = 1, 2, ..., \infty)$. We fix an isomorphism $\mathbb{Z}_p(1) = \varprojlim_r \mu_{p^r}(R_\infty)$ choosing a coherent sequence of primitive roots of unity $\zeta_{p^r} \in \mu_{p^r}(R_r)$ such that $\zeta_{p^{r+1}}^p = \zeta_{p^r}$ for all r, and therefore, R_i has a specific primitive root of unity denoted by ζ_{p^i} . We suppose $\zeta_{Np^r} = \zeta_N \zeta_{p^r}$. Write R for R_i and K for its quotient field.

\S **3.** Diamond operators

The group $z \in (\mathbb{Z}/p^r\mathbb{Z})^{\times}$ acts on $X_{r/\mathbb{Q}}$ by $\phi(\zeta) \mapsto \phi(\zeta^z)$, as $\operatorname{Aut}(\mu_{Np^r}) \cong (\mathbb{Z}/Np^r\mathbb{Z})^{\times}$.

Thus $\Gamma = 1 + p\mathbb{Z}_p = \gamma^{\mathbb{Z}_p}$ ($\gamma = 1 + p$) acts on X_r (and its Jacobian $J_{r/\mathbb{Q}}$) through its image in $(\mathbb{Z}/Np^r\mathbb{Z})^{\times}$.

For $s > r \ge 0$, we define another modular curve $Y_{s/\mathbb{Q}}^r$ by the quotient of Y_s by $(1 + p^r \mathbb{Z}_p)/(1 + p^s \mathbb{Z}_p) \subset (\mathbb{Z}/Np^s \mathbb{Z})^{\times}$ and define $X_{s/R}^r$ to be the normalization of $\mathbf{P}(j)_{/R}$ in the function field $K(Y_{s/\mathbb{Q}}^r)$.

 $X_{s/\mathbb{Q}}^{r}(\mathbb{C})$ is given by $\Gamma_{s}^{r}\setminus(\mathfrak{H}\sqcup\mathbf{P}^{1}(\mathbb{Q}))$ for $\Gamma_{s}^{r}=\Gamma_{1}(Np^{r})\cap\Gamma_{0}(p^{s})$ $(s>r\geq 0).$

\S 4. Hecke operators

 $\mathfrak{H} \ni z \mapsto z/p$ induces a projection $\pi' : X_{r+1}^r \to X_r$. Then for a prime divisor [P] on X_r and for the natural projection $\pi : X_{r+1}^r \twoheadrightarrow X_r$, the map $[P] \mapsto \sum_{Q \in \pi^{-1}(P)} [\pi'(Q)]$ give a Hecke operator $U(p) \in \operatorname{End}(J_r)$.

For each congruence subgroup $\Gamma \subset SL_2(\mathbb{Z})$, we define the modular curve $X(\Gamma)(\mathbb{C}) = \Gamma \setminus (\mathfrak{H} \sqcup P^1(\mathbb{Q}))$. In this setting, we always assume $\Gamma = \Gamma_1(Np^r) \cap \Gamma_0(l^m)$ for a prime l, and then $X(\Gamma)$ is canonically defined over \mathbb{Q} .

Write N_l for the *l*-primary part of N. Similarly for the two projections $\pi_l, \pi'_l : X(\Gamma_0(lN_l) \cap \Gamma_1(Np^r)) \xrightarrow{\longrightarrow} X_r$ gives rise to the Hecke operator $T(l) \in \operatorname{End}(J_{r/\mathbb{Q}})$. Writing $\Gamma\begin{pmatrix}1 & 0\\ 0 & l\end{pmatrix}\Gamma = \bigsqcup_{\alpha}\Gamma_{\alpha}$, lifting P to $z \in \mathfrak{H}, T(l)$ sends a divisor [z] to $\sum_{\alpha} [\alpha(z)]$ in J_r .

$\S5.$ *U*-isomorphisms.

For $\mathbb{Z}[U]$ -modules M and M', we call a $\mathbb{Z}[U]$ -linear map $f: M \to M'$ a U-injection (resp. a U-surjection) if Ker(f) is killed by a power of U (resp. Coker(f) is killed by a power of U).

If f is an U-injection and U-surjection, we call f is a U-isomorphism.

In other words, f is a U-injection (resp. a U-surjection, a U-isomorphism) if after tensor with $\mathbb{Z}[U, U^{-1}]$, it becomes an injection (resp. a surjection, an isomorphism). In terms of U-isomorphisms, we describe briefly the facts we study.

$\S6.$ Coset identity.

We have the following coset identity:

$$\Gamma_s^r \backslash \Gamma_s^r \begin{pmatrix} 1 & 0 \\ 0 & p^{s-r} \end{pmatrix} \Gamma_1(Np^r) = \left\{ \begin{pmatrix} 1 & a \\ 0 & p^{s-r} \end{pmatrix} \middle| a \mod p^{s-r} \right\}$$
$$= \Gamma_1(Np^r) \backslash \Gamma_1(Np^r) \begin{pmatrix} 1 & 0 \\ 0 & p^{s-r} \end{pmatrix} \Gamma_1(Np^r).$$

Write $U_r^s(p^{s-r}): J_r^s \to J_r$ for the Hecke operator of $\Gamma_r^s \alpha_{s-r} \Gamma_1(Np^r)$ for $\alpha_m = \begin{pmatrix} 1 & 0 \\ 0 & p^m \end{pmatrix}$.

The Hecke operator of this coset is induced by the correspondence of divisors

$$\mathsf{Div}(X(\Gamma)) \ni [z] \mapsto \sum_{a} \left[\frac{z+a}{p^{s-r}} \right] \in \mathsf{Div}(X(\Gamma'))$$

for $(\Gamma, \Gamma') = (\Gamma_s^r, \Gamma_1(Np^r))$ and $(\Gamma_1(Np^r), \Gamma_1(Np^r))$.

§7. U(p)-isomorphism.

The above coset identity implies the following commutative diagram from the above identity, first over \mathbb{C} , then over \mathbb{Q} :

where the middle u' is given by $U_r^s(p^{s-r})$ and u and u'' are $U(p^{s-r})$. Here $\pi^*([P]) = \sum_{Q \in \pi^{-1}(P)} [Q]$. Thus

 $\pi^*: J_{r/K} \to J_{s/K}^r$ is a U(p)-isomorphism (u)

(for the projection $\pi: X_s^r \to X_r$).

§8. Jacobians

For a curve $X_{/\overline{k}}$ over an algebraically closed field, each meromorphic function $f: X \to \mathbf{P}^1(\overline{k})$ gives divisor $\operatorname{div}(f) = \sum_P \operatorname{ord}_P(f)[P]$ for the order $\operatorname{ord}_P(f)$ of poles and zeros of f at P.

Then $J(X) = \text{Div}^0(X)/P(X)$, where $P(X) = \{\text{div}(f)|f \in \overline{k}(X)\}$ and $\text{Div}^0(X) = \{D = \sum_P m_P[P] | \text{deg}(D) = \sum_P m_P = 0\}.$

Cover $X(\mathbb{C}) = \bigcup_i U_i$ by a simply connected open sets U_i , a divisor D restricted to U_i is of the form $D \cap U_i = \operatorname{div}(f_i)$ for a meromorphic function $f_i : U_i \to \mathbf{P}^1(\mathbb{C})$. Then $(f_i/f_j \in \mathcal{O}_X^{\times}(U_i \cap U_j))_{i,j}$ is a Čech 1-cocycle; so, $\operatorname{Div}(X)/P(X) \cong \check{H}^1(X, \mathcal{O}_X^{\times})$. From the exact sequence of sheaf cohomology $0 \to \mathbb{Z} \to \mathcal{O}_X \xrightarrow{\exp(2\pi i)} \mathcal{O}_X^{\times} \to 0$ we have a long sequence

$$0 \to H^1(X, \mathbb{Z}) \to H^1(X, \mathcal{O}_X) \to H^1(X, \mathcal{O}_X^{\times}) \xrightarrow{\text{deg}} H^2(X, \mathbb{Z}) = \mathbb{Z}.$$

Thus $J(X)(\mathbb{C}) = H^1(X, \mathcal{O}_X)/H^1(X, \mathbb{Z}).$

§9. Hodge sequence.

By the Hodge sequence

 $0 \to H^0(X, \Omega_{X/\mathbb{C}}) \to H^1_{DR}(X, \mathbb{C}) \to H^1(X, \mathcal{O}_X) \to 0,$ we have $H^1(X, \mathcal{O}_X) \cong H^1(X, \mathbb{R})$ as real vector space; so, $J(X)(\mathbb{C}) \cong H^1(X, \mathbb{R})/H^1(X, \mathbb{Z})$

as a topological group. This combined with the exact sequence $0 \to H^1(X,\mathbb{Z}) \to H^1(X,\mathbb{R}) \to H^1(X,\mathbf{T}) \xrightarrow{\deg} H^2(X,\mathbb{Z}) = \mathbb{Z},$ we have $J(X)(\mathbb{C}) \hookrightarrow H^1(X,\mathbf{T})$ for $\mathbf{T} = \mathbb{R}/\mathbb{Z}.$

§10. Inflation-Restriction.

Since $\Gamma_s^r \triangleright \Gamma_1(Np^s) = \Gamma_s^s$, we may consider the finite cyclic quotient group $C := \frac{\Gamma_s^r}{\Gamma_1(Np^s)}$. By the inflation restriction sequence, we have the following commutative diagram with exact rows:

§11. Another U(p)-isomorphism.

Since C is a finite cyclic group of order p^{s-r} (with generator g) acting trivially on T, we have $H^1(C, T) = \text{Hom}(C, T) \cong C$ and

$$H^{2}(C, \mathbf{T}) = \mathbf{T}/(1 + g + \dots + g^{p^{s-r}-1})\mathbf{T} = \mathbf{T}/p^{s-r}\mathbf{T} = 0.$$

By the same token, for $\mathbb{T}_p := \mathbb{Q}_p/\mathbb{Z}_p$, we get $H^2(C, \mathbb{T}_p) = 0$. By computing explicitly the double coset action of U(p), we confirm that U(p) acts on $H^1(C, \mathbf{T})$ and $H^1(C, \mathbb{T}_p)$ via multiplication by its degree p, and hence $U(p)^{s-r}$ kill $H^1(C, \mathbf{T})$ and $H^1(C, \mathbb{T}_p)$. Hence

$$J_s^r \xrightarrow{\pi^*} J_s[\gamma^{p^{r-1}} - 1]$$
 is a $U(p)$ -isomorphism over \mathbb{Q} (u1)

for $J_s[\gamma^{p^{r-1}} - 1] = \operatorname{Ker}(\gamma^{p^{r-1}} - 1) = J_s(\mathbb{C})^{\Gamma^{p^{r-1}}}$. If we replace T by \mathbb{T}_p , we get an U(p)-isomorphism of p-divisible groups also

$$J_s^r[p^{\infty}] \xrightarrow{\pi^*} J_s[\gamma^{p^{r-1}} - 1][p^{\infty}] (U(p)-\text{isomorphism over } \mathbb{Q}).$$

§12. Ind-Barsotti–Tate groups.

Let

$$J_r[p^{\infty}] = \{ x \in J_r(\mathbb{C}) | p^n x = 0 \exists n > 0 \} \hookrightarrow H^1(X_r, \mathbb{T}_p).$$

Define the ordinary projector e in $\operatorname{End}(J_r[p^{\infty}]) = \operatorname{End}(J_r) \otimes_{\mathbb{Z}} \mathbb{Z}_p$ by $e = \lim_{n \to \infty} U(p)^{n!}$, which is an idempotent (i.e., $e^2 = e$). More generally, for any \mathbb{Z}_p -module M on which U(p) and e acts, we put $M^{\operatorname{ord}} = e(M)$; so, M^{ord} is a direct summand of M. If we have an U(p)-isomorphism $M \to L$, then $M^{\operatorname{ord}} \cong L^{\operatorname{ord}}$.

Put $\mathcal{G}_r = J_r[p^{\infty}]^{\text{ord}}$ which is a Barsotti–Tate group over \mathbb{Q} (i.e., a *p*-divisible group with an action of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$). Put $\mathcal{G} = \varinjlim_r \mathcal{G}_r$ over which

$$\Lambda = \mathbb{Z}_p[[\Gamma]] = \varprojlim_m \mathbb{Z}_p[\Gamma/\Gamma^{p^m}] \cong \mathbb{Z}_p[[T]]$$

 $(\gamma = 1 + p \mapsto t = 1 + T)$ acts by endomorphsms.

§13. U(p)-isomorphisms $J_s^r \to J_r$ and $J_s[\gamma^{p^{r-1}} - 1] \to J_s^r$.

From the two U(p)-isomorphisms $J_s^r \to J_r$ and $J_s[\gamma^{p^{r-1}}-1] \to J_s^r$, we get the controllability

$$\mathcal{G}_{s}[\gamma^{p^{r-1}} - 1] = J_{s}[p^{\infty}][\gamma^{p^{r-1}} - 1]^{\text{ord}} = J_{r}[p^{\infty}]^{\text{ord}} = \mathcal{G}_{r}$$

For each character ε : $\Gamma/\Gamma^{p^{r-1}} \to \mu_p \infty$, by the inflation and restriction sequence, we have that

$$\mathcal{G}_{\mathbb{Q}}[p^{n}](\overline{\mathbb{Q}}) \otimes_{\mathbb{Z}} \mathbb{Z}[\varepsilon][\gamma - \varepsilon(\gamma)] \cong J_{r}[p^{n}](\overline{\mathbb{Q}})^{\mathsf{ord}} \otimes_{\mathbb{Z}} \mathbb{Z}[\varepsilon][\gamma - \varepsilon(\gamma)] \\ \cong H^{1}(X_{r}^{1}, \mathbb{T}_{p}(\varepsilon))^{\mathsf{ord}},$$

where $\mathbb{T}_p(\varepsilon)$ is a Γ_r^1 -module isomorphic to $\mathbb{T}_p \otimes_{\mathbb{Z}} \mathbb{Z}[\varepsilon]$ on which Γ_r^1 acts by ε . Thus the group $\mathcal{G}_{\mathbb{Q}}(\overline{\mathbb{Q}}) \otimes \mathbb{Z}[\varepsilon][\gamma - \varepsilon(\gamma)]$ is a nontrivial p-divisible group.

\S **14.** Co-freeness over \land

Taking the Pontryagin dual $T := \mathcal{G}(\overline{\mathbb{Q}})^*$, the residue module $T/\mathfrak{m}T$ for the maximal ideal \mathfrak{m} of Λ is the dual of $J_1[p]^{\text{ord}}$.

By Nakayama's lemma, we find a surjection $\pi : \Lambda^{2j} \to T$ for $2j = \dim_{\mathbb{F}_p} J_1[p]^{\text{ord}}$. Then for a prime $P = P_{\varepsilon} := (\gamma - \varepsilon(\gamma)) \cap \Lambda$, T/PT is the dual of $\mathcal{G}_{\mathbb{Q}}[P]$ which is \mathbb{Z}_p -free of rank 2j.

Thus $\operatorname{Ker}(\pi) \subset P_{\varepsilon} \Lambda^{2j}$. Moving ε around, from $\bigcap_{\varepsilon} P_{\varepsilon} \Lambda^{2j} = \{0\}$, we find that $T \cong \Lambda^{2j}$; so, we get a Galois representation

$$\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}_{\Lambda}(T) \cong GL_{2j}(\Lambda).$$

\S **15.** Hecke algebra

Let

 $\mathbf{h} = \Lambda[T(l), U(p)|l \text{ primes different from } p\}.$ Then $\mathbf{h}/(\gamma^{p^{r-1}} - 1)\mathbf{h} \hookrightarrow \operatorname{End}(\mathcal{G}_r)$ essentially by $\mathcal{G}_r = \mathcal{G}[\gamma^{p^{r-1}} - 1].$ Thus

$$\mathbf{h}/(\gamma^{p^{r-1}}-1)\mathbf{h}\cong h_r^{\mathsf{ord}} \text{ and } \mathbf{h}\otimes_{\Lambda,t\mapsto\varepsilon(\gamma)}\mathbb{Z}_p[\varepsilon]\cong h_{\varepsilon}^{\mathsf{ord}},$$

where $h_{\varepsilon} = \mathbb{Z}_p[\varepsilon][U(p), T(l)]_l \subset \operatorname{End}_{\mathbb{Z}_p}(H^1(X_r, \mathbb{T}_p))$ and $h_r = \mathbb{Z}_p[T(l), U(p)]_l \subset \operatorname{End}(J_r) \otimes_{\mathbb{Z}} \mathbb{Z}_p.$

Thus for any algebra homomorphism $P : \mathbf{h} \to \overline{\mathbb{Q}}_p \in \operatorname{Spec}(\mathbf{h})(\overline{\mathbb{Q}}_p)$ with $P(\gamma^{p^{r-1}}-1) = 0$, we have a Hecke eigenform $f_P \in S_2(\Gamma_1(Np^r))$ such that $f_P|T(l) = P(T(l))f_P$ for all prime l with

$$f_P = \sum_{n \ge 1} P(T(n))q^n.$$

Such point *P* is called **arithmetic**.

$\S16.$ Analytic families

Each irreducible component ${\sf Spec}(\mathbb{I}) \subset {\sf Spec}(h)$ gives rise to a family of Hecke eigenform

$$\mathcal{F}_{\mathbb{I}} = \{ f_P | P \in \mathsf{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p) \}$$

whose q-expansion coefficients are p-adic nalytic on Spf(I).

Each f_P for arithmetic P has Galois representation

$$\rho_P : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{I}/P)$$

unramified outside ${\it Np}$ satisfying

$$\mathsf{Tr}(\rho_P(Frob_l)) = P(T(l)) = a(l, f_P).$$

This is the Galois representation of f_P constructed by Eichler– Shimura if P is arithmetic.

\S **17.** Big representations.

In most cases, $T_{\mathbb{I}} := T \otimes_{\mathbf{h}} \mathbb{I} \cong \mathbb{I}^2$ and by the Galois action on T, we get

$$\rho_{\mathbb{I}}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{I})$$

unramified outside Np. By definition,

$$P \circ \rho_{\mathbb{I}} \cong \rho_P.$$

Then $\operatorname{Tr}(\rho_{\mathbb{I}}(Frob_l)) = T(l)|_{T_{\mathbb{I}}}$ for all primes l.

Thus we get a family of Galois representations

$$\Phi_{\mathbb{I}} = \{\rho_P | P \in \mathsf{Spec}(\mathbb{I})\}$$

for all point $P \in \text{Spec}(\mathbb{I})$