* Big Galois representations

Haruzo Hida
Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A.

*A graduate student seminar talk at TIFR. The author is partially supported by the NSF grant: DMS 1464106.

§1. Notation

To describe the cyclotomic ordinary big p-adic Hecke algebra, we introduce some notation. Fix

- A prime p (we assume p is odd for simplicity);
- a positive integer N prime to p;
- two field embeddings $\mathbb{C} \hookleftarrow \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}$;
- $\Gamma=1+p \mathbb{Z}_{p} \subset \mathbb{Z}_{p}^{\times}$.

Consider $\mathfrak{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ and

$$
\Gamma_{1}\left(N p^{r}\right)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, d-1 \equiv c \equiv 0 \quad \bmod N\right\}
$$

Take the open curve $Y_{r}(\mathbb{C}):=Y_{1}\left(N p^{r}\right)(\mathbb{C})=\Gamma_{1}\left(N p^{r}\right) \backslash \mathfrak{H}$ and the compactified one $X_{r}(\mathbb{C}):=X_{1}\left(N p^{r}\right)(\mathbb{C})=\Gamma_{1}\left(N p^{r}\right) \backslash\left(\mathfrak{H} \sqcup \mathbf{P}^{1}(\mathbb{Q})\right)$.

§2. Classification.

The curve $Y_{r / \mathbb{Q}}:=Y_{1}\left(N p^{r}\right)_{\mathbb{Q}}$ classifies elliptic curves E with an embedding $\phi: \mu_{N p^{r}} \hookrightarrow E\left[p^{r}\right]=\operatorname{Ker}\left(p^{r}: E \rightarrow E\right)$. Choosing a primitive root of unity $\zeta_{N p^{r}} \in \mu_{N p^{r}}$, we identify $\mathbb{Z} / N p^{r} \mathbb{Z}$ with $\mu_{p^{r}}(\mathbb{C})$ by $m \mapsto \zeta_{N p^{r}}^{m}$. This is plain for $z \in \Gamma_{1}\left(N p^{r}\right) \backslash \mathfrak{H}$ is mapped to $\left(\mathbb{C} / 2 \pi i(\mathbb{Z}+\mathbb{Z} z) \stackrel{\exp }{=} \mathbb{C}^{\times} / q^{\mathbb{Z}}, \mu_{N p^{r}}(\mathbb{C}) \subset \mathbb{C}^{\times}\right)(q=\exp (2 \pi i z))$.

The completed curve $X_{r / \mathbb{Q}}:=X_{1}\left(N p^{r}\right)$ is the normalization of $\mathbf{P}^{1}(j)$ in the function field of $Y_{r / \mathbb{Q}}$.

Let $R_{i}=\mathbb{Z}_{(p)}\left[\mu_{p^{i}}\right]$ and $K_{i}=\mathbb{Q}\left[\mu_{p^{i}}\right](i=1,2, \ldots, \infty)$. We fix an isomorphism $\mathbb{Z}_{p}(1)=\varliminf_{r} \mu_{p^{r}}\left(R_{\infty}\right)$ choosing a coherent sequence of primitive roots of unity $\zeta_{p^{r}} \in \mu_{p^{r}}\left(R_{r}\right)$ such that $\zeta_{p^{r+1}}^{p}=\zeta_{p^{r}}$ for all r, and therefore, R_{i} has a specific primitive root of unity denoted by $\zeta_{p^{i}}$. We suppose $\zeta_{N p^{r}}=\zeta_{N} \zeta_{p^{r}}$. Write R for R_{i} and K for its quotient field.

§3. Diamond operators

The group $z \in\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$acts on $X_{r / \mathbb{Q}}$ by $\phi(\zeta) \mapsto \phi\left(\zeta^{z}\right)$, as $\operatorname{Aut}\left(\mu_{N p^{r}}\right) \cong\left(\mathbb{Z} / N p^{r} \mathbb{Z}\right)^{\times}$.

Thus $\Gamma=1+p \mathbb{Z}_{p}=\gamma^{\mathbb{Z}_{p}}(\gamma=1+p)$ acts on X_{r} (and its Jacobian $\left.J_{r / \mathbb{Q}}\right)$ through its image in $\left(\mathbb{Z} / N p^{r} \mathbb{Z}\right)^{\times}$.

For $s>r \geq 0$, we define another modular curve $Y_{s / \mathbb{Q}}^{r}$ by the quotient of Y_{s} by $\left(1+p^{r} \mathbb{Z}_{p}\right) /\left(1+p^{s} \mathbb{Z}_{p}\right) \subset\left(\mathbb{Z} / N p^{s} \mathbb{Z}\right)^{\times}$and define $X_{s / R}^{r}$ to be the normalization of $\mathbf{P}(j)_{/ R}$ in the function field $K\left(Y_{s / \mathbb{Q}}^{r}\right)$.
$X_{s / \mathbb{Q}}^{r}(\mathbb{C})$ is given by $\Gamma_{s}^{r} \backslash\left(\mathfrak{H} \sqcup \mathbf{P}^{1}(\mathbb{Q})\right)$ for $\Gamma_{s}^{r}=\Gamma_{1}\left(N p^{r}\right) \cap \Gamma_{0}\left(p^{s}\right)$ ($s>r \geq 0$).

§4. Hecke operators

$\mathfrak{H} \ni z \mapsto z / p$ induces a projection $\pi^{\prime}: X_{r+1}^{r} \rightarrow X_{r}$. Then for a prime divisor $[P]$ on X_{r} and for the natural projection $\pi: X_{r+1}^{r} \rightarrow X_{r}$, the map $[P] \mapsto \sum_{Q \in \pi^{-1}(P)}\left[\pi^{\prime}(Q)\right]$ give a Hecke operator $U(p) \in \operatorname{End}\left(J_{r}\right)$.

For each congruence subgroup $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$, we define the modular curve $X(\Gamma)(\mathbb{C})=\Gamma \backslash\left(\mathfrak{H} \sqcup \mathrm{P}^{1}(\mathbb{Q})\right)$. In this setting, we always assume $\Gamma=\Gamma_{1}\left(N p^{r}\right) \cap \Gamma_{0}\left(l^{m}\right)$ for a prime l, and then $X(\Gamma)$ is canonically defined over \mathbb{Q}.

Write N_{l} for the l-primary part of N. Similarly for the two projections $\pi_{l}, \pi_{l}^{\prime}: X\left(\Gamma_{0}\left(l N_{l}\right) \cap \Gamma_{1}\left(N p^{r}\right)\right) \rightrightarrows X_{r}$ gives rise to the Hecke operator $T(l) \in \operatorname{End}\left(J_{r / \mathbb{Q}}\right)$. Writing $\Gamma\left(\begin{array}{cc}1 & 0 \\ 0 & l\end{array}\right) \Gamma=\bigsqcup_{\alpha}\ulcorner\alpha$, lifting P to $z \in \mathfrak{H}, T(l)$ sends a divisor $[z]$ to $\sum_{\alpha}[\alpha(z)]$ in J_{r}.

§5. U-isomorphisms.

For $\mathbb{Z}[U]$-modules M and M^{\prime}, we call a $\mathbb{Z}[U]$-linear map $f: M \rightarrow$ M^{\prime} a U-injection (resp. a U-surjection) if $\operatorname{Ker}(f)$ is killed by a power of U (resp. Coker (f) is killed by a power of U).

If f is an U-injection and U-surjection, we call f is a U-isomorphism.

In other words, f is a U-injection (resp. a U-surjection, a U isomorphism) if after tensor with $\mathbb{Z}\left[U, U^{-1}\right]$, it becomes an injection (resp. a surjection, an isomorphism). In terms of U isomorphisms, we describe briefly the facts we study.

\S 6. Coset identity.

We have the following coset identity:

$$
\begin{aligned}
\Gamma_{s}^{r} \backslash \Gamma_{s}^{r}\left(\begin{array}{cc}
1 & 0 \\
0 & p^{s-r}
\end{array}\right) \Gamma_{1}\left(N p^{r}\right)= & \left\{\left.\left(\begin{array}{cc}
1 & a \\
0 & p^{s-r}
\end{array}\right) \right\rvert\, a \quad \bmod p^{s-r}\right\} \\
& =\Gamma_{1}\left(N p^{r}\right) \backslash \Gamma_{1}\left(N p^{r}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & p^{s-r}
\end{array}\right) \Gamma_{1}\left(N p^{r}\right)
\end{aligned}
$$

Write $U_{r}^{s}\left(p^{s-r}\right): J_{r}^{s} \rightarrow J_{r}$ for the Hecke operator of $\Gamma_{r}^{s} \alpha_{s-r} \Gamma_{1}\left(N p^{r}\right)$ for $\alpha_{m}=\left(\begin{array}{cc}1 & 0 \\ 0 & p^{m}\end{array}\right)$.

The Hecke operator of this coset is induced by the correspondence of divisors

$$
\begin{array}{r}
\operatorname{Div}(X(\Gamma)) \ni[z] \mapsto \sum_{a}\left[\frac{z+a}{p^{s-r}}\right] \in \operatorname{Div}\left(X\left(\Gamma^{\prime}\right)\right) \\
\text { for }\left(\Gamma, \Gamma^{\prime}\right)=\left(\Gamma_{s}^{r}, \Gamma_{1}\left(N p^{r}\right)\right) \text { and }\left(\Gamma_{1}\left(N p^{r}\right), \Gamma_{1}\left(N p^{r}\right)\right)
\end{array}
$$

\S 7. $U(p)$-isomorphism.

The above coset identity implies the following commutative diagram from the above identity, first over \mathbb{C}, then over \mathbb{Q} :

$$
\begin{array}{rlc}
J_{r / K} & \xrightarrow{\pi^{*}} & J_{s / K}^{r} \\
\downarrow u & \swarrow u^{\prime} & \downarrow u^{\prime \prime} \tag{1}\\
J_{r / K} & \xrightarrow{\pi^{*}} & J_{s / K}^{r},
\end{array}
$$

where the middle u^{\prime} is given by $U_{r}^{s}\left(p^{s-r}\right)$ and u and $u^{\prime \prime}$ are $U\left(p^{s-r}\right)$. Here $\pi^{*}([P])=\sum_{Q \in \pi^{-1}(P)}[Q]$. Thus

$$
\begin{equation*}
\pi^{*}: J_{r / K} \rightarrow J_{s / K}^{r} \text { is a } U(p) \text {-isomorphism } \tag{u}
\end{equation*}
$$

(for the projection $\pi: X_{s}^{r} \rightarrow X_{r}$).

§8. Jacobians

For a curve $X_{/ \bar{k}}$ over an algebraically closed field, each meromorphic function $f: X \rightarrow \mathbf{P}^{1}(\bar{k})$ gives divisor $\operatorname{div}(f)=\sum_{P} \operatorname{ord}_{P}(f)[P]$ for the $\operatorname{order}^{\operatorname{ord}_{P}(f)}$ of poles and zeros of f at P.

Then $J(X)=\operatorname{Div}^{0}(X) / P(X)$, where $P(X)=\{\operatorname{div}(f) \mid f \in \bar{k}(X)\}$ and $\operatorname{Div}^{0}(X)=\left\{D=\sum_{P} m_{P}[P] \mid \operatorname{deg}(D)=\sum_{P} m_{P}=0\right\}$.

Cover $X(\mathbb{C})=\cup_{i} U_{i}$ by a simply connected open sets U_{i}, a divisor D restricted to U_{i} is of the form $D \cap U_{i}=\operatorname{div}\left(f_{i}\right)$ for a meromorphic function $f_{i}: U_{i} \rightarrow \mathbf{P}^{1}(\mathbb{C})$. Then $\left(f_{i} / f_{j} \in \mathcal{O}_{X}^{\times}\left(U_{i} \cap U_{j}\right)\right)_{i, j}$ is a Čech 1-cocycle; so, $\operatorname{Div}(X) / P(X) \cong \breve{H}^{1}\left(X, \mathcal{O}_{X}^{\times}\right)$. From the exact sequence of sheaf cohomology $0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O}_{X} \xrightarrow{\exp (2 \pi i)} \mathcal{O}_{X}^{\times} \rightarrow 0$ we have a long sequence

$$
0 \rightarrow H^{1}(X, \mathbb{Z}) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}^{\times}\right) \xrightarrow{\text { deg }} H^{2}(X, \mathbb{Z})=\mathbb{Z}
$$

Thus $J(X)(\mathbb{C})=H^{1}\left(X, \mathcal{O}_{X}\right) / H^{1}(X, \mathbb{Z})$.
§9. Hodge sequence.

By the Hodge sequence

$$
0 \rightarrow H^{0}\left(X, \Omega_{X / \mathbb{C}}\right) \rightarrow H_{D R}^{1}(X, \mathbb{C}) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow 0
$$

we have $H^{1}\left(X, \mathcal{O}_{X}\right) \cong H^{1}(X, \mathbb{R})$ as real vector space; so,

$$
J(X)(\mathbb{C}) \cong H^{1}(X, \mathbb{R}) / H^{1}(X, \mathbb{Z})
$$

as a topological group. This combined wirh the exact sequence

$$
0 \rightarrow H^{1}(X, \mathbb{Z}) \rightarrow H^{1}(X, \mathbb{R}) \rightarrow H^{1}(X, \mathbf{T}) \xrightarrow{\text { deg }} H^{2}(X, \mathbb{Z})=\mathbb{Z}
$$

we have $J(X)(\mathbb{C}) \hookrightarrow H^{1}(X, \mathbf{T})$ for $\mathbf{T}=\mathbb{R} / \mathbb{Z}$.
§10. Inflation-Restriction.

Since $\Gamma_{s}^{r} \triangleright \Gamma_{1}\left(N p^{s}\right)=\Gamma_{s}^{s}$, we may consider the finite cyclic quotient group $C:=\frac{\Gamma_{s}^{r}}{\Gamma_{1}\left(N p^{s}\right)}$. By the inflation restriction sequence, we have the following commutative diagram with exact rows:

$\S 11$. Another $U(p)$-isomorphism.

Since C is a finite cyclic group of order p^{s-r} (with generator g) acting trivially on \mathbf{T}, we have $H^{1}(C, \mathbf{T})=\operatorname{Hom}(C, \mathbf{T}) \cong C$ and

$$
H^{2}(C, \mathbf{T})=\mathbf{T} /\left(1+g+\cdots+g^{p^{s-r}-1}\right) \mathbf{T}=\mathbf{T} / p^{s-r} \mathbf{T}=0 .
$$

By the same token, for $\mathbb{T}_{p}:=\mathbb{Q}_{p} / \mathbb{Z}_{p}$, we get $H^{2}\left(C, \mathbb{T}_{p}\right)=0$. By computing explicitly the double coset action of $U(p)$, we confirm that $U(p)$ acts on $H^{1}(C, \mathbf{T})$ and $H^{1}\left(C, \mathbb{T}_{p}\right)$ via multiplication by its degree p, and hence $U(p)^{s-r}$ kill $H^{1}(C, \mathbf{T})$ and $H^{1}\left(C, \mathbb{T}_{p}\right)$. Hence

$$
\begin{equation*}
J_{s}^{r} \xrightarrow{\pi^{*}} J_{s}\left[\gamma^{p^{r-1}}-1\right] \text { is a } U(p) \text {-isomorphism over } \mathbb{Q} \tag{u1}
\end{equation*}
$$

for $J_{S}\left[\gamma^{p^{r-1}}-1\right]=\operatorname{Ker}\left(\gamma^{p^{r-1}}-1\right)=J_{S}(\mathbb{C})^{\Gamma^{r-1}}$. If we replace \mathbf{T} by \mathbb{T}_{p}, we get an $U(p)$-isomorphism of p-divisible groups also

$$
J_{s}^{r}\left[p^{\infty}\right] \xrightarrow{\pi^{*}} J_{s}\left[\gamma^{p^{r-1}}-1\right]\left[p^{\infty}\right](U(p) \text {-isomorphism over } \mathbb{Q}) \text {. }
$$

§12. Ind-Barsotti-Tate groups.

Let

$$
J_{r}\left[p^{\infty}\right]=\left\{x \in J_{r}(\mathbb{C}) \mid p^{n} x=0 \exists n>0\right\} \hookrightarrow H^{1}\left(X_{r}, \mathbb{T}_{p}\right) .
$$

Define the ordinary projector e in $\operatorname{End}\left(J_{r}\left[p^{\infty}\right]\right)=\operatorname{End}\left(J_{r}\right) \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$ by $e=\lim _{n \rightarrow \infty} U(p)^{n!}$, which is an idempotent (i.e., $e^{2}=e$). More generally, for any \mathbb{Z}_{p}-module M on which $U(p)$ and e acts, we put $M^{\text {ord }}=e(M)$; so, $M^{\text {ord }}$ is a direct summand of M. If we have an $U(p)$-isomorphism $M \rightarrow L$, then $M^{\text {ord }} \cong L^{\text {ord }}$.

Put $\mathcal{G}_{r}=J_{r}\left[p^{\infty}\right]^{\text {ord }}$ which is a Barsotti-Tate group over \mathbb{Q} (i.e., a p-divisible group with an action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$). Put $\mathcal{G}=\underline{\lim }_{r} \mathcal{G}_{r}$ over which
($\gamma=1+p \mapsto t=1+T$) acts by endomorphsms.
§13. $U(p)$-isomorphisms $J_{s}^{r} \rightarrow J_{r}$ and $J_{s}\left[\gamma^{p^{r-1}}-1\right] \rightarrow J_{s}^{r}$.
From the two $U(p)$-isomorphisms $J_{s}^{r} \rightarrow J_{r}$ and $J_{s}\left[\gamma^{p^{r-1}}-1\right] \rightarrow J_{s}^{r}$, we get the controllability

$$
\mathcal{G}_{s}\left[\gamma^{p^{r-1}}-1\right]=J_{s}\left[p^{\infty}\right]\left[\gamma^{p^{r-1}}-1\right]^{\text {ord }}=J_{r}\left[p^{\infty}\right]^{\text {ord }}=\mathcal{G}_{r} .
$$

For each character $\varepsilon: \Gamma / \Gamma^{r-1} \rightarrow \mu_{p^{\infty}}$, by the inflation and restriction sequence, we have that

$$
\begin{aligned}
\mathcal{G}_{\mathbb{Q}}\left[p^{n}\right](\overline{\mathbb{Q}}) \otimes_{\mathbb{Z}} \mathbb{Z}[\varepsilon][\gamma-\varepsilon(\gamma)] \cong J_{r}\left[p^{n}\right](\overline{\mathbb{Q}})^{\text {ord }} & \otimes_{\mathbb{Z}} \mathbb{Z}[\varepsilon][\gamma-\varepsilon(\gamma)] \\
& \cong H^{1}\left(X_{r}^{1}, \mathbb{T}_{p}(\varepsilon)\right)^{\text {ord }}
\end{aligned}
$$

where $\mathbb{T}_{p}(\varepsilon)$ is a Γ_{r}^{1}-module isomorphic to $\mathbb{T}_{p} \otimes_{\mathbb{Z}} \mathbb{Z}[\varepsilon]$ on which Γ_{r}^{1} acts by ε. Thus the group $\mathcal{G}_{\mathbb{Q}}(\overline{\mathbb{Q}}) \otimes \mathbb{Z}[\varepsilon][\gamma-\varepsilon(\gamma)]$ is a nontrivial p-divisible group.

§14. Co-freeness over \wedge

Taking the Pontryagin dual $T:=\mathcal{G}(\overline{\mathbb{Q}})^{*}$, the residue module $T / \mathfrak{m} T$ for the maximal ideal \mathfrak{m} of Λ is the dual of $J_{1}[p]^{\text {ord }}$.

By Nakayama's lemma, we find a surjection $\pi: \wedge^{2 j} \rightarrow T$ for $2 j=\operatorname{dim}_{\mathbb{F}_{p}} J_{1}[p]^{\text {ord }}$. Then for a prime $P=P_{\varepsilon}:=(\gamma-\varepsilon(\gamma)) \cap \wedge$, $T / P T$ is the dual of $\mathcal{G}_{\mathbb{Q}}[P]$ which is \mathbb{Z}_{p}-free of rank $2 j$.

Thus $\operatorname{Ker}(\pi) \subset P_{\varepsilon} \wedge^{2 j}$. Moving ε around, from $\cap_{\varepsilon} P_{\varepsilon} \wedge^{2 j}=\{0\}$, we find that $T \cong \wedge^{2 j}$; so, we get a Galois representation

$$
\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Aut}_{\wedge}(T) \cong G L_{2 j}(\wedge)
$$

§15. Hecke algebra

Let

$$
\mathbf{h}=\wedge[T(l), U(p) \mid l \text { primes different from } p\} .
$$

Then $\mathbf{h} /\left(\gamma^{p^{r-1}}-1\right) \mathbf{h} \hookrightarrow \operatorname{End}\left(\mathcal{G}_{r}\right)$ essentially by $\mathcal{G}_{r}=\mathcal{G}\left[\gamma^{p^{r-1}}-1\right]$. Thus

$$
\mathbf{h} /\left(\gamma^{p^{r-1}}-1\right) \mathbf{h} \cong h_{r}^{\text {ord }} \text { and } \mathbf{h} \otimes_{\Lambda, t \mapsto \varepsilon(\gamma)} \mathbb{Z}_{p}[\varepsilon] \cong h_{\varepsilon}^{\text {ord }},
$$

where $h_{\varepsilon}=\mathbb{Z}_{p}[\varepsilon][U(p), T(l)]_{l} \subset \operatorname{End}_{\mathbb{Z}_{p}}\left(H^{1}\left(X_{r}, \mathbb{T}_{p}\right)\right)$ and $h_{r}=$ $\mathbb{Z}_{p}[T(l), U(p)]_{l} \subset \operatorname{End}\left(J_{r}\right) \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$.

Thus for any algebra homomorphism $P: \mathbf{h} \rightarrow \overline{\mathbb{Q}}_{p} \in \operatorname{Spec}(\mathbf{h})\left(\overline{\mathbb{Q}}_{p}\right)$ with $P\left(\gamma^{p^{r-1}}-1\right)=0$, we have a Hecke eigenform $f_{P} \in S_{2}\left(\Gamma_{1}\left(N p^{r}\right)\right)$ such that $f_{P} \mid T(l)=P(T(l)) f_{P}$ for all prime l with

$$
f_{P}=\sum_{n \geq 1} P(T(n)) q^{n}
$$

Such point P is called arithmetic.

§16. Analytic families

Each irreducible component $\operatorname{Spec}(\mathbb{I}) \subset \operatorname{Spec}(h)$ gives rise to a family of Hecke eigenform

$$
\mathcal{F}_{\mathbb{I}}=\left\{f_{P} \mid P \in \operatorname{Spec}(\mathbb{I})\left(\overline{\mathbb{Q}}_{p}\right)\right\}
$$

whose q-expansion coefficients are p-adic nalytic on $\operatorname{Spf}(\mathbb{I})$.

Each f_{P} for arithmetic P has Galois representation

$$
\rho_{P}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G L_{2}(\mathbb{I} / P)
$$

unramified outside $N p$ satisfying

$$
\operatorname{Tr}\left(\rho_{P}\left(F r o b_{l}\right)\right)=P(T(l))=a\left(l, f_{P}\right)
$$

This is the Galois representation of f_{P} constructed by EichlerShimura if P is arithmetic.

§17. Big representations.

In most cases, $T_{\mathbb{I}}:=T \otimes_{\mathbf{h}} \mathbb{I} \cong \mathbb{I}^{2}$ and by the Galois action on T, we get

$$
\rho_{\mathbb{I}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G L_{2}(\mathbb{I})
$$

unramified outside $N p$. By definition,

$$
P \circ \rho_{\mathbb{I}} \cong \rho_{P} .
$$

Then $\operatorname{Tr}\left(\rho_{\mathbb{I}}\left(F r o b_{l}\right)\right)=\left.T(l)\right|_{T_{\mathbb{I}}}$ for all primes l.
Thus we get a family of Galois representations

$$
\Phi_{\mathbb{I}}=\left\{\rho_{P} \mid P \in \operatorname{Spec}(\mathbb{I})\right\}
$$

for all point $P \in \operatorname{Spec}(\mathbb{I})$

