* Adjoint L-value formula

and its relation to Tate conjecture

Haruzo Hida
Department of Mathematics, UCLA,
Los Angeles, CA 90095-1555, U.S.A.

*First talk at TIFR, Mumbai (India), November 22, 2022.

Abstract: For a Hecke eigenform f, we state an adjoint L-value formula relative to each quaternion algebra D over \mathbb{Q} with discriminant ∂ and reduced norm N. A key to prove the formula is the theta correspondence for the quadratic \mathbb{Q}-space (D, N). Under the $R=\mathbb{T}$-theorem, p-part of the BlochKato conjecture is known; so, the formula is an adjoint Selmer class number formula. We also describe how to relate the formula to a consequence of the Tate conjecture for quaternionic Shimura varieties.
$\S 0$. Setting of the simplest case. Assume that D is definite. Let $G_{D}(\mathbb{Q})=\left\{\left(h_{l}, h_{r}\right) \in D^{\times} \times D^{\times} \mid N\left(h_{l}\right)=N\left(h_{r}\right)\right\}$ which acts on D by $v \mapsto h_{l}^{-1} v h_{r}$; so, $\mathrm{SO}_{D}(\mathbb{Q})=G_{D}(\mathbb{Q}) / Z_{D}(\mathbb{Q})$ for the center $Z_{D} \subset G_{D}$. For a Bruhat function ϕ on $D_{\mathbb{A}}^{(\infty)}$ and $\mathbf{e}\left(N\left(v_{\infty}\right) \tau\right)$ ($\tau \in \mathfrak{H}$: the upper half complex plane), the theta series

$$
\theta\left(\phi ; \tau ; h_{l}, h_{r}\right)=\sum_{\alpha \in D} \phi\left(h_{l}^{-1} \alpha h_{r}\right) \mathrm{e}\left(N\left(\alpha_{\infty}\right) \tau\right) \quad \text { on } \mathfrak{H} \times G_{D}(\mathbb{A})
$$

can be extended to an automorphic form on $Y_{\Gamma} \times S h \times S h$ for $S h:=D^{\times} \backslash D_{\mathbb{A}}^{\times} / D_{\infty}^{\times}$and $Y_{\Gamma}:=\Gamma \backslash \mathfrak{H}$ for a congruence subgroup Γ. For a weight 2 cusp form $f \in S_{2}(\Gamma)$ and automorphic forms $\mathcal{F}, \mathcal{G}: S h \rightarrow \mathbb{C}$, we define

$$
\begin{aligned}
\theta^{*}(\phi)(f)\left(h_{l}, h_{r}\right) & =\int_{Y_{\Gamma}} f(\tau) \theta(\phi)\left(\tau ; h_{l}, h_{r}\right) y^{-2} d x d y,\left(h_{l}, h_{r} \in D_{\mathbb{A}}^{\times}\right) \\
\theta_{*}(\phi)(\mathcal{F} \otimes \mathcal{G})(\tau) & =\int_{S h \times S h} \theta(\phi)\left(\tau ; h_{l}, h_{r}\right)\left(\mathcal{F}\left(h_{l}\right) \cdot \mathcal{G}\left(h_{r}\right)\right) d \mu_{l} d \mu_{r} .
\end{aligned}
$$

We choose the Haar measure $d \mu_{\text {? }}$ on $D_{\mathbb{A}}^{\times}$suitably. We call $\theta^{*}(\phi)(f): S h \times S h \rightarrow \mathbb{C}$ a theta lift and $\theta_{*}(\phi)(\mathcal{F} \otimes \mathcal{G}) \in M_{2}(\Gamma)$ a theta descent.
§1. Two good choices of ϕ. Let R be an Eichler order of level N for N with $(N, \partial)=1$.

First choice: At N, we identify $R / N R=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in M_{2}(\mathbb{Z} / N \mathbb{Z})\right\}$. Let ϕ_{R} be the characteristic function of

$$
\left\{x \in \widehat{R} \left\lvert\, x \bmod N R=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\right., d \in(\mathbb{Z} / N \mathbb{Z})^{\times}\right\} .
$$

Then the first choice is

$$
\phi(v)=\phi_{R}\left(v^{(\infty)}\right) \mathbf{e}\left(N\left(v_{\infty}\right) \tau\right)
$$

as a Schwartz-Bruhat function on $D_{\mathbb{A}}$. In this case, $\Gamma=\Gamma_{0}(\partial N)$.
Second choice: Let ϕ_{L} be the characteristic function of \widehat{L}. Choose $0<c \in \mathbb{Z}$ and $L:=\widehat{\mathbb{Z}} \oplus \widehat{R}_{0}$ for $R_{0}=\{v \in R \mid \operatorname{Tr}(v)=0\}$, and put $\phi_{R_{0}}^{\prime}=\left(1-c^{3}\right)^{-1}\left(\phi_{R_{0}}-\phi_{c R_{0}}\right)$. Then we define, writing $v=z \oplus w$ with $z \in Z_{\mathbb{A}}$ and $w \in D_{0, \mathbb{A}}$

$$
\phi^{\prime}(v)=\phi_{\mathbb{Z}}\left(z^{(\infty)}\right) \phi_{R_{0}}^{\prime}\left(w^{(\infty)}\right) \mathrm{e}\left(N\left(v_{\infty}\right) \tau\right)
$$

We have $\Gamma=\Gamma_{0}\left(4 c^{2} \partial N\right)$.
§2. Two theorems. Let $S h_{R}=S h / \widehat{R}^{\times}$and $\delta\left(S h_{R}\right)$ is the diagonal image of $S h_{R}$ in $S h_{R} \times S h_{R}$.

Theorem A: Assume that $\int_{S h_{R}} \mathcal{F} d \mu=\int_{S h_{R}} \mathcal{G} d \mu=0$ (a cuspidal condition). If $L=R_{0}(N)$, then $\theta_{*}(\phi)(\mathcal{F} \otimes \mathcal{G})=\sum_{n=1}^{\infty}(\mathcal{F}, \mathcal{G} \mid T(n)) q^{n}$ for $q=\exp (2 \pi i \tau)$ with $(\mathcal{F}, \mathcal{G})=\int_{\delta\left(S h_{R}\right)} \mathcal{F}(h) \mathcal{G}(h) d \mu_{h}$. So the maps $\theta_{*}(\phi)$ and $\theta^{*}(\phi)$ are Hecke equivariant.

Theorem B: If f is a Hecke eigen new form of $S_{2}\left(\Gamma_{0}(\partial N)\right)$, then for the canonical period $\Omega_{ \pm}$of f,

$$
\prod_{p \mid \partial}\left(1-p^{-2}\right)^{-1} \mathfrak{m}_{1} \frac{L\left(1, A d\left(\rho_{f}\right)\right)}{2 \pi^{3} \Omega_{+} \Omega_{-}}=\int_{\delta\left(S h_{R}\right)} \frac{\theta^{*}\left(\phi^{\prime}\right)(f)(h)}{\Omega_{+} \Omega_{-}} d \mu,
$$

where \mathfrak{m}_{1} is the mass factor of $L \cap D_{0}: \mathfrak{m}_{1} \frac{\zeta(2)}{\pi^{2}}=\int_{S h_{R}} d \mu \in \mathbb{Q}$ (Siegel's mass formula) and if $\partial=p$ with $N=1, \mathfrak{m}_{1}=(p-1) / 2$.

Theorem B is independent of c. Under $R=\mathbb{T}$ theorem at a prime p, p-primary Bloch-Kato conjecture known for $\operatorname{Ad}\left(\rho_{f}\right)$; so, Theorem B is an adjoint Selmer class number formula.

§3. Analogy to Class number formula and Mass formula.

The Shimura set $S h_{R}$ is isomorphic canonically to the set $C l_{D}$ of right ideal classes of R. For each representative $\mathfrak{a} \in C l_{D}$, write $R_{\mathfrak{a}}:=\{\alpha \in D \mid \alpha \mathfrak{a} \subset \mathfrak{a}\}$ for the left order of \mathfrak{a}. Let $w\left(R_{\mathfrak{a}}\right):=\left|R_{\mathfrak{a}}^{\times}\right|$. Similarly, for an imaginary quadratic field $K:=\mathbb{Q}[\sqrt{-d}]$ with discriminant $-d<0$. Write $C l_{K}$ for its class group, and put $w=\left|O_{K}^{\times}\right|$for the integer ring O_{K} of K. We have the following three analogous formulas:

$$
\begin{aligned}
\prod_{p \mid \partial}\left(1-p^{-2}\right)^{-1} \mathfrak{m}_{1} \frac{L\left(1, A d\left(\rho_{f}\right)\right)}{2 \pi^{3}} & =\sum_{\mathfrak{a} \in C l_{D}} \frac{\theta^{*}\left(\phi^{\prime}\right)(f)(h)}{w\left(R_{\mathfrak{a}}\right)} \text { (Theorem B), } \\
\mathfrak{m}_{1} \frac{\zeta(2)}{\pi^{2}} & =\sum_{\mathfrak{a} \in C l_{D}} \frac{1}{w\left(R_{\mathfrak{a}}\right)} \text { (Siegel), } \\
\frac{\sqrt{d} L\left(1,\left(\frac{-d}{)}\right)\right.}{2 \pi} & =\sum_{\mathfrak{a} \in C l_{K}} \frac{1}{w} \text { (Dirichlet) }
\end{aligned}
$$

$\S 4$. Higher weight k and indefinite case. For a higher weight k or an indefinite case, we need to replace the Schwartz function e($N(v) \tau)$ by a standard Schwartz function of Siegel-Shimura by multiplying a vector valued spherical function for (D, N) and then in the indefinite case, we modify $\theta(\varphi)$ (for $\varphi=\phi, \phi^{\prime}$) and \mathcal{F} and \mathcal{G} into vector valued differential forms by the Eichler-Shimura map. Then \mathcal{F} and \mathcal{G} are closed harmonic 1 -forms with values in a locally constant sheaf $\mathcal{L}_{n / A}$ whose fiber is the symmetric n-th tensor representation over an appropriate ring A for $n=k-2$. We replace $(\mathcal{F}, \mathcal{G})$ by the cup product $(\mathcal{F}, \mathcal{G})_{n}:=\int_{\delta\left(S h_{R}\right)} \mathcal{F} \cup \mathcal{G}$ of $H^{*}\left(S h_{R}, \mathcal{L}_{n / \mathbb{C}}\right) \times H^{*}\left(S h_{R}, \mathcal{L}_{n, \mathbb{C}}\right) \rightarrow H^{2 *}\left(S h_{R}, \mathbb{C}\right)=\mathbb{C}$ in Theorem A ($*=0,1$ definite or indefinite).

In Theorem B, we pull back the class $\theta\left(\phi^{\prime}\right)^{*}(f)$ on $S h_{R} \times S h_{R}$ to $\delta\left(S h_{R}\right)$ and integrate over $\delta\left(S h_{R}\right)$. Then Theorem B is valid in general.
§5. Canonical periods. If D is indefinite, $S h_{R}$ is a Shimura curve defined over $\mathbb{Z}\left[\frac{1}{\partial}\right]$. Let A be a DVR at a prime \mathfrak{p} such that $\mathbb{Z}\left[\frac{1}{\partial}, \lambda\right]=\mathbb{Z}\left[\frac{1}{\partial}, \lambda(T(n)) \mid n \in \mathbb{Z}\right] \subset A \subset \mathbb{Q}[\lambda]:=\operatorname{Frac}\left(\mathbb{Z}\left[\frac{1}{\partial}, \lambda\right]\right)$ of f (i.e., $f \mid T(n)=\lambda(T(n)) f$). Define $\mathcal{F}_{ \pm}$by

$$
H_{\lambda}:=H^{1}\left(S h_{R}, \mathcal{L}_{n / A}\right)[\lambda, \pm]=A\left[\mathcal{F}_{ \pm}\right],
$$

where \pm means the \pm-eigenspace of complex conjugation. Put $H=H_{ \pm}:=H^{1}\left(S h_{R}, \mathcal{L}_{n / A}\right)[\pm]$. Define \mathcal{F} by $H^{0}\left(S h_{R / A}, \omega^{k}\right)=A \mathcal{F}$ for the weight k Hodge bundle ω^{k}. Then we project it to a unique element $\omega^{ \pm}(\mathcal{F})$ of the \pm-eigenspace $H^{1}\left(S h_{R}, \mathcal{L}_{n / \mathbb{C}}\right)[\lambda, \pm]$ of complex conjugation and define $\Omega_{ \pm}^{D} \in \mathbb{C}^{\times}$by $\omega^{ \pm}(\mathcal{F})=\Omega_{ \pm}^{D}\left[\mathcal{F}_{ \pm}\right]$. The period $\Omega_{ \pm}$in Theorem B is $\Omega_{ \pm}^{M_{2}(\mathbb{Q})}$. We just put $\Omega_{ \pm}^{D}=1$ if D is definite.

Tate conjecture predicts $\Omega_{ \pm}^{D} / \Omega_{ \pm} \in \mathbb{Q}[\lambda]^{\times}$if D is indefinite.
The conjecture is known for $k=2$ by Faltings and by Prasanna for $k \geq 2$ but our formulation is more explicit.
§6. Relation to Tate conjecture. Assume that D is indefinite. Let E be one of $H^{1}\left(S h_{R}, \mathcal{L}_{n / \mathbb{Q}[\lambda]}\right)[\pm]$. Decompose $E \otimes_{A} \mathbb{Q}=E_{\lambda} \oplus E_{\lambda}^{\perp}$ into λ-eigenspace E_{λ} and its Hecke stable complement, and write \widetilde{H}_{λ} for the projection of H to E_{λ}. Define $c_{D}:=\left(\mathcal{F}_{+}, \mathcal{F}_{-}\right)_{n}$ which is called cohomological D-congruence number, and $H_{\lambda} / H_{\lambda} \cong A / c_{D} A$. Under the $R=\mathbb{T}$-theorem,
(*) $\quad\left(\mathcal{F}_{+}, \mathcal{F}_{-}\right)_{n}=c_{D} \stackrel{R \equiv \mathbb{T}}{=} c_{M_{2}(\mathbb{Q})}=\frac{L\left(1, \operatorname{Ad}\left(\rho_{f}\right)\right)}{2 \pi^{3} \Omega_{+} \Omega_{-}} \quad$ (up to A-units).
By Theorem A, for $u_{ \pm}^{D} \in \mathbb{C}^{\times}, \theta_{D}^{*}(\phi)(f)=u_{+}^{D} \mathcal{F}_{+} \otimes u_{-}^{D} \mathcal{F}_{-}$. Thus

$$
\begin{aligned}
L\left(1, A d\left(\rho_{f}\right)\right) \stackrel{\text { Theorem B }}{=} & \int_{\delta\left(S h_{R}\right)} \theta_{D}^{*}\left(\phi^{\prime}\right)(f) \\
& =u_{+}^{D} u_{-}^{D}\left(\mathcal{F}_{+}, \mathcal{F}_{-}\right)_{n} \stackrel{(*)}{=} u_{+}^{D} u_{-}^{D} \frac{L\left(1, A d\left(\rho_{f}\right)\right)}{\Omega_{+} \Omega_{-}} .
\end{aligned}
$$

Thus $u_{+}^{D} u_{-}^{D} / \Omega_{+} \Omega_{-} \in A^{\times}$. Thus if $u_{+}^{D} u_{-}^{D}=\Omega_{+}^{D} \Omega_{-}^{D}$ (i.e. $u_{ \pm}^{D} \mathcal{F}_{ \pm}=$ $\left.\omega^{ \pm}(\mathcal{F}) \Leftrightarrow \theta_{D}^{*}\left(\phi^{\prime}\right)=\omega^{+}(\mathcal{F}) \otimes \omega^{-}(\mathcal{F})\right)$, the A-integral Tate conjecture in this case holds (which Prasanna studied in a different way).
§7. Proof of Theorem A. Let $h_{k}(\partial N ; A)$ be the subalgebra of End $_{\mathbb{C}}\left(S_{k}\left(\Gamma_{0}(\partial N)\right)\right)$ generated over A by Hecke operators $T(n)$ and $S_{k}\left(\Gamma_{0}(\partial N) ; A\right)=S_{k}\left(\Gamma_{0}(\partial N)\right) \cap A[[q]]$. Recall

Duality theorem The space $S:=S_{k}\left(\Gamma_{0}(\partial N) ; A\right)$ is A-dual of $H:=h_{k}(\partial N ; A)$ such that for a linear form $\phi: h_{k}(\partial N ; A) \rightarrow A$, $\sum_{n=1}^{\infty} \phi(T(n)) q^{n} \in S_{k}\left(\Gamma_{0}(\partial N) ; A\right)$. Writing $f=\sum_{n=1}^{\infty} a(n, f) q^{n} \in$
S, the pairing $\langle\cdot, \cdot\rangle: H \times S \rightarrow A$ is given by $\langle h, f\rangle=a(1, f \mid h)$.

By Jacquet-Langlands correspondence, $H^{*}\left(S h_{R}, \mathcal{L}_{n / A}\right)$ is a module over $h_{k}(\partial N ; A)$. Then applying the above theorem to the linear form $h_{k}(\partial N ; A) \ni h \mapsto(\mathcal{F}, \mathcal{G} \mid h)_{n}$, we get Theorem A .

For the proof of Theorem B, we resort to an idea of Waldspurger.
§8. An idea of Waldspurger. Computing the period of $\theta^{*}\left(\phi^{\prime}\right)(f)$ for a quadratic space $V=W \oplus W^{\perp}$ over an orthogonal Shimura subvariety $S_{W} \times S_{W^{\perp}} \subset S_{V}$ has two steps:
(S) Split $\theta\left(\phi^{\prime}\right)\left(\tau, h, h^{\perp}\right)=\theta(\varphi)(\tau, h) \cdot \theta\left(\tau, \varphi^{\perp}\right)\left(h^{\perp}\right)\left(h^{?} \in \mathrm{O}_{W^{?}}(\mathbb{A})\right)$ for a decomposition $\phi^{\prime}=\varphi \otimes \varphi^{\perp}$ (φ and φ^{\perp} Schwartz-Bruhat functions on $W_{\mathbb{A}}$ and $W_{\mathbb{A}}^{\perp}$);
(R) For the theta lift $\left(\theta^{*}\left(\phi^{\prime}\right)(f)\right)(h)=\int_{Y} f(\tau) \theta\left(\phi^{\prime}\right)(\tau, h) d \mu$ with a modular curve Y, the period P over the Shimura subvariety $S \times S^{\perp}\left(S\right.$ for $\mathrm{O}(W)$ and S^{\perp} for $\left.\mathrm{O}\left(W^{\perp}\right)\right)$ is given by:

$$
\begin{aligned}
& \int_{S \times S^{\perp}} \int_{Y} f(\tau) \theta\left(\phi^{\prime}\right)(\tau ; h) d \mu(\tau) d h \quad\left(d \mu(\tau)=y^{-2} d x d y\right) \\
&=\int_{Y} f(\tau)\left(\int_{S^{\perp}} \theta\left(\varphi^{\perp}\right)\left(\tau ; h^{\perp}\right) d h^{\perp}\right) \cdot\left(\int_{S} \theta(\varphi)\left(\tau ; h_{0}\right) d h\right) d \mu .
\end{aligned}
$$

Then invoke the Siegel-Weil formula to convert inner integrals into the Siegel-Weil Eisenstein series $E(\varphi)$ and $E\left(\varphi^{\perp}\right)$, reaching Rankin-Selberg integral

$$
P=\int_{Y} f(\tau) E\left(\varphi^{\perp}\right) E(\varphi) d \mu=L \text {-value }
$$

$\S 9$. D definite and $n=0$. For simplicity, we assume that D is definite and $n=0$. Then $D=Z \oplus D_{0}$ for the center Z and $D_{0}:=\{v \in D \mid \operatorname{Tr}(v)=0\}$. So $W=Z$ and $W^{\perp}=D_{0}$.

Identifying $Z=\mathbb{Q},\left.N\right|_{Z}(v)=v^{2}$ and for $\varphi:=\phi_{\mathbb{Z}}, E(\varphi)=\sum_{n=-\infty}^{\infty} q^{n^{2}}$ (Jacobi's theta series).

Write w for the Weil representation of the metaplectic group $\mathrm{Mp}(\mathbb{A})$ fits into the exact sequence $S^{1} \hookrightarrow \mathrm{Mp}(\mathbb{A}) \rightarrow \mathrm{SL}_{2}(\mathbb{A})$ on the space of Schwartz-Bruhat functions on $D_{0, \mathbb{A}}$. The rational subgroup $\mathrm{SL}_{2}(\mathbb{Q})$ can be lifted into the metaplectic cover $\mathrm{Mp}(\mathbb{A})$ canonically. Then for the upper triangular Borel subgroup B, Siegel-Weil Eisenstein series is defined by

$$
E\left(\varphi^{\perp}\right)(g)=\sum_{\gamma \in B(\mathbb{Q}) \backslash S L_{2}(\mathbb{Q})}\left(\mathrm{w}(\gamma g) \varphi^{\perp}\right)(0)(g \in \operatorname{Mp}(\mathbb{A})) .
$$

As Weil verified, $g \mapsto\left(\mathrm{w}(g) \varphi^{\perp}\right)(0)$ is $B(\mathbb{Q})$ left invariant. In the definite case, $E\left(\varphi^{\perp}\right)$ converges to a weight $\frac{3}{2}$ Eisenstein series.
§10. Siegel-Weil formula. Note that the even Clifford group $G_{D_{0}}$ of D_{0} is equal to D^{\times}which acts on D_{0} by $v \mapsto g^{-1} v g$. Thus $\mathrm{SO}_{D_{0}}=G_{D_{0}} / Z\left(G_{D_{0}}\right)$; so, $S^{\perp}=S h$ for our choice of $\phi_{R_{0}}^{\prime}$. Let $d \omega$ be the Tamagawa measure on $\mathrm{SO}_{D_{0}}(\mathbb{A})$.

SiegeI-Weil formula: $\int_{S h} \theta\left(\varphi^{\perp}\right)(\tau ; h) d \omega(h)=E\left(\varphi^{\perp}\right)$.
In the indefinite case, $E\left(\varphi^{\perp}\right)$ does not converge; so, we need an auxiliary complex variable s to analytically continue the Eisenstein series to $s \in \mathbb{C}$ and evaluate at $s=0$ to have $E\left(\varphi^{\perp}\right)$.

Let $d \mu$ be the Haar measure on $\mathrm{SO}_{D_{0}}(\mathbb{A})$ with volume 1 on \hat{R}^{\times} (which we used already). Basically by definition, $d \mu=(\mathfrak{m} / 2) d \omega$ for the mass $\mathfrak{m}:=\int_{S h_{R}} d \mu=\mathfrak{m}_{1} \frac{\zeta(2)}{\pi^{2}}$. This is the reason to have $\mathfrak{m}_{1} \in \mathbb{Q}^{\times}$in front of the formula in Theorem B. The value \mathfrak{m}_{1} is computed explicitly by Shimura in 1999 for general N after the early work of Siegel for the maximal order.
$\S 11$. Conclusion. For general $\varphi^{\perp}, E\left(\varphi^{\perp}\right)$ is the sum of the Eisenstein series $E_{\infty}\left(\varphi^{\perp}\right)$ induced from B (the infinity cusp) and $E_{0}\left(\varphi^{\perp}\right)$ induced from ${ }^{t} B$ (the zero cusp). For the Rankin convolution, $\int_{Y} f \theta(\varphi) E_{0}\left(\varphi^{\perp}\right) d \mu_{\tau}$ causes a trouble. Our choice of $\phi_{R_{0}}^{\prime}$ introducing $0<c \in \mathbb{Z}$ is made to have the vanishing $E_{0}\left(\phi_{R_{0}}^{\prime}\right)=0$ and the identity $E_{\infty}\left(\phi_{R_{0}}^{\prime}\right)=E_{\infty}\left(\phi_{R_{0}}\right)$. The Rankin convolution $\int_{Y} f \theta(\varphi) E_{\infty}\left(\phi_{R_{0}}\right) d \mu_{\tau}$ is computed in 1976 by Shimura and produces the adjoint L-value in Theorem B. All computation can be generalized to the Hilbert modular case over a totally real field F and a quaternion algebra $D_{/ F}$.

A refinement of Tate conjecture is conjectured by Shimura-Blasius-Yoshida and studied by Harris over $\overline{\mathbb{Q}}$. I hope to be able to factorize $\Omega_{+}^{D} \Omega_{-}^{D}$ into $\Pi_{\sigma} \Omega_{+}^{D_{\sigma}} \Omega_{-}^{D_{\sigma}}$ integrally over A for infinite places σ with $D \otimes_{\sigma, F} \mathbb{R} \cong M_{2}(\mathbb{R})$, where D_{σ} is a quaternion algebra with $D \otimes_{F, \sigma} \mathbb{R} \cong M_{2}(\mathbb{R})$ only at σ (Period factorization).

