* Adjoint L-value formula and its relation to Tate conjecture

Haruzo Hida Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A.

*First talk at TIFR, Mumbai (India), November 22, 2022.

Abstract: For a Hecke eigenform f, we state an adjoint L-value formula relative to each quaternion algebra D over \mathbb{Q} with discriminant ∂ and reduced norm N. A key to prove the formula is the theta correspondence for the quadratic \mathbb{Q} -space (D, N). Under the $R = \mathbb{T}$ -theorem, p-part of the Bloch-Kato conjecture is known; so, the formula is an adjoint Selmer class number formula. We also describe how to relate the formula to a consequence of the Tate conjecture for quaternionic Shimura varieties.

§0. Setting of the simplest case. Assume that D is definite. Let $G_D(\mathbb{Q}) = \{(h_l, h_r) \in D^{\times} \times D^{\times} | N(h_l) = N(h_r)\}$ which acts on D by $v \mapsto h_l^{-1}vh_r$; so, $SO_D(\mathbb{Q}) = G_D(\mathbb{Q})/Z_D(\mathbb{Q})$ for the center $Z_D \subset G_D$. For a Bruhat function ϕ on $D_{\mathbb{A}}^{(\infty)}$ and $e(N(v_{\infty})\tau)$ $(\tau \in \mathfrak{H}$: the upper half complex plane), the theta series

$$\theta(\phi;\tau;h_l,h_r) = \sum_{\alpha \in D} \phi(h_l^{-1}\alpha h_r) \mathbf{e}(N(\alpha_{\infty})\tau) \quad \text{on } \mathfrak{H} \times G_D(\mathbb{A})$$

can be extended to an automorphic form on $Y_{\Gamma} \times Sh \times Sh$ for $Sh := D^{\times} \setminus D^{\times}_{\mathbb{A}} / D^{\times}_{\infty}$ and $Y_{\Gamma} := \Gamma \setminus \mathfrak{H}$ for a congruence subgroup Γ . For a weight 2 cusp form $f \in S_2(\Gamma)$ and automorphic forms $\mathcal{F}, \mathcal{G} : Sh \to \mathbb{C}$, we define

$$\theta^{*}(\phi)(f)(h_{l},h_{r}) = \int_{Y_{\Gamma}} f(\tau)\theta(\phi)(\tau;h_{l},h_{r})y^{-2}dxdy, \ (h_{l},h_{r} \in D_{\mathbb{A}}^{\times})$$
$$\theta_{*}(\phi)(\mathcal{F} \otimes \mathcal{G})(\tau) = \int_{Sh \times Sh} \theta(\phi)(\tau;h_{l},h_{r})(\mathcal{F}(h_{l}) \cdot \mathcal{G}(h_{r}))d\mu_{l}d\mu_{r}.$$

We choose the Haar measure $d\mu_{?}$ on $D^{\times}_{\mathbb{A}}$ suitably. We call $\theta^{*}(\phi)(f) : Sh \times Sh \to \mathbb{C}$ a theta lift and $\theta_{*}(\phi)(\mathcal{F} \otimes \mathcal{G}) \in M_{2}(\Gamma)$ a theta descent.

§1. Two good choices of ϕ . Let *R* be an Eichler order of level *N* for *N* with $(N, \partial) = 1$.

First choice: At *N*, we identify $R/NR = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in M_2(\mathbb{Z}/N\mathbb{Z}) \right\}$. Let ϕ_R be the characteristic function of

$$\left\{x \in \widehat{R} | x \mod NR = \left(\begin{smallmatrix} a & b \\ 0 & d \end{smallmatrix}\right), \ d \in (\mathbb{Z}/N\mathbb{Z})^{\times}\right\}.$$

Then the first choice is

$$\phi(v) = \phi_R(v^{(\infty)}) \mathbf{e}(N(v_{\infty})\tau)$$

as a Schwartz-Bruhat function on $D_{\mathbb{A}}$. In this case, $\Gamma = \Gamma_0(\partial N)$.

Second choice: Let ϕ_L be the characteristic function of \widehat{L} . Choose $0 < c \in \mathbb{Z}$ and $L := \widehat{\mathbb{Z}} \oplus \widehat{R}_0$ for $R_0 = \{v \in R | \operatorname{Tr}(v) = 0\}$, and put $\phi'_{R_0} = (1 - c^3)^{-1}(\phi_{R_0} - \phi_{cR_0})$. Then we define, writing $v = z \oplus w$ with $z \in Z_{\mathbb{A}}$ and $w \in D_{0,\mathbb{A}}$

$$\phi'(v) = \phi_{\mathbb{Z}}(z^{(\infty)})\phi'_{R_0}(w^{(\infty)})\mathbf{e}(N(v_{\infty})\tau).$$

We have $\Gamma = \Gamma_0(4c^2\partial N)$.

§2. Two theorems. Let $Sh_R = Sh/\hat{R}^{\times}$ and $\delta(Sh_R)$ is the diagonal image of Sh_R in $Sh_R \times Sh_R$.

Theorem A: Assume that $\int_{Sh_R} \mathcal{F}d\mu = \int_{Sh_R} \mathcal{G}d\mu = 0$ (a cuspidal condition). If $L = R_0(N)$, then $\theta_*(\phi)(\mathcal{F} \otimes \mathcal{G}) = \sum_{n=1}^{\infty} (\mathcal{F}, \mathcal{G}|T(n))q^n$ for $q = \exp(2\pi i \tau)$ with $(\mathcal{F}, \mathcal{G}) = \int_{\delta(Sh_R)} \mathcal{F}(h)\mathcal{G}(h)d\mu_h$. So the maps $\theta_*(\phi)$ and $\theta^*(\phi)$ are Hecke equivariant.

Theorem B: If f is a Hecke eigen new form of $S_2(\Gamma_0(\partial N))$, then for the canonical period Ω_{\pm} of f,

$$\prod_{p|\partial} (1-p^{-2})^{-1} \mathfrak{m}_1 \frac{L(1, Ad(\rho_f))}{2\pi^3 \Omega_+ \Omega_-} = \int_{\delta(Sh_R)} \frac{\theta^*(\phi')(f)(h)}{\Omega_+ \Omega_-} d\mu,$$

where \mathfrak{m}_1 is the mass factor of $L \cap D_0$: $\mathfrak{m}_1 \frac{\zeta(2)}{\pi^2} = \int_{Sh_R} d\mu \in \mathbb{Q}$ (Siegel's mass formula) and if $\partial = p$ with N = 1, $\mathfrak{m}_1 = (p-1)/2$.

Theorem B is independent of c. Under $R = \mathbb{T}$ theorem at a prime p, p-primary Bloch-Kato conjecture known for $Ad(\rho_f)$; so, Theorem B is an adjoint Selmer class number formula.

$\S3$. Analogy to Class number formula and Mass formula.

The Shimura set Sh_R is isomorphic canonically to the set Cl_D of right ideal classes of R. For each representative $\mathfrak{a} \in Cl_D$, write $R_{\mathfrak{a}} := \{ \alpha \in D | \alpha \mathfrak{a} \subset \mathfrak{a} \}$ for the left order of \mathfrak{a} . Let $w(R_{\mathfrak{a}}) := |R_{\mathfrak{a}}^{\times}|$. Similarly, for an imaginary quadratic field $K := \mathbb{Q}[\sqrt{-d}]$ with discriminant -d < 0. Write Cl_K for its class group, and put $w = |O_K^{\times}|$ for the integer ring O_K of K. We have the following three analogous formulas:

$$\begin{split} \prod_{p|\partial} (1-p^{-2})^{-1} \mathfrak{m}_1 \frac{L(1, Ad(\rho_f))}{2\pi^3} &= \sum_{\mathfrak{a} \in Cl_D} \frac{\theta^*(\phi')(f)(h)}{w(R_{\mathfrak{a}})} \text{ (Theorem B)}, \\ \mathfrak{m}_1 \frac{\zeta(2)}{\pi^2} &= \sum_{\mathfrak{a} \in Cl_D} \frac{1}{w(R_{\mathfrak{a}})} \text{ (Siegel)}, \\ \frac{\sqrt{d}L(1, \left(\frac{-d}{2}\right))}{2\pi} &= \sum_{\mathfrak{a} \in Cl_K} \frac{1}{w} \text{ (Dirichlet)} \end{split}$$

§4. Higher weight k and indefinite case. For a higher weight k or an indefinite case, we need to replace the Schwartz function $e(N(v)\tau)$ by a standard Schwartz function of Siegel–Shimura by multiplying a vector valued spherical function for (D, N) and then in the indefinite case, we modify $\theta(\varphi)$ (for $\varphi = \phi, \phi'$) and \mathcal{F} and \mathcal{G} into vector valued differential forms by the Eichler–Shimura map. Then \mathcal{F} and \mathcal{G} are closed harmonic 1-forms with values in a locally constant sheaf $\mathcal{L}_{n/A}$ whose fiber is the symmetric *n*-th tensor representation over an appropriate ring A for n = k - 2. We replace $(\mathcal{F},\mathcal{G})$ by the cup product $(\mathcal{F},\mathcal{G})_n := \int_{\delta(Sh_R)} \mathcal{F} \cup \mathcal{G}$ of $H^*(Sh_R, \mathcal{L}_{n/\mathbb{C}}) \times H^*(Sh_R, \mathcal{L}_{n,\mathbb{C}}) \to H^{2*}(Sh_R, \mathbb{C}) = \mathbb{C}$ in Theorem A (* = 0, 1 definite or indefinite).

In Theorem *B*, we pull back the class $\theta(\phi')^*(f)$ on $Sh_R \times Sh_R$ to $\delta(Sh_R)$ and integrate over $\delta(Sh_R)$. Then Theorem B is valid in general.

§5. Canonical periods. If D is indefinite, Sh_R is a Shimura curve defined over $\mathbb{Z}[\frac{1}{\partial}]$. Let A be a DVR at a prime \mathfrak{p} such that $\mathbb{Z}[\frac{1}{\partial}, \lambda] = \mathbb{Z}[\frac{1}{\partial}, \lambda(T(n))|n \in \mathbb{Z}] \subset A \subset \mathbb{Q}[\lambda] := \operatorname{Frac}(\mathbb{Z}[\frac{1}{\partial}, \lambda])$ of f (i.e., $f|T(n) = \lambda(T(n))f$). Define \mathcal{F}_{\pm} by

 $H_{\lambda} := H^1(Sh_R, \mathcal{L}_{n/A})[\lambda, \pm] = A[\mathcal{F}_{\pm}],$

where \pm means the \pm -eigenspace of complex conjugation. Put $H = H_{\pm} := H^1(Sh_R, \mathcal{L}_{n/A})[\pm]$. Define \mathcal{F} by $H^0(Sh_{R/A}, \omega^k) = A\mathcal{F}$ for the weight k Hodge bundle ω^k . Then we project it to a unique element $\omega^{\pm}(\mathcal{F})$ of the \pm -eigenspace $H^1(Sh_R, \mathcal{L}_{n/\mathbb{C}})[\lambda, \pm]$ of complex conjugation and define $\Omega^D_{\pm} \in \mathbb{C}^{\times}$ by $\omega^{\pm}(\mathcal{F}) = \Omega^D_{\pm}[\mathcal{F}_{\pm}]$. The period Ω_{\pm} in Theorem B is $\Omega^{M_2(\mathbb{Q})}_{\pm}$. We just put $\Omega^D_{\pm} = 1$ if D is definite.

Tate conjecture predicts $\Omega^D_{\pm}/\Omega_{\pm} \in \mathbb{Q}[\lambda]^{\times}$ if *D* is indefinite.

The conjecture is known for k = 2 by Faltings and by Prasanna for $k \ge 2$ but our formulation is more explicit.

§6. Relation to Tate conjecture. Assume that D is indefinite. Let E be one of $H^1(Sh_R, \mathcal{L}_{n/\mathbb{Q}[\lambda]})[\pm]$. Decompose $E \otimes_A \mathbb{Q} = E_{\lambda} \oplus E_{\lambda}^{\perp}$ into λ -eigenspace E_{λ} and its Hecke stable complement, and write \widetilde{H}_{λ} for the projection of H to E_{λ} . Define $c_D := (\mathcal{F}_+, \mathcal{F}_-)_n$ which is called cohomological D-congruence number, and $\widetilde{H}_{\lambda}/H_{\lambda} \cong A/c_DA$. Under the $R = \mathbb{T}$ -theorem,

(*)
$$(\mathcal{F}_+, \mathcal{F}_-)_n = c_D \stackrel{R=\mathbb{T}}{=} c_{M_2(\mathbb{Q})} = \frac{L(1, Ad(\rho_f))}{2\pi^3\Omega_+\Omega_-}$$
 (up to A-units).
By Theorem A, for $u_{\pm}^D \in \mathbb{C}^{\times}$, $\theta_D^*(\phi)(f) = u_{\pm}^D \mathcal{F}_+ \otimes u_{-}^D \mathcal{F}_-$. Thus
 $L(1, Ad(\rho_f)) \stackrel{\text{Theorem B}}{=} \int_{\delta(Sh_R)} \theta_D^*(\phi')(f)$
 $= u_{\pm}^D u_{-}^D(\mathcal{F}_+, \mathcal{F}_-)_n \stackrel{(*)}{=} u_{\pm}^D u_{-}^D \frac{L(1, Ad(\rho_f))}{\Omega_+\Omega_-}.$

Thus $u_{+}^{D}u_{-}^{D}/\Omega_{+}\Omega_{-} \in A^{\times}$. Thus if $u_{+}^{D}u_{-}^{D} = \Omega_{+}^{D}\Omega_{-}^{D}$ (i.e. $u_{\pm}^{D}\mathcal{F}_{\pm} = \omega^{\pm}(\mathcal{F}) \Leftrightarrow \theta_{D}^{*}(\phi') = \omega^{+}(\mathcal{F}) \otimes \omega^{-}(\mathcal{F})$), the *A*-integral Tate conjecture in this case holds (which Prasanna studied in a different way).

§7. Proof of Theorem A. Let $h_k(\partial N; A)$ be the subalgebra of $\operatorname{End}_{\mathbb{C}}(S_k(\Gamma_0(\partial N)))$ generated over A by Hecke operators T(n) and $S_k(\Gamma_0(\partial N); A) = S_k(\Gamma_0(\partial N)) \cap A[[q]]$. Recall

Duality theorem The space $S := S_k(\Gamma_0(\partial N); A)$ is A-dual of $H := h_k(\partial N; A)$ such that for a linear form $\phi : h_k(\partial N; A) \to A$, $\sum_{n=1}^{\infty} \phi(T(n))q^n \in S_k(\Gamma_0(\partial N); A)$. Writing $f = \sum_{n=1}^{\infty} a(n, f)q^n \in S_k$, the pairing $\langle \cdot, \cdot \rangle : H \times S \to A$ is given by $\langle h, f \rangle = a(1, f|h)$.

By Jacquet-Langlands correspondence, $H^*(Sh_R, \mathcal{L}_{n/A})$ is a module over $h_k(\partial N; A)$. Then applying the above theorem to the linear form $h_k(\partial N; A) \ni h \mapsto (\mathcal{F}, \mathcal{G}|h)_n$, we get Theorem A.

For the proof of Theorem B, we resort to an idea of Waldspurger.

§8. An idea of Waldspurger. Computing the period of $\theta^*(\phi')(f)$ for a quadratic space $V = W \oplus W^{\perp}$ over an orthogonal Shimura subvariety $S_W \times S_{W^{\perp}} \subset S_V$ has two steps:

(S) Split $\theta(\phi')(\tau, h, h^{\perp}) = \theta(\varphi)(\tau, h) \cdot \theta(\tau, \varphi^{\perp})(h^{\perp})$ $(h^? \in O_{W^?}(\mathbb{A}))$ for a decomposition $\phi' = \varphi \otimes \varphi^{\perp}$ (φ and φ^{\perp} Schwartz–Bruhat functions on $W_{\mathbb{A}}$ and $W_{\mathbb{A}}^{\perp}$);

(R) For the theta lift $(\overline{\theta}^*(\phi')(f))(h) = \int_Y f(\tau)\theta(\phi')(\tau,h)d\mu$ with a modular curve Y, the period P over the Shimura subvariety $S \times S^{\perp}$ (S for O(W) and S^{\perp} for O(W^{\perp})) is given by:

$$\int_{S\times S^{\perp}} \int_{Y} f(\tau)\theta(\phi')(\tau;h)d\mu(\tau)dh \quad (d\mu(\tau) = y^{-2}dxdy)$$
$$= \int_{Y} f(\tau) \left(\int_{S^{\perp}} \theta(\varphi^{\perp})(\tau;h^{\perp})dh^{\perp} \right) \cdot \left(\int_{S} \theta(\varphi)(\tau;h_{0})dh \right) d\mu.$$

Then invoke the Siegel–Weil formula to convert inner integrals into the Siegel-Weil Eisenstein series $E(\varphi)$ and $E(\varphi^{\perp})$, reaching Rankin-Selberg integral

$$P = \int_Y f(\tau) E(\varphi^{\perp}) E(\varphi) d\mu = L$$
-value.

§9. *D* definite and n = 0. For simplicity, we assume that *D* is definite and n = 0. Then $D = Z \oplus D_0$ for the center *Z* and $D_0 := \{v \in D | \operatorname{Tr}(v) = 0\}$. So W = Z and $W^{\perp} = D_0$.

Identifying $Z = \mathbb{Q}$, $N|_Z(v) = v^2$ and for $\varphi := \phi_{\mathbb{Z}}$, $E(\varphi) = \sum_{n=-\infty}^{\infty} q^{n^2}$ (Jacobi's theta series).

Write w for the Weil representation of the metaplectic group $Mp(\mathbb{A})$ fits into the exact sequence $S^1 \hookrightarrow Mp(\mathbb{A}) \twoheadrightarrow SL_2(\mathbb{A})$ on the space of Schwartz-Bruhat functions on $D_{0,\mathbb{A}}$. The rational subgroup $SL_2(\mathbb{Q})$ can be lifted into the metaplectic cover $Mp(\mathbb{A})$ canonically. Then for the upper triangular Borel subgroup B, Siegel–Weil Eisenstein series is defined by

$$E(\varphi^{\perp})(g) = \sum_{\gamma \in B(\mathbb{Q}) \setminus \mathsf{SL}_2(\mathbb{Q})} (\mathbf{w}(\gamma g) \varphi^{\perp})(0) \ (g \in \mathsf{Mp}(\mathbb{A})).$$

As Weil verified, $g \mapsto (\mathbf{w}(g)\varphi^{\perp})(0)$ is $B(\mathbb{Q})$ left invariant. In the definite case, $E(\varphi^{\perp})$ converges to a weight $\frac{3}{2}$ Eisenstein series.

§10. Siegel–Weil formula. Note that the even Clifford group G_{D_0} of D_0 is equal to D^{\times} which acts on D_0 by $v \mapsto g^{-1}vg$. Thus $SO_{D_0} = G_{D_0}/Z(G_{D_0})$; so, $S^{\perp} = Sh$ for our choice of ϕ'_{R_0} . Let $d\omega$ be the Tamagawa measure on $SO_{D_0}(\mathbb{A})$.

Siegel–Weil formula: $\int_{Sh} \theta(\varphi^{\perp})(\tau; h) d\omega(h) = E(\varphi^{\perp}).$

In the indefinite case, $E(\varphi^{\perp})$ does not converge; so, we need an auxiliary complex variable s to analytically continue the Eisenstein series to $s \in \mathbb{C}$ and evaluate at s = 0 to have $E(\varphi^{\perp})$.

Let $d\mu$ be the Haar measure on $SO_{D_0}(\mathbb{A})$ with volume 1 on \widehat{R}^{\times} (which we used already). Basically by definition, $d\mu = (\mathfrak{m}/2)d\omega$ for the mass $\mathfrak{m} := \int_{Sh_R} d\mu = \mathfrak{m}_1 \frac{\zeta(2)}{\pi^2}$. This is the reason to have $\mathfrak{m}_1 \in \mathbb{Q}^{\times}$ in front of the formula in Theorem B. The value \mathfrak{m}_1 is computed explicitly by Shimura in 1999 for general N after the early work of Siegel for the maximal order. §11. Conclusion. For general φ^{\perp} , $E(\varphi^{\perp})$ is the sum of the Eisenstein series $E_{\infty}(\varphi^{\perp})$ induced from B (the infinity cusp) and $E_0(\varphi^{\perp})$ induced from tB (the zero cusp). For the Rankin convolution, $\int_Y f\theta(\varphi)E_0(\varphi^{\perp})d\mu_{\tau}$ causes a trouble. Our choice of ϕ'_{R_0} introducing $0 < c \in \mathbb{Z}$ is made to have the vanishing $E_0(\phi'_{R_0}) = 0$ and the identity $E_{\infty}(\phi'_{R_0}) = E_{\infty}(\phi_{R_0})$. The Rankin convolution $\int_Y f\theta(\varphi)E_{\infty}(\phi_{R_0})d\mu_{\tau}$ is computed in 1976 by Shimura and produces the adjoint L-value in Theorem B. All computation can be generalized to the Hilbert modular case over a totally real field F and a quaternion algebra $D_{/F}$.

A refinement of Tate conjecture is conjectured by Shimura-Blasius-Yoshida and studied by Harris over $\overline{\mathbb{Q}}$. I hope to be able to factorize $\Omega^D_+\Omega^D_-$ into $\prod_{\sigma} \Omega^{D_{\sigma}}_+\Omega^{D_{\sigma}}_-$ integrally over A for infinite places σ with $D \otimes_{\sigma,F} \mathbb{R} \cong M_2(\mathbb{R})$, where D_{σ} is a quaternion algebra with $D \otimes_{F,\sigma} \mathbb{R} \cong M_2(\mathbb{R})$ only at σ (Period factorization).