EXTENSIONS AND THE EXCEPTIONAL ZERO OF THE ADJOINT SQUARE *L*-FUNCTIONS

HARUZO HIDA

Take a totally real field F with integer ring O as a base field. We fix an identification $\iota : \overline{\mathbb{Q}}_p \cong \mathbb{C} \supset \overline{\mathbb{Q}}$. Fix a prime p > 2, and write Σ for the set of prime factors of p in F. Start with a holomorphic automorphic representation π of $GL_2(F_{\mathbb{A}})$ (a Hilbert modular Hecke eigenform) which is spherical and nearly p-ordinary at Σ . Then we have the compatible system of λ -adic representations $\rho = {\rho_{\lambda}}_{\lambda}$ of π , and if $\lambda \nmid p$, $\rho_{\lambda}(Frob_{\mathfrak{p}})$ is unramified and has two eigenvalues a p-adic unit eigenvalue α (with respect to ι) and a p-adic nonunit β . When we consider a p-adic member of ρ , it is supposed to be associated to $i_p = \iota^{-1} : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$. We consider the Galois stable subspace $Ad(\rho) \subset$ $\rho \otimes {}^t \rho^{-1} = \operatorname{End}(\rho)$ with zero trace (whose Galois action is given by conjugation). The Euler factor at \mathfrak{p} of $L(s, Ad(\rho))$ is then given by

$$\left[(1-\alpha\beta^{-1}p^{-s})(1-p^{-s})(1-\alpha^{-1}\beta p^{-s})\right]^{-1}.$$

The *p*-adic *L*-function $L_p(s, Ad(\rho))$, whose value at 1 is a constant multiple of $(1 - pp^{-1})(1 - \alpha^{-1}\beta p^{-1})(1 - p\alpha\beta^{-1}p^{-1})L(1, Ad(\rho))$, has an exceptional 0 at s = 1 (corresponding to the Frobenius eigenvalue = 1 at $\mathfrak{p}|p$) whose order is the number of such Euler factors $r = |\Sigma|$ if the \mathcal{L} -invariant $\mathcal{L}(Ad(\rho))$ of $Ad(\rho_{i_p})$ does not vanish. The \mathcal{L} -invariant $\mathcal{L}(Ad(\rho))$ is defined by the following (hypothetical) formula:

$$\frac{d^r L_p(s, Ad(\rho))}{ds^r}\Big|_{s=1} \stackrel{?}{=} \mathcal{L}(Ad(\rho)) \frac{L(1, Ad(\rho))}{\text{a period}}$$

The appearance of the trivial zero is always true without assuming unramifiedness of π or ρ at p for the adjoint square L-functions, and this is a peculiar point when we study the \mathcal{L} -invariant of the adjoint square L. Indeed, by the near ordinarity, $\rho_{i_p}|_{D_p} \cong \begin{pmatrix} \delta'_p & * \\ 0 & \delta_p \end{pmatrix}$, and hence, the semisimplified $Ad(\rho)|_{D_p}$ has eigenvalue 1 for $Frob_p$. Since Greenberg has given a Galois cohomological definition of the \mathcal{L} -invariant without recourse to the analytic p-adic L-function, we can discuss the adjoint square \mathcal{L} -invariant using his definition, and we would like to relate it to differential calculus of p-adic analytic families lifting π .

Strasbourg Conference, Université Louis Pasteur, July 3–8, 2005.

For simplicity, we assume that p totally splits in F/\mathbb{Q} and π has level 1, which allows us to avoid some technicality. Let $(\kappa_{1,\mathfrak{p}} \leq \kappa_{2,\mathfrak{p}})$ be the p-adic Hodge-Tate type of ρ_{i_p} at the place $\mathfrak{p}|p$. Defining $\kappa =$ (κ_1, κ_2) with $\kappa_j = \sum_{\mathfrak{p}} \kappa_{j,\mathfrak{p}} \mathfrak{p} \in \mathbb{Z}[\Sigma]$, we call κ the weight of π . We suppose $k_{\mathfrak{p}} = \kappa_{2,\mathfrak{p}} - \kappa_{1,\mathfrak{p}} + 1 \geq 2$ (the weight " ≥ 2 " condition). Write the central character of π as ε ; so, det $(\rho) = \varepsilon \mathcal{N}$ for the cyclotomic character \mathcal{N} . The representation π has a p-normalized vector $f \in \pi$. The form f is normalized so that the archimedean Fourier coefficients $\mathbf{a}_{\infty}(y, f)$ gives the Hecke eigenvalue of the Hecke operator T(y) and U(y) ($y \in \widehat{O} \cap F_{\mathbb{A}}^{\times}$) corresponding to $\widehat{\Gamma}_0(p) \begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix} \widehat{\Gamma}_0(p)$ for the adelic open compact subgroup $\widehat{\Gamma}_0(p)$ of Γ_0 -type. It is better to introduce $\mathbf{a}_p(y, f) = y_p^{-\kappa_1} \mathbf{a}_{\infty}(y, f)$ which we call the q-expansion coefficients of f, is the eigenvalue of $T_p(y) = y_p^{-\kappa_1} T(y)$ and is p-integral with $f|U_p(y) =$ $\delta_{\mathfrak{p}}([y, F_{\mathfrak{p}}])f$ if $0 \neq y \in O_{\mathfrak{p}}^{\times}$. Here $y_p^{-\kappa_1} = \prod_{\mathfrak{p}|p} N_{F_{\mathfrak{p}}/\mathbb{Q}_p}(y_{\mathfrak{p}})^{-\kappa_{1,\mathfrak{p}}}$.

1. ANALYTIC FAMILIES OF AUTOMORPHIC REPRESENTATIONS

A philosophical interpretation of the zero of $L_p(s, Ad(\rho))$ at s = 0, 1as a factor of $L_p(s, End(\rho)) = L_p(s, End(\pi))$ is

an order
$$r$$
 zero of $L_p(s, Ad(\rho)) = L_p(s, Ad(\pi))$ at $s = 1$
 $\stackrel{?}{\leftrightarrow} \operatorname{rank} \operatorname{Ext}^1_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}(\rho, \rho) \stackrel{?}{=} \operatorname{rank} \operatorname{Ext}^1_{\operatorname{automorphic rep}}(\pi, \pi) = r$

Here the extension group $\operatorname{Ext}^{1}_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}$ is computed in the category of nearly ordinary *p*-adic representations unramified outside *p* and ∞ . To explore this question, it is essential to lift π (or *f*) to Λ -adic automorphic representations. Let us describe this point first. Fix a discrete valuation ring $W \subset \overline{\mathbb{Q}}_{p} = \mathbb{C}$ (sufficiently large) finite flat over \mathbb{Z}_{p} as a base ring. Take an open subgroup *S* of $G^{(p)} := GL_2(F_{\mathbb{A}}^{(p\infty)})$. *p*-Adic modular forms on *S* over a *p*-adic *W*-algebra $R = \varprojlim R/p^n R$ classify triples $(X, \overline{\lambda}, \phi)_{/A}$ for *p*-adic *R*-algebras *A*. Here *X* is an AVRM by *O* (so, $O \hookrightarrow \operatorname{End}(X_{/A})$ with $\Omega_{X/A} \cong O \otimes_{\mathbb{Z}} A$ locally), $\overline{\lambda}$ is a polarization class up to prime-to-*p O*-linear isogenies, and $\phi = (\phi_p, \phi^{(p)})$ is a pair of level structures $\phi_p : \mu_{p^{\infty}} \otimes O^* \hookrightarrow X[p^{\infty}]$ (O^* is the \mathbb{Z} -dual of *O*) and $\phi^{(p)} : (F_{\mathbb{A}}^{(p\infty)})^2 \cong V^{(p)}(X) = (\varprojlim_N X[N]) \otimes \mathbb{A}^{(p\infty)}$ modulo *S*. A *p*-adic modular form *h* is a functorial rule satisfying

- (1) $h((X, \overline{\lambda}, \phi)_{/A}) \in A$ depends only on the prime-to-*p* isogeny class of $(X, \overline{\lambda}, \phi)_{/A}$,
- (2) If $\varphi : A \to B$ is a *p*-adically continuous *R*-algebra homomorphism, then $h((X, \overline{\lambda}, \phi)_{/A} \otimes_{A, \varphi} B) = \varphi(h((X, \overline{\lambda}, \phi)_{/A})),$

(3) If z is a central element in
$$G^{(p)}$$
, $h((X, \overline{\lambda}, \phi_p, \phi^{(p)} \circ z)_{/A}) = \varepsilon(z)h((X, \overline{\lambda}, \phi)_{/A}).$

Writing $\mathcal{V}(S,\varepsilon;R)$ for the space of *p*-adic modular forms on *S* over *R*, and taking the limit $\mathcal{V}(\varepsilon;R) = \varinjlim_{S} \mathcal{V}(S,\varepsilon;R), g \in G^{(p)}$ acts on $\mathcal{V}(\varepsilon;R)$ by $g \cdot h((X,\overline{\lambda},\phi_p,\phi^{(p)}) = h((X,\overline{\lambda},\phi_p,\phi^{(p)}\circ g)_{/A})$ (the *p*-adic automorphic representation). For $u \in O_p^{\times}$ and $h \in \mathcal{V}(\varepsilon;R)$, define $h|u(X,\overline{\lambda},\phi_p,\phi^{(p)}) = h(X,\overline{\lambda},\phi_p\circ u,\phi^{(p)})$, which is an element of $\mathcal{V}(\varepsilon;R)$. Let

$$\mathcal{V}_{\kappa}(\varepsilon; R) = \{ h \in \mathcal{V}(\varepsilon; R) | h | u = u^{-\kappa_1} h \text{ for all } u \in O_p^{\times} \}.$$

Also $U_p(y)$ for $0 \neq y \in O_p$ acts on $\mathcal{V}(\varepsilon; W)$ by

$$\mathbf{a}_p(y,h|U_p(\varpi)) = \mathbf{a}_p(\varpi y,h).$$

Similarly, $T_p(\mathfrak{q})$ acts on $\mathcal{V}(GL_2(O_\mathfrak{q}), \varepsilon; W)$ by

$$\mathbf{a}_p(y,h|T_p(\mathbf{q})) = \mathbf{a}_p(\varpi y,h) + N(\mathbf{q})\varepsilon(\mathbf{q})\mathbf{a}_p(\frac{y}{\varpi_{\mathbf{q}}},h)$$

for the uniformizer $\varpi_{\mathfrak{q}}$ at a prime $\mathfrak{q} \nmid p$. Define the ordinary projector $e = \lim_{n \to \infty} U_p(p)^{n!}$ on $\mathcal{V}(\varepsilon; R)$, and write the image as $\mathcal{V}^{n.ord}(\varepsilon; R)$. The prime-to-p part $\pi^{(p)}$ of π appears as a subquotient of $\mathcal{V}_{\kappa}^{n.ord}(\varepsilon; W)$ generated by translations $g \cdot f$ of $f \in \pi$ regarded as a p-adic modular form.

Theorem 1.1 (multiplicity 1). The automorphic representation of $G^{(p)} = GL_2(F^{(p\infty)}_{\mathbb{A}})$ on $\mathcal{V}^{n.ord}_{\kappa}(\varepsilon; \overline{\mathbb{Q}}_p) = \mathcal{V}^{n.ord}_{\kappa}(\varepsilon; W) \otimes_W \overline{\mathbb{Q}}_p$ is admissible and is a direct sum of admissible irreducible representations of $G^{(p)}$ with multiplicity at most 1.

Let Γ_F be the *p*-profinite part of O_p^{\times} ; so, $\Gamma_F = (1 + p\mathbb{Z}_p)^{\Sigma}$. Let $\Lambda = \Lambda_F$ be the Iwasawa algebra $W[[\Gamma_F]] = \varprojlim_n W[\Gamma_F/\Gamma_F^{p^n}]$. Fix a generator $\gamma_{\mathfrak{p}} \in 1 + p\mathbb{Z}_p$ of the \mathfrak{p} -component of Γ_F , and identify $\Lambda = W[[x_{\mathfrak{p}}]]_{\mathfrak{p}\in\Sigma}$ by $\gamma_{\mathfrak{p}} \leftrightarrow 1 + x_{\mathfrak{p}}$. We have the universal cyclotomic character $\kappa : O_p^{\times} \to \Lambda^{\times}$ sending $u \in O_p^{\times}$ to the projection $\langle u \rangle \in \Gamma_F \subset \Lambda^{\times}$. Define $V(S, \varepsilon; \Lambda) = \mathcal{V}(S, \varepsilon; W) \widehat{\otimes}_W \Lambda = \varprojlim_n \mathcal{V}(S, \varepsilon; \Lambda/\mathfrak{m}_\Lambda^n)$ and $V(\varepsilon; \Lambda) = \varinjlim_S V(S, \varepsilon; \Lambda)$. Again $G^{(p)}, U_p(y), T_p(y), u \in O_p^{\times}$ and the projector e act on $V(\varepsilon; \Lambda)$. Define $V^{n.ord}$ by the image of e and

$$V_{\boldsymbol{\kappa}}^{n.ord}(\varepsilon;\Lambda) = \left\{ h \in V^{n.ord}(\varepsilon;\Lambda) \middle| h | u = u^{-\kappa_1} \boldsymbol{\kappa}(u) h \text{ for all } u \in O_p^{\times} \right\}$$

on which $G^{(p)}$ and $U_p(y)$ acts. For each $v = \sum_{\mathfrak{p}} v_{\mathfrak{p}} \mathfrak{p} \in \mathbb{Z}[\Sigma]$, consider $\kappa_v = (\kappa_1 - v, \kappa_2 + v)$ and the algebra homomorphism $v : \Lambda \to W$ given by $v(u) = \prod_{\mathfrak{p}} u_{\mathfrak{p}}^{v_{\mathfrak{p}}}$ for $u = (u_{\mathfrak{p}})_{\mathfrak{p}|p} \in \Gamma_F$.

Theorem 1.2. For an algebraic closure \mathcal{K} of $Frac(\Lambda)$, the automorphic representation of $G^{(p)}$ on $V_{\kappa}^{n.ord}(\varepsilon; \mathcal{K}) = V_{\kappa}^{n.ord}(\varepsilon; \Lambda) \otimes_{\Lambda} \mathcal{K}$ is admissible and is a direct sum of admissible irreducible representations with multiplicity at most 1. For a given π as above, there exists a unique irreducible admissible factor Π of $V_{\kappa}^{n.ord}(\varepsilon; \mathcal{K})$ defined over a finite flat extension \mathbb{I} of Λ such that $\Pi \otimes_{\mathbb{I},P} W \cong \pi$ for an algebra homomorphism $P: \mathbb{I} \to W$ extending $0 \in \mathbb{Z}[\Sigma]$ on Λ . Moreover for each $v \in \mathbb{Z}[\Sigma]$ with $k_{\mathfrak{p}} + 2v_{\mathfrak{p}} \geq 2$ for all $\mathfrak{p}|_{p}$ and each W-algebra homomorphism $Q: \mathbb{I} \to W$ extending $v, \pi_{Q} = \Pi \otimes_{\mathbb{I},Q} W$ is an automorphic representation of $G^{(p)}$ coming from classical Hilbert modular form of weight κ_{v} .

Thus we get a *p*-adic analytic family of automorphic representation $\{\pi_Q\}_{Q \in \text{Spf}(\mathbb{I})(W)}$. A naive question is

Question 1.3. When the minimal ring of definition of Π is not equal to Λ ?

We have $\mathbb{I} = \Lambda$ for almost all the time; however, there are limited examples of nonscalar extension $\mathbb{I} \neq \Lambda$. Let $\mathbf{a}(\mathbf{q}) \in \mathbb{I}$ be the Hecke eigenvalue of $T_p(\mathbf{q})$ or $U_p(\mathbf{q})$ (if $\mathbf{q} = \mathbf{p}$) of Π . For simplicity, we assume $\mathbb{I} = \Lambda$ and write $\Sigma = {\mathbf{p}_1, \ldots, \mathbf{p}_d}, \gamma_j = \gamma_{\mathbf{p}_j}$ and $x = x_{\mathbf{p}_j} \in \Lambda$. Here is a naive transcendency questions

Question 1.4. Fix $v(1 + x_j) = v(\gamma_j)$ for $j \ge 2$ and for $v^{(1)} = \sum_{j\ge 2} v_j \mathfrak{p}_j \in \mathbb{Z}[\Sigma - {\mathfrak{p}_1}]$ with $k_j + 2v_j \ge 2$ $(j \ge 2)$. Regard $\mathbf{a}(\mathfrak{q})$ as a function of x_1 .

- (1) Fix a prime \mathfrak{q} . Moving $v = v_1\mathfrak{p}_1 + v^{(1)}$ for integers v_1 with $k + 2v_1 \ge 2$, is the set $\{v(\mathbf{a}(\mathfrak{q}))|v_1 \ge 1 \frac{k}{2}\}$ an infinite set?
- (2) Further suppose that Π does not have complex multiplication. Is the field $\mathbb{Q}[v(\mathbf{a}(\mathbf{q}))|v_1 \ge 1 - \frac{k}{2}] \subset \overline{\mathbb{Q}}$ an infinite extension?

As is well known, by Galois deformation theory, if $\rho \mod \mathfrak{m}_W$ is absolutely irreducible, we have a modular Galois deformation ρ_{Π} : $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{I})$ unramified outside p.

2. Extensions of Π and ρ_{Π}

Recall $V(S, \varepsilon; \Lambda) = \mathcal{V}(S, \varepsilon; W) \widehat{\otimes}_W \Lambda$. Thus the *W*-derivations $\partial \in Der_W(\Lambda, \Lambda)$ acts on $V(\varepsilon; \Lambda)$. Let $\partial_j = (1 + x_j) \frac{\partial}{\partial x_j} \in Der_W(\Lambda, \Lambda)$. By the formula defining $T_p(y)$ and $U_p(y)$, we see easily $\partial_j(h|T_p(y)) = (\partial_j h)|T_p(y)$ and $\partial_j(h|U_p(y)) = (\partial_j h)|U_p(y)$. However, this does not mean that $\partial_j(\pi) \subset \pi$. Indeed, setting $\partial_0 h = {}^t(\partial_1 h, \ldots, \partial_r h, h) \in V(\varepsilon; \Lambda)^{r+1}$ and $\partial \mathbf{a} = {}^t(\partial_1 \mathbf{a}, \ldots, \partial_r \mathbf{a}) \in \Lambda^r$, if **f** is the *p*-normalized

Hecke eigenform in Π , $\mathbf{f}|T_p(\mathbf{q}) = \mathbf{a}(\mathbf{q})\mathbf{f}$; so, applying ∂_0 , we find

$$(\partial_0 \mathbf{f})|T_p(\mathbf{q}) = \begin{pmatrix} \mathbf{a}(\mathbf{q}) \cdot \mathbf{1}_r & \partial \mathbf{a}(\mathbf{q}) \\ 0 & \mathbf{a}(\mathbf{q}) \end{pmatrix} \partial_0 \mathbf{f}.$$

This tells us that the translations of components of $\partial \mathbf{f}$ under $G^{(p)}$ span a constituent $\widetilde{\Pi}$ of $V^{n.ord}(\varepsilon; \mathcal{K})$ fitting into the following exact sequence of $G^{(p)}$ -representations

$$0 \to \Pi^r \to \widetilde{\Pi} \to \Pi \to 0.$$

This extension is nontrivial because we can find a set of r primes $Q = \{\mathbf{q}_1, \ldots, \mathbf{q}_r\}$ with $v(\det(\partial_i \mathbf{a}(\mathbf{q}_j)) \neq 0$ for any given $v \in \mathbb{Z}[\Sigma]$. Thus specializing the above exact sequence tensoring $\otimes_{\Lambda,v} W$. we find

Theorem 2.1. We have rank $\operatorname{Ext}^{1}_{automorphic rep}(\pi^{(p)}, \pi^{(p)}) \geq |\Sigma|$.

Here $\pi^{(p)}$ is the prime to *p*-part of π . Since the existence of the exceptional zero of the adjoint square *L*-function is independent of π , to have *r* independent extension as in the theorem, we are forced to have an infinitesimal deformation of π with at least *r* independent variables. This explains the existence of a *r*-variable *p*-adic analytic family containing π as a member. Obviously, we may ask

Question 2.2. rank $\operatorname{Ext}^{1}_{automorphic rep}(\pi^{(p)}, \pi^{(p)}) = |\Sigma|$?

This question has an affirmative answer under the condition that the local ring of the universal Hecke algebra acting nontrivially on the Hecke eigenforms in $\pi^{(p)}$ is isomorphic to an appropriate universal deformation ring (see Section 4.4 of a forthcoming book [HMI] from Oxford University press with title: "Hilbert Modular Forms and Iwasawa Theory").

We can apply the same trick to the Galois representation ρ_{Π} . Let ε_j be the class of y_j in $\mathbb{I}[y_j]/(y_j)^2$. Then $\tilde{\rho}_{\Pi} = \rho_{\Pi} + \sum_j \partial_j \rho_{\Pi} \epsilon_j$: Gal $(\mathbb{I}[\epsilon_j]_{\mathfrak{p}_j \in \Sigma})$ gives rise to a nontrivial extension

$$0 \to \rho_{\Pi}^r \to \widetilde{\rho}_{\Pi} \to \rho_{\Pi} \to 0.$$

We write $\tilde{\rho}_v = \tilde{\rho}_{\Pi} \otimes_{\Lambda,v} W$. The standard Selmer group $\operatorname{Sel}_F(Ad(\rho_{i_p}))$ is a submodule of the Galois cohomology group $H^1(F, Ad(\rho_{i_p})) \subset \operatorname{Ext}^1_{\operatorname{Gal}(\overline{\mathbb{Q}}/F)}(\rho_{i_p}, \rho_{i_p})$ spanned by cocycles unramified outside p and unramified modulo upper-nilpotent matrices at $\mathfrak{p}|p$ identifying ρ with a matrix representation so that $\rho|_{D_{\mathfrak{p}}} = \begin{pmatrix} \delta'_{\mathfrak{p}} & * \\ 0 & \delta_{\mathfrak{p}} \end{pmatrix}$. The little bigger "-" Selmer group is generated by cocycles unramified outside p and unramified modulo upper-triangular matrices at $\mathfrak{p}|p$. Then for each submodule X of $\tilde{\rho}$ isomorphic to ρ^{r-1} , the extension class $[\tilde{\rho} \mod X] \in \operatorname{Sel}_F^r(Ad(\rho_{i_p}))$.

Theorem 2.3 (Greenberg). We have rank_W Sel⁻_F(Ad(ρ_{i_p})) $\geq |\Sigma|$, and the equality holds if Sel_F(Ad(ρ_{i_p})) is finite.

By a work of Fujiwara, $\operatorname{Sel}_F(Ad(\rho_{i_p}))$ is finite if $\overline{\rho} := (\rho_{i_p} \mod \mathfrak{m}_W)$ is absolutely irreducible over $F[\mu_p]$. Thus the extension $\widetilde{\rho}_{\Pi}$ of ρ_{Π} is highly nontrivial, because $\det(\partial_i \mathbf{a}(\mathbf{q}_j)) \in \mathbb{I}^{\times}$ for many sets of primes Qwith positive density in $\{\operatorname{primes}\}^{\Sigma}$.

The *p*-adic *L*-function $L_p(s, Ad(\rho))$ is actually related to the Selmer group $\operatorname{Sel}_{F_{\infty}}(Ad(\rho_{i_p}))$ over the cyclotomic \mathbb{Z}_p -extension F_{∞}/F . Then the eigenvalue α_N and β_N of the Frobenius $Frob_{\mathfrak{q}_j}$ over a high layer F_N/F is a high *p*-power of α_0 and β_0 ; so, $\det(\partial_i \mathbf{a}(\mathfrak{q}_j))$ over F_N is no longer a unit even if it is over F. To guarantee the nontriviality of the extension $\tilde{\rho}_{\Pi}$ over F_{∞} , we need to have $\det(\partial_i \mathbf{a}(\mathfrak{p}_j)) \neq 0$, which is difficult to prove (but follows if Question 1.4 is affirmative for $\mathfrak{q} \in \Sigma$).

Question 2.4. det $(\partial_i \mathbf{a}(\mathbf{p}_i)) \neq 0$?

3. \mathcal{L} -invariant

Greenberg has given (in his paper in Contemporary Math. 165 149–174) a Galois cohomological definition of the \mathcal{L} -invariant of padic ordinary representations of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Applying his definition to $\operatorname{Ind}_{F}^{\mathbb{Q}} Ad(\rho_{i_{p}})$, we can compute $\mathcal{L}(Ad(\rho))$.

Theorem 3.1. If $\overline{\rho}$ is absolutely irreducible, we have

$$\mathcal{L}(Ad(\rho_v)) = v(\det(\mathbf{a}(\mathbf{p}_i)^{-1}\partial_i \mathbf{a}(\mathbf{p}_j))) \prod_{\mathbf{p}|p} \gamma_{\mathbf{p}}^{-v_{\mathbf{p}}} \log_p(\gamma_{\mathbf{p}}).$$

As conjectured by Greenberg, we should have $\mathcal{L}(Ad(\rho_v)) \neq 0$, and if it is the case, Question 2.4 will have an affirmative answer. Combining these results with the computation by Greenberg–Stevens and Greenberg of the \mathcal{L} -invariant of elliptic curves with multiplicative reduction at p, we get

Corollary 3.2. Suppose that π_v is associated to an elliptic curve $E_{/F}$ with split multiplicative reduction at all $\mathfrak{p}|p$. Then we have

$$\mathcal{L}(Ad(\rho_v)) = \mathcal{L}(E) = \prod_{\mathfrak{p}|p} \frac{\log_p(N_{F_\mathfrak{p}/\mathbb{Q}_p}(q_\mathfrak{p}))}{\operatorname{ord}_p(N_{F_\mathfrak{p}/\mathbb{Q}_p}(q_\mathfrak{p}))}$$

where $E(F_{\mathfrak{p}}) = F_{\mathfrak{p}}^{\times}/q_{\mathfrak{p}}^{\mathbb{Z}}$.

In this case, $\mathcal{L}(E) \neq 0$ by the theorem of St. Etienne. The proof of these results will appear in my forthcoming book [HMI] Section 3.4).