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Often we get the non-vanishing/non-triviality theorems of arithmetic
invariant out of spreading out an invariant over to a bigger geometric
object, i.e., the multiplicative group, Shimura variety and the spec-
trum of a large Hecke algebra. Here we describe a method using the
spectrum of Hecke algebra as the bigger geometric object. This often
work with non CM components. See my lectures at Kyoto about the
use of multiplicative groups and Shimura varieties.

1. Overview: Is characterizing CM component important?

Fix a prime p and for simplicity, assume p ≥ 5. Consider the space
of cusp forms Sk+1(Γ0(Np

r+1), ψ) with (p - N, r ≥ 0). These spaces
are defined in [IAT] §3.5 under the same notation. In the rest of this
series of lectures, we write the weight of modular form as k + 1 since
the l-Frobenius eigenvalue has absolute value lk/2 for the Galois repre-
sentation of a cusp form f of weight k + 1.

1.1. Hecke algebras and CM components. First, we give here an
axiomatic definition of the cuspidal ‘big’ ordinary Hecke algebra h nec-
essary to state our objectives without proof. After this is done, we give
a precise definition of the CM components.

Let the ring Z[ψ] ⊂ C and Zp[ψ] ⊂ Qp be generated by the values ψ
over Z and Zp, respectively. The Hecke algebra over Z[ψ] is

h = Z[ψ][T (n)|n= 1, 2, · · · ] ⊂ End(Sk+1(Γ0(Np
r+1), ψ)).

We put hk+1,ψ = hk+1,ψ/W = h ⊗Z[ψ] W for a p-adic discrete valuation

ring W ⊂ Qp containing Zp[ψ]. Sometimes our T (p) is written as U(p)
as the level is divisible by p. The ordinary part hk+1,ψ/W ⊂ hk+1,ψ/W is
the maximal ring direct summand on which U(p) is invertible. In other
words, limn→∞ U(p)n! converges p-adically in hk+1,ψ/W to the idempo-
tent e of hk+1,ψ/W = e · hk+1,ψ/W .

Exercise 1.1. Let A be a p-adically complete algebra, and suppose that
A is of finite type as a module over Zp. Prove that limn→∞ an! for any
a ∈ A exists in A giving an idempotent of A.

Let ψ1 = ψN × the tame p-part of ψ. Then we have a unique ‘big’
Hecke algebra h = hψ1/W characterized by the following two conditions:

(1) h is free of finite rank over Λ := W [[T ]] with T (n) ∈ h,
(2) if k ≥ 1 and ε : Z×

p → µp∞(W ) is a character, as W -algebras,

h/(1 + T − ψ(γ)ε(γ)γk)h ∼= hk+1,εψk
(γ = 1 + p) for ψk := ψ1ω

1−k,

sending T (n) to T (n), where ω is the Teichmüller character.

We take an irreducible component Spec(I) ⊂ Spec(h) (thus I is a
torsion-free algebra over Λ and is a Λ-module of finite type).

A (normalized) Hecke eigenform in Sk+1(Γ0(Np
r+1), ψ) has slope α ∈

Q if f |U(p) = a · f with |a|p = p−α. We simply put α = ∞ if a = 0.
Since limn→∞ an! = 1 ⇔ α = 0, the algebra hk+1,εψk

acts non-trivially
on a Hecke eigen cusp form f in Sk+1(Γ0(N), εψk; Qp) if and only if
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f has slope 0. A slope 0 form is also called an ordinary from. An
important consequence of the above two facts is

(B) The number of slope 0 Hecke eigenforms of level Npr+1, of
weight k+1 and of a given character ψ modulo Npr+1 is bounded
independent of k, r and ψ.

If f has slope 0, λ : h → Qp given by f |T = λ(T )f for T ∈ h factors
through hk+1,ψ and f =

∑∞

n=1 a(n, f)qn =
∑∞

n=1 λ(T (n))qn. Thus the
number of slope 0 forms with Neben character ψ is less than or equal
to rankW hk+1,ψ = rankΛ hψ1 independent of r and ε. The Hecke field
of f is Q(f) = Q(λ(n)|n = 1, 2, . . . ).

Each point P ∈ Spec(h) has a 2-dimensional (semi-simple) Galois
representation ρP (of Gal(Q/Q)) with coefficients in the residue field
κ(P ) of P such that Tr(ρP (Frobl)) = (T (l) mod P ) for almost all
primes ` (see [GME] §4.2 for the construction of the Galois represen-
tation). In particular, I carries a Galois representation ρI with

Tr(ρI(Frobl)) = a(l) (for the image a(l) in I of T (l)).

If a prime divisor P of Spec(I) contains (1 + T − εψk(γ)γ
k) with

k ≥ 1, regarding it as a W -algebra homomorphism (P : I → Qp) ∈
Spec(I)(Qp), we get a Hecke eigenform fP ∈ Sk+1(Γ0(Np

r(P )+1), εψk)

with fP |T (n) = aP(n)fP for aP (n) = P (a(n)) ∈ Qp for all n. Such a P
is called arithmetic if k ≥ 1, and we write εP = ε, ψP = εψk, r(P ) = r
and k(P ) = k for such a P . Thus I gives rise to a slope 0 analytic fam-
ily of modular forms FI = {fP |arithemtic P ∈ Spec(I)(Qp)} and Galois

representations {ρP}P∈Spec(I)(Qp). For a ∈ I, we write aP ∈ Qp for P (a).

Describing ρP , we have written Tr(ρP (Frobl)) = (T (l) mod P ). The
precise meaning of this is, for primes l - Np,

(1.1) Tr(ρP (Frobl)) = a(l)P and det(ρP (Frobl)) = ψP (l)lk(P ).

We call a Galois representation ρ CM if there exists an open subgroup
G ⊂ Gal(Q/Q) such that the semi-simplification (ρ|G)ss has abelian
image over G. We call I a CM component if ρI has CM.

We have a p-adic L-function

Lp = Lp(Ad(ρI)) := Lp(1, Ad(ρI)) = Lp(1, ρ
sym⊗2
I ⊗ det(ρI)

−1) ∈ I

interpolating

Lp(P ) := P (Lp) = (Lp mod P ) =
L(1, Ad(ρP ))

period
for all arithemtic P .

Writing Spec(h) = Spec(I) ∪ Spec(X) for the complement X, we have
(under a mild assumption)

Spec(I)∩Spec(X) = Spec(I⊗hX) ∼= Spec(
I

(Lp)
) (congruence criterion).

The assumptions are that the connected component of Spec(h) con-
taining Spec(I) is a Gorenstein scheme and that Spec(I) is normal (see
[H10c] §3.1 for more explanation).
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If we interpolate L-values adding the cyclotomic variable, i.e, adding
a variable s interpolating L(m,Ad(ρP )) varying integer m, we need to
multiply the L-value by a nontrivial modifying Euler p-factor. For this
enlarged two variable adjoint L-function, the modifying factor vanishes
at s = 1; so, Lp(s, Ad(ρI)) has an exceptional zero at s = 1, and for an

L-invariant 0 6= Lan(Ad(ρI)) ∈ I[ 1
p
], we expect to have L′

p(1, Ad(ρI))
?
=

Lan(Ad(ρI))Lp (in the style of Mazur–Tate–Teitelbaum). Greenberg
proposed a definition of a number L(Ad(ρP )) conjectured to be equal
to Lan(Ad(ρP )) for arithmetic P . We can interpolate Greenberg’s L-
invariant L(Ad(ρP )) over arithemtic P to get a function L(Ad(ρI)) 6= 0
in I[ 1

p
] so that L(Ad(ρI))(P ) = L(Ad(ρP )) for all arithmetic P .

1.2. Examples of characterization. Here is a list of such character-
izations (possibly conjectural):

• A cuspidal I has CM⇔ cuspidal I is a CM component ⇔ there
exist an imaginary quadratic field M = Q[

√
−D] in which p

splits into pp and a character Ψ = ΨI : GM = Gal(Q/M) → Ĩ×

of conductor cp∞ for an ideal c with ccDM |N such that ρI
∼=

IndQ
M Ψ, where DM is the discriminant of M and Spec(̃I) is the

normalization of Spec(I). This should be well known; see [H11]

(CM1–3) in §1. This implies Lp = Lp(Ψ
−)L(0,

(
M/Q

)
), where

Ψ−(σ) = Ψ(cσc−1σ−1) for complex conjugation c, and Lp(Ψ
−)

is the anticyclotomic Katz p-adic L-function associated to Ψ−.
This is a base of the proof by Mazur/Tilouine (e.g., [T89] and
[MT90]) of the anticyclotomic main conjecture, different from
the one given by Rubin [Ru91] and [Ru94] via Euler system.
• I has CM ⇔ ρP has CM for a single arithmetic prime P . By

Ribet [Ri85], if ρP has CM, ρP has complex multiplication or
Eisenstein. Then P has to be on a CM component or on an
Eisenstein component(see [H10d] Sections 3 and 4).
• I has CM ⇔ ρI mod p has CM. This is almost equivalent to

the vanishing of the Iwasawa µ-invariant for Lp(Ψ
−) (which is

known if c is made up of primes split over Q; see [H10a] and
[H10b]). This is a main result in [H10d].
• (Strong vertical conjecture in [H11]) Consider the field Vr(I) ⊂

Q generated by aP (p) for all arithmetic P with level ≤ Npr+1

for a fixed r ≥ 0. Then I has CM ⇔ [Vr(I) : Q] < ∞. This
was a question of L. Clozel asked to me in the early 1990s.
This holds true if the family contains some weight 2 cusp form
whose abelian variety has good ordinary reduction modulo p
or more generally a weight k ≥ 2 cusp form whose motive is
potentially crystalline ordinary at p (see Theorem 3.21). Here
a crystalline motive is ordinary if its Newton polygon of the
crystalline Frobenius coincides with the Hodge polygon. By
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applying this crystalline-ordinary criterion, the family F∆ con-
taining Ramanujan’s ∆-function has V0(I) of infinite degree over
Q. In the 1970s, Y. Maeda made a conjecture asserting that
Q(a(p, f)) for any normalized Hecke eigenform in Sk(SL2(Z))
has degree equal to d := dimSk(SL2(Z)) with its Galois closure
having Galois group isomorphic to the symmetric group Sd of
d letters. This conjecture is numerically verified for p = 2 up to
weight ≤ 3000 and, of course, implies our conjecture if N = 1.
• (Strong horizontal theorem in [H11]) Fix k ≥ 1 and consider the

field Hk(I) generated by aP (p) over Q(µp∞) for all arithmetic
P with a fixed weight k ≥ 1. Then

I has CM ⇔ [Hk(I) : Q(µp∞)] <∞ (see Theorem 2.1).

• ρI restricted to the decomposition group Dp at p is completely
reducible ⇔ I has CM. This is the result of Ghate–Vatsal in
[GV05]. There is a conjecture by R. Greenberg asserting that
ρP |Dp for some arithmetic P is completely reducible ⇔ I has
CM (the local non-semisimplicity conjecture).
• (Constancy theorem) For cuspidal I, L(Ad(ρI)) is a constant

function over Spf(I) if and only if I is a CM component. This
is a corollary of Strong horizontal theorem, and we will give an
outline at the end of this series of lectures.
• (Wild guess) Does a cuspidal component I have CM by an imag-

inary quadratic field M if

L(Ad(fP )) = logp(p) (up to algebraic numbers)

for one arithmetic P for a prime factor p of p inM? Here taking
a high power ph = (α), logp(p) = 1

h
logp(α) for the Iwasawa

logarithm logp.
• (Another wild guess) If Q(fP ) = Q with k(P ) + 1 ≥ 28, I has

CM?

All statements seem to have good arithmetic consequences, and these
examples convinced the author importance of giving as many charac-
terizations of CM components as possible.
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2. Summary of our strategy

We will give a fairly detailed proof of the horizontal theorem tomor-
row. Today I describe the strategy.

2.1. A theorem. Pick an infinite set A of arithmetic points P with
fixed weight k(P ) = k ≥ 1. Write HA(I) ⊂ Q for the field generated
over Q(µp∞) by {aP(p)}P∈A. Here is what we can prove:

Theorem 2.1. The field HA(I) is a finite extension of Q(µp∞) if and
only if I is CM.

Hereafter we fix A and assume that [HA(I) : K] < ∞ for K :=
Q(µp∞). We try to prove that I is CM. Put K(fP ) = K[aP (n);n =
1, 2, . . . ] ⊂ Q. We add a lemma:

Lemma 2.2. Let K = Q(µp∞) and fix k ≥ 1. Then [K(fP ) : K(aP (p))]
for arithmetic P with k(P ) = k is bounded independently of P .

Proof. If σ ∈ Gal(Q/K[ψ1, ω]) fix aP (p), fσP is still ordinary Hecke
eigenforms of the same level and the same Neben character. The
number of such forms is bounded by rankZp[[T ]] h. Thus [K(fP ) :
K(aP (p))] ≤ [K[ψ1, ω] : K] rankZp[[T ]] h. �

For a prime l outsideNp, let A(l) be a root of det(X−ρI(Frobl)) = 0.
Then αl,P := (A(l) mod P ) is a root of X2 − aP (l)X +ψk(l)l

k(P ) = 0.
If l = p, we put A(l) = a(l). Fix l. Extending I, we assume that
A(l) ∈ I. By the above lemma, LP = K[αl,P ] has bounded degree
independent of l and P for all P ∈ A.

2.2. Weil numbers. We start preparing to give a proof of the theo-
rem. For a prime l, a Weil l-number α ∈ C of integer weight k ≥ 0
satisfies

(1) α is an algebraic integer; (2) |ασ| = lk/2 for all σ ∈ Gal(Q/Q).

It is plain that the number of Weil l-numbers of a given weight k in
Q(µp∞) is finite up to roots of unity. We call two nonzero numbers a
and b equivalent (written as a ∼ b) if a/b is a root of unity. Here is a
slight improvement of this fact:

Proposition 2.3. Let Kd be the set of all finite extensions of Q[µp∞]

of degree d inside Q whose ramification at l is tame. Then there are
only finitely many Weil l-numbers of a given weight in the set-theoretic
union

⋃
L∈Kd

L (in Q) up to equivalence.

2.3. A rigidity lemma. We start with a lemma whose characteristic
p version was studied by Chai:

Lemma 2.4. Let W be a p-adic valuation ring finite flat over Zp.
Let Φ(T ) ∈ W [[T ]], and suppose that there is an infinite subset Ω ⊂
µp∞(K) such that Φ(ζ − 1) ∈ µpr(ζ) for all ζ ∈ Ω, where pr(ζ) is the
order of ζ. Then there exists ζ0 ∈ µp∞(W ) and s ∈ Zp such that
ζ−1
0 Φ(T ) = (1 + T )s =

∑∞

n=0

(
s
n

)
T n.
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Here is a sketch of a proof. There is another more elementary proof
supplied to me by Kiran Kedlaya whose exposition will be made later.

Proof. Let t = 1+T and write Φ(t) instead of Φ(T ). Then by a variable
change t 7→ ζ ′0t for a suitable ζ ′0 ∈ µp∞ and dividing Φ by another p-
power root of unity, we may assume Φ(1) = 1. Then we regard Φ as a

morphism of formal schemes Ĝm → Ĝm. Then Φ(ζ) ⊂ µp∞(Qp) for all
ζ ∈ Ω. Then for any σ in an open subgroup Γ ⊂ Gal(W [µp∞]/W ) ⊂
Z×
p , we have Φ(ζσ) = σ(Φ(ζ)). Since Aut(Ĝm) = Z×

p ⊃ Γ, σ is induced
by t 7→ tz (z ∈ Γ), and Φ(t)z − Φ(tz) has infinite common zeros in Ω.
Thus Φ(tz) = Φ(t)z for all z ∈ Γ = 1+ pmZp. The graph Z of t 7→ Φ(t)

in Ĝm × Ĝm is therefore stable under the diagonal action of Z×
p . Pick

a point (t0,Φ(t0)) of infinite order in Z, then (t1+pmz
0 ,Φ(t1+pmz

0 )) =

(t1+pmz
0 ,Φ(t0)

1+pmz) = (t0,Φ(t0))(t0,Φ(t0))
pmz ∈ Z for all s ∈ Zp. Thus

Z has to be a coset of a formal subgroup generated by (t0,Φ(t0))
pm

.
Since (1, 1) ∈ Z, we conclude Z is a formal torus, and we find s ∈ Zp

with Φ(t) = ts. �

Extending I, we assume that I is integrally closed.

Proposition 2.5. Suppose [HA(I) : Q(µp∞)] < ∞. Fix a rational
prime l - N tamely ramified in LP /K for all P ∈ A (this is true for all
sufficiently large l). Then, for the discrete valuation ring W = I ∩Qp,

we have A in W [[T ]][(1 + T )1/pn

] ∩ I for some 0 ≤ n ∈ Z and a Weil
l-number α1 of weight 1 and a root of unity ζ0 such that A(P ) = αl,P =
ζ0〈α1〉k(P )−1 for all arithmetic P ; in other words, A(T ) = ζ0(1 + T )s

for s =
logp(α1)

logp(γ)
.

Proof. We give a sketch of a proof assuming I = W [[T ]]. By Lemma 3.9,
we have only a finite number of Weil l-numbers of weight k in

⋃
P∈A

LP
up to multiplication by roots of unity, and hence A(P ) for P ∈ A hits
one of such Weil l-number α of weight k infinitely many times, up to
roots of unity.

After a variable change T 7→ Y = γ−k(1+T )−1, we haveA(Y )|Y=0 =
A(T )|T=γk−1. Note that |α|p = 1. Let Ω1 = {εP (γ)|P ∈ A} which is an
infinite set in µp∞(K). Let Φ1(Y ) := α−1A(Y ) = A(γ−k(1 + T )− 1) ∈
W [[Y ]]. The subset Ω2 of Ω1 made up of ζ ∈ Ω1 such that Φ1(ζ−1) is a
root of unity is an infinite set. We thus find an infinite subset Ω ⊂ Ω2

and a root of unity ζ1 such that {Φ1(ζ − 1)|ζ ∈ Ω} ⊂ ζ1µp∞(K).
Then Φ = ζ−1

1 Φ1 satisfies the assumption of Lemma 3.13, and for
a root of unity ζ, we have A(Y ) = ζα(1 + Y )s1 for s1 ∈ Zp, and
A(T ) = ζα(γ−k(1 + T ))s1. From this, it is not difficult to determine s1

as stated in the proposition. �

2.4. Proof of the theorem. We start with a couple of preliminary
results. Consider the endomorphism σs : (1 + T ) 7→ (1 + T )s =∑∞

n=0

(
s
n

)
T n of a power series ring W [[T ]] for s ∈ Zp.
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Lemma 2.6. Let A be an integral domain over W [[T ]] of character-
istic different from 2. Assume that the endomorphism σ2 on W [[T ]]
extends to an endomorphism σ of A. Let ρ : Gal(Q/F ) → GL2(A) be
a continuous representation for a field F ⊂ Q, and put ρσ := σ ◦ ρ. If
Tr(ρσ) = Tr(ρ2). Then ρ is absolutely reducible over the quotient field
Q of A.

Heuristically, the assumption implies that σ 7→ ρ2(σ) is still a rep-
resentation; so, it has to have an abelian image. We can make this
argument rigorous.

Proof of Theorem 2.1. For simplicity, assume that ρI has values
in GL2(I). Let K := Q(µp∞) and LP = K(αl,P ) for a prime l. We
need to prove that [HA(I) : K] <∞⇒ F has complex multiplication.
Thus suppose [HA(I) : K] < ∞. For each arithmetic P with k(P ) =
k, by Lemma 3.2, [K(fP ) : K(aP (p))] < d for a positive integer d
independent of P . Thus [LP : K] < 2d[HA(I) : K] for each prime
l. Therefore, any odd prime l > 2d[HA(I) : K] is at most tamely
ramified in LP/K. Take such an odd prime l > 2d[HA(I) : K] prime
to Np. Let ρ : Gal(Q/Q) → GL2(I) be the Galois representation
associated to F . Thus by Proposition 3.14, we have Tr(ρ(Frobl)) =
ζ(1+T )a+ζ ′(1+T )a

′

for two roots of unity ζ, ζ ′ and a, a′ ∈ Qp. Take an
arithmetic Q with r(Q) = 1. Note that ζ, ζ ′ is at most in a quadratic
extension of Q(fQ) which is a finite extension of Q; so, the order of ζ, ζ ′

is bounded independently of l. Let mN = mN
I +(T ) and ρ = ρ mod mN

for a sufficiently large N and F be the splitting field of ρ. We have
Tr(ρ(Frobl)) = ζf (1 + T )fa + ζ ′f(1 + T )fa

′

and ρ(Frobl) ≡ 1 mod mN

(so ζf ≡ 1 mod mN ) for a prime l|l of F of residual degree f . Since

ζf ≡ 1 mod mN , by taking N large, we may assume that ζf = ζ ′f =
1. This shows Tr(σs(ρ(Frobl))) = Tr(ρ(Frobl)

s) for all 0 6= s ∈ Zp.
Thus by Chebotarev density theorem, we get Tr(σs ◦ ρ) = Tr(ρs) over
G = Gal(Q/F ). Then by the above lemma, ρss|G is abelian, and hence
I is CM. �
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3. Horizontal theorem

First we give more details of the tools which will be used in the proof
of

Theorem 3.1. Pick an infinite set A of arithmetic points P with fixed
weight k(P ) = k ≥ 1. Write HA(I) ⊂ Hk(I) for the field generated
over K := Q(µp∞) by {aP (p)}P∈A. Then the field HA(I) is a finite
extension of K if and only if I has CM. Moreover if I is not CM,

lim sup
P∈A

[K(aP (p)) : K] =∞.

We prepare a lemma:

Lemma 3.2. Let F be a slope 0 p-adic analytic family of Hecke eigen-
forms with coefficients in I. Then we have

(1) Fix 0 ≤ r < ∞. Let K = Q. Then the degree [K(fP ) :
K(aP (p))] for arithmetic P with r(P ) ≤ r is bounded inde-
pendently of P ,

(2) Let K = Q(µp∞) and fix k ≥ 1. Then the degree [K(fP ) :
K(aP (p))] for arithmetic P with k(P ) = k is bounded indepen-
dently of P .

Proof. If σ ∈ Gal(Q/K[ψ1, ω]) fix aP (p), fσP is still ordinary Hecke
eigenforms of the same level and the same Neben character. The num-
ber of such forms is bounded by rankZp[[T ]] h. Thus

[K(fP ) : K(aP (p))] ≤ [K[ψ1, ω] : K] rankZp[[T ]] h.

�

Hereafter we fix A and assume that [HA(I) : K] < ∞ for K :=
Q(µp∞). We try to prove that I has CM. Put K(fP ) = K[aP (n);n =
1, 2, . . . ] ⊂ Q. For a prime l outside Np, let A(l) be a root of det(X −
ρI(Frobl)) = 0. Then αl,P := AP (l) is a root of X2 − aP (l)X +
ψk(l)l

k(P ) = 0. If l = p, we put A(l) = a(l). Fix l. Extending I,
we assume that A(l) ∈ I. By the lemma, LP = K[αl,P ] has bounded
degree over K independent of l and P for all P ∈ A; so, l is tamely
ramified in LP /K for l � 0.

3.1. Weil number. We start preparing for a proof of the theorem.
In this section, we gather some results on Weil numbers. Here is
an example of natural appearance of Weil numbers. For any Hecke
eigenform f ∈ Sk+1(Γ0(Np

r+1), ψ) with f |T (l) = alf , if l is prime to
Np, then the roots of X2 − alX + ψ(l)lk = 0 are Weil numbers of
weight k. When k = 1 (that is, for weight 2 cusp forms), the Hasse–
Weil conjecture for X1(N) and the Ramanujan–Petersson conjecture
were proven by Shimura by computing L(s,X1(N)) as a product of
L(s, f) for Hecke eigenforms of weight 2 on X1(N) via the roots α, β
of X2 − alX + ψ(l)l = 0 (see [Sh58] and [IAT] §7.5) and then reduc-
ing the proof of |α| = |β| =

√
p to the work of Weil for curves. For
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higher weight modular forms, Deligne went a similar path to prove
the Ramanujan–Petersson conjecture, reducing it to his proof of Weil’s

conjecture for the fiber product

k−2︷ ︸︸ ︷
E×X E×X · · · ×X E (see [D69] and

also [Sc90]). Thus one expects to have Weil number of weight k even
for Hecke eigenvalues of U(p) for a cusp form of weight k + 1 ≥ 2, as
“old” Hecke eigenform level p added to the original level p - N has α or
β as U(p)-eigenvalue. This is not always true for eigenforms properly of
level Npr+1 (r ≥ 0) called primitive forms. For example, if pr+1 is big-

ger than the p-conductor of ψ, then ap could be 0 or ±
√
ψ0(p)p

(k−1)/2

for the primitive character associated to ψ if ψ is imprimitive at p; so,
Weil number of weight k − 1).

On the other hand, if ψ has p-conductor pr+1 (with r ≥ 0), writing
f |U(p) = ap · f , ap is a Weil number of weight k. This fact can be
found in [MFM] Theorem 4.6.17). In this case, the proof is elementary
without recourse to arithmetic geometry.

By these facts, Weil numbers have intimate relation to Diophantine
geometry; so, it is natural to ask how often we find such numbers in a
given algebraic number field of finite or infinite degree over Q. This is
what we study here. Here are two easy lemmas:

Lemma 3.3. Let K/Q be a finite extension of Q in C stable under the
“complex conjugation” c (so, write c ∈ Aut(K) for the field automor-
phism induced by the complex conjugation). If for any field embedding
σ : K ↪→ C, we have c ◦ σ = σ ◦ c, K is a totally imaginary quadratic
extension of a totally real field (in short, a CM field). In particular, if
α is a Weil number, Q(α) is contained in a CM field.

Exercise 3.4. Prove the above lemma.

Here is another lemma due to Kronecker:

Lemma 3.5. If ζ is a Weil number of weight 0, then there exists a
positive integer N such that ζN = 1.

Exercise 3.6. (1) First prove that a discrete subset of a compact
set is finite.

(2) For a non-real Weil number ζ of weight 0, consider the field
K = Q(ζ). Show that 2

∣∣[K : Q].

(3) Show that KR := K⊗QR is isomorphic to Cd for d = [K : Q]/2.
(4) Consider Cd ⊂ Cd = KR for C =

{
z ∈ C

∣∣|z| = 1
}
. Show that

the subgroup generated G by the image of ζ in Cd is discrete.
(5) Using (1), show that G is a finite group, proving the above

lemma.

We call two nonzero algebraic numbers a and b equivalent (written
as a ∼ b) if a/b is a root of unity.

Lemma 3.7. Let K be a finite field extension of Q(µp∞) inside Q.
Then for a given prime l and weight k ≥ 0, there are only finitely
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many Weil l-numbers of weight k in K up to equivalence. If K =
Q(µp∞) and there is only one prime in Z[µp∞ ] above (l) (for example,
if l = p), any Weil l-number of weight k is equivalent to (l∗)k/2 (as long
as (l∗)k/2 ∈ Q[µp∞]), where l∗ = (−1)(l−1)/2l if l is odd, and l∗ = 2 if
l = 2.

An analytic result of Loxton confirms that, up to equivalence, there
are only finitely many Weil l-numbers of a given weight in the maximal
abelian extension Qab of Q (see [L74] Lemma 7). We now give an
algebraic proof.

Proof. The decomposition group of each prime l is of finite index in
Gal(K/Q) (identifying Gal(K/Q) ∼= Z×

p by the p-adic cyclotomic char-
acter, the decomposition group is generated by l if l 6= p, and oth-
erwise l = p, p is fully ramified in Q[µp∞]; see [ICF] Chapter 2); so,
there are only finitely many primes L of Z[µp∞ ] above (l). Thus for
a Weil l-number α of weight k, there are only finitely many possibil-
ities of prime factorization of (α) if l 6= p. If (α) = (β) for two Weil
l-numbers α, β, then α/β is a Weil number of weight 0; so, α ∼ β by
Kronecker’s theorem (Lemma 3.5). If there is only one prime over l in

Z[µp∞], any Weil l-number of weight k is equivalent to (l∗)k/2, as long
as (l∗)k/2 ∈ Q[µp∞]. Thus the result follows from this if K = Q(µp∞).

Let W (l, k) (resp. WK(l, k)) be a complete set of representatives of
Weil l-numbers in Q(µp∞) (resp. in K) of weight k under the equiv-
alence. By the above argument, W (l, k) is a finite set, and we want
to prove that WK(l, k) is finite. Write d = [K : Q(µp∞)]. If α ∈ K
is such a Weil l-number, then NK/Q(µp∞)(α) is equivalent to a number
in W (l, kd). Thus NK/Q(µp∞) induces a map N : WK(l, k)→ W (l, dk).
Write L for the field generated by elements in W (l, dk). Then L/Q
is a finite abelian extension in Q(µp∞). Since no prime completely
splits in Q(µp∞), the decomposition subgroup D of l in Gal(K/Q) is
an open subgroup of finite index. Thus there are only finitely many
valuations v of K with v(l) = 1. Let V be the set of valuations v of
K with v(l) = 1, which is a finite set. For v ∈ V and α ∈ WK(l, k),
v(α) ∈ [0, k]∩d−1v(L), because NK/Q(µp∞)(α) is in W (l, dk) up to roots
of unity. Let V :=

∏
v∈V ([0, k] ∩ d−1v(L)), which is a finite set. We

have a map ordl : WK(l, k) → V sending α to ordl(α) = (v(α))v∈V . If
ordl(α) = ordl(β) (α, β ∈ WK(l, k)), then α/β is an algebraic integer
with complex absolute value |(α/β)σ| = 1 for all σ ∈ Gal(Q/Q); so, by
Kronecker’s theorem (Lemma 3.5), α ∼ β. Thus ordl is an injection,
proving the finiteness of WK(l, k). �

To prove an improvement of the above fact, we first state a lemma:

Lemma 3.8. Let K = Ql[µp∞ ] inside Ql, and let Kt/K (resp. Kur/K)
be the maximal tamely l-ramified extension (resp. the maximal unram-
ified extension inside Kt). Then we have Kt has the l-inertia group
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isomorphic to Ẑ(l)(1), where Ẑ(l)(1) = lim←−l-N µN (Ql) as Gal(Kur/Ql)-

modules, and we have

(3.1) Gal(Kt/K) ∼=
{

Ẑ(p) n Ẑ(l)(1) if l 6= p,

Ẑ n Ẑ(l)(1) if l = p

a semi-direct product with Gal(Kt/K) . Ẑ(l)(1), and

Gal(Kur/K) ∼=
{

Ẑ(p) if l 6= p,

Ẑ if l = p.

In particular, for a given d > 0, there are finitely many extensions in
Kt/K of degree ≤ d.

A proof can be found in most books on algebraic number theory.

Proposition 3.9. Let Kd be the set of all finite extensions of Q[µp∞]
of fixed degree d inside Q whose ramification at l is tame (i.e., the
ramification index over Q[µp∞] is prime to l). Then there are only
finitely many Weil l-numbers of a given weight, up to equivalence, in
the set-theoretic union

⋃
L∈Kd

L in Q.

The point of the proof is as follows. Writing K = Q[µp∞] and Kl =
K ⊗Q Ql, by tameness, there are only finitely many isomorphism class
of K ⊗Q Ql-algebras Ll = L ⊗Q Ql for L ∈ Kd. Thus we only need to
prove finiteness for Weil numbers of a given weight contained in a fixed
isomorphism class of Ll. We look at the universal composite Ll ⊗Kl

Ll
which is a product of fields indexed by l-adic nonequivalent normalized
valuations v1, . . . , vn. Indeed, for any composite X of two copies of Ll
embedded as Kl-algebras inside a commutative semi-simpleKl-algebra,
a ⊗ b 7→ a · b ∈ X extends to a surjective algebra homomorphism
Ll ⊗Kl

Ll → X by the universality of tensor product. Considering
Ll ⊗Kl

Ll, we can think of any possible composite containing α and
β. Another important point is the the simple components of Ll ⊗Kl

Ll
are indexed by equivalence classes of valuations vis (see [BCM] VI.8).
These facts in mind, consider a tuple

V (α) = (v1(α⊗ 1), . . . , vn(α⊗ 1), v1(1⊗ α), . . . , vn(1⊗ α)).

If α ∼ β, we have V (α) = V (β). The tuple V (α) determines the prime
factorization of (α) in any possible composite K(α, β); so, if V (α) =
V (β), (α) = (β) in K(α, β); so, by Kronecker’s theorem (Lemma 3.5),
α ∼ β. Since there are only finitely many possibilities of V (α), there
are only finitely many classes.

Exercise 3.10. (1) For finite extensions K and L of Q, prove that
the algebra K ⊗Q L is a product of finite extensions generated
by the image of K and the image of L.

(2) Prove that any field generated by two fields one isomorphic to
K and another isomorphic to L is isomorphic to a simple fctor
of K ⊗Q L.
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It is not very difficult to prove

Lemma 3.11. Let K? be one of KL, KG and Kd. Suppose K? 6= ∅.
Then the group of roots of unity in the composite L of L for L ∈ K? in
Q contains µp∞(K) as a subgroup of finite index.

Exercise 3.12. Prove the above lemma.

By this lemma, we can replace the equivalent α ∼ β by finer one
α ≈ β requiring α/β ∈ µp∞, and still the finer equivalence classes in
the union

⋃
L∈Kd

L of Weil l-numbers of a given weight is finite.

3.2. A rigidity lemma. We start with a rigidity lemma:

Lemma 3.13. Let Φ(T ) ∈ W [[T ]]. If there is an infinite subset Ω ⊂
µp∞(K) such that Φ(ζ − 1) ∈ µp∞(Qp) for all ζ ∈ Ω, then there exists

ζ0 ∈ µp∞(W ) and s ∈ Zp such that ζ−1
0 Φ(T ) = (1+T )s =

∑∞

n=0

(
s
n

)
T n.

By the assumption, for s ∈ Z×
p sufficiently close to 1, ζ 7→ ζs is

an automorphism of W [[µp∞]] over W ; so, Φ(ζs − 1) = Φ(ζ − 1)s ⇔
Φ(ts−1) = Φ(t−1)s (t = 1+T ), and the power series is the desired form
as stated in a remark of Chai [C03] Remark 6.6.1 (iv) (see also [C08]).
Here is another elementary proof supplied to me by Kiran Kedlaya (a
proof following Chai can be found in [H11] §5).
Proof. Making variable change T 7→ ζ−1

1 (T + 1) − 1 for a ζ1 ∈ Ω (re-
placing W by its finite extension if necessary), we may replace Ω by
ζ−1
1 Ω 3 1; so, rewriting ζ−1

1 Ω as Ω, we may assume that 1 ∈ Ω. Note
t = 1⇔ T = 0.

Write the valuation of W as v (and use the same symbol v for an
extension of v to W [µp∞]). Normalize v so that v(p) = 1. We are trying
to show that Φ(T ) = (1+T )sζ ′ for some s ∈ Zp and some p-power root

of unity ζ ′. Anyway, we write Φ(0) = ζ ′ ∈ µp∞(Qp). Replacing Φ by

ζ ′−1Φ (and extending the scalar to a finite extension of W if necessary),
we may assume that Φ(0) = 1.

Suppose that Φ(T ) 6∈W (non-constant). Write Φ(T )−1 =
∑

∞

i=1 aiT
i.

Since W is a DVR, there is a least index j > 0 for which v(aj) is mini-
mized. For ε sufficiently small, if v(τ ) = ε, then v(Φ(τ )−1) = v(aj)+jε.
In particular, for ζ a p-power root of unity, taking τ = ζ − 1, we have
v(ζ − 1) = p−m/(p − 1) for some non-negative integer m, so we have
infinitely many relations of the form jp−m/(p−1)+v(aj) = p−n/(p−1).
Then, we have m → ∞ ⇒ n → ∞ (by continuity and non-constancy
of τ 7→ Φ(τ )); so, taking limits under m→∞ yields v(aj) = 0. Also, j
must be a power of p, say j = ph, and for m large we have n = m− h.

Since v(aj) = 0, aj mod mW is in F×. For the moment, assume
F = Fp. That is, aj reduces to an integer b0 coprime to p in the
residue field of W . We can thus replace Φ(T ) by Φ1(T ) defined by
Φ(T ) = Φ1(T ) × (1 + T )s for some s (namely s = b0j = b0p

h0 for
h0 := h) so as to increase the least index j for which v(aj) = 0. Indeed,
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writing Φ(T ) =
∑j

n=0 anT
n + T j+1f(T ) with f(T ) ∈W [[T ]], we have

j∑

n=0

anT
n ≡ 1+ b0T

ph0 ≡ (1+T p
h0

)b0 ≡ (1+T )s mod (mW +(T j+1)).

we have Φ1(T ) ≡ 1 + T j+1f(T )(1 + T )−s ≡ 1 mod (mW + (T j+1)).
Thus if we write j1 for the j for this new Φ1, j1 > j, and j1 = ph1

with h1 > h0 and aj1 ≡ b1 mod mW for b1 ∈ Z. Repeating this, for
s =

∑∞

k=0 bkp
hk ∈ Zp, Φ(T )/(1 + T )s − 1 =

∑
n=1 anT

n no longer
has a least j with minimal v(aj); so, Φ(T )/(1 + T )s = 1, and we get
Φ(T ) = (1 + T )s.

Suppose now that F 6= Fp. We have the Frobenius automorphism
φ fixing Zp[µp∞] ⊂ W [µp∞]. Letting φ act on power series through
coefficients by (

∑
n anT

n)φ =
∑

n a
φ
nT

n, we find Φφ(tφ) = Φ(t)φ. Since
Φ(ζ − 1) is a p-power root of unity for ζ in a infinite set Ω ⊂ µp∞ , we

have Φφ(ζ − 1) = Φφ(ζφ− 1) = Φ(ζ − 1)φ = Φ(ζ − 1). Since Ω ⊂ Ĝm is
Zariski dense, we find that Φφ = Φ, which shows Φ ∈ W φ[[T ]] for the
subring W φ fixed by φ. Note that the residue field of W φ is Fp, and
the earlier argument applies to Φ ∈W φ[[T ]]. �

Extending I to its integral closure, we assume that I is integrally

closed. For a prime l, we write H(l)
A

(I) for the subfield generated by

αl,P ∈ Q for all P ∈ A. We simply write HA(I) = H(p)
A

(I). Recall
LP = Q[µp∞][αl,P ].

Proposition 3.14. Fix a rational prime l - N either l = p or tamely

ramified in LP /Q[µp∞] for all P ∈ A. Suppose [H(l)
A (I) : Q(µp∞)] <∞.

Then, for W = I∩Qp, we have A(l) in W [[T ]][t1/p
n

]∩ I (t = 1+T ) for
some 0 ≤ n ∈ Z, and there exists a Weil l-number α1 of weight 1 and a
root of unity ζ0 such that AP (l) = αl,P = ζ0(εP (γ))logp(α1)/ logp(γ)〈α1〉k(P )

for all arithmetic P ; in other words, A(l)(T ) = ζ0(1 + T )s for s =
logp(α1)

logp(γ)
.

Proof. In this lecture, we give a proof assuming I = Λ = W [[T ]], refer-
ring to [H11] of Proposition 5.2 for a proof dealing with the general case.
Let A = A(l). By Proposition 3.9 (and a remark after Lemma 3.11), we
have only a finite number of Weil l-numbers of weight k in

⋃
P∈A

LP up
to multiplication by roots of unity in µp∞(K), and hence AP for P ∈ A
hits one of such Weil l-number α of weight k infinitely many times, up
to p-power order roots of unity, unless the automorphic representation
generated by fP is Steinberg at l 6= p. If fP0 is Steinberg at l 6= p for
one arithmetic P0, then l is a factor of N ; so, this case is excluded by
our assumption l - N (though this case can be also treated; see [H11]
Proposition 5.2). The automorphic representation generated by fP for
arithmetic P has l-component in principal series if l - N or k(P ) > 2
(as Steinberg case for p is limited to k(P ) = 1, otherwise, as already
explained, the U(p) eigenvalue is p(k(P )−1)/2 up to roots of unity or 0
which is not a p-adic unit, against ordinarity at p).
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After a variable change T 7→ Y = γ−k(1+T )−1, we get A(Y )|Y=0 =
A(T )|T=γk−1. Note that |α|p = 1. Let Ω1 = {εP (γ)|P ∈ A} which is
an infinite set in µp∞(K). Let Φ(Y ) := α−1A(Y ) = α−1A(γ−k(1 +
T ) − 1) ∈ W [[Y ]]. The subset Ω of Ω1 made up of ζ ∈ Ω1 such that
Φ(ζ − 1) ∈ µp∞(K) is an infinite set. Then Φ satisfies the assumption
of Lemma 3.13, and for a root of unity ζ, we have A(Y ) = ζα(1 +Y )s1

for s1 ∈ Zp, and A(T ) = ζα(γ−k(1 + T ))s1. Let T = ζ ′γk
′ − 1 for

ζ ′ ∈ µp∞(K). Then A(ζ ′γk
′ − 1) = ζα(ζ ′γ−k+k

′

)s1, which is equal to
a Weil l-number of weight k′. To get the expression of s as in the
proposition, take k′ > 1. Then

α1 :=
A(γk

′ − 1)

A(γk′−1 − 1)
=

ζα(ζ ′γ−k+k
′

)s1

ζα(ζ ′γ−k+k′−1)s1
= γs1 ,

which is an algebraic number α1 independent of k′. Note that for k′ > 1,
α1 is a ratio of Weil l-numbers of weight k′− 1 and k′, and hence α1 is

not a root of unity. Thus we have s1 =
logp(α1)

logp(γ)
. We now equate

ζζαγ
logp(α)/ logp(γ)(γ−k(1 + T ))logp(α1)/ logp(γ) = ζ0(1 + T )logp(α1)/ logp(γ),

where α = ζαγ
logp(α)/ logp(γ) for roots ζα and ζ0 of unity. By putting

T = 0, we get

ζζαγ
logp(α)/ logp(γ)−k(logp(α1)/ logp(γ)) = ζ0,

which shows

ζ0 = ζζα and ks1 = logp(α)/ logp(γ).

We conclude α1 = k
√
〈α〉 for 〈α〉 = αζ−1

α , which is a Weil l-number of
weight 1. �

3.3. Proof of Theorem 3.1. Consider the W -algebra endomorphism
σs : (1 + T ) 7→ (1 + T )s =

∑∞

n=0

(
s
n

)
T n of Λ for s ∈ Zp.

Lemma 3.15. Let A be an integral domain over Λ. Assume that σ2 ∈
Aut(Λ/W ) extends to an endomorphism σ of A. Let ρ : Gal(Q/F ) →
GL2(A) be a continuous representation for a field F ⊂ Q, and put
ρσ := σ ◦ ρ. If Tr(ρσ) = Tr(ρ2). Then ρ is absolutely reducible over the
quotient field Q of A.

Proof. Suppose that ρ is absolutely irreducible over Q, and try to get
absurdity. We have the identity Tr(ρσ) = Tr(ρ2) = Tr(ρsym⊗2)−det(ρ)
for the symmetric second tensor representation ρsym⊗2 of ρ.

Exercise 3.16. Prove Tr(ρ2) = Tr(ρsym⊗2)− det(ρ)

Over Q, by absolute irreducibility, we have the identity of semi-
simplification: (ρsym⊗2)ss ∼= ρσ ⊕ det(ρ). Tensoring det(ρ)−1, we get
Ad(ρ)ss ∼= (ρσ ⊗ det(ρ)−1)⊕ 1. Since Ad(ρ) is self-dual, as Gal(Q/F )-
modules, we have 1 ↪→ Ad(ρ). In other words, we have a non-trivial
element 0 6= φ ∈ EndA[H ](ρ) for H = Gal(Q/F (ρI)) such that Tr(φ) =
0. Since ρ is absolutely irreducible, φ has to be a scalar multiplication
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by z ∈ A× by Schur’s lemma; so, Tr(φ) = 2z 6= 0, a contradiction
(unless A has characteristic 2 which is impossible as p > 2). �

Here is a well known lemma called Steinitz’s theorem:

Lemma 3.17. Let Q be a field with a field automorphism σ and Q be
an algebraic closure of Q. Then σ extends to an automorphism of Q.

Let Q be now the field of fractions of I and fix an algebraic closure
Q of Q. We need one more fact from ring theory.

Lemma 3.18. Suppose I is isomorphic to one variable power series
ring ΛX := W [[X]]. If L ⊂ V be a ΛX-submodule of finite type spanning

V over Q, then the intersection L̃ of all ΛX-free submodules of V of
rank equal to dimV is free ΛX-module of rank equal to dimV .

We call L̃ the reflexive closure of L (cf. [BCM] VII.4.2).

Proof of Theorem 3.1. For simplicity, we assume that I ∼= ΛX =
W [[X]] (see [H11] §6 for the treatment in general). The Galois repre-
sentation ρI : Gal(Q/Q) → GL2(Q) is continuous and hence has com-
pact image. Then Im(ρI) · I2 is a compact set covered by finitely many
open subsets λiI2 with λi ∈ Q× as the neighborhoods of 0 in M2(Q) is
given by {λ ·Λ2}λ∈Q×. Thus L =

∑
σ∈Gal(Q/Q) ρI(σ)I2 is a I-submodule

of finite type of V = Q2 spanning V over Q. Take the reflexive closure

L̃. For σ ∈ Gal(Q/Q), ρ̃I(σ)L = ρI(σ)L̃ as L̃ is uniquely determined

by L; so, L̃ is stable under the Galois action. By Lemma 3.18, L̃ is free
I-module of rank 2; so, writing ρI in a matrix form, we may assume
that ρI has values in GL2(I).

Let K := Q(µp∞) and LP = K(αl,P ) for a prime l. We need to
prove that [HA(I) : K] < ∞⇒ F has CM; so, let us suppose [HA(I) :
K] < ∞. For each arithmetic P with k(P ) = k, by Lemma 3.2,
[K(fP ) : K(aP (p))] < d for a positive integer d independent of P . Thus
[LP : K] < 2d[HA(I) : K] for each prime l. Therefore, any odd prime
l > 2d[HA(I) : K] is at most tamely ramified in LP/K. Take such an
odd prime l > 2d[HA(I) : K] prime toNp. Let ρ : Gal(Q/Q)→ GL2(I)
be the Galois representation associated to F . Thus by Proposition 3.14,
we have Tr(ρ(Frobl)) = ζ(1 + T )a + ζ ′(1 + T )a

′

for two roots of unity
ζ, ζ ′ and a, a′ ∈ Qp.

Take an arithmetic P0 ∈ Spec(I)(Qp) to see the order of ζ is bounded

independent of l. Let α be a root of det(X − ρP0(Frobl)) = 0 in Qp.

Then [Q(fP0, α) : Q(fP0)] ≤ 2. Write m = [Q(fP0) : Q], ζ = ζpζ
(p) with

ζp ∈ µp∞ and ζ(p) of order prime to p. Write R for the integer ring of
Q(fP0, α); so, 2m ≥ dimFp R/pR. Since (1+T )s ≡ 1 mod mI, the order

of ζ(p) is bounded by p2m. Note that P0((1+T )a) = (1+T )a mod P0 is
in a finite extension L of Qp depending only on the denominator pn of a.

For example, if P0 contains (1+T )−γk, L ⊂ Qp[γ
a] = Qp[

pn
√

(1 + p)] ⊂
Qp[

pB
√

(1 + p)] for γ = 1 + p, where B > 0 is an integer such that apB
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abd a′pB is in Zp (which can be chosen independently of l) . We have
ζp ∈ L[ζp] whose degree is bounded by 2m[L : Qp]; so, the order of ζp
is also bounded independent of l. Replacing W by its finite extension,
we may assume that all such roots of unity are in W .

Let mN = mN
I + (T ) and ρ = ρ mod mN for a sufficiently large

N and F be the splitting field of ρ. We have Tr(ρ(Frobl)) = ζf (1 +

T )fa + ζ ′f(1 + T )fa
′

and ρ(Frobl) ≡ 1 mod mN (so ζf ≡ 1 mod mN )
for a prime l|l of F of residual degree f . Since ζf ≡ 1 mod mN ,

by taking N large, we may assume that ζf = ζ ′f = 1. This shows
Tr(σs(ρ(Frobl))) = Tr(ρ(Frobl)

s) for all 0 6= s ∈ Zp. Thus by Cheb-
otarev density theorem, we get Tr(σs◦ρ) = Tr(ρs) over G = Gal(Q/F ).
In Lemma 3.15, take A = Q (so, σ2 ∈ Aut(Λ) extends to an automor-
phism of Q by Lemma 3.17 and the lemma is applicable). Then ρss|G
is abelian, and hence I has CM.

We give here an outline of the proof of converse and referring to
the research article [H11] for details. Suppose that F = FI has CM;
so, it has complex multiplication by an imaginary quadratic extension
M/Q in Q as explained in §1.2. We then find a continuous character

Ψ : Gal(Q/M) → Ĩ× with ρI
∼= IndQ

M Ψ for the normalization Ĩ of
I. By Galois deformation theory, we show that ΨP = Ψ mod P for
the arithmetic P of weight k is associated to a Hecke character λP
of conductor at most Np∞ such that ΨP (Frobl) = λP (l) for primes
l - Np and λP ((α)) = ζαk up to roots of unity ζ ∈ µmp∞ for a bounded
m. Thus choosing a complete representative set {aj}j=1,...,h of ideal
classes of M , taking a generator αj of ahj , we find that Q(µp∞)(fP ) ⊂
Q(αl,P )k(P )=k,l:non-inert ⊂ Q(µp∞h)[α

1/h
j |j = 1, . . . , h] which is a finite

extension of Q[µp∞] containing Hk(I).
Now we prove, unless F has complex multiplication

lim sup
P∈A

[K(a(p, fP )) : K] =∞.

Indeed, if lim supP [K(a(p, fP )) : K] < ∞, the index [LP : K] (P ∈ A)
is bounded for A ∈ I as in Proposition 3.14. Thus we can still apply
the above proof and conclude that F has complex multiplication. �

Exercise 3.19. (1) For a finite extension F of Q, show that there
are only finitely many root of unity in F .

(2) For a finite extension F of Qp, show that there are only finitely
many root of unity in F .

3.4. Vertical Version. Let F = FI be a cuspidal p-adic analytic fam-
ily of p-ordinary Hecke eigen cusp forms of slope 0. Let QV,r(F) be
the subfield of Q generated by a(n, fP ) for all n and all arithmetic
P ∈ Spec(I)(Qp) with r(P ) ≤ r. In the early 1990s, L. Clozel asked
the author if (or when) the Hecke field QV,r(F) for a finite r is a finite
extension of Q. At the time, for a scarcity of examples, my answer
was “probably” that it is finite if and only if the family contains a CM
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theta series (i.e., a binary theta series) of weight k(P ) ≥ 2. We make
the following “vertical” conjecture.

Conjecture 3.20. Let A be an infinite set of arithmetic points with
bounded level r(P ) ≤ r for a fixed r ≥ 0. Let VA(I) be the field generated
over Q by {αp,P}P∈A, where P runs over all arithmetic points with
Im(εP ) ⊂ µpr for a fixed r. Then the field VA(I) is a finite extension
of Q for a fixed r < ∞ if and only if fP is a CM theta series for an
arithmetic P with k(P ) ≥ 1.

Pick a prime l different from p and write V (l)
A (I) for the field generated

by {αl,P , βl,P} for all P ∈ A, where P runs over all points in A. We
give an outline of a proof in [H11] of

Theorem 3.21 (Vertical theorem). Let r be a non-negative integer.
For an infinite set A of arithmetic points P with bounded level r(P ) ≤ r
for an r ≥ 0, assume that VA(I) is a finite extension of Q. If there
exists an arithmetic point P0 ∈ A with k(P0) ≥ 1 such that

(1) α0 = aP0(p) is a Weil number,
(2) Σα0 =

{
σ : Q(α0) ↪→ Q

∣∣|ip(ασ0)| = 1
}

is a CM type of Q(α0),
(3) VA(I) is generated by α0 over Q.

Then I has complex multiplication.

3.5. Results towards the vertical conjecture. Let Ar be the set
of all arithmetic points of Spec(I)(Qp) with r(P ) ≤ r.

Proposition 3.22. Let F = {fP}P∈Spec(I)(Qp) be a p-adic analytic fam-

ily of classical p-ordinary Hecke eigenforms and A ⊂ Spec(I)(Qp) be
an infinite set of arithmetic points P with r(P ) ≤ r for a fixed r ≥ 0.
Assume that for P0 ∈ A

(1) α0 = aP0(p) is a Weil number,
(2) Σα0 =

{
σ : Q(α0) ↪→ Q

∣∣|ip(ασ0)| = 1
}

is a CM type of Q(α0),
(3) VA(I) = Q(α0) is generated by α0 over Q.

Then there exist a Weil p-number α of weight 1 with |ip(α)|p = 1 such
that a(p, fP ) = ζ(εP (γ))logp(α)/ logp(γ)〈α〉k(P ) for a root of unity ζ for all
arithmetic P with k(P ) ≥ 1, where 〈α〉 = expp(logp(ip(α))) for the
Iwasawa logarithm logp.

Proof. In this lecture, to simply the argument, we only deal with the
case where M := VA(I) is an imaginary quadratic field and r = 0 (see
[H11] Proposition 7.2 for the general case). Take P ∈ A with k(P ) > 1.
Then αp,P is a Weil number of weight k(P ) > 1 with |αp,P |p = 1. Thus
(p) has to split in M ; so, (p) = pp in M . Thus Σαp,P

is made of single
element ι = ip|M , and for each k, there exists at most one Weil number
αk ∈ M of weight k (up to roots of unity in M) such that |αk|p = 1.

In M , (αk) = p
k for the prime ideal p of M corresponding to ip|M . Fix

such a k. Taking a k-th root α = k
√
αk, we have αl = αl up to roots of

unity for all l as (αl) = p
l.
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Since A is an infinite set, there exists an infinite sequence in A
P1, P2, · · · , Pn, . . .

with increasing weight k(P1) < k(P2) < · · · such that

(aPj
(p)) = p

k(Pj )

for all j > 0. Put

〈α〉 = exp(
1

k(P0)
logp(a(p, fP0)) = exp(logp(α)).

Since (aPj
(p)) = p

(k(Pj)), aPj
(p)/〈α〉k(Pj ) is a Weil number of weight 0,

that is, it is an algebraic integer with all its conjugates having absolute
value 1. Then by Kronecker’s theorem, we find aPj

(p) = ζPj
〈α〉k(Pj ) for

a root of unity ζPj
. Note that 〈α〉 is contained in a finite extension

M ′/M . Since there are finitely many roots of unity in M ′, we have
only finitely many possibilities of ζPj

. Therefore, replacing {Pj}j by
its subsequence, we find an infinite sequence P1, P2, · · · , Pn, · · · of in-
creasing weights such that aPj

(p) = ζ〈α〉k(Pj ) for all j = 1, 2, . . . for
a fixed root of unity ζ. We have a power series Φα(T ) ∈ W [[T ]] with
coefficients in a discrete valuation ring W finite flat over Zp such that
Φα(γ

k − 1) = ζ〈α〉k for all integers k. Since F is an ordinary family,
there exists an element A ∈ I such that a(p, fP ) = (A mod P ) for
all height 1 prime P of I containing (1 + T − γk(P )). Thus we find
A ≡ Φα mod Pj for infinitely many distinct primes Pj ; so, A = Φα, as
desired. �

3.6. Proof of the vertical theorem. Suppose that VA(I) is a finite
extension and the existence of an arithmetic point P0 as in the the-
orem. Therefore the assumption (2) of Proposition 3.22 is met. By
Proposition 3.22, we find a Weil number α of weight 1 and a power
series Φα(T ) ∈ W [[T ]] such that a(p, fP ) = Φα(εP (γ)γk(P ) − 1) =
ζ(εP (γ))logp(α)/ logp(γ)〈α〉k(P ) for all arithmetic P , where ζ is a root of
unity independent of P ; in short, a(p) = Φα ∈ W [[T ]] ⊂ I. Then,
for the entire set B of arithmetic points P with k(P ) = 1, we find
HB(I) ⊂ Q(µp∞(p−1))(ζ, α) which is a finite extension of Q(µp∞). Then
by the horizontal theorem, I has complex multiplication. The converse
is easier (in the same manner as in the proof of Theorem 3.1; see [H11]
§4 for more details). This finishes the proof of Theorem 3.21.

We could make the following conjecture:

Conjecture 3.23. Let A ⊂ Spec(I)(Qp) be an infinite set of arithmetic
points P with bounded level r(P ) ≤ r. Suppose that I does not have
complex multiplication. Then we have

lim sup
P∈A

[Q(a(p, fP)) : Q] =∞.
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4. Constancy theorem

The adjoint p-adic L-function Lp(s, Ad(fP )) has an exceptional zero
at s = 1 coming from modifying Euler p-factor. Greenberg proposed
Galois cohomological definition of an L-invariant L(Ad(fP )), and we
have the following derivative formula I proved in [H04b]:

L(Ad(fP )) = −2 logp(γ)a(p)
−1t

ta(p)

dt
|t=γk(P)εP (γ).

Thus P → L(Ad(fP )) is interpolated over Spec(I) as an analytic func-
tion.

Theorem 4.1. The function P → L(Ad(fP )) is constant if and only
if ρI has CM.

Proof. For simplicity, assume I = W [[T ]]. Then, a(p)−1tda(p)
dt

= s ∈
W. Thus tda

dt
= s · a for a(t) = a(p)(t) for s ∈ W . Putting b(x) =

logp ◦a(expp(x)) (for x = logp(t)), as dx = dt
t
, we get from the chain

rule,

db

dx
=
da

dx

db

da
=
da

dx

d logp(a)

da
= s · a · 1

a
= s.

Thus b is a linear function of x with slope s:

logp(a) = sx+ c⇔ a = C expp(s · logp(t)) = Cts (C = expp(c)).

Then a(p) = Cts ∈ K[[T ]]∩ I = W [[T ]] (ts = expp(s · logp(t))) for the
quotient field K of W , and ts ∈ W [[T ]]. Taking Φ(t) := ts, we find
Φ(tz) = Φ(t)z for z ∈ Zp. Thus by the rigidity lemma and its proof,
we conclude s ∈ Zp and that for any ζ ∈ µp∞ , a(p, fζ) = α for a Weil
p-number α up to p-power roots of unity. Thus the field generated by
a(p, fζ) for all ζ ∈ µp∞ is a finite extension of Q[µp∞]. Then by the
first theorem, we conclude that F is a CM family.

Conversely, if F is a CM family associated to a Galois character
Ψ : Gal(Q/M) → I×, from a(p) = Ψc(Frobp) = tlogp(p)/ logp(γ) up to a
root of unity, we conclude the constancy of the L-invariant. �

4.1. Recall of L-invariant. According to Mazur–Tate–Teitelbaum
[MTT86], the L–invariant times the archimedean L-value would give
the leading term of the Taylor expansion of a given p–adic motivic
L–function at an exceptional zero. For an elliptic curve E/Q with mul-
tiplicative or ordinary good reduction modulo p, its p–adic L–function
Lp(s, E) has the following evaluation formula at s = 1:

Lp(1, E) = (1− a−1
p )

L∞(1, E)

period
,

where L∞(s, E) is the archimedean L–function of E, and ap is the
eigenvalue of the arithmetic Frobenius element at p on the unramified
quotient of the p–adic Tate module T (E) of E. If E has split multi-
plicative reduction, ap = 1, Lp(s, E) has exceptional zero at s = 1, and
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this case the conjecture is first proven by Greenberg-Stevens [GS93]

and by others later: For L′
p(1, E) =

dLp(s,E)

ds
|s=1, we have

L′
p(1, E) = Lan(E)

L∞(1, E)

period
,

and the explcit value of Lan(E) conjectured by [MTT86] and proved
by Greenberg-Stevens [GS93] is, for the Tate period q ∈ pZp,

Lan(E) = L(E) =
logp(q)

ordp(q)
writing E(Qp) = Q

×

p /q
Z.

Since E is modular, L(s, E) = L(s, fE) for an elliptic Hecke eigen-
form fE of weight 2. In particular, a(p, fE) = ap = 1 and a(1, fE) = 1.
We can lift fE to a unique family FI so that fE is a specialization of F
at an arithmetic P with k(P ) = 1. Then one of the key ingredients of
their proof is the following formula:

Lan(E) = −2 logp(γ)
da(p)

dT

∣∣∣
T=εP (γ)γk(P)

.

Here is an analogous formula in [H04b]:

Theorem 4.2. Let p be an odd prime. Then we have

L(Ad(ρP )) = −2 logp(γ)aP (p)−1da(p)

dT

∣∣∣
T=εP (γ)γk(P)

.

4.2. Galois deformation. A main ingredient of the proof of The-
orem 4.2 is Galois deformation theory. Since ρP is irreducible and
Tr(ρI) ∈ I, via pseudo representation, we arrange ρI to have values

in IP . Let ÎP = lim←−n IP/P nIP . It is known that ÎP ∼= κ(P )[[X]]

(X = (1 + T )− εP (γ)γk(P )) (see [HMI] Proposition 3.78). The charac-
ter det(ρI)

−1 det(ρ) has values in the p-profinite group 1 + mI for the
maximal ideal mI of I, and hence we have its unique square root ψ with

values in 1 + mI. Define a representation ρ : Gal(Q/Q) → GL2 (̂IP )
with det(ρ) = det(ρ) by (ρI ⊗ ψ)(σ) = ψ(σ)ρI(σ). Note that ρ ≡ ρI

mod P . Fix a decomposition subgroup Dp ⊂ Gal(Q/Q) at p. Normal-
ize ρP so that ρP |Dp =

( εP ∗

0 δP

)
with unramified δP . Then εP 6= δP and

εP is ramified.
Simply write κ := κ(P ). Let S be the set of places of Q made up of

all prime factors of Np and ∞. Consider the deformation functor into
sets from the category of local artinian κ-algebras with residue field
κ whose value at a local artinian κ-algebra A with maximal ideal mA

is given by the set of isomorphism classes of 2-dimensional continuous
Galois representations ρA : Gal(Q/Q) → GL2(A) unramified outside
S:

(D1) (ρA mod mA) ∼= ρP ;
(D2) Writing ι : κ → A for the structure homomorphism of κ-

algebras, we have the identity of the determinant characters:

ι ◦ det(ρ) = det(ρA);
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(D3) We have an exact sequence ρA|Dp
∼=

( εA ∗

0 δA

)
with δA ≡ δP

mod mA.

The condition (D3) is the near ordinarity, and we call the character
δA of Dp the nearly ordinary character of ρ. By the work started by
Wiles/Taylor (and practically ended by Kisin), we know the following
result (e.g., [HMI] Corollary 3.77) for “most” cases:

Theorem 4.3. The above functor is pro-represented by the pair (̂IP ,ρ).

In the following sections, we start with a brief review of the definition
by Greenberg of the Selmer group and his L–invariant.

4.3. Selmer Groups. We describe the definition due to Greenberg of
his Selmer group associated to the adjoint square Galois representation.
For simplicity, we assume that S = {p,∞} (so, N = 1). We may
assume that κ has p-adic integer ring W . Let QS be the maximal
extension unramified outside S. All Galois cohomology groups are
continuous cohomology groups. Write GS = Gal(QS/Q) and Ip for the
inertia subgroup of the decomposition subgroup Dp ⊂ GS .

Write V for the space of ρP . Let GS act on Endκ(V ) by conjugation
and put Ad(V ) ⊂ Endκ(V ) (the trace 0 subspace of dimension 3). We
have a filtration:

(ord) V ) F+V ) {0}
stable under the decomposition group Dp such that Dp acts on the
quotient V/F+V by δP . Then Ad(V ) has the following three step
filtration stable under Dp:

(F) Ad(V ) ⊃ F−Ad(V ) ⊃ F+Ad(V ) ⊃ {0},
where

F−Ad(V ) = {φ ∈ Ad(V )|φ(F+V ) ⊂ F+V } (upper triangular),

F+Ad(V ) = {φ ∈ Ad(V )|φ(F+V ) = 0} (upper nilpotent).

Note that Dp acts trivially on F−Ad(V )/F+Ad(V ) ∼= κ; so, the p-adic
L-function of Ad(V ) has an exceptional zero at s = 1. Put

Up(Ad(V )) = Ker(Res : H1(Dp, Ad(V ))→ H1(Ip,
Ad(V )

F+(Ad(V ))
)).

Write simply H1(?) = H1(GS, ?). Then we define

(4.1) Sel(Ad(V )) = Ker(H1(Ad(V ))→ H1(Dp, A)

Up(A)
).

Replacing Up(Ad(V )) by the bigger

U−
p (Ad(V )) = Ker(Res : H1(Dp, Ad(V ))→ H1(Ip,

Ad(V )

F−(Ad(V ))
))

for p|p, we can define a bigger “−” Selmer group Sel−(Ad(V )) ⊃
Sel(Ad(V )).
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Taking the Tate-dual Ad(V )∗(1) = Homκ(Ad(V ), κ)(1) with single
Tate twist, and the filtration dual to (F), we define the dual Selmer
group Sel(Ad(V )∗(1)).

Lemma 4.4. We have dimSel−(Ad(V )) = 1 and

(V) Sel(Ad(V )) = Sel(Ad(V )∗(1)) = 0.

Proof. Here is a sketch of the proof. For any derivation ∂ : ÎP → κ,
consider cρ := (∂ρ)ρ−1

P : GS → End(V ). Applying ∂ to ρ(σ)ρ(τ ) =
ρ(στ ), we verify c∂ is cocycle. Since det(ρ) is constant, cρ has val-
ues in Ad(V ). Since ρ|Dp is upper triangular, [cρ] ∈ Sel−(Ad(V )).
By universality, any such cocycle is of the form c∂. Thus the tan-

gent space TP ∼= κ of Spec(̂IP ) at P is isomorphic to Sel−(Ad(V )); so,
dimκ Sel−(Ad(V )) = 1. Since the diagonal entry of c∂ is non-trivial,
Sel(Ad(V )) is a proper subspace of of Sel−(Ad(V )); so, it vanishes. By
Greenberg, dimκ Sel(Ad(V )) = dimκ Sel(Ad(V )∗(1)); so, the desired
vanishing also follows for the dual. �

We write S for the set of ramified primes for V including p. We have
the Poitou-Tate exact sequence:

0→ Sel(Ad(V ))→ H1(Ad(V ))→ H1(Dp, Ad(V ))

Up(Ad(V ))
→ Sel(Ad(V )∗(1))∗.

Thus by (V), we have

(I) H1(Ad(V )) ∼= H1(Dp, Ad(V ))

Up(Ad(V ))
.

4.4. Greenberg’s L–invariant. Greenberg defined in [G94] his in-
variant L(Ad(V )) in the following way. Write F−H1(Dp, Ad(V )) for
the image of H1(Dp, F

−Ad(V )) in H1(Dp, Ad(V )). By the definition

of Up(Ad(V )), the subspace F−H1(Dp,Ad(V ))

Up(Ad(V ))
inside the right-hand side of

(I) is isomorphic to Sel−(Ad(V )) ∼= κ. Namely, we have

Sel−(Ad(V ))
∼−−→

Res

F−H1(Dp, Ad(V ))

Up(Ad(V ))
⊂ H1(Dp, Ad(V ))

Uq(Ad(V ))
.

Then by projecting down to F−Ad(V )/F+Ad(V ) ∼= κ with trivial Dp-
action, cocycles in Sel−(Ad(V )) gives rise to a subspace L of

Hom(Dab
p , F

−Ad(V )/F+Ad(V )) = Hom(Dab
p , κ).

Note that

Hom(Dab
p , κ)

∼= κ× κ
canonically by φ 7→ (φ([u,Qp])

logp(u)
, φ([p,Qp])) for any u ∈ Z×

p of infinite

order. Here [x,Qp] is the local Artin symbol (suitably normalized).
If a cocycle c representing an element in Sel−(Ad(V )) is unramified,

it gives rise to an element in Sel(Ad(V )). By the vanishing (V) of
Sel(Ad(V )), this implies c = 0; so, the projection of L to the first
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factor κ (via φ 7→ φ([u,Qp])/ logp(u)) is surjective. Thus this subspace
L is a graph of a κ–linear map

L : κ→ κ,

which is given by the multiplication by an element L(Ad(V )) ∈ κ.
4.5. Proof of Theorem 4.2. Write ρ|Dp

∼= ( ε ∗
0 δ ) with nearly ordinary

character δ. We know that c∂ for ∂ = d
dX

gives a nontrivial element in

Sel−(Ad(V )). The image of c∂ in Hom(Dab
p , κ) is δ−1

P ∂δ|X=0. We know

that δ−1
P δ([p,Qp]) = aP (p)−1a(p) and δ−1

P δ([u,Qp]) = tlogp(u)/2 logp(γ)

by our construction. Then to get the desired result is just a simple
computation.
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algébriques. J. Math. Soc. Japan 10 (1958) 1–28

[T89] J. Tilouine, Sur la conjecture principale anticyclotomique, Duke Math.
J. 59 (1989), 629–673


