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1 Fourier Analysis

Let G be a locally compact abelian group; so, each x ∈ G has an open neighbor-
hood whose closure is compact, and the addition (x, y) 7→ x + y is a continuous
map of G × G into G and x 7→ −x is a homeomorphism of G. We always as-
sume that x 7→ 2x is an automorphism of topological group. We study Fourier
analysis on G and its Pontryagin dual G∗ in this section. In particular, we are
going to prove the Plancherel formula:

∫

G

|Φ(x)|2dx =

∫

G∗

|Φ∗(x)|2dx∗

as long as the Fourier transform Φ∗ is well defined for a given measurable func-
tion Φ on G.

∗A series of lectures at Ritsumeikan University, Ohtsu, Japan, 7/11-12/2001
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1.1 Pontryagin duality

Let T be the multiplicative group of complex numbers of absolute value 1, and
we often identify T with R/Z by R/Z 3 r 7→ exp(2πir) ∈ T. We then define
G∗ = Homcont(G, T). We equip G∗ with the uniform convergence topology over
any compact subset of G. Then G∗ again become a locally compact abelian
group (cf. [IGA] and [TGP]). Thus the neighborhood of the trivial character
0 of G is given by {φ ∈ G∗|φ(B) ⊂ W} for a compact subset B ⊂ G and an
open neighborhood W of 1 in T. The character 0 satisfies 0(x) = 1 ∈ T. We
write 〈x, x∗〉 for x∗(x) ∈ T, where x∗ ∈ G∗ and x ∈ G. We can then define a
homomorphism G → (G∗)∗ by sending x ∈ G to a character x∗∗ : G∗ → T given
by

x∗∗(x∗) = 〈x, x∗〉.
More generally, if φ : H → G be a homomorphism of locally compact abelian
groups (that is, a continuous homomorphism), we have a dual map φ∗ : G∗ →
H∗ given by

〈h, φ∗(g∗)〉 = 〈φ(h), g∗〉.
This duality theory G 7→ G∗ of locally compact abelian groups is a perfect

duality called Pontryagin duality of locally compact abelian groups and was de-
veloped by Pontryagin in 1938 and Weil in 1940 independently. The perfectness
of the duality implies

• (G∗)∗ ∼= G by x 7→ x∗∗;

• If 0 → H
φ−→ G

ψ−→ K → 0 is an exact sequence of locally compact abelian

groups, then the dual sequence 0 → K∗ ψ∗

−−→ G∗ φ∗

−→ H∗ → 0 is also exact.

For all this type of results, see either the book of Pontryagin [TGP] or by Weil
[IGA].

Many locally compact groups are isomorphic to their dual.

Example 1.1. 1. The pairing 〈x, y〉 = exp(2πiaxy) for any non-zero real
number a 6= 0 gives the self-duality of the additive group R. We write
e∞(x) = exp(2πix).

2. Similarly, expanding x ∈ Qp into a p–adic expansion x =
∑

n�−∞
cnpn

with integers 0 ≤ cn < p and defining a rational number of p–power
denominator [x]p =

∑
n<0 cnpn ∈ Q, the pairing 〈x, y〉 = exp(−2πi[axy]p)

for any non-zero p–adic number a ∈ Qp gives a self duality of the additive
group Qp. We write ep(x) = exp(2πi[x]p).

3. For x = (xv), y = (yv) ∈ A, we can define 〈x, y〉 = 〈x∞, y∞〉∏
p〈xp, yp〉

gives a self duality of A if we choose a in Q in the examples (1) and (2).
We write eA(x) =

∏
v ev(xv) for x = (xv) ∈ A. Then e induces a character

e : A/Q → T.

4. For any semi-simple algebra B over Q, BA = B ⊗Q A for A = R, Qp and
A is a self dual additive group by 〈x, y〉 = e?(TrB/Q(axy)) for a ∈ B×,
where ? = p,∞, A according as A = Qp, R and A.
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5. If X = F n is a finite dimensional vector space over a number field F and
if ( , ) is either a non-degenerate symmetric or σ–hermitian form (with
respect to σ ∈ Aut(F ) of order 2) on X, XA = X ⊗Q A is a self dual
locally compact abelian group by 〈x, y〉 = e?(TrF/Q(x, y)).

Exercises

1. Show that G is compact ⇔ G∗ is discrete.

2. Give a proof of all the assertions in Example 1.1 (see [LFE] Section 8.3).

3. Show that e(Q) = 1 if we regard Q as a subfield of A diagonally.

1.2 Haar Measure

On any locally compact abelian group G, there exists a Harr measure dg with
values in R (see [IGA]) satisfying the following conditions:

1.
∫
X

dg is defined for subset X in a complete additive class containing all
compact subsets of G (that is, a union of countably many compact subsets
is measurable);

2. For all compact subsets K ⊂ G, we have 0 ≤
∫
K

dg < +∞;

3. We have, for all open subsets U ⊂ G,
∫
U

dg = SupU⊃K:compact

∫
K

dg and
for all measurable subsets X,

∫
X

dg = InfU⊃X,U :open

∫
U

dg;

4.
∫
x+X

dg =
∫
X

dg for all measurable X ⊂ G and x ∈ G.

Out of this measure, we can construct the Lebesgue measure dg associated to
dg as above. In particular, we can think of integrable functions and square
integrable functions on G. By (4) as above, if dg′ is another Haar measure
on G, we have

∫
φdg = c

∫
φdg′ for a positive constant c independent of φ. If

α : G → H is an isomorphism of locally compact abelian groups, then φ 7→∫
G

φ(gα)dg for an integrable function φ on H gives a Haar measure d(gα−1)
on H . Then for a chosen Haar measure dh on H , we have a positive constant
|α| dependent only on α and the choice of dg on G and dh on H such that
d(gα−1) = |α|−1dh. In other words,

∫

H

φ(h)dh = |α|
∫

G

φ(gα)dg.

When H = G, we choose dh = dg, then |α| is determined independently of the
choice of dg.

Example 1.2. 1. When G = Zp, any compact set is a disjoint union of subset
of the form a + pnZp; so, we just define

∫
a+pnZp

dg = p−n. Then
∫
X

dg =
∑

a p−n(a) for X =
⊔
a a + pn(a)Zp. Any continuous function φ can be
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written as φ = limn→∞ φn for φn(x) = φ(m) if x ≡ m mod pn for an
integer m with ) ≤ m < pn. Then we see

∫
φdg = lim

n→∞




pn

−1∑

j=0

φ(j)p−n



 .

2. If G = Qp, G =
⋃
n pnZp. By the above argument, we have a Haar

measure dg on each pnZp so that they coincide with the one given on
Zp. Thus this measure gives a unique Haar measure dg on G such that∫
pnZp

= p−n.

3. If G = Z, we just define that
∫
x
dg = 1 for any x ∈ Z. Then for any

compact subset K ⊂ Z, K is a finite set and
∫
K dg = |K|. If φ : Z → C is

a function, then
∫
K φdg =

∑
n∈Z φ(n).

4. If G = R, we have the classical Lebesgue measure dg with
∫ 1

0
dg = 1.

5. For any product G = G1 ×G2 ×· · ·×Gr of the above groups, the product
measure dg = dg1dg2 · · ·dgr gives a Haar measure of G. In particular,
finite dimensional vector space over R or Qp has such a measure.

6. For the adele ring G = A, we can define the measure dg so that if φ(x) =∏
v φv(xv) for places v, we just define

∫
φdg =

∏
v

∫
φvdgv for the measure

dgv on Qp if v = p and the Lebesgue measure dg∞ on R. In particular,∫
X dg = 1 for X = Ẑ × [0, 1], where Ẑ =

∏
p Zp.

1.3 Fourier Transform

Choose a Haar measure dg on G. We then define the Fourier transform F(φ) =
φ∗ : G∗ → C of an integrable function φ : G → C by

φ∗(g∗) = F(φ)(g∗) =

∫

G

φ(g)〈g, g∗〉dg.

See [IGA] Chapter 6 for a general theory of Fourier transform. We then choose
a Haar measure dg∗ on G∗ and define the Fourier transform F∗ on G∗. Then
we have

Theorem 1.1. Suppose that f is continuous, bounded and integrable on G and
that f∗ is integrable on G∗. Then we have

F∗(F(f))(−g) = cf(g)

for a positive constant c independent of φ.

We shall give a sketch of a proof, supposing that either G ∼= G∗ and G is a
locally compact ring or G is finite. This is the case where we later deal with. For
h ∈ G, we therefore have continuous multiplication g 7→ hg. If h is invertible,
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this is an automorphism of the group G; so, d(hg) = |h|dg for |h| > 0 by the
uniqueness of the Haar measure. For simplicity, we assume to have a sequence
of units εj converging to 0 in G and 〈εg, g∗〉 = 〈g, εg∗〉 for a unit ε ∈ G. This
fact is valid for G = R, Qp and A by the following reason. When G = R, G is
self dual by 〈x, y〉 = exp(2πixy) and therefore it is obvious. When G = Qp, for
each x ∈ Qp, expand x into the p–adic expansion x =

∑
n�−∞

cnp
n for integers

cn with 0 ≤ cn < p. Then define the fraction part [x]p =
∑
n<0 cnpn ∈ Q. Then

the self duality is given by 〈x, y〉 = exp(−2πi[xy]p), and again the assertion is
obvious. For adeles x, y ∈ A, the pairing 〈x, y〉 =

∏
v〈xv, yv〉 (which is a finite

product) does the job.

Proof. We formally compute

F∗(f∗)(−g) =

∫

G∗

f∗(g∗)〈g, g∗〉−1dg∗

=

∫

G∗

∫

G

f(h)〈h, g∗〉dh〈g, g∗〉−1dg∗

=

∫

G∗

∫

G

f(h)〈h − g, g∗〉dhdg∗

=

∫

G

f(h)

∫

G∗

〈h − g, g∗〉dg∗dh.

(1.1)

When G is finite, G∗ ∼= G (Exercise 1) and we may assume that
∫

G

φ(g)dg = |G|−1
∑

g∈G

φ(g).

Then by the orthogonality relation of characters (cf. [LRG] Section 2.3), we
have ∫

G∗

〈h − g, g∗〉dg∗ =

{
1 if h = g,

0 otherwise.

From this, the assertion is clear, and c = |G|−1. Since orthogonality relations
hold for compact groups G (in this case, G∗ is discrete), the same argument
still works for compact and discrete groups (like (G, G∗) = (Zp, Qp/Zp) and
(G, G∗) = (T, Z)).

We now assume that G is non-discrete and non-compact but a locally com-
pact ring, like G = R, Qp, A. Then the last two integrals of (1.1) may not
converge, because |〈x, y〉| = 1 all the time. Thus we need to put a convergence
factor ϕ(g∗) in the integral:

∫

G∗

f∗(g∗)ϕ(g∗)〈g, g∗〉dg∗ =

∫

G∗

∫

G

f(h)ϕ(g∗)〈h − g, g∗〉dhdg∗

=

∫

G

f(g)ϕ∗(h − g)dh

h−g 7→g
=

∫

G

f(g + h)ϕ∗(g)dh.

(1.2)
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We choose a function ϕ(g∗) so that ϕ and ϕ∗ are integrable over G∗ and G
respectively (Exercise 2). Since f∗ is bounded:

|f∗(g∗)| ≤ |
∫

G

f(g)〈g, g∗〉dg| ≤
∫

G

|f(g)|dg

for all g∗, we see that ϕf∗ is also integrable. Then we put ϕε(g
∗) = ϕ(εg∗) for

a unit ε ∈ G∗. Note that

(ϕε)
∗(g) =

∫

G∗

ϕ(εg∗)〈g, g∗〉dg∗

εg∗ 7→g∗

= |ε|−1

∫

G∗

ϕ(g∗)〈ε−1g, g∗〉 = |ε|−1ϕ∗(ε−1g).

Replacing ϕ by ϕε in (1.2), we get

∫

G∗

f∗(g∗)ϕ(εg∗)〈g, g∗〉dg∗ =

∫

G

f(g + h)|ε|−1ϕ∗(ε−1h)dh

ε−1h7→h
=

∫

G

f(g + εh)ϕ∗(h)dh.

Now we make ε → 0, we get

ϕ(0)

∫

G∗

f∗(g∗)〈g, g∗〉dg∗ = f(g)

∫

G

ϕ∗(h)dh.

Choosing ϕ(0) 6= 0 6=
∫
G ϕ∗(h)dh all positive real (for example, we may choose

ϕ(x) = exp(−πg2) when G = R and the characteristic function of Zp when
G = Qp, and product of these when G = A), we get the desired constant
c > 0.

Now changing dg∗ by c−1dg∗, we may assume that the constant c is equal to
1. In this case, dg and dg∗ are called dual each other. Further if G ∼= G∗, first
taking dg = dg∗ and changing dg by

√
c
−1

dg, again we can make c = 1. In this
case, dg is called self dual. The Lesbesgue measure dx on R is self dual. The
measures described in 1.2 for Qp and A are also self dual (Exercise 3).

Exercises

1. When G is finite, prove that G ∼= G∗ (use the fundamental theorem of
finite abelian groups).

2. When G = R, Qp, A, find a continuous function ϕ(g∗) so that ϕ and ϕ∗

are integrable over G∗ and G, respectively.

3. Show that the measure described in Subsection 1.2 for G = R, Qp, A is self
dual.
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4. Suppose that G is compact, and write dg for the Haar measure with∫
G

dg = 1. Then show that its dual measure dg∗ on G∗ (which is dis-
crete) is given by

∫
G∗ φ(g∗)dg∗ =

∑
g∗∈G∗ φ(g∗).

5. For an isomorphism γ : G∗ → G, define the module |γ| with respect to
dg on G and the dual measure dg∗ on G∗. Then show that the function
|γ|−1/2F(φ)(−xγ−∗) on G is determined independently of the choice of
dg.

1.4 Plancherel Formula

Let dg and dg∗ be dual Haar measure on G and G∗. We are going to prove the
following theorem of Plancherel:

Theorem 1.2. Let φ and f be continuous bounded integrable functions on G
and φ∗ and f∗ are both integrable on G∗. If φ∗ is continuous and bounded on
G∗, we have ∫

G

f(g)φ(g)dg =

∫

G∗

f∗(g∗)φ∗(g∗)dg∗.

Therefore the Fourier transform keeps L2–norm.

We shall give a sketch of a proof. Using boundedness of φ and φ∗, it is easy
to show the integrals above are finite (Exercise 1).

Proof. By Fourier inversion formula, we have

φ(g) = F∗(φ∗)(−g) =

∫

G∗

φ∗(g∗)〈−g, g∗〉dg∗.

Then we see
∫

G

f(g)φ(g)dg =

∫

G

f(g)

∫

G∗

φ∗(g∗)〈g, g∗〉dg∗dg

=

∫

G

∫

G∗

f(g)〈g, g∗〉dgφ∗(g∗)dg∗

=

∫

G∗

f∗(g∗)φ∗(g∗)dg∗.

This shows the desired formula.

Consider the L2–spaces L2(G) and L2(G∗). The functions satisfying the
condition of Theorem 1.2 is dense in these Hilbert spaces (Exercise 2). Thus for
each f ∈ L2(G), choosing a sequence fn satisfying the conditions of Theorem 1.2
yet converging to f in the Hilbert space L2(G). Then by the theorem, F(fn)
converges to an element f ′ in L2(G∗). The function f ′ is well defined almost
everywhere on G∗ and is independent of the choice of the sequence fn (Exercise
3). We then define F(f) = f ′. Then F : L2(G) ∼= L2(G∗) gives an isometry of
the two Hilbert spaces.
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Exercises

1. Show the finiteness of the integrals in Theorem 1.2.

2. Show the density of functions in L2(G) satisfying the conditions of Theo-
rem 1.2 for G = R and G = Qp.

3. Show the well-definedness of the Fourier transform as a bounded operator
from the Hilbert space L2(G) onto L2(G∗).

2 Metaplectic Groups

First we construct a general metaplectic groups associated to (G, G∗) and then
study in details when G is a free module of finite rank over R, Qp or A.

2.1 Symmetric Maps

Let H and G be a locally compact abelian groups and ρ : H → G be a ho-
momorphism (a continuous group homomorphism). Then g∗ 7→ g∗ ◦ ρ induces
a homomorphism ρ∗ : G∗ → H∗ determined by 〈hρ, g∗〉 = 〈h, g∗ρ∗〉. In our
convention, all ρ ∈ Hom(X, Y ) (except for scalars) acts on X from the right:
x 7→ xρ, which will be useful later. We call ρ∗ the adjoint of ρ. If ρ : G → G∗

is a homomorphism, then again ρ∗ : G → G∗ is a homomorphism; so, it makes
sense to insist ρ = ρ∗. Such a homomorphism is called symmetric.

To each symmetric map ρ : G → G∗, we can associate a multiplicative
quadratic form (a character of second degree) fρ : G → T by

fρ(x) = 〈x, 2−1xρ〉.

Then

fρ(x + y)fρ(x)−1fρ(y)−1

= 〈x + y, 2−1(xρ + yρ)〉〈x,−2−1xρ〉〈y,−2−1yρ〉 = 〈x, yρ〉. (2.1)

Thus, under the assumption we made that g 7→ 2g is an automorphism of G,
we have a bijection:

{symmetric homomorphisms}
↔ {multiplicative homogeneous quadratic forms}

by ρ 7→ fρ. Here the word “homogeneous” mean that f does not have linear
terms, that is, f is of the form fρ for a symmetric map ρ.

Example 2.1. 1. Let F be a field of characteristic different from 2 and X be
a finite dimensional vector space over F . A quadratic form φ : V → F is
a homogeneous polynomial on X of degree 2. Then (x, y) = φ(x + y) −
φ(x) − φ(y) is a symmetric Q–bilinear form on V . We call φ anisotropic
if φ(x) = 0 ⇔ x = 0. We call φ non-degenerate if (x, V ) = 0 ⇒ x = 0. If
φ is anisotropic, φ is non-degenerate.
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2. Let F = R. Then X is a locally compact abelian group isomorphic to Rn

for n > 0. For a given quadratic form φ on X, f(x) = exp(2πiφ(x)) is a
homogeneous multiplicative quadratic form. The set of all homogeneous
multiplicative quadratic forms is in bijection with the set of all quadratic
forms on X. Indeed, if f : X → T is a multiplicative quadratic form, then
on a small open neighborhood U of 0, φ(x) = (2πi)−1 log(f(x)) for x ∈ U .

3. Let F = Qp. Then f(x) = exp(−2πi[φ(x)]p) is a multiplicative quadratic
form. In the same way as above, The set of all homogeneous multiplicative
quadratic forms on X is in bijection with the set of all quadratic forms on
X in this manner.

Exercise

1. Give a detailed proof of the assertions in the above examples.

2.2 Symplectic Groups

We now write V = G × G∗. Then V ∗ ∼= V by η : (x, x∗) 7→ (−x∗, x). We can
write an automorphism σ : V → V as a matrix:

(x, x∗)
σ7→ (x, x∗)

(
aσ bσ

cσ dσ

)
.

Here aσ ∈ End(G), dσ ∈ End(G∗), bσ ∈ Hom(G, G∗) and cσ ∈ Hom(G∗, G).
We then define J : V × V → T by J((x, x∗), (y, y∗)) = 〈x, y∗〉〈−y, x∗〉. We can
write this equation symbolically:

(x, x∗)
(

0 1
−1 0

) ( y
y∗

)
= 〈−y, x∗〉〈x, y∗〉.

Then we define the group Sp(G) ⊂ Aut(V ) by

Sp(G) = {σ ∈ Aut(V )|J(vσ, wσ) = J(v, w) ∀v, w ∈ V }.

Since Sp(G) is the stabilizer in Aut(V ) of the multiplicative quadratic form J ,
it is a group, and we see easily that for σ ∈ Sp(G),

σ−1 =
(
d∗σ −b∗σ
−c∗σ a∗σ

)
. (2.2)

Exercise

1. Prove (2.2).
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2.3 Heisenberg Groups

For each v = (x, x∗) ∈ V , we define a unitary operator U(v) on L2(G) by

U(v)φ(g) = Φ(g + x)〈g, x∗〉.
Then by computation, we have for v = (x, x∗) and w = (y, y∗) both in V ,

U(v)U(w) = 〈x, y∗〉U(v + w) = F (v, w)U(v + w), (2.3)

for F (v, w) = 〈x, y∗〉. Thus H(G) = {tU(v)|v ∈ V, t ∈ T} is a subgroup of
unitary operators acting on L2(G) with the identity operator given by U(0).
This group is sometimes called the Heisenberg group for G (and it is written as
A(G) in [We1] no.4). Since U(v)U(w) = U(w)U(v) implies 〈x, y∗〉 = 〈y, x∗〉,
if U(v) commutes with U(w) for all w ∈ V , we find v = 0. Indeed, taking
y = 0, we find 〈x, y∗〉 = 0 for any y∗, and non-degeneracy tells us x = 0,
and similarly, taking y∗ = 0, we find x∗ = 0. Thus the center is given by
Z(H(G)) ∼= {tU(0)|t ∈ T} ∼= T, and we have the following central extension:

1 → T → H(G) → V → 0.

Thus any automorphism s of H(G) induces an automorphism π(s) of V and an
automorphism of T. Note that Aut(T) ∼= {±1} with non-trivial one given by
t 7→ t (Exercise 1).

Let s be an automorphism of the Heisenberg group H(G) and suppose that
s induces the identity on T. Then s(U(v)) = f(v)U(vσ) for σ = π(s) and f(v) ∈
T. We write s = (σ, f), which determines s. If s = (σ, f) and s′ = (σ′, f ′), then
s′s(U(v)) = s′(f(v)U(vσ)) = f(v)f ′(vσ)U(vσσ′), and thus we have

(σ′, f ′(v))(σ, f(v)) = (σ′ ◦ σ, f(v)f ′(vσ)). (2.4)

Since

f(v)f(w)F (vσ, wσ)U(vσ + wσ) = f(v)U(vσ)f(w)U(wσ)

= s(U(v))s(U(w)) = s(U(v)U(w)) = F (v, w)f(v + w)U(vσ + wσ)

by (2.3), we find

f(v + w)f(v)−1f(w)−1 = F (vσ, wσ)F (v, w)−1. (2.5)

Thus f is a multiplicative quadratic form of V , and there is a unique homoge-
neous quadratic form fσ satisfying (2.5). Moreover for any given multiplicative
quadratic form f satisfying (2.5), s = (σ, f) gives an element in B(G) (Exercise
1). Since the left-hand-side of the above formula is symmetric with respect to
v and w, we find also

F (vσ, wσ)F (v, w)−1 = F (wσ, vσ)F (w, v)−1.

Since J(v, w) = F (v, w)F (w, v)−1, σ preserves the symplectic form J ; so, π(s) ∈
Sp(G). We write B(G) for the automorphism group of H(G) which induce
the identity on T. We have the projection π : B(G) → Sp(G) and B(G) =
Sp(G) n V ∗ by σ 7→ (σ, fσ).
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Exercises

1. Show that for any multiplicative quadratic form f satisfying (2.5), U(v) 7→
f(v)U(vσ) gives an automorphism of H(G).

2. Give a detailed proof of the fact that U(v)φ ∈ L2(G) if φ ∈ L2(G). Also
prove that for the L2–norm ‖φ‖2=

∫
G
|φ(g)|2dg, ‖U(v)φ‖=‖φ‖.

3. When σ =
(

1 ρ
0 1

)
for a symmetric ρ ∈ Homcont(G, G∗), show that fσ = fρ,

where fρ(v) = 〈g, 2−1gρ〉 for v = (g, g∗).

2.4 Metaplectic Cover

Here is an important theorem of A. Weil [We1] Theorem 1, which we do not
prove, because the proof uses techniques from functional analysis and harmonic
analysis on locally compact groups (that will not be used later).

Theorem 2.1. Let B(G) be the normalizer of H(G) in Aut(L2(G)). Then we
have a canonical central exact sequence:

1 → T → B(G)
µ−→ B(G) → 1.

We now define the metaplectic group Mp(G) by

Mp(G) = {s ∈ B(G)|µ(s) = (σ, fσ) for σ ∈ Sp(G)}. (2.6)

By definition, Mp(G) is a central extension of Sp(G); so,

1 → T → Mp(G)
π−→ Sp(G) → 1

is exact. For general G, the above extension is non-trivial. However over some
subsets of Sp(G), one can have a canonical section r of π. We now define some
sections. Let

U(G) =
{(

1 ρ
0 1

)
∈ Sp(G)

∣∣ρ ∈ Homcont(G, G∗)
}

.

Since U(G) is a subgroup of Sp(G), ρ is a symmetric homomorphism; so, we
have the associated multiplicative quadratic form: fρ(g) = 〈g, 2−1gρ〉. Then we
define a section r : U(G) → B(G) by

r
((

1 ρ
0 1

))
=

((
1 ρ
0 1

)
, fρ

)
∈ B(G).

We extends this section to r : U(G) → Mp(G) by

(
r
((

1 ρ
0 1

))
φ
)
(g) = φ(g)fρ(g) for φ ∈ L2(G).

We define another subgroup L(G) of Sp(G):

L(G) =
{(

a 0
0 a−∗

) ∣∣a ∈ Aut(G)
}

.
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Then we define a section r : L(G) → B(G) by

r
((

a 0
0 a−∗

))
=

((
a 0
0 a−∗

)
, 1

)
∈ B(G).

Again we extend this section to r : L(G) → Mp(G) by

(
r
((

a 0
0 a−∗

))
φ
)
(g) =

√
|a|φ(ga).

Finally for any continuous isomorphism c : G∗ ∼= G, we define

(
r
((

0 −c−∗

c 0

))
φ
)
(g) =

√
|c|−1F(φ)(−xc−∗).

Here we have fixed once and for all a Haar measure dg on G and F is the Fourier
transform on L2(G). The module |c| is defined with respect to dg and its dual
measure dg∗.

Let Ω = Ω(G) be the collection of all σ =
(
aσ bσ

cσ dσ

)
∈ Sp(G) with cσ : G∗ ∼= G.

Since
σ =

(
aσ bσ

cσ dσ

)
=

(
1 aσc

−1

σ
0 1

) (
0 −c−∗

σ
cσ 0

) (
1 c−1

σ dσ

0 1

)
,

we can extend r to r : Ω → Mp(G). In particular, we have

(r(σ)φ) (g) = |cσ|1/2
∫

G

φ(gaσ + g∗cσ)fσ(g, g∗)dg∗.

From this, it is easy to check that r(p)r(σ)r(p′) = r(pσp′) for p, p′ ∈ P (G) and
σ ∈ Ω (cf. [Sh2] (1.3a,b,c)).

Exercises

1. Check that the sections r and r on U(G) and L(G) are group homomor-
phisms.

2. Let P (G) be the subgroup of Sp(G) generated by U(G) and L(G). Show
that U(G) is a normal subgroup of P (G) and P (G) = L(G) n U(G).
Further show that r extends to a section r : P (G) → Mp(G) in an obvious
manner, which is a group homomorphism.

3. Show that for each p ∈ P (G) that ‖r(p)φ‖=‖φ‖ (φ ∈ L2(G)).

4. Give a detailed proof of r(p)r(σ)r(p′) = r(pσp′) for p, p′ ∈ P (G) and
σ ∈ Ω.

2.5 Sections over discrete and compact subgroups of Sp(G)

Let Γ ⊂ G be a closed subgroup of G. Then G/Γ is again a locally compact
abelian group under the quotient topology (Exercise 1). Then the exact sequence

0 → Γ → G → G/Γ → 0

12



yields, by the perfect Pontryagin duality, another exact sequence:

0 → (G/Γ)∗ → G∗ → Γ∗ → 0.

Writing Γ⊥ for the image of (G/Γ)∗, we thus obtain

Γ⊥ =
{
γ∗ ∈ G∗

∣∣〈Γ, γ∗〉 = 0
}

.

We suppose the following hypothesis:

(H1) Γ is either compact or discrete;

(H2) G/Γ is discrete (resp. compact) if Γ is compact (resp. discrete).

Once we start with (G/Γ, Γ) as above, its dial (G∗/Γ⊥, Γ⊥) is again the same
type (Exercise 1 in Subsection 1.1).

Example 2.2. 1. If G = X is a finite dimensional vector space over R, a
lattice L is a subgroup spanned by a base of X over R. Then L is a
discrete subgroup of X and X/L is compact. If we fix a dual pairing
( , ) : X ×X → R, the dual lattice L⊥ with respect to 〈x, y〉 = e∞((x, y))
is the dual lattice L⊥ = {x ∈ X|(L, x) ⊂ Z}.

2. If G = X is a finite dimensional vector space over Qp, a lattice L of X
is a Zp–submodule spanned by a base of X over Qp. Then L is compact,
and X/L is discrete. Again fixing a non-degenerate bilinear pairing ( , ) :
X ×X → Qp which gives rise to the self-duality of X: 〈x, y〉 = ep((x, y)),
the Zp–dual lattice gives L⊥.

3. Let X be a finite dimensional vector space over a number field F (of finite
degree). Then XA = X ⊗Q A for the adele ring A is a locally compact
abelian group, and X is a discrete subgroup of XA and XA/X is compact.
Fixing a non-degenerate F –bilinear pairing ( , ) on X and extend it FA–
linearly to XA, we have the dual pairing 〈x, y〉 = eA(TrF/Q(x, y)). In this

case, X⊥ = X.

We write ẋ for the coset x + Γ in G/Γ. Then we choose the canonical Haar
measure dγ on Γ so that

∫
Γ

dγ = 1 if Γ is compact and
∫
Γ

φdγ =
∑

γ∈Γ φ(γ).
Similarly we choose the canonical Haar measure dġ on G/Γ. Since the pair
(G∗/Γ⊥, Γ⊥) satisfies the same properties (H1-2), we have the Haar measures
dγ⊥ and dġ∗ on (Γ⊥, G∗/Γ⊥). Then we consider the integration:

∫

G

φ(g)dg :=

∫

G/Γ

∫

Γ

φ(γ + g)dγdġ. (2.7)

Obviously this integration is given by a Haar measure on G. Similarly we define
a Haar measure dg∗ on G∗ by

∫

G∗

φ(g∗)dg∗ :=

∫

G∗/Γ⊥

∫

Γ⊥

φ(γ⊥ + g∗)dγ⊥dġ∗. (2.8)
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We now define a partial Fourier transform Θ(φ) : G×G∗ → C for φ ∈ L1(G)
by

Θ(φ)(g, g∗) =

∫

Γ

φ(g + γ)〈γ, g∗〉dγ. (2.9)

By definition, we see

Θ(φ)(g + γ, g∗ + γ⊥) = Θ(φ)(g, g∗)〈γ, g∗〉−1 for all (γ, γ⊥) ∈ Γ × Γ⊥

because 〈γ, γ⊥〉 = 1. We define L2(G/Γ× G∗/Γ⊥) to be the space of functions
Φ(g, g∗) on G × G∗ such that

• Φ(g + γ, g∗ + γ⊥) = Φ(g, g∗)〈γ, g∗〉 for all (γ, γ⊥) ∈ Γ × Γ⊥,

• |Φ| is square integrable as a function on G/Γ× G∗/Γ⊥.

Then L2(G/Γ × G∗/Γ⊥) is a Hilbert space under the norm given by

‖Φ‖2=

∫

G/Γ×G∗/Γ⊥

|Φ(ġ, ġ∗)|2dġdġ∗.

Let φg(γ) = φ(g + γ) as a function of Γ. Then by the Plancherel formula,
we have, for a fixed g ∈ G

‖φ‖2=‖φg ‖2=

∫

G/Γ

∫

Γ

|φg|2dγdġ =

∫

G/Γ

‖φ∗
g ‖2 dġ =‖Θ(φ)(g, ġ∗)‖2,

where ‖ Φ ‖2=
∫
G/Γ×G∗/Γ⊥ |Φ(ġ, ġ∗)|2. Thus φ 7→ Θ(φ) preserves the mertic.

Since L1(G)∩L2(G) is dense in L2(G), the linear map Θ extends to an isometry
of L2(G) onto L2(G/Γ×G∗/Γ⊥) (surjectivity follows from the Fourier inversion
formula). We thus have

Θ : L2(G) ∼= L2(G/Γ × G∗/Γ⊥).

Since Mp(G) and B(G) acts on L2(G) via the unitary representation we have
constructed, these groups act at the same time on L2(G/Γ × G∗/Γ⊥) via the
intertwining operator Θ.

On the other hand, if we write

SpΓ(G) =
{
σ ∈ Sp(G)

∣∣(Γ × Γ⊥)σ = (Γ × Γ⊥)
}

, (2.10)

the group SpΓ(G) acts on L2(G/Γ×G∗/Γ⊥) naturally in the following manner:

rΓ(σ)φ((g, g∗)) = φ((g, g∗)σ)fσ(g, g∗). (2.11)

One can easily check using the fact:

fσ(v + w)fσ(v)−1fσ(w)−1 = F (wσ, vσ)F (w, v)−1

that rΓ(σ)φ ∈ L2(G/Γ × G∗/Γ⊥) (Exercise 5). We would like to compare the
two actions of SpΓ(G).
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Recall that U(v)φ(g, g∗) = φ(g + x)〈g, x∗〉 for v = (x, x∗) ∈ V = G × G∗.
Then we see by computation, writing w = (g, g∗)

Θ((U(v)φ)(g, g∗)) =

∫

Γ

φ(g + γ + x)〈g + γ, x∗〉〈γ, g∗〉dγ

= 〈g, x∗〉Θ(φ)(w + v) = F (w, v)Θ(φ)(w + v).

Thus defining UΘ(v)Φ(w) = F (w, v)Φ(w + v), we have the following commuta-
tive diagram:

L2(G)
Θ−−−−→ L2(G/Γ× G∗/Γ⊥)

U(v)

y
yUΘ(v)

L2(G) −−−−→
Θ

L2(G/Γ × G∗/Γ⊥).

By definition of the action of UΘ(v) and rΓ(σ), we see

UΘ(v)rΓ(σ)φ(w) =UΘ(v)Φ(wσ)fσ(w)

=F (w, v)Φ(wσ + vσ)fσ(w + v)

(∗)
=φ(wσ + vσ)fσ(w)fσ(v)F (wσ, vσ).

where at the last equality (∗), we have used the following identity:

fσ(w + v)fσ(w)−1fσ(v)−1 = F (wσ, vσ)F (w, v)−1.

We compute also:

fσ(v)rΓ(σ)U(vσ)φ(w) = fσ(v)rΓ(σ)(φ(w + vσ)F (w, vσ))

= fσ(v)fσ(w)φ(wσ + vσ)F (wσ, vσ).

Thus we get
UΘ(v)rΓ(σ) = fσ(v)rΓ(σ)UΘ(wσ). (2.12)

From this, we conclude

Theorem 2.2. For a subgroup Γ ⊂ G satisfying (H1-2), we have a section
rΓ : SpΓ(G) → Mp(G) which coincides with r on Ω ∩ Γ.

Exercises

1. Prove that the quotient of a locally compact abelian group by a closed
subgroup is again locally compact.

2. Give a detailed proof of the assertions in Example 2.2.

3. Show that dg and dg∗ defined by (2.7) and (2.8) are mutually dual (cf.
Exercise 4 in Subsection 1.3).

4. Prove the integral (2.9) converges if φ is integrable on G.

5. Show rΓ(σ)φ ∈ L2(G/Γ × G∗/Γ⊥) if φ ∈ L2(G/Γ× G∗/Γ⊥).
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2.6 Theta Series

Let X be a finite dimensional vector space over a number field F . We now
assume that G = Xp = X ⊗Q Qp or X∞ = X ⊗Q R or XA = X ⊗Q A. For
X∞, we define S(X∞) to be the Schwartz space of functions on X∞. Thus
S(X∞) is made of C∞–class functions with all derivatives rapidly decreasing as
Euclidean norm of x ∈ X∞ grows. In other words, φ ∈ S(X∞) if and only if φ
is of C∞–class and for any polynomial P (x) and any m–th derivative Φ of φ.
|P (x)Φ(x)| goes to 0 as |x| → ∞.

When G = Xp, we write S(Xp) for the space of Bruhat functions on Xp,
which are locally constant with compact support. When G = XA, S(XA) is the
space of Schwartz-Bruhat functions on XA, which are spanned by the product
φ((xv)v) =

∏
v φv(xv) with φv ∈ S(Xv) and such that for almost all henselian

p, φv is the characteristic function of a Zp–lattice Lp = L ⊗Z Zp for a lattice
L ⊂ X.

It is well know that the Fourier transform F gives an isomorphism F :
S(G) ∼= S(G∗) (cf. [IGA]). Then by definition of r(s), this operator preserves
the space S(G) for s ∈ Ω. Since Ω generates Mp(G) for G as above, we know

that the action of Mp(X) preserves S(G)
dense⊂ L2(G) (see [We1] No.11-13 for

more details).
We now prove the following generalized Poisson summation formula of Weil:

Theorem 2.3. Let G be as above. Suppose Φ ∈ S(G). Then we have
∫

Γ

Φ(γ)dγ =

∫

Γ

(sΦ)(γ)dγ

for all s ∈ SpΓ(G).

Proof. We consider Θ(Φ). Recall

Θ(Φ)(g, g∗) =

∫

Γ

Φ(γ + g, g∗)〈γ, g∗〉dγ.

Since rΓ(σ)Θ(Φ)(v) = Θ(Φ)(vσ)fσ (v), we find that
∫

Γ

(rΓ(σ)Φ)(γ)dγ = rΓ(σ)Θ(Φ)(0) = Θ(Φ)(0σ)fσ(0) = Θ(Φ)(0) =

∫

Γ

Φ(γ)dγ.

This shows the desired formula. The requirement Φ ∈ S(G) is necessary to
guarantee that Φ(γ) is well defined for all γ ∈ Γ.

We now assume that G is either X∞ or XA. Thus Γ is discrete and is a
lattice L ⊂ X or X ⊂ XA. We consider the function:

Θ(Φ)(s) =

∫

Γ

(sΦ)(γ)dγ =
∑

γ∈Γ

(sΦ)(γ)

as a function of s ∈ Mp(G). Then by the above theorem, we find for ξ ∈ SpΓ(G),
Θ(Φ)(ξs) = Θ(Φ)(s). Note that, by identifying X with Qn, we find Sp(XA) =
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Sp2n(A) and SpX(XA) = Sp2n(Q). Moreover, for σ = (σv) ∈ Sp2n(A), we see
by definition, if Φ =

∏
v Φv with Φv ∈ S(Xv),

r((σv))Φ =
∏

v

r(σv)Φv

as long as σv ∈ P (Xv) or Ω(Xv). From this fact, we can easily conclude that
for an open compact subgroup S of Sp2n(A(∞)), Θ(Φ)(su) = Θ(Φ)(s) for u ∈
rS(S). Thus s 7→ Θ(Φ)(s) is an automorphic form in a broad sense that they
are functions on Sp2n(Q)\MA/S if G = XA or G = X∞. We shall show
in the following subsection that Θ(Φ) gives basically all known theta series
as automorphic forms on the metaplectic group MA = Mp(XA) or M∞ =
Mp(X∞).

We are going to make explicit the form of Θ(Φ). Suppose first that X = Qn

(row vector space of dimension n), and identify X with its Q–dual by (w, v) =
wtv. Let H = Hn = {z ∈ Cnn|tz = z, z = x + iy, y > 0} (Siegel upper half
space). We consider the Schwartz function ϕ(v; (z, u)) = exp(πivztv + 2πivu)
defined on v ∈ X∞, z ∈ H and u ∈ Cn (column vector space). We note
F(ϕ(v; (i1n , 0)) = ϕ(v; (i1n, 0)), and hence, writing y = (y1/2)2 for a positive
symmetric matrix, we have

F(ϕ) =
(
r
((

0 −1
1 0

))
ϕ
)
(v; (iy, u))

=

∫

X∞

exp(−πwytw) exp(2πiw(tv + u))dw

wy1/2
7→w

= det(y)−1/2

∫

X∞

exp(−πwtw) exp(2πiy−1/2w(tv + u))dw

= det(y)−1/2 exp(−π(v + tu)y−1(tv + u))

= det(y)−1/2ϕ(v; (iy−1 , iy−1u)) exp(−πtuy−1u)

For σ =
(
aσ bσ

cσ dσ

)
∈ Sp2n(R), following [Sh1] (1.7) and (1.11):

σ(z, u) =((aσz + bσ)(cσz + dσ)
−1, t(cσ + dσ)

−1u)

ζσ(z, u) = exp(πi · tu(cσz + dσ)
−1cσu).

(2.13)

Using this notation, the above computation yields for z = iy

F(ϕ)(v; (z, u)) =
(
r
((

0 −1
1 0

))
ϕ
)
(v; (z, u))

=det(−iz)−1/2ζη(z, u)−1ϕ(v; η(z, u)),
(2.14)

where η =
(

0 −1n
1n 0

)
. By definition, F(ϕ)(v; (z, u)) is a holomorphic function of

(z, u). Since {iy|y ∈ Rnn, ty = y > 0} is a Zariski dense subset of Hn (Exercise
1), the above identity (2.14) has to be true for all (z, u) ∈ Hn × Cn. Similarly,
we can verify for p =

(
a 0
0 ta−1

)
,

(r(p)ϕ)(v; (z, u)) = | det(a)|1/2ϕ(v; p(z, u))
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and for α =
(

1n b
0 1n

)

(r(α)ϕ) (v; (z, u)) = exp(πvb · tv)ϕ(v; (z, u)) = ϕ(v; α(z, u)).

Since Mp(X∞) is generated by T and matrices of the form: η, p and α, we find a
holomorphic function h(s, z) : Mp(X∞) × Hn → C with the following property
(see [Sh1] Proposition 3.1):

Proposition 2.4. Let σ = π(s) ∈ Sp2n(R).

1. sϕ(v; z, u) = h(s, z)−1ζσ(z, u)−1ϕ(v; σ(z, u));

2. h(st, z) = h(s, t(z))h(t, z) for all s, t ∈ Mp(X∞);

3. h(s, z)2 = t · det(cσz + dσ) for t ∈ T;

4. h(s, z)4 = (−1)n · det(cσz + dσ)
2 if s = r(σ) for σ ∈ Ω.

Proof. All the assertions except for (2) has already been proven. Thus we need
to show the automorphic property: ζστ (z, u) = ζσ(τ (z, u))ζτ (z, u) for σ, τ ∈
Sp2n(R). We define g(z, u) = exp(πitu(z − z)−1u). Since

σ
(
z z
1n 1n

)
=

(
σ(z) σ(z)
1n 1n

) (
cσz+dσ 0

0 cσz+dσ

)

and tσησ = η, we have for T =
(
z z
1n 1n

)

(
0 z−z
z−z 0

)
= tTηT = t(σT )ησT

=
(

0 t(cσz+dσ )(z−z)(cσz+dσ )
t(cσz+dσ)(z−z)(cσz+dσ) 0

)
.

From this, we find g(σ(z, u)) = ζσ(z, u)−1g(z, u), and hence we get the desired
assertion.

Let Γ = Zn ⊂ X. It is now an easy exercise to see
∫

Γ

ϕ(γ; (z, u))dγ =
∑

m∈Zn

ϕ(m; (z, u)) =
∑

m

exp(πimztm + 2πimu) = θ(z, u)

is the standard Siegel modular theta function, ant the generalized Poisson sum-
mation formula of Weil includes as a special case the transformation formula of
this theta function.

We consider the set G made up of pairs (σ, jσ(z)) with σ ∈ Sp2n(R) and a
holomorphic functions jσ : Hn → C such that j2

σ = t · det(cσz + dσ) for t ∈ T.
We make G into a group by the multiplication (cf. [Sh1] (1.5)):

(σ, jσ)(τ, jτ ) = (στ, jσ(τ (z))jτ (z)).

Then we have the following exact sequence:

1 → T
t 7→(1,t)−−−−−→ G (σ,jσ) 7→σ−−−−−−→ Sp2n(R) → 1.
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Corollary 2.5. The map ι : Mp(X∞) → G given by s 7→ (π(s), h(s, z)) gives
an isomorphism of groups.

Proof. By Proposition 2.4 (1) and (2), ι is a homomorphism sending isomorphi-
cally T ⊂ Mp(X∞) onto T ⊂ G and inducing an isomorphism to the quotient
Sp2n(R) = Mp(X∞)/T = G/T; so, it is an isomorphism.

Exercises

1. Show that f = 0 if a meromorphic function f : Hn → P1
/C

vanishes on

Y = {iy|y ∈ Rnn,
ty = y > 0} ⊂ Hn.

2. Give a detailed proof of Proposition 2.4.

3. Check that the multiplicatin given above makes G into a group.

4. Show that ϕ(v; (z, u)) ∈ S(X∞) as a function of v for a fixed (z, u) ∈
Hn × Cn.
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