* Adjoint L-value formula and its relation to Tate conjecture

Haruzo Hida
Department of Mathematics, UCLA,
Los Angeles, CA 90095-1555, U.S.A.

*IISFR, Pune (India), Colloquium, December 2022.

Abstract: For a Hecke eigenform f, we state an adjoint L-value formula relative to each quaternion algebra D over $\mathbb Q$ with discriminant ∂ and reduced norm N. A key to prove the formula is the theta correspondence for the quadratic $\mathbb Q$ -space (D,N). Under the $R=\mathbb T$ -theorem, p-part of the Bloch-Kato conjecture is known; so, the formula is an adjoint Selmer class number formula. We also describe how to relate the formula to a consequence of the Tate conjecture for quaternionic Shimura varieties.

§0. Setting of the simplest case. Assume that D is definite. Let $G_D(\mathbb{Q}) = \{(h_l, h_r) \in D^{\times} \times D^{\times} | N(h_l) = N(h_r) \}$ which acts on D by $v \mapsto h_l^{-1}vh_r$; so, $SO_D(\mathbb{Q}) = G_D(\mathbb{Q})/Z_D(\mathbb{Q})$ for the center $Z_D \subset G_D$. For a Bruhat function ϕ on $D_{\mathbb{A}}^{(\infty)}$ and $e(N(v_{\infty})\tau)$ $(\tau \in \mathfrak{H})$: the upper half complex plane), the theta series

$$\theta(\phi;\tau;h_l,h_r) = \sum_{\alpha \in D} \phi(h_l^{-1}\alpha h_r) \mathbf{e}(N(\alpha_\infty)\tau) \quad \text{on } \mathfrak{H} \times G_D(\mathbb{A})$$

can be extended to an automorphic form on $Y_{\Gamma} \times Sh \times Sh$ for $Sh := D^{\times} \setminus D_{\mathbb{A}}^{\times}/D_{\infty}^{\times}$ and $Y_{\Gamma} := \Gamma \setminus \mathfrak{H}$ for a congruence subgroup Γ . For a weight 2 cusp form $f \in S_2(\Gamma)$ and automorphic forms $\mathcal{F}, \mathcal{G} : Sh \to \mathbb{C}$, we define

$$\theta^*(\phi)(f)(h_l, h_r) = \int_{Y_{\Gamma}} f(\tau)\theta(\phi)(\tau; h_l, h_r)y^{-2}dxdy, \ (h_l, h_r \in D_{\mathbb{A}}^{\times})$$
$$\theta_*(\phi)(\mathcal{F} \otimes \mathcal{G})(\tau) = \int_{Sh \times Sh} \theta(\phi)(\tau; h_l, h_r)(\mathcal{F}(h_l) \cdot \mathcal{G}(h_r))d\mu_l d\mu_r.$$

We choose the Haar measure $d\mu_?$ on $D_{\mathbb{A}}^{\times}$ suitably. We call $\theta^*(\phi)(f): Sh \times Sh \to \mathbb{C}$ a theta lift and $\theta_*(\phi)(\mathcal{F} \otimes \mathcal{G}) \in M_2(\Gamma)$ a theta descent.

§1. Two good choices of ϕ . Let R be an Eichler order of level N; so, $(N, \partial) = 1$.

First choice: At N, we identify $R/NR = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in M_2(\mathbb{Z}/N\mathbb{Z}) \right\}$. Let ϕ_R be the characteristic function of

$$\left\{x \in \widehat{R}|x \text{ mod } NR = \left(\begin{smallmatrix} a & b \\ 0 & d \end{smallmatrix}\right), \ \mathbf{d} \in \left(\mathbb{Z}/N\mathbb{Z}\right)^{\times}\right\}.$$

Then the first choice is

$$\phi(v) = \phi_R(v^{(\infty)}) e(N(v_\infty)\tau)$$

as a Schwartz-Bruhat function on $D_{\mathbb{A}}$. In this case, $\Gamma = \Gamma_0(\partial N)$.

Second choice: Let ϕ_L be the characteristic function of \widehat{L} . Choose $0 < c \in \mathbb{Z}$ and $L := \widehat{\mathbb{Z}} \oplus \widehat{R}_0$ for $R_0 = \{v \in R | \mathrm{Tr}(v) = 0\}$, and put $\phi'_{R_0} = (1-c^3)^{-1}(\phi_{R_0} - \phi_{cR_0})$. Then we define, writing $v = z \oplus w$ with $z \in Z_{\mathbb{A}}$ and $w \in D_{0,\mathbb{A}}$

$$\phi'(v) = \phi_{\mathbb{Z}}(z^{(\infty)})\phi'_{R_0}(w^{(\infty)})e(N(v_{\infty})\tau).$$

We have $\Gamma = \Gamma_0(4c^2\partial N)$.

 $\S 2$. Two theorems. Let $Sh_R = Sh/\widehat{R}^{\times}$ and $\delta(Sh_R)$ is the diagonal image of Sh_R in $Sh_R \times Sh_R$.

Theorem A: Assume that $\int_{Sh_R} \mathcal{F} d\mu = \int_{Sh_R} \mathcal{G} d\mu = 0$ (a cuspidal condition). If $L = R_0(N)$, then $\theta_*(\phi)(\mathcal{F} \otimes \mathcal{G}) = \sum_{n=1}^{\infty} (\mathcal{F}, \mathcal{G}|T(n))q^n$ for $q = \exp(2\pi i \tau)$ with $(\mathcal{F}, \mathcal{G}) = \int_{\delta(Sh_R)} \mathcal{F}(h)\mathcal{G}(h)d\mu_h$. So $\theta_*(\phi)$ and $\theta^*(\phi)$ are Hecke equivariant.

Theorem B: If f is a Hecke eigen new form of $S_2(\Gamma_0(\partial N))$, then for the canonical period Ω_{\pm} of f,

$$\prod_{p|\partial} (1 - p^{-2})^{-1} \mathfrak{m}_1 \frac{L(1, Ad(\rho_f))}{2\pi^3 \Omega_+ \Omega_-} = \int_{\delta(Sh_R)} \frac{\theta^*(\phi')(f)(h)}{\Omega_+ \Omega_-} d\mu,$$

where \mathfrak{m}_1 is the mass factor of $L \cap D_0$: $\mathfrak{m}_1 \frac{\zeta(2)}{\pi^2} = \int_{Sh_R} d\mu \in \mathbb{Q}$ (Siegel's mass formula) and if $\partial = p$ with N = 1, $\mathfrak{m}_1 = (p-1)/2$.

Theorem B is independent of c. Under $R=\mathbb{T}$ theorem at a prime p, p-primary Bloch-Kato conjecture known for $Ad(\rho_f)$; so, Theorem B is an adjoint Selmer class number formula.

 $\S 3$. Higher weight k and indefinite case. For a higher weight k or an indefinite case, we need to replace the Schwartz function $e(N(v)\tau)$ by a standard Schwartz function of Siegel-Shimura by multiplying a vector valued spherical function for (D, N) and then in the indefinite case, we modify $\theta(\varphi)$ (for $\varphi = \phi, \phi'$) and \mathcal{F} and $\mathcal G$ into vector valued differential forms by the Eichler-Shimura map. Then \mathcal{F} and \mathcal{G} are closed harmonic 1-forms with values in a locally constant sheaf $\mathcal{L}_{n/A}$ whose fiber is the symmetric n-thtensor representation over an appropriate ring A for n = k - 2. We replace $(\mathcal{F},\mathcal{G})$ by the cup product $(\mathcal{F},\mathcal{G})_n := \int_{\delta(Sh_R)} \mathcal{F} \cup \mathcal{G}$ of $H^*(Sh_R,\mathcal{L}_{n/\mathbb{C}}) imes H^*(Sh_R,\mathcal{L}_{n,\mathbb{C}}) o H^{2*}(Sh_R,\mathbb{C}) = \mathbb{C}$ in Theorem A (* = 0, 1 definite or indefinite).

In Theorem B, we pull back the class $\theta(\phi')^*(f)$ on $Sh_R \times Sh_R$ to $\delta(Sh_R)$ and integrate over $\delta(Sh_R)$. Then Theorem B is valid in general.

§4. Canonical periods. If D is indefinite, Sh_R is a Shimura curve. Let A be a DVR at a prime $\mathfrak p$ such that $\mathbb Z[\lambda] = \mathbb Z[\lambda(T(n))|n \in \mathbb Z] \subset A \subset \mathbb Q[\lambda]$ for the Hecke field $\mathbb Q[\lambda]$ of f (i.e., $f|T(n) = \lambda(T(n))f$). Define $\mathcal F_\pm$ by $H_\lambda := H^1(Sh_R, \mathcal L_{n/A})[\lambda, \pm] = A[\mathcal F_\pm]$, where \pm indicate the \pm -eigenspace of complex conjugation on Sh_R . Put $H := H^1(Sh_R, \mathcal L_{n/A})[\pm]$.

Also define \mathcal{F} by $H^0(Sh_{R/A},\omega^k)[\lambda]=A\mathcal{F}$ ($\mathcal{F}\in S_k(\widehat{R}^\times)$) for the weight k Hodge bundle ω^k . Then we project it to a unique element $\omega^\pm(\mathcal{F})$ of the \pm -eigenspace $H^1(Sh_R,\mathcal{L}_{n/\mathbb{C}})[\lambda,\pm]$ of complex conjugation and define the period $\Omega^D_\pm\in\mathbb{C}^\times$ as $\omega^\pm(\mathcal{F})=\Omega^D_\pm[\mathcal{F}_\pm]$. The period Ω_\pm in Theorem B is $\Omega^{M_2(\mathbb{Q})}_\pm$. We just put $\Omega^D_\pm=1$ if D is definite.

Tate conjecture predicts $\Omega_{\pm}^{D}/\Omega_{\pm} \in \mathbb{Q}[\lambda]^{\times}$ if D is indefinite.

The conjecture is known for k = 2 by Faltings.

§5. Relation to Tate conjecture. Assume that D is indefinite. Let E be one of $H^1(Sh_R, \mathcal{L}_{n/\mathbb{Q}[\lambda]})[\pm]$. Decompose $E \otimes_A \mathbb{Q} = E_\lambda \oplus E_\lambda^\perp$ into λ -eigenspace E_λ and its Hecke stable complement, and write \widetilde{H}_λ for the projection of H to E_λ . Define $c_D := (\mathcal{F}_+, \mathcal{F}_-)_n$ which is called cohomological D-congruence number, and $\widetilde{H}_\lambda/H_\lambda \cong A/c_DA$. We know, in \mathbb{C}/A^\times , under the $R = \mathbb{T}$ -theorem at a prime p,

(*)
$$(\mathcal{F}_+, \mathcal{F}_-)_n = c_D \stackrel{R}{=}^{\mathbb{T}} c_{M_2(\mathbb{Q})} = \frac{L(1, Ad(\rho_f))}{2\pi^3 \Omega_+ \Omega_-}$$
 (up to A^{\times}).

By Theorem A, for $u_\pm^D\in\mathbb{C}^\times$, $\theta_D^*(f)=u_+^D\mathcal{F}_+\otimes u_-^D\mathcal{F}_-$. Thus

$$L(1, Ad(\rho_f)) \stackrel{\text{Theorem B}}{=} \int_{\delta(Sh_R)} \theta_D^*(\phi')(f)$$

$$= u_+^D u_-^D (\mathcal{F}_+, \mathcal{F}_-)_n \stackrel{(*)}{=} u_+^D u_-^D \frac{L(1, Ad(\rho_f))}{\Omega_+ \Omega_-}.$$

Thus $u_+^D u_-^D/\Omega_+\Omega_- \in A^\times$. Thus if $u_+^D u_-^D = \Omega_+^D \Omega_-^D$ (i.e. $u_\pm^D \mathcal{F}_\pm = \omega^\pm(\mathcal{F}) \Leftrightarrow \theta_D^*(\phi') = \omega^+(\mathcal{F}) \otimes \omega^-(\mathcal{F})$), the A-integral Tate conjecture in this case holds (which I hope to prove in future).

§6. Proof of Theorem A. Let $h_k(\partial N; A)$ be the subalgebra of $\operatorname{End}_{\mathbb{C}}(S_k(\Gamma_0(\partial N)))$ generated over A by Hecke operators T(n) and $S_k(\Gamma_0(\partial N); A) = S_k(\Gamma_0(\partial N)) \cap A[[q]]$. Recall

Duality theorem The space $S := S_k(\Gamma_0(\partial N); A)$ is A-dual of $H := h_k(\partial N; A)$ such that for a linear form $\phi : h_k(\partial N; A) \to A$, $\sum_{n=1}^{\infty} \phi(T(n))q^n \in S_k(\Gamma_0(\partial N); A). \text{ Writing } f = \sum_{n=1}^{\infty} a(n, f)q^n \in S_k(\Gamma_0(\partial N); A) \in S_k(\Gamma_0(\partial N); A)$ is given by $\langle h, f \rangle = a(1, f|h)$.

By Jacquet-Langlands correspondence, $H^*(Sh_R, \mathcal{L}_{n/A})$ is a module over $h_k(\partial N; A)$. Then applying the above theorem to the linear form $h_k(\partial N; A) \ni h \mapsto (\mathcal{F}, \mathcal{G}|h)_n$, we get Theorem A.

For the proof of Theorem B, we resort to an idea of Waldspurger.

- §7. An idea of Waldspurger. Computing the period of $\theta^*(\phi')(f)$ for a quadratic space $V = W \oplus W^{\perp}$ over an orthogonal Shimura subvariety $S_W \times S_{W^{\perp}} \subset S_V$ has two steps:
- (S) Split $\theta(\phi')(\tau, h, h^{\perp}) = \theta(\varphi)(\tau, h) \cdot \theta(\tau, \varphi^{\perp})(h^{\perp})$ $(h^? \in O_{W?}(\mathbb{A}))$ for a decomposition $\phi' = \varphi \otimes \varphi^{\perp}$ $(\varphi \text{ and } \varphi^{\perp} \text{ Schwartz-Bruhat functions on } W_{\mathbb{A}} \text{ and } W_{\mathbb{A}}^{\perp});$
- (R) For the theta lift $(\theta^*(\phi')(f))(h) = \int_Y f(\tau)\theta(\phi')(\tau,h)d\mu$ with a modular curve Y, the period P over the Shimura subvariety $S \times S^{\perp}$ (S for O(W) and S^{\perp} for $O(W^{\perp})$) is given by:

$$\int_{S\times S^{\perp}} \int_{Y} f(\tau)\theta(\phi')(\tau;h)d\mu(\tau)dh \quad (d\mu(\tau) = y^{-2}dxdy)
= \int_{Y} f(\tau) \left(\int_{S^{\perp}} \theta(\varphi^{\perp})(\tau;h^{\perp})dh^{\perp} \right) \cdot \left(\int_{S} \theta(\varphi)(\tau;h_{0})dh \right) d\mu.$$

Then invoke the Siegel–Weil formula to convert inner integrals into the Siegel-Weil Eisenstein series $E(\varphi)$ and $E(\varphi^{\perp})$, reaching Rankin-Selberg integral

$$P = \int_Y f(\tau) E(\varphi^{\perp}) E(\varphi) d\mu = L$$
-value.

§8. D definite and n=0. For simplicity, we assume that D is definite and n=0. Then $D=Z\oplus D_0$ for the center Z and $D_0:=\{v\in D| {\rm Tr}(v)=0\}$. So $W=Z=(\mathbb{Q},x^2)$ and $W^\perp=D_0$. Computing Siegel-Weil formula for $\varphi=\phi_{\mathbb{Z}}$, we have $E(\varphi)=\sum_{n=-\infty}^\infty q^{n^2}$ (Riemann's theta series). In the definite case, $E(\varphi^\perp)$ is a weight $\frac{3}{2}$ Eisenstein series.

For general φ^{\perp} , $E(\varphi^{\perp})$ is the sum of the Eisenstein series $E_{\infty}(\varphi^{\perp})$ of the infinity cusp and $E_0(\varphi^{\perp})$ of the zero cusp. For the Rankin convolution, $\int_Y f\theta(\varphi)E_0(\varphi^{\perp})d\mu_{\tau}$ causes a trouble. Our choice of $\varphi^{\perp}:=\phi'_{R_0}$ introducing $0< c\in \mathbb{Z}$ is made to have the vanishing $E_0(\phi'_{R_0})=0$ and the identity $E_{\infty}(\phi'_{R_0})=E_{\infty}(\phi_{R_0})$. The Rankin convolution $\int_Y f\theta(\varphi)E_{\infty}(\phi_{R_0})d\mu_{\tau}$ is computed in 1976 by Shimura and produces the adjoint L-value in Theorem B. All computation can be generalized to the Hilbert modular case over a totally real field F and a quaternion algebra $D_{/F}$.