5. On congruence divisors of cusp forms as factors of the special values of their zeta functions, Inventiones Math. 64 (1981), 221–262
38. Global quadratic units and Hecke algebras, Documenta Math. 3 (1998), 273–284
44. Adjoint Selmer groups as Iwasawa modules, Israel J. Math. 120 (2000), 361–427
49. p-Adic automorphic forms on reductive groups, Astérisque 298 (2005), 147–254, SMF
51. CM periods, L-values and the CM main conjecture, the 7-th Hakuba Symposium Proceedings (2006), 13–28
52. *Hilbert Modular Forms and Iwasawa Theory*, 2006, Oxford University Press, BOOK
60. Serre’s conjecture and base change for $GL(2)$, Pure and Applied Math Quarterly, **5** No.1 (2009), 81–125
61. L-invariants of Tate curves, Pure and Applied Math Quarterly, **5** No.4 (2009), 1343–1384
62. L-invariant of the symmetric powers of Tate curves, Publications of RIMS, **45** No.1 (2009) 1–24
64. The Iwasawa μ–invariant of p–adic Hecke L–functions, Annals of Mathematics, **172** (2010), 41–137
73. Local indecomposability of Tate modules of non CM abelian varieties with real multiplication, J. Amer. Math. Soc. **26** (2013), 853–877
86. p-rigidity and Iwasawa μ-invariants, joint with Ashay A. Burungale, Algebra & Number Theory 11 (2017), 1921–1951
93. Anticyclotomic cyclicity conjecture, preprint, 51 pages, 2021, unpublished (the result is covered by [90, Chapter 7], though the proof in this paper is different from the book version).

Most of preprints/reprints (through links and/or pdf files) are available at www.math.ucla.edu/~hida.