ADJOINT L-VALUE AS A PERIOD INTEGRAL
AND THE MASS FORMULA OF SIEGEL-SHIMURA

HARUZO HIDA

ABSTRACT. Let F' be an elliptic Hecke eigen cusp form. For a quaternion algebra D ,q and a semi-
simple quadratic extension E = Q[\/Z]/@ (including F = Q x Q), we determine the period of the
Doi-Naganuma theta lift 6* (F) of F' to the algebraic group (D ®q E)* over Shimura subvarieties
associated to D, as the product of L(1, Ad(pr) ® <é>) and the mass factor my of Siegel-Shimura

for a ternary quadratic form. Here pp is the compatible system of Galois representations associated
to F, and Ad(pp) acts on the Lie algebra sl(2) via conjugation by pg.

To state a simplest example of the adjoint L-value formula for a definite quaternion algebra D q
ramified at one prime p, set £ =Q x Q and let F' € S>(T'o(p)) be a Hecke eigenform normalized so
that its Fourier coefficients in exp(2mv/—17) (7 € $ := {z € C|Im(z) > 0}) is equal to 1. Defining
A by F|T(n) = XNT(n))F for Hecke operators T'(n), A gives rise to an algebra homomorphism of
the Hecke algebra for S2(T'o(p)) to the integer ring A of the Hecke field of F. Inverting finite
number of primes, we may assume that A is a principal ideal domain; so, we have the canonical
period Qy = Q4 (F, A\; A) € C* (up to units in A) as in [EMI, §9.2.4]. Of course, if F' is associated
with a rational elliptic curve, we take A := Z and Q4 is determined up to a sign. Take a definite
quaternion algebra D ramified only at a prime p with a maximal order R C D. Choose a finite
subset Sh = Shy C D; such that Sh = D*\D} JR*DY for the profinite completion R of R, and
set e, = hR*h=' N D* for h € Sh. The following formula is a special case of Corollary 5.3 (with
an explicit value of m; computed in Remark 4.3):

Theorem 0.1. Let pp be the compatible system of Galois representations associated to F and
Ad(pr) act on the Lie algebra sl(2) via conjugation by pr. For the canonical period Qi of F and
the mass factor my = % of Siegel,

_ov—1 (1 Ad pF h h)
=r ) ™ e oo =2 '
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Writing Dy for the quadratic space {v € D|Tr(v) = 0}, the mass factor m; above for the lattice
RN Dy is computed by Siegel. The automorphic form 6*(F) on D*\D; x D*\D} is the base
change theta lift of F' to D* x D* which is a function of (h,g) € DS x D;. The above formula is
an adjoint generalization of the mass formula of Siegel:

m= mlg = et
heSh

and also an obvious generalization of the Dirichlet class number formula. We will prove this type of
an explicit formula of L(1, Ad(pr) ® xg) for any Hecke eigen new form F of appropriate level with
quadratic twist by the character xg of an arbitrary semi-simple quadratic extension E/Q and an
arbitrary division quaternion algebra D/,q (the case where D = M>(Q) has been treated in [H99)]
in a different manner). The exact formulas are in Theorem 4.7 when D is indefinite and E is real,
Theorem 5.2 when D is definite and E is real, and Theorem 7.1 when D is definite and E is imaginary
and in Theorem 8.3 when D is indefinite and E is imaginary.
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We apply the seesaw identity [K84, (1.9)] to the pairs (SOy,SL(2)) and (SOw, x SOz, Mp(2) x
Mp(2)) for an orthogonal decomposition V = Z & W of a quadratic space V. The seesaw identity
(R) below itself is tautological, but an important point is an idea of Waldspurger to convert it into a
Rankin—Selberg convolution via the Siegel-Weil formula taking a constant as an automorphic form
on SOy, and a character on SOz. If dim Z = 1, the Siegel-Weil formula does not have much effect
and produces the half-integral theta series of the character for Z, and thus the adjoint L-values
appears as a period integral by Shimura’s calculation of the Rankin product [Sh75].

More precisely, for an elliptic cusp form F'; an idea of Waldspurger [W85] of computing the period
of a theta lift of F' to SOy over an orthogonal Shimura subvariety Sz x Sy, C Sy is two-folds:

(S) Split 8(¢)(1;hz, ho) = 0(1))(hz) - 6(¢o)(ho) (the variable 7 in the Poincaré half plane ),
h = (hz,ho) € Ow,(A) x Oz(A)) for a decomposition ¢ = 1) ® ¢g (here ¢ and ¢o are
Schwartz—Bruhat functions on Z, and Wy 4, respectively);

(R) For the theta lift O(F)(h) = [ F(7)0(¢)(7; h)dp, with a modular curve X, the period P
over the Shimura subvariety Sz x Sy (Sz for SOz and Sy = Sw, for SOy, ) is given by a
trivial seesaw identity:

[ [ r@eermadn = [ pe) ([ o nadm) - ([ o0t )

where 7 = £+ny/—1 is the variable of the metaplectic side and dju, = n~2d¢dn. Then invoke
the Siegel-Weil formula to convert inner integrals into the Siegel-Weil Eisenstein series F(v))
and E(¢g), reaching Rankin-Selberg integral

P = / F(r)E(¢)E(¢o)dpr = L—value.
b's

Ifdim Z = 1, E(v) is a half integral theta series as we already remarked, and by Shimura’s calculation
of the Rankin product, the adjoint L-values (twisted by a character) shows up independently of (the
size of) V as long as V has even dimension > 4. We hope to deal with the general V in future.
Waldspurger [W85] applied in the early 1980s this scheme to V' = D for a quaternion algebra D g
with a splitting V := D = E @ E for a quadratic field E = Q[v/A] over Q and expressed the period
by the central critical value of the Hecke L-function L(s, F ® xg) for xg := (é).

In this paper, we apply the principles (S) and (R) to the simplest case of an arbitrary anisotropic
4-dimensional quadratic space over Q which produces the quaternionic Doi-Naganuma lift to the
quadratic extension F = Q[v/A] of Q (including Q x Q) as a theta left, and we compute the period in
terms of the adjoint L-value L(s, Ad(F) ® xg) = L(s, Ad(pr) ® xg) at s = 1. We calculate fully the
period integral without any ambiguous factors. To prove the integral period factorization predicted
in [DHI, Conjectures 1.3 and 1.5] (not just rational one as conjectured, for example, in [Y95]) of the
canonical period of the Doi-Naganuma lift into canonical elliptic period factors, an absolutely precise
computation (as in Theorem 0.1) involving the size of the congruence module of F' as the error factor
of the period and the Petersson inner product. This point will be discussed in our subsequent papers
once the results in this paper are generalized to Hilbert modular forms. Note that the Galois side
of [DHI, Conjecture 1.5] is proven in [EMI, Theorem 8.3.7] and [H22, Theorems A and C] and that
the exact computation of the mass by Shimura in [Sh99] for an arbitrary lattice in Wy is useful in
this integral point of view (though some mathematicians living purely in an abstract ghostly world
may not like such a tedious computation).

Let D be a quaternion algebra over Q, and we put D = D ®qg E on which 1 # o € Gal(E/Q)
acts through the factor E. Then the Doi-Naganuma lift of elliptic cusp forms to Dj, is realized as
a theta lift with respect to the quadratic space over Q:

D, = D :={v € Dg|’ = +v'}
for the involution ¢ given by v+v* = Trp, /g(v). The quadratic form on D isinduced by v — vv° =
+N(v) for the reduced norm N : Di — E which has values in Q over DE. In the late 1970s to the
early 1980s, the quadratic Q-space D, for D = M>(Q) is studied to establish the Doi-Naganuma lift
for E real in [K78] and for F imaginary in [A78] and [F83], though the investigation of base-change

via theta lift has been somehow forgotten after the general theory of base-change lift by Langlands
via trace formulas. Doi-Naganuma lift via theta correspondence is not just an abstract trace (or
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representation) identity but contains more arithmetic information as it computes the lift (ascent)
and the descent explicitly. This paper is perhaps the first attempt of computing fully explicitly the
period integral of the base-change over Shimura subvariety D*\ D} inside the ambient quaternionic
automorphic variety Dp\Dp, .

Let Dy = DF := {v € Df|v* = —v} and Z = Z* := D¥ N E inside Dp. Then dimg Z* = 1
and dimg DSE = 3, and we have a splitting Df = Z+ @ DSE of quadratic spaces. Write w = wy
for the Weil representation of the metaplectic cover mg : Mp(A) — SLa(A) realized on Schwartz-
Bruhat functions ¢ on Vi for V- = Z, Dy, D, and Oy (A) (resp. SOy (A)) for the (resp. special)
orthogonal group of V acting from the right on V4. Though the metaplectic group Mp is not an
algebraic group, we write Mp(A) for A = A, R, Q, and so on as if it were an algebraic group. For all
possible coefficients A, we write 74 for the projection w4 : Mp(A) — SL2(A). Note that Op_ (resp.
Op,) is close to D, (resp. D*). We have the theta kernel 6y (¢)(g, h) = > oy (Wv (9)9)(ah) with
g € Mp(A) and h € Oy (A). Since Z* is definite, we have theta series 0z () = > ., ¥(n)n*e(n?7)
of Z with e(7) := exp(2my/—17) for the variable 7 in the Poincaré half plane $ (on the metaplectic
side) and a Dirichlet character ¢ regarded as a Schwartz—Bruhat function on Z. The Eichler order
R(N) (of level N) in D gives rise to a lattice L C DZ, and we consider a Schwartz-Bruhat function
@0 on Dy 4 with a good choice of infinity part and with a finite part given by a modified characteristic
function of L. Then we apply Waldspurger’s technique to Op, (V@ po) = 0z(¥)0p, (¢o). Since Z* is
definite with negligible orthogonal group, we apply Siegel-Weil formula to 6p,(¢¢) which produces
an Eisenstein series of half integral weight E(¢g). The formula for our use is not in the convergent
range Weil studied and is proven for a division algebra D in Sweet’s thesis [Sw90, §3.3] computed by
the method of Kudla and Rallis [MSS, §5.3]. Because of this, we need to assume that D is a division
algebra for the period formula. In any case, the formula (F) below is proven for D = M3(Q) in my
earlier work [H99] (by a different method) which deals with D = M>(E) for a general number field
E, and a quadratic extension E, g, .

The even Clifford group of D, (resp. Dy) is almost Dj; (resp. D*); so, the period integral is over
a Shimura subvariety associated to D* inside the Shimura variety (or the automorphic manifold) of
Dy. Assume that F is a Hecke eigenform with an appropriate level determined by ¢o and 1 with
Neben character 1~ !xp, and write pp for the compatible system of Galois representations of F.
Define L(s, Ad(F')) = L(s, Ad(pr)) for the adjoint representation Ad(pr) of pr on s[(2) on which
the Galois group acts via conjugation by pr. The final formula has the following form:

(F) P=c-mi-L(1, Ad(F)® xx)

for an explicit (rather trivial) constant ¢ involving some Euler factors and the mass factor my
described below. As is well known, the analytic continuation of L(s, Ad(F')) was first given by
Shimura in [Sh75] as a Rankin product of 67(¢)) and F over a modular curve, and therefore it is
natural to have the adjoint L-value as the period over the Shimura subvariety associated to D*.

Here is a description of why we get the mass factor 0 < m; € Q in our formula. For the Riemann
zeta function ((s), the mass factor is the ratio

(0.1) my = 7Pm/{(2)

for the mass m of Siegel-Shimura [AQF, §37.1] for the quadratic space Dy with respect to the lattice
L for the level N of 8(¢) (and F'). Here ep = 1,2 accordingly to D ®g R = M>(R), H. The Siegel-
Weil formula by Weil [W65, no.52] is formulated with respect to the Tamagawa measure dw for the
orthogonal group Op, while the period is computed with respect to another canonical measure duy,

with volume 1 over the image of R/(F)X in Op, (A®>)). One can define the mass m by the ratio
dpn/dw (we need to have $dw as the Tamagawa number of Op, is equal to 2; see [MSS, (5.3.3)]).
For ternary quadratic forms, apart from some initial (partial) results by Siegel, the exact form of
the mass m was not known until Shimura’s determination for all quadratic spaces over a totally real
field in [Sh99], and by his formula, m in our case is a multiple of {(2) by a simple (but hard to
determine) constant my, though, as Siegel discovered, m is a product of local factors. Our formula
resembles the Siegel-Shimura mass formula (with L(1, Ad(F) ® xg) in place of ((2)), particularly
when D is definite (see §5.4).
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Shintani [S75] and Waldspurger [W81] had another idea of computing the Fourier expansion on
the metaplectic side of the theta descent (the adjoint map of the theta lift) from Op_, and the
period of the form P is expected to show up as a Fourier coefficient of the Doi-Naganuma descent
from Op,. More precisely the coefficient in e(N(a)7) (or e(N(a)7)) for « € DE N Dy with
the variable 7 € $ on the metaplectic side is the period with respect to an orthogonal group O,
depending on « times the adjoint mass factor m, dependent on « (see Theorems 4.10, 5.9, 7.3 and
8.4), where m,, = my if « is a scalar in Z. The even Clifford group of O, is the multiplicative group
of a quaternion subalgebra D, C Dg over Q dependent on o and D, = D if 0 # a € Z . When
E is imaginary, those a appearing in the g-expansion must satisfy D, ®g R =2 M3(R), while if E is
real, all quaternion subalgebras over Q of Dy appear, and therefore we expect that these periods
depending on « have the same rationality (see Remark 4.11) as predicted by a conjecture of Tate
(since Shimura curves of different quaternion algebras have motivic factors with identical Hasse—Weil
L-functions by the Jacquet-Langlands correspondence). The computation of the Fourier expansion
of the theta descent will be done for all quaternion algebra including D = M>(Q).

The result in this paper should be generalized to a general base field and even dimensional
quadratic spaces V. The author plans to do all computations in near future, as he hopes to make
progress in the integral period relations predicted in [DHI] and [H99] of the above type of periods,
where in the latter paper, the computation of P was done for D given by the 2 x 2 matrix algebra
over the base field £ with ' = F, x E; without recourse to the theta correspondence, and the
result in [H99] has been used in the study of period relations in [TU22].
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1. THETA CORRESPONDENCE

We describe theta correspondences between the metaplectic cover Mp of SL(2) and orthogonal
groups Oy for quadratic spaces V over Q. Write U for the upper unipotent subgroup of SL(2) and
T for the diagonal torus of SL(2) with B = TU C SL(2) (the upper triangular Borel subgroup).

1.1. Weil representation. Let (V, Q) be a quadratic space over Q with dim V' = m. The quadratic
form V 5 z — Q(z) € Q produces a Q-bilinear symmetric pairing s(z,y) = Q(z +y) — Q(x) — Q(y).
We choose a basis v1, ..., v, of V over Q and define S = (s(vi, v5))i; € My (Q). The discriminant
d(V) := det(S) modulo (Q*)? is well defined independent of the choice of the basis. We also denote
this class modulo square as d(V). In particular, ky := Q[/(—1)™(m=1/2 det(Q)] is Q or a quadratic
extension of Q independent of the choice of the basis. If m = dimV is even, we put xy for the
kv/Q

character (

(we will specify it in §3.1 for a specific V). Define e = ep : A/Q — S* be the standard additive
character such that ey (z) = exp(2my/—1x) for € Qs = R.

Write A for the adele ring of Q and A(®) = AN Hw;év Qy for a place v of Q. The group SLo (k)
for a field k is generated by J := (91 (1)), diagonal matrices and upper unipotent matrices [PAF,
Lemma 4.46]; so, the density of SLz(Q) C SLy(A(®) (removing one place v) by strong approximation
tells us that SLp(A(®)) is topologically generated by these elements. By Iwasawa decomposition,
SLa(A) = SLy(A()) x SLy(R) is generated by B(A)SO2(R) and J. Write S(Vx) for the space of
Schwartz-Bruhat functions on Vx =V ®g X for X = Q,, R, A, A,

Let B C SL(2) be the upper triangular Borel subgroup with its unipotent radical U and the
diagonal torus T so that B = T x U. Weil defined in [W64, no.13] an action of U(X), T(X) and
J=(24) onS(Vx) as follows:

). If m is odd, xv is the “Neben” character of the standard theta series weight =

(1.1) r(51)6(v) = ea(QW)u)p(v), T (5 %) ¢(v) = lal}*¢(av) and r(J)p(v) = H(v),
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where ¢ — ¢ is the Fourier transform with respect to ea(s(z,y)) normalized so that (Z(x) = ¢(—x).
By computation, r(—1) commutes with r(g) for all g as above, and r(—1)¢(v) = ¢(—v).

The metaplectic group Mp(X) is defined to be the subgroup of the continuous C-linear automor-
phism group Aut(S(Vy)) generated by r(g) for g as in (1.1). It appears that Mp(X) depends on
the quadratic space V. As we will see later, there is a construction of Mp(X) independent of V; so,
there exists a unique group Mp(X) acting on S(Vx) for all V. However the action r depends on
V; so, if necessary, we write ry to indicate dependence. For example, ry ( 0a b ) = (A) Ty ( 0 b, )
for the quadratic character (£) : AX/Q* — CX if X = A, V = (Q,2?) and V' = (Q, Az?) with
A € Q* (Neben type change as in [Sh73, Proposition 1.3]). Since it is known that r(gg’) = r(g)r(g¢’)
up to scalars z € C with |z| = 1, we have a canonical exact sequence of locally compact groups:

1 — 8" — Mp(X) =5 SLy(X) — 1,
where S* = {z € C*|2Z = 1} acts on ¢ by scalar multiplication ¢ — z¢. The center of Mp(X) is
isomorphic to S x {£1} generated by S* and r(—1) ((2,—1) € S* x {£1} acts as ¢(v) — z¢(—v)).

Let Q = {(2}) € SLa(A)|c € AX}. Then, we have r(b)r(o)r(V') = r(vad’) for b,b' € B(X) and
o € Q [W64, no. 32] Weil made a canonical section rg : SL2(Q) — Mp(A) which coincides with r on
) [W64, no.40]. We identify SL2(Q) with the image of rg in Mp(A). The action of Mp(X) on S(Vx)
gives rise to the Weil representation w = wy of the metaplectic group Mp(X) into Aut(S(Vx)).

Let Oy be the orthogonal group for V over Q and GOy be its similitude group (acting from the
right on V); so

GOy (A) = {a € GL(V ®q 4)|Q(za) = vy (a)Q(z) with vy (a) € A}
and SOy = SL(V) N Oy. We let g € GOy (A) acts on S(Vy) by

L(9)6(v) = v ()" d(vg).

1.2. Siegel-Weil theta series. The action w and L commutes on Mp(A) x Oy (A); so, we may
regard w ® L as a representation of Mp(A) x Oy (A). The following result is [W64, Théoréme 6].

Theorem 1.1. The generalized theta series of Siegel-Weil
0(¢)(x:9) = > (w(x)L(9)$)(v) (for each ¢ € S(Va))

veV
gives an automorphic form defined as a function on (SL2(Q)\Mp(A)) x (Oy(Q)\Oy (A)).

1.3. Explicit form of metaplectic groups. The extension S' < Mp(A) — SLa(A) actually
descends down to iy < SLy(A) —» SLy(A). In other words, the 2-cocycle: SLy(A) — S giving rise
to the extension Mp(A) is cohomologous to another one  : SL2(A) — po with values in g (as we
will describe it later in this subsection), and we have the following commutative diagram:

pa —— SLa(A) —— SLy(A)

(12 | ] I

St ——— Mp(A) —— SLy(A).

The representation w descends (non-canonically) to SLz(A) if m = dim V' is even, and in this case,
we can replace SLg by SLa choosing a descent.
For integers a, b # 0, we define Shimura’s symbol (%) in [Sh73, page 442] by
(1) (%) =0if (a,b) # 1 (where (a,b) is the GCD of a and b),
(2) If b is an odd prime, (%) is the Legendre symbol (i.e., it is less one than the number of
solutions of 2 = a mod b),
3) If b> 0, a — (%) is a character modulo b,
1)
)
)

If a# 0, b— (%) is a character modulo 4a whose conductor is the conductor of Q[\/a] g,
5 ( )—10r —1 according as a > 0 or a < 0,
0 (&) =1

(
(
(
(
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Consider 6 : § — C given by 0(1) = 3, ., e(n*7), where $ = HT and
(1.3) H* = {z € C| +Im(z) > 0},

which are isomorphic to SLa(R)/SO2(R) by g — g(4+/—1) respectively.
Define for v € Ty(4), h(vy,T) := (7(7))/9( ) Then by [Sh73, (1.10)]

(1.4) h((gg) T)=¢, (2 ] )2 with j((‘zg)m):w—kd,

where 21/2 = \/|z] exp(mif) if z = |z|e(0) with —7 < @ < 7 and g4 = v/—1 or 1 according as d = 3
orl mod 4. .

We can realize SLa(R) = {(g, J(g,7))|g € SL2(R), J(g,7)? = j(g,7)} with multiplication given by
(9,J(g,7))(h, J(h,T)) = (gh, J(g, h(7))J(h,T)). Here 7 +— J(g,T) is supposed to be a holomorphic
function on §. Thus we have the central extension py < SLy(R) 5 SLa(R) with i(—1) = (1,—1)
and 7(g,J) = g. The center of SL, is given by pa X po.

Define a set-theoretic section s : SLy(R) < SLy(R) by g — (g,5(g,7)"/2). Then s(g)s(h) =
(9h, ace(g, h)j(gh, 7)'/?) for ass(g,h) = j(g. h(r))"/?j(h, 7)'//j(gh,T)/* € {£1}, since j(g,T) is
an automorphic factor. As as is the coboundary of the SLy(R) 1-chain g — j(g,7) (under the pull-
back action of SLy(R) on the SLy(R)-module of holomorphic functions, as is a factor set for SLy(R)
whose value can be made explicit as we will see below. The factor set defines the metaplectic covering
pi2 < SLy(R) — SLy(R). As Weil showed, we can extend this covering to pp < SLo(A) e S) (A)
so that the covering is trivial on SLy(Q) as described in §1.1. Again we write 4 : SLa(A) — SLa(A)
for the projection. The map I'o(4) 3 v +— (7, h(7,7)) € Mp(R) is a group embedding.

There is an explicit description of the 2-cocycle a,(z,y) given by T. Kubota [K67] for the cov-
ering of SLy(Q,). For a local field Q,, it is expressed by Hilbert’s symbol (-,-) with values in po
[BNT, XIII.5], and the product formula [BNT, Proposition XII1.5.8] of Hilbert’s symbol provides
the splitting over SLy(Q) (see [WRS, §2]). Here writing z((2 %)) = ¢ or d according as ¢ # 0 or
c=0,

av(y,6) = (2(7), 2(9)) (—2(7) " 2(6), 2(+9)).
For I' C SLy(Z), we write T for the closure of I' in SLa(A(), and put f?(N) = F?( ) for
=0,1. To describe a splitting of Mp(A) — SLy(A) over an open compact subgroup of SLga(A(>)),
we define s, : SLa(Qp) — po for a prime p by

(¢,d) ifed#0andordy(c) =1 mod 2,
otherwise,

and for Qo = R, s :=1 (the constant function). Then we modify a, as

Ky (7, 6) = ay(7,6)80(7)80(8)s0 (75)71

The 2-cocycle k., defines an isomorphic central extension SAIZQ (Qy) of SLy(Q,) by po. This modifica-
tion makes k, trivial on I'y(4) [WRS, Proposition 2.8] and x(v, ) = 1, 5v(7w,dy) makes sense for
(7,6) € SLy(A). Thus the product cocycle gives the metaplectic extension SLy(A()) —» SLy(A(?)).
We extend this to SLa(A) by

(1.5)  SLa(A) = {(4°, €T (goo, ))|(9°°, ) € SLa(A) x 12, (9o, J (9o, 7)) € SLa(R)}
with the product given by

(9, € T (900, 7)) (1, (T (hoo, 7)) = (ghy w(g, B)e () T (goc, hoo (1) I (oo, 7).

This definition is an amalgamation of Shimura’s definition of SLy(R) in [Sh73] and that of SLy(A)
by Kubota—Gelbart [WRS]. Shimura’s group is isomorphic to the metaplectic cover of SLa(R)
defined in [WRS, §2] by the cocycle ko, via sending the pair (g, J(g, 7)) to (g, J(g,7)/(cz +d)'/?) €
SLa(R) x pg, since (g, h) — j(g, h(1))/%5(h,7)/?/j(gh,T)'/? is the 2-cocycle ko by (1.4). Indeed,
by (1.4), k coincides with

(Oo)(g h)j (gomhOO(T))l/2j(h00a7)1/2/j(gooh00a7')1/2
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on I'y(4), and by strong approximation and triviality on SLy(Q) C SLy(A), they coincide on
f1(4)SL2(Q) whose image in SLy(R) is dense. The commutativity of the diagram (1.2) is clear
from the above definition of SLy (A) adapted to theta series automorphic factors.

Sending the set theoretic product SLa(Q,) X po into SLa(A) X g produces group homomorphism
SLy(Q,) < SLy(A). In particular, we have commutative diagrams

pa — SLa(A) —— SLy(A)

(1.6) ﬂ T TU

pz — SLa(R) —— SLy(R)
and
pr —— SLa(A) ——  SLy(A)

(1.7) ﬂ T TU

s —— SLp(A(®)) ——— SLy(AC),

Then we have §f42(A) = (éig(A(oo)) X éT;Q(R))/A('UQ) for the diagonal embedding A : puy —
SLy(A(®) x SLy(R).

We write the projection to SLa(R) as goo = (7a(g)oo, J(Ta(g)se, 7)) for g € SLy(A) (malg) €
SLa(A)). The map SLy(?) 3 g — (g,1) € SLy(?) (for ? = Q,, A, AC)) is not a group homomorphism.
We simply write J(goo, 7) for J(ma(g)eo), T) and geo(v/—1) = 7a(9)oe (v/—1) € H. We put C =
7, 1 (SO2(R)) C Mp(A) for the projection s : Mp(A) — SLa(A).

We have a splitting rg over SLy(Q) into SL, (A) as described in §1.1. Thus I'1(4) C SLy(Q) C
SLy(A) and a commutative diagram:

Ir(4) ——  SLy(A)

] I
T (4) v (v,h(v,7)) ﬁQ(R).

This inclusion of T';(4) extends to I';(4) < SLy(A()) [WRS, Proposition 2.8, and we have a
commutative diagram:

T} (4) — SLy(A()

o] E

I'i(4) —— SLy(Q).
Since h(v,7) in (1.4) involves g4 € pg and h((2¢Y4),7)2 = () (cz + d) for (2}4) € Ty(4), we can
embed T'g(4) < Mp(R) by ¥ — Yoo := (Yoo, A(Yoo, T)). Since SLy(Q) — Mp(A), by T'v(4) > v —
Y7z}, we get an embedding T'o(4) < Mp(A(>)). Since To(4) = T'; (4)T'g(4) C Mp(A(>)),

(1.8) we can lift the inclusion r, 4) — ﬁQ(A(“)) to f0(4) s Mp(A),

0 if 2(0) ¢ 7,
Define ¢ € S(A) by ¢(z) = (VT2 i 2 €7 Let 0(g) := >,eqw(9)o(g) for g €

Mp(A) taking the quadratic space (Q,22). By definition, for 7 = é+nv/=1 € Hand g- = n~1/2 (1 %),

01
0(7) =0((g-,n /") =n'/* D e(n’r).
nez

For v € T'y(4),

0((gr, 1~ )7 ) = 0(yv (g0~ Y)
=0((7, 0y (7)) /0(7) (gr, ™ M) = 0(g-1(2))(O(Y (7)) /0(1)) " = 0(gy).
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Since we made splitting of mg : Mp(R) — SLao(R) over T'g(4) by setting h(v, 1) := 0(v(7))/0(7), the
above argument is a tautology. Anyway, since T'g(4) is a closure of T'g(4) in Mp(A(>®)), the stability
of @ under I'g(4) implies

Lemma 1.2. The above theta function 0 is fized by the right multiplication by f0(4) embedded in
Mp(A).

2. RANKIN CONVOLUTION

We adapt to SL(2) the adelic Rankin convolution in [LFE, Chapter 9] described for GL(2).

2.1. Adelic Fourier expansion, cusp forms of integral weight. Let F' € S, (T'o(C),¢) be a
cusp form of weight x for 0 < k € Z, where ¢ is a Dirichlet character modulo C and ¢((24)) =

o(d) for (28) € To(C). Then F(y(1)) = ¢(7)F(7)j(v,7)" for j(v,7) as in (1.4). The character
v : T(C) — C* extends to ¢ : fo(C) — C* by continuity. Then ¢((2 %)) = ¢(dc mod CZ¢) for
Zc = HZ|C Z; and the projection d¢ of d to Q¢ = HZ|C Q.

Since A* /Q*RZ = Z* — C*, we extend ¢ to a character ¢* : A*/Q* — C* so that ¢* (1) = ¢(I)
for primes [ { C regarded in Q C A*. We lift F to F : SL2(Q)\SL2(A) — C by putting
(2.1) F(au) = ¢" (u) ™ F(uso(V=1))j (s, V=1)"
for a € SLy(Q) and u € To(C)SLy(R) [H10, §1.1], where ¢* (u)~! = o(u).

Define an idele character ¢ : A*/Q* — C* by ¢(a) = ¢*(a)|a|,". Write the Fourier expansion
of Fras F(r) = Y.0" an(F)e(nt). For g = (& ) € B(Z)B(R) with a € Z*R,, we find, for
T = goo(i) = a2,i + dooboos

(2.2) F(g) = ¢"(a™) a5 Y " an(F)e(nt) = ¢ (a) Y _ an(F) exp(—2mna’, e(naosbeo)-

Recall the character e : Q\A — C* defined by e(x) = [[, e(z,) with e(z,) = exp(—2mv/—1[z];)
if v is a prime [ for the fraction part [z;]; for the l-adic expansion of z and e(zs) = exp(2mv/—12 o).
Let v(u) = (3%) € U(A). Then for b = v(u)diaga,a™'] € B(A), write F(a,u) := F(b). Since
F(a,u + a) = F(v(a)b) = F(a,u) for a € Q, we have the adelic Fourier expansion of F(a,u) over
u € A:
F(a,u) = Z ar(a; a)e(au).
a€eQ
By diagld, 3~ Jv(u) diagla, a~'] = v(5u) diag|Ba, (5a) "], we have
> ar(a;a)e(au) = F(a,u) = F(Ba, f*u) = Y _ ar(a; fa)e(afu).
a€eQ acQ
From the uniqueness of the Fourier expansion, we conclude
ar(a;a) = ap(af™2,Ba) for f € Q* and a € Q,
ap(a;a) = ¢ (a)aa(F)exp(—2raa?) if 0 < a €Z and a € Z*.

o0

(2.3)

By v(u) diag[a, a~ Y] diaglt, t 1] = v(u) diag|ta, (ta) 1], for t € Z*, we get
(2.4 ax(as at) = o~ (t)ax(a, ).

If 2 € QX(AX)2 N A%, choose a € Q% and a € A so that z = aa?, define,
(25) ap(2) = p(a)ar (@, a) exp(2rami)
which is equal to ao(F) if 0 <@ € Z and a € Z*, and ap(z) = 0 if 2 & Z(Z*R¥)2. If aa?(Z*)? =
Bb2(Z*)?, then writing ca? = pb%t? for t € Z*, we have

ap(aa?) = p(a)ar (@, a) exp(2rana) = p(@)ar (a8, fa) exp(2r(am2) (fa)2)

= ¢(Ba)ap (af~?, Ba) exp(2m(asc B ) (Ba)3,),
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since p(fBa) = p(a). By (2.3), this shows that ap(x) is well defined independent of the choice of the
expression x = aa? with ¢ € AX and a € QX.
By (2.5), we have

ap(z) = aq(F) = ap(2t?) for t € Z*R* and z = ad?,

(2.6) F(a,u) = F(u(u) diagla,a ")) = ¢ (a) T ar(aa?)e(axa v—T)e(au).

a€eQ

Since af is supported over A% = (A(“))XRL ap only depends on the finite part of the idele.

2.2. Adelic Fourier expansion, cusp forms of half integral weight. We describe in detail the
adelic Fourier expansion in case of half integral. Writing the level of a half integral weight modular
form as M; so, 4|M. Let f € Sy 2('o(M), 1) be a cusp form of weight % for odd k, where 17 is an
even Dirichlet character modulo M. Then f(v(7)) = ¥1(y)f(7)h(y,7)* for v € To(M) and h(y, )
in (1.4), and as before 11((25)) = ¢1(d) for (24) € To(M). The cusp form f has its Fourier
expansion: f(7) =Y., a,(f)e(nt). As before, we extend 11 to a character of ¢} : A*/Q* — C*
and then 7 to Lo (M) so that ¥} (u) = 11 (u)~t. We lift f to f: SLo(Q)\Mp(A) — C by putting
(2.7) f(a(u, CJ (uso, 7)) = 97 (u) f (oo (V=1))C" T (oo, 1) "
for a € SLy(Q) C Mp(A) and (u, (J(tiso, 7)) € To(M)Mp(R) (¢ € S! and uo € SLa(R)) regarding
SLy(R) C SLy(A) C Mp(A) by (1.6).

Since B(A) is canonically lifted into Mp(A) by r and this lifting coincides with the splitting
SLy(Q) — Mp(A) over B(Q) as already remarked, we regard B(A) C SLa(A) C Mp(A) and think
of f|p(a). We get back to f(7) by reversing the process:

F(r) = 1£(g7,5(g-, 7)) (g7, )% = £(gr, /2% for g =72 (1%),
which is holomorphic in 7 = & + nv/—1. R
Write 6 : SL2(Q)\Mp(A) — C for the lift of (1) = Y, ., e(n*7). We have an inclusion I'g(4) —
Mp(A) as in (1.8). Since B(Z) C To(4), we regard B(Z) C SLy(A). This inclusion coincides over
B(Z) with the one induced by r and hence matches with the inclusion B(Q) — SL, (A).
Define an idele character ¥, : A*/Q* — C* by 9, (a) = 1/)1‘(@)|a|gk/2. Thus for g = (8 aél) €
B(Z)B(R) C SLy(A), from (2.7), we find for 7 = aoo (aooi + boo)

(2.8) £(9) = %1 (@) ) an(Henr) =y (a) D an(f) exp(-2mnad, Je(naccboo ).

Let v(u) = (§%) € U(A). Then we consider for a general b = v(u) diag[a,a™'] € B(A). Write
f(a,u) := £(b). Then f(a,u+ a) = f(v(a)b) = £(b) if &« € Q. Thus f(a,u) has a Fourier expansion
over u € A of the form

(2.9) fla,u) = Z as(a; a)e(au).
a€eQ
By ding[3, §~!Jo(u) dingla, a~1) = v(5u) diag|Ga, (Ba) 1], we have
> ar(as ae(au) = f(a,u) = £(Ba, 5*u) = ) ar(a; fa)e(afu).
a€eQ acQ
By the uniqueness of the Fourier expansion, we get

{¢11(a)aa(f) exp(—2maa?)) if0<a€Z,
0

ag(a;a) = ag(af™?,Ba) and ag(o;a) = .
otherwise.

By v(u) diag[a, a~ Y] diaglt, t 1] = v(u) diag|ta, (ta) 1], for t € Z*, we get

as(a; at) = @bfl(t)af(a, a).
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Define

(2.10) af(aa2) - Py (a)ag (o, a) exp(27raooago) =a.(f) if aa? € Z(zR+)2 NAX,
' ' 0 otherwise.

Thus ag is supported over Z(ZR*)2 NA*. If aa?(Z*)? = Bb2(Z*)?, then writing aaa? = Bb2t> for
t € Z*, we have

ar(aa?) := 1 (a)ag(, a) exp(2masca?,) = 1 (a)as (B2, Ba) exp (27 (oo B ) (Ba)%)
= 1 (Ba)ag (B2, Ba) exp(2m(aso”) (Ba)3.),
since ¥, (Ba) = 1,(a). This shows that ag(z) is well defined independent of the choice of the
expression x = aa? with a € A* and a € QX.
By (2.10), we have
(2.11) ar(z) = aa(f) = ag(at?) for t € Z*R* and 2 = ad®.

Since ar is supported over A% = A(“)Ri, as only depends on the finite part of the idele. Thus we
can recover

(2.12) f(a,u) = f(v(u) diagla, a™']) = ¥ (a) ™" Z ar(aa?) exp(—2masca?, )e(au).
0<aeQ

Pick a Dirichlet character x modulo N with x(—1) = (=1)<®) (e(x) € {0,1}) and consider the
adelic form 6.(,(x) corresponding to

E(X) Z X (X)e n 7')

nez

Note that 6() (x) € S. 4 (T[4, N?)), x1) [Sh73, Proposition 2.2], where x1(d) = x(d) ()
and [4, N?] is the LCM of 4 and N2. Then 6.(,)(x) is right invariant under To([4, N?)).

(2.13) Taking a =n mod N, we find agé(x)(x)(cLQ) = x(n)|n|*X and ag, (@) =0ifz ¢ (Z)2.
Define for an integer » > 0 and d = qg— = 27r\/—1g—7

(2.14) Z x(n)nfe(n®r) and 6;(x)(7) = d 0 (X) (1) if j = €e(x) + 2r-
ne

If the parity of j and e()x) does not match, 6;(x) = 8,(x) = 0.

2.3. Eisenstein series. For the projection mx : Mp(X) — SL2(X), write Cw := 7 ' (SO2(R)) C
Mp(R) C Mp(A) and Mp(Z) := 7, '(SLa2(Z)). We have B(A)Mp(Z)Coo = Mp(A) by Iwasawa
decomposition. Note that B(Q)\B(A) = (A*/Q*) x (A/Q). Since Z x [0,1) is the fundamental
domain of the translation action of Q on A, A/Q is compact. Since A* = ZXRJXFQX, we find
AX/Q* 27X x Ry. Thus B(Q)\B(A) 2 Z x Z* x Too\$ for T := {£ (§7) |m € Z}.

Write ST = {z € (CX“Z| =1} for the center of Mp(X) (independent of the choice of X). Let
® : B(Q)\Mp(A) — C be a continuous function such that

(1) if 2 € S, ®(29) = x(2)®(g) for a continuous character x : S* — C*,

(2) For w in an open subgroup FcTy (4), ®(gu) = ¢p(u)®(g) for a character ¢ : T —cCx,

(3) ®(g(too, CJ (Uoo, T)) = ®(g)C T (Uoo, 1)’ for (too, (J(Uso, T)) € Cuo, where £ is an integer.
If ¢ € S', the above conditions imply x(¢) = ¢¢ as long as ® # 0. Thus x(z) = 2° can be a good
choice. In the same manner, we have ¢(¢) = x(¢) for ¢ € St N r.

Assuming an absolute and local uniform convergence, we define

E@)(g9):= Y,  ®(y9) (9€Mp(a)).
1EBQ\SL2(@)

Then, as a function of g € Mp(A), E(®) satisfies E(®)({ygu) = X(C)(b(u(oo))E((I))(g)J(uoo,i)e for
¢ €St v €SLy(Q) and u € I'Cy with infinity part (teo, (J (too, T))-
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Writing 7a(g) = bu (b € B(A) and u € SLa(Z)SO3(R)) for g € Mp(A), we define |a(g)|4 by |al if
b= (8 b ) This function does not depend on the choice of the decomposition and factors through
B(Q )\Mp( ). For s € C, we define ®,(g) = ®(g)|a(g)|5. We assume that

(A) E(®s) converges absolutely and locally uniformly if Re(s) > 0 and is continued to a mero-
morphic function of s over the entire C.

The meromorphy in (A) means that for any so € C, there exists an open simply connected neigh-
borhood Us, of sy and a non-zero holomorphic function h : Us, — C such that s — h(s)E(®s)(g) is
a holomorphic function of s € Uy, for each g.

2.4. Rankin product, integral weight versus half integral weight. We keep assuming 4|M.
We pick C|M. As in §2.1, let F be an integral weight cusp form in S, (C, ¢), and using SL2(A) =

SL(Q)To(C)SLa(R), lift it to SL2(Q)\SLa(A) as in §2.1 by
F(au) = ¢* (1)) F(goo (vV=1))j(tso, V—1)"" for u € To(C)SLa(R).

Let F(7) = F(—7). Then F is an anti-holomorphic cusp form in S (C, @), where ST (C, ¢) is made
up of anti-holomorphic cusp forms G : $ — C satisfying G(y(7)) = o(7)G(7)j(~,T)" for v € T'o(C).

Lift F to SLa(A) by F(g) = 0" (u) F(goo (vV=1))j (uce, —v/—1)~*. Since F(2ZEb) = o(d) F(7)(cF+d)*
for (24) € I'y(C), we have
(2.15) F(vgu) = ¢* (W)F(9)j(use, —vV/—1)"" for u € To(C)SO5(R).

Pick a half integral cusp form f € Sy 2(I'o(M),4) and lift it to f : SLo(Q)\Mp(A) — C as in
§2.2; so, we have
(2.16) f(vg(u, (J (oo, 7)) = ¥* (W) E(9)CF T (oo, —V—1)F for u € To(C)SO2(R).
Take a continuous ® : B(Q)\Mp(A) — C and consider

(®1) @z (2])) = (p*oi)~ ( m)®() for (21) € To(M),

(@2) @(z (oo, CJ(uom 7)) = ®(x)¢ kJ(uom \/__1)k](UOOa —V/=1)" for (too, (J (oo, 7)) € Coo,
(®3) CI)|B(A)((O et )) = (¢*¢})(a)|al3* fora € A*, b€ Aand s €C.

For the moment, we suppose (#1-2). Then we have
(2.17) £(9)F(9)®(g) = f(gu)F(gu)®(gu) for all u € To(M)Cos.
This follows from the above properties (<I>1 2) of ® and (2.15) and (2.16).

Take an open compact subgroup r'o FO( ) inside Mp(A(OO)) Consider the space Foo ( ) =
BQ\B(A){£1}'Cs0/{£1}TC. Since B(A){#+1}TCo0/{£1}TCs = B(A)/B(A) N {+1}T'C,,
Foo(T) = B(Q)\B(A)/B(A) N {£1}TCo = B(Q)\B(A)/B(Z) N {+1}T = R/Z x R = [0,1) x RX.

Let EOO = B(A)NT. Defining Trf‘oo/f‘o(M)m (9) := Zuefm/fo(M)oo D(gu) if ®(gu) is invariant
under I' D To(M), we find ffm(fo(M))f(g) (9)2(g)dpy = f]_. @ f (9)F(g )TrFQO/FO(M)oo (9)dpg.

Here dpg is a measure on Foo (I'g(M)) invariant under right multiplication by T induced by a Haar

measure on Mp(A) with volume 1 on Lo(M){£1}Cs, which can be specified to be y~2dzdy for
z €[0,1) and y € R for the Lebesgue measure dz and dy (although the above identity holds once

\/\/

we fix a such a measure on Foo (fo (M)) not necessarily this choice). Similarly ®f is right-invariant
under I' D T'y (M), we have

/ _ f(9F(9)(9)dpy = / _ H)(Trs_py ). F(9)@(9)dpg.

Foo(To(M)) Foo(l)

Therefore, as long as T =T (M), we do not worry much about the group fixing f and F. In
particular, since I'o(C)oo = I'0(M ), as long as C|M, the convolution integral is well defined.
Lemma 2.1. The natural map 71 : B(Q)\B(A)Cos — SL2(Q)\Mp(A) is an isomorphism.

This is an adelic analogue of B(R) — B(R)/R* = § — T'\§ = SLy(Q)\SLz(A)/T - SO5(R) for
any subgroup I' C SLy(Z) with closure T' C SLy(A().
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Proof. Since SLy(Q)K = SLy(A(>)) for any open subgroup K of f0(4) (strong approximation) and
B(R)Co = Mp(R) (Iwasawa decomposition), we have SLy(Q)B(A)KCys = Mp(A). Thus we have
a natural continuous surjection:

Tk : Bx 1= B(Q\B(A)KCs — SL2(Q)\Mp(A) = SL2(Q)\SL2(Q) B(A) K Cxs
induced by sending b € B(Q)\B(A) to its class in SL2(Q)\Mp(A). Thus we have a continuous map

m By = lim B(Q)\B(A)KCs — SL2(Q)\Mp(A).
K>B(Z)

For an open subgroup K’ C K, ng' ik : B(Q\B(A)K'Co, — B(Q)\B(A)KCy is a finite map,
thus for each compact subset X of By, Wl?}, x(X) is compact surjecting down to X and hence
N X) = lim W}?}, x(X) is compact and non-empty. Thus the projection By — By is onto.

If X is open compact, 7, *(X) is open compact; so, By is locally compact. Since B(Q)\B(A)C\x
is locally compact with dense image in the locally compact space By, we see that B(Q)\B(A)Cs —
B;. Since B(Q) is discrete in B(A)Cw, we find B(Q)\B(A)Cosx = Bj. Identifying B; and
B(Q)\B(A)Cx, we find m; : B(Q)\B(A)Csx — SL2(Q)\Mp(A) is a continuous morphism with
dense image of locally compact spaces; so, 7 is onto. If m1(b) = m1(b') for b, b € B(A), then
b = b'u for v € SLy(Q) and u € B(Z)Cs. By projecting down to SLa(A), we find vb = by (u),
comparing the finite part, we conclude v € B(Q); so, we find 7 is an isomorphism. O

Remark 2.2. For an open compact subgroup K of Mp(A(>®) and regarding K C Mp(A) by the
natural inclusion Mp(A(®)) < Mp(A), SLy(Q)\Mp(A)/KCw is a modular curve Tg\$) for T =
ma(K) NSLy(Q). Similarly B(Q)\B(A)Cx /(KN B(A)Cx) = (T'x N B(Q))\$), which is an infinite
covering of T\ 9.

By Lemma 2.1, choose a fundamental domain F of SLQ(Q)\Mp(A)/fo(M)COO =: Xo(M) so that
(2.18)  F C B(Q\CwB(A)/(Coo B(A) N CoTo(M)) = B(Q)\B(A)/B(Z) = [0,1) x RX C .

Note SLa(A) = B(A)SLQ(Q)fo(M)COO. Consider U, cp(0)\s1,(0)7F Which is a fundamental
domain of B(Q)\Mp(A)/CueTo(M). Since SLy(Q) = B(Q) U B(Q)JB(Q), we find

B(Q)\SL2(Q)B(A)To (M)Coo /To(M)Cxx = (B(Q)\B(A)/B(Z)) U (T(Q)\JB(A)/B(Z)).
Recalling the Haar measure dp = dpg on Mp(A) inducing the Dirac measure on each point in
SL2(Q) and ff‘o(M)Cm dp =1, we have

2.19 £(g)F(9)E(®)(g)dpy = £(19)F (19)(7g)dty
e [ H@FQE®) ), = [ X Rt

- [ R, - f(o)F ()2 (g)du, + £(0)F (9) 2 (g) sy
UyyF B(Q)\B(A) T(Q)\JB(A)

We assume

(V) fT(Q)\JB(A) f(g)F(g)fI)(g)d,ug =0 (= (I)|JB(A) =0).
The Rankin convolution is often computed when F' is integrated against the Eisenstein series of the
infinity cusp. The integral in (V) corresponds F' integrated against the Eisenstein series of the zero
cusp, which could be converted into the standard Rankin product by applying the Weil involution
W = (](3, Bl) if F'is on Io(N) up to a (supposed-to-be) complicated constant; so, without the
assumption (V), the outcome would be a sum of L-values (possibly the counter-part of functional
equation in good cases). To avoid this complication, we assume (V) which will be verified in our
case, choosing ® well.

Taking du(b) = du (§ 1) = d*al®) @ || " dase @ dr(>®) @ dzo for the Lebesgue measure da
and dzo on R with [5 dz(*) =1 and d*a(*) with Jox d*al>) =1, we have

f(9)F(9)2(9)dny = £(0)F(0)®(b)dpu(b).

L(s) ::/ —/ ~
B(Q)\B(A)CoeTo(M) B(Q)\B(4)/B(2)
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Suppose (®3) in addition to (#1-2). We continue computation:

SRy / / (aa®)ag(Ba®)e((a + Bu) exp(—2m(— o + foc)a )dulal2*~'da
a,3eQ”A*/Q* JA/Q

Z/ a?)ag(aa?) exp(—4mascal,)|al3* da.
AX

a€Qy /QX
By (2.2) and (2.8) with variable change: t = a2, we get

(2.20) L(s)=2 Z /000 az(n)ag(n) exp(—dmnt)|t|*t ™ dt

$) > ap(n)ag(n)n™ = 2(4m) T (s) > an(Fan(f)n "

Here the identity (x) involves the interchange: Zaﬁe(@ fAX/QX = fAX/QX Za,ﬁGQ’ which is justified
as long as the two sides are absolutely convergent. Thus we have

Theorem 2.3. Let the notation be as above. Suppose (P1-3) and (V). Then

/ ()R E@) (), = 2(4m)” Z an(F)an(f)n~",
SL2(Q)\Mp(4)/T'o(M)Coo

2.5. Rankin product of mixed weight. For a function ¢ : Mp(A) — C and a compact subgroup
K of Mp(A), if ¢(gu) = ¢(g9)x(u) (u € K) for a character x : K — C*, the character x is called the
K-type of ¢. If there is no such character, we say that ¢ has mixed K-type. If K = C N §I:2(A),
K is a two-fold covering of SO2(R) isomorphic to S'; so, for ¢ € K, we have ¢ = r(f) with

r(f) = (::;s((g)) ;zlsrz(g(;)) € SO2(R). If x(c?) = V=1 for an integer k, we say that ¢ has weight
k/2 if it has K-type given by x as above. The integer k is odd if y is non-trivial on Ker(my :
K — SO2(R)) = {£1}. This definition of K-type x naturally extends to absolutely irreducible
representations p of K. If the functions {m(u)p(g9) = ¢(gu) }uek generate a K-representation space
7w which contains p as a direct constituent, we say ¢ has K-type p. The following remark will not

be referred to in this paper.

Remark 2.4. The theta series §;(x) has mixed C-type if j > 1. We can decompose 0;(x) as
a sum of non-holomorphic modular forms with Cu-type using a formula relating Shimura-Maass
differential operators and Ramanujan differential operators qg—q [LFE, Chapter 10, (3)]. Since we do
not need the exact formula, we do not recall the formula.

For an open subgroup I' of SLQ(Z) and a right [-invariant function f : SLQ(Q)\SLQ(Z) — C,
we define the trace Trp(f)(g) = ZMGSI&(Z)/F f(gu) which is a right SLy(Z)-invariant function. We
apply also this operator to f : SLQ( )\Mp( ) — C as long as f factors through the quotient SLa(A).
For two open compact subgroups T and F’ we have

(SLa(Z) : T)""Trp(f) = (SL2(Z) : )~ Trp ()
as long as the two sides are well defined; so, we just write the condition Tra(f) = 0 as Tr(f) =0
choosing r sufficiently small.

Now suppose that we have a finite set of cusp forms {f;} on SLy(Q)\Mp(A) which have I'o(M)-
type ¥* but may have a mixed Cy-type. We assume the index set of j is integers [0, k] N Z for
0 < k € Z. We assume that the right translations of f; by Cs span a finite dimensional space
of functions on SLa(Q)\Mp(A). Thus f; is a finite sum of cusp forms of different Coo-types. For
example, f; can be 6, ; for 0 < j. We suppose to have {®;}; satisfying (V), (®1) and (®3) but
possibly not (®2). Instead we suppose

(0) Tr(F > 5 E(®))) # 0 (i.e., the SLo(A)-representation generated by the right translations

of F > £ E(®;) by SL» (Z) contains the trivial representation of SLg (2)),
(F) fo|p(a) has Fourier expansion as in (2.9) for the index 0.
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The condition (®0) means the following matching condition:

(M) the irreducible cuspidal automorphic representation mp generated by F has SLy (Z)—type
which is a contragredient of one of the SLy(Z)-types of the automorphic representation
generated by the set {f;E(®;)};.

Ezample 2.1. Here is an example of {f;}, and {®,}; satisfying (®0-1) and (®3) with (F). Let
(V, Q) be a quadratic space with a decomposition (V, Q) = (Q, z?) ® (W, Q’) as a quadratic space.
Take a Schwartz—Bruhat function ¢ on V and suppose that the Siegel-Weil theta series 6(¢) has
To(M)-type ©* and a unique Coo-type k.

(1) ¢ = (™) @ oo for a Bruhat function $(°*) and a Schwartz function ¢,

(2) oo =D ; 90, ® ¢w,; for Schwartz functions ¢g,; and ¢w,; on R and W(R), respectively,

(3

) () = (;5((50) ® (;5(;,0) for Bruhat functions on A(®) and W (A(>)), respectively,
(4) ¢g,j(z) = 27 exp(—mz?).
Let (bf( = (bg(oo) ®¢x,; for X = Q,W. We have a natural diagonal embedding of Og x Oy into Oy .

Note that Og = {£1}; so, we forget about it. Then we write 6(¢)(g, h) = Z?:O 9((;5?)(9)9((;5?/)(9, h)
for g € Mp(A) and h € Oy (A). Consider

/ (6% (9. h)dn(h).

Ow (Q\Ow (A)

By the Siegel-Weil formula, for ®;(g) = (ww (g)(bJW)(O) as a function on B(Q)\Mp(A), this integral
is proportional to the Eisenstein series E(®;). Ignoring the proportion,

o(g) = / 6(6)(g, h)du(h)
Ow (Q\Ow (A)

= Z 0(¢7)(9) /O 0(6;")(9. R)du(h) =D _ 6(6F)(9) E(®;)(9)

w (Q\Ow (A) j

is a modular form whose T (M)-type is given by ¢* and has weight k as C-type. However 9((;5?)
with j > 1 does not have a Cc-type. We compute > 9(¢?)(gu)E(<bj)(gu) for u € Coot

> 06 e E@) (o) = [ 00) (gu, (1)

w (@\Ow (4)

/ 0(6)(g, 1) (u, i) Fdp(h) =Y 0(67)(9) E(®;)(9)i(u, )",
Ow (Q)\Ow (&) i

J
Thus choosing a cusp form F with the inverse fO(M )Coo-type and putting f; = 9((;5?), the pair
{f;, ®;}; satisfies the required conditions (®0) and (F).

If the automorphic representation of SLo(A) generated by the theta descent

0.(f) = 0(¢)(g, h)f (h)du(h)

/Ov(@)\Ov(A)

of any cusp form f on D} does not contain the automorphic representation 7, the matching
condition (M) could fail. For example, if F has level 1 (i.e., principal everywhere) and V = D for a
division quaternion ramified at a prime ¢ with a Bruhat function ¢(>) of R for a maximal order R of
D, irreducible factors of the representation generated by 6, (f) is special at ¢, and by the new form

theory, it does not have the identity representation as SLa(Z,)-type; so, Tr(F6,(f)) = 0. Since any
SLy(Z)-type of >.;0(¢;)E(®;) would appear as one of the SLy(Z)-type of the theta descent 6, (f)
for some f, perhaps this implies the failure of the matching condition (M); i.e., the theta lift of g
by 0(¢) would vanish, and also the Rankin product (2.21) by the identity at (2). Another caution

is that, to have (V), we need to choose ¢; carefully.
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Noting the fundamental domain F is chosen in B(R), we reverse the earlier computation in (2.19):
D L@@ = [ F@ b0k
UyyF j
/ > Fly Z £;(v9)®; (vg)dpg = / F(9)Y fi(9) Y. @(vg)dp,
F 1eB@\SL2(Q) d i YEB(Q)\SL2(Q)

) / @) /
Xo<M> Z 7 xn Z -

Before reaching identity (1), the computatlon is done inside B(A), and we do not need left Coo-
invariance of F(g) >~ f;(9)®;(g). The integral is extended from B(A) to entire Mp(A) by the left

SLo (Z)C -invariance of Tr(F(g )2 £i(9)E(®;)(g)) in (20), and we replace F by the isomorphic
SL2(Q)\Mp(A)/To(M)Cac = SLa(Q)\SLa(A)/To(M)SO2(R) = Xo(M)
at the identity (1).

Theorem 2.5. In addition to (20-1), (V) for all ®; and (F), assume
(Key) CI)0|B(A)((O L)) = x(a)|alz® with a character x : A /Q* — C* for a € AX and b € A and
Djlp@a) =01ifj#0.
Then, assuming the Fourier expansion of fo(g-) has the following form: Y ", an(fo)e(nz), we have

/XO(M) Z £;( (9)dpg =2(4m)~ Z an(F)ay,(fo)n

Without the assumption (Key), the convolution integral would produce a sum of L-values (possibly
evaluation points shifted). Thus (Key) is a purity condition in the mixed weight case.

(2.21 / .
B(@)\B(A)/(B(A)nm(M)Cm)

Proof. By (2.21), we compute fB(Q)\B(A)/(B(A)me(M)Cw)N( )22, £i(9)®;(g9)dpy. By (Key), this

integral is reduced to fB(Q)\B(A)/(B(A)ﬁFo(M)Cao) F(b)fo(b)|a(b)|3°du(b). Then by the same compu-
tation as in (2.20), replacing f in (2.20) by fo, we get the desired formula. O

Note here fj in the above proof can have a mixed Cw-type. It can be a finite sum of cusp forms
with different irreducible C'-type as in Remark 2.4.

3. QUADRATIC SPACE OVER Q

Let V be a finite dimensional Q-vector space with a quadratic form @ : V' — Q. The corresponding
symmetric bilinear form s is given by s(z,y) = Q(z + y) — Q(z) — Q(y) or equivalently 2Q(v) =
s(v,v) =: s[v]. For a Q-algebra A, we write V4 :=V ®qg A as a quadratic space over A. We let the
orthogonal group Oy of V act on V from the right.

Let E/q be a semi-simple quadratic extension Q[V/A] with integer ring O and D be a quaternion
algebra over Q. If F = Q x Q, we take VA = (1,—1) and hence A = 1 € Q. Write 0 € Gal(E/Q)
for the non-trivial Q-algebra automorphism of E,g. Put Dgp = D ®q E, and extend o to Dg by
o(d®e)=d®e’ forde D and e € E. We write N : Dg — E (resp. Tr: Dy — E) for the reduced
norm (resp. trace) map which induces the reduced norm (resp. trace) map D — Q. The main
involution of Dg is denoted by z +— xz*; so, #* = Tr(z) — x = N(z)z~!. Define D, = Df := {z €
Dpgl|x® = £z*}. We fix a pair of maximal orders R C D and Rg C Dg such that R ®z O C RE.
Let K be a quadratic subfield of D. We write H for the Hamilton quaternion algebra over R.

3.1. List of quadratic spaces we study. We study the following low dimensional quadratic spaces
(Vig, Q). Here we write as before m for the dimension of the quadratic space V' over Q.

(DF) Let V = D and Q(x) = +xx* = £N(x) (for the reduced norm N : D — Q and the main
involution ¢). Then s(x,y) = £Tr(zy"). In this case, we have m = 4, and usually we assume
the sign to be + (we write D* for D if we need to indicate the sign). More explicitly, we
have an expression D = {(a‘gg :g) la,b e K} with 0 # 9 € Z for a quadratic field K/Q with



(D7)

o
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(<) = Gal(K/Q). Here 9?* is the discriminant of (D,g, Q). The maximal order R of D we
fixed is assumed to satisfy R < M>(Of) by the above embedding. We let (o, 5) € D* x D*
act from the right on D by z — a~!23; so, N(a"'z3) = N(a)"'N(B)N(z). Let G5(Q) :=
{(a, 3) € D* x D*|N(a)) = N(8)}. Then by this action z — o~ 'z and N(a) = N(f), we
have a morphism ¢ = pgxg : G}, — Op for the orthogonal group Op of (D, Q). Sometimes,
we also use a slightly different action = — a‘zf.

Let V = DI := {x € Dg|r° = £2*} and Q(z) = z2° = +x2* = £N(x) € Q (z € DI);
then, s(z,y) = s+(z,y) = £Trp,/p(ry') = Trp,/p(ry”) € Q. We have m = 4. Indeed,
over C, we can identify Dg ®g C = M3(C) & M2(C) with o interchanging the components
M>(C), and we have D, ®p C = {(X,£X") € M3(C) & M2(C)|X € M>(C)} which has
dimension 4 over C. We may let a € D act on DE by x — a‘za’, as

(a'za?)? = a'%2%a = a7 z'a = £(a'za’)".

This action preserves V and @ up to scalar N(a)N(«)? € Q. If N(a) € Q, we can modify
slightly the action by

(e 'za”)? = N(a)'a'"2°a = £N(a) a9 2'a = £(a 'za”)".

Let G}, (Q) :={a € D§|N(a) € Q*}. By z — a'va” and N(a) = N(a)’ (& N(a) €
Q*), we have a morphism gp : GEU (Q) — Op,, of algebraic groups. Regard Gal(KE/E) =
(¢) and Gal(KE/K) = (o). We have Gal(KE/Q) = (o) x (). Write L for the fixed field of
o¢ and K = Q[v/d(K)]. Then L = Q[v/d(K)A]. Then DF = {(E;gg b)Y |be VAK,a € L}

a§
and D = {(a‘gg abg) |be K,a€ \/KL} Since o and ¢ are involutions commuting each

other, they act on DE.

Let Df = {z € DF|Tr(z) = z + 2 = 0} and Q*(z) = z2° = +N(z). We have D =
VADy C Dg. Then s(x,y) = +Tr(xy"). In this case, we have m = 3. We let D* act on
Do by x — a~lza. By this action, we have a morphism gg : GEO(Q) .= D* — Op, of
algebraic groups.

Write A_ for the square-free part of A, and put A, = 1. Here we assume that A_ > 0 if
A>0and A_ < 0if A <0. Let Z* = {z € D¥[a* = 2} = §:Q for 62 = /Ay with
sT(6xx,01y) = Tr(d12(61y)?) = £262zy (so, Q*(61x) = £6322). Then Z+ = Q C DS
and Z+t = QVA ¢ D;. Here Z* = D, N Z(Dg) for the center Z(Dg) of Dy. The space
(Z+,Q7T) is positive definite, and (Z~, Q™) is either positive definite or negative definite
according to whether F is imaginary or real.

The list include all isomorphism classes of 4-dimensional quadratic spaces over Q. We record

(3.1)

§=0; =1for D} and§ =6_ =/A_ € E for D

Cases DT and DI are not disjoint. Indeed, if we take E = Q x Q, we find Dg = D x D with o
interchanging two simple components, and Df = {(z,4z')|x € D} = D by (x,+2') — . This
identification is an identification of quadratic spaces DF = D*. Because of this overlap, in this
paper, we deal with DF, DSE and Z* without losing the case D*.

Here is the list of the signature of D,. We say F is real if E = Q[v/A] with 0 < A € Z and this
case include E = Q x Q with A =1 and VA = (1, —1). Otherwise, we say E is imaginary.

(RI)

(RD)

If F is real and D is indefinite, we find
DE @R = {(X, £X") € My(R) & My(R)|X € My(R)} = My (R).

Thus it has signature (2, 2).
If F is real and D is definite, then

D, 2R ={(X,£X") e HaH|X c H} = H

for Hamilton quaternion algebra H; so, it has signature (4,0) for (DE, N) or (0,4) for
(Dérta _N)
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(ID) If E is imaginary and D ®@g R = H, let H := {x € M3(C)|xJ = Jz}. Then by computation,
a b
-ba

such that H°({o;), M3(C)) = H. Then

we have H = {( } = H. Defining o;(x) := Jx°J ™1, o gives an involution of Mz (C)

+ _ vEia b
(3.2) ot ={(VH" &) |ederbec)
and N (\/?a \/i_bld) = dad F bb. Thus QF has signature (1,3) on DX .

(II) If E is imaginary and Dg := D®gR = M>(R), moving by an inner automorphism of M»(C),
we may assume Dg = M>(R) C Ms(C). Thus (24)7 = (gg) for (¢4) € My(C) = Dc.
When we need to distinguish the action of Gal(E/Q) in the two cases ID and II, we write
the action of ¢ as o7 in Case II and o; in Case ID. Then we find

(3.3) D¥ @R = {X = £X*|X € My(C)} = {(m ng) laeC,bee R}.

Thus the signature is (3,1) for (DE, £N) and (1, 3) for (D, ¥N).
In Case II, on D, ®g R, g € (D ®g R)* = GLy(C) with N(g) € R acts by x — g~ 'zg” which
preserves sy. Thus PSLy(C) is isomorphic to SO(3,1).
Let A*(V) = AT(V,Q) for the set of even or odd elements of the Clifford algebra A(V') of V as
defined in [AQF, §23]. Write the graded Clifford algebra as A*(V) := AT (V)& A~ (V). Put

Gy ={ac AV)|a " WVa=V}

as an algebraic group, and set Gi; = Gy N A*(V). By sending a € Gy to gy (o) € Aut(V) given by
ov(a)(v) = a~lva, we have a morphism gy : Gy — Oy by the construction of the Clifford algebra
[AQF, (24.1c)]. Then G}, = Gy> UGy, is a subgroup of Gy.
In the following statements, let A denote either a field extension of Q or the (finite or full) adele
ring of a number field. We have (cf. [MSS, §8.5.3], [HMI, Proposition 2.65] and [AQF, §24-25])
e If (V,Q) = (D, N) for the reduced norm N : D — Q, xp = 1 and AT (D) = D x D [AQF,
Theorems 23.8 and 25.4]. The morphism gp induces surjections GH(A) - Op(A) and
G} (A) - SOp(A) [AQF, Theorem 24.6]. In this case d(D) = §? = 1 modulo square.
o If (V,Q) = (D%, £N), writing the discriminant of D (resp. E, K) as §? (resp. A, dk) with
0 <d,A,dg € Z (so, E = Q[VA]), xp, = (m). Indeed, by the expression of D,

as in (Do), for the fixed field L = Q[v/Adk] in KE of og, (DF,N) = (K,—-0ANg/q) ®
(L, NL/Q) and (D, ,—N) = (K, 8NK/Q) @ (L, —ANL/Q). Thus d(D,) = Agd%(82 = A
modulo square. Thus xp, = xg. We also have AT(D,) = Dg [AQF, Theorem 23.8].
The morphism ¢p, induces surjections G, (A) — Op, (A) and GEU (A) - SOp, (A) with
kernel given by the center [AQF, Theorem 24.6], Op, = SOp_ U SOp,_ ¢, and GEU Q) =
{a € D;|N(a) € Q} is the even Clifford group of D, [AQF, Theorem 24.6].

o If (V,Q) = (ZF,£N), weput xz (24) = e (&) for (¢4) € To(4) (e.g., [S75, Lemma 1.2]).

where (g) is the Legendre symbol as in §1.3 and ¢ =1ifd=1 mod 4 and /-1 ifd =3

mod 4. We have d(Z*) = +(04)? and xz- = xz+ (A;) = (A;) [Sh73, Proposition 1.3].

e Let (V,Q) = (Df,£N). We have AT(Dy) = D [AQF, Lemma 25.2], and the morphism
00 = 0p, induces a surjection GJ]{,O (A) - SOp,(A) [AQF, Theorem 24.6] whose kernel is
the center of GJ]{,O = D*. We have d(DF) = d(D,)d(Z*)~" = £A_ modulo square.

Remark 3.1. When m is odd, we find d(V, 2Q) = 2™d(V, Q) for z € Q*. Since GOy, Oy, SOy and
G‘J; are equal for all scalar multiple of @), for the statement concerning these groups, if m = dim V'
is odd, we may assume that d(V') = 1 modulo square.

3.2. Choices of D for a fixed Dg. The Shimura variety of D/XQ gives rise to a subvariety of the

Shimura variety or the automorphic manifold of D, /o = Resg soDg. If we fix (the isomorphism

class of) Dg, there are many choices of D which gives rise to the given Dg. They produce different
cycles over which we compute the period. We fix D and study quaternion sub-algebras of Dg.
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We discuss slightly more generally for a while. Let D be a quaternion algebra over a field E; of
characteristic 0 and for a semi-simple quadratic extension E/E,, we put Dy = D ®pg, E. Write o
for the generator of Aut(E/FE,) and let it act on Dg through the factor E. Thus if E = E; x Ey,
o(z,y) = (y,z) for 7,y € E;. Define DF = {z € Dp|z° = £2'}.

If we do not need to refer to the sign e defining D, we just write D, for D¥. Pick o € D, N Dj.
Consider 29 = axa~!. Then (27°)%* = a(a’(z?)°a ?)a"! = a(eatzea™)a™! = x. Thus we
get a new action of Gal(E/Ey) on Dg. Then D, := H°(E/E,, Dg) under this new action is a
quaternion algebra over Q, and plainly D = D, ®g, E. Often D, 2 D. Thus the Shimura
variety Sh associated to Dj; has the Shimura subvariety Sh, associated to DY. If z € D,, then
2%« = ax’a~! = x. Thus we have the following expression

D, :={z € Dglza=az’} and D[ :={z € Dj|zaz’ = N(z)a}.
Lemma 3.2. Let the notation be as above.

(1) If B is a central-simple E -subalgebra of Dy of dimension 4, then there exists o € D, N D}
such that B = D,,.

(2) We have a = £BE" for € D, N D} and & € Dy, if and only if Do = Dg as a quaternion
algebra over E, and in this case, we have Do = D! inside Dp.

(3) We have D, = D if and only if « € E* N D,.

Proof. Pick a quaternion E-subalgebra B C Dg. Then we have an action of o € Gal(E/FE;) on
Dpg such that H*(E/E,, Dg) = B. Identify Dp = B ®p, F and write the Galois action of this
expression as oq; i.e., we have (b ®@ €)?> = b®e” for b € B and e € E. Then z — (27)?* is an
E-linear automorphism of Dp, which is inner. Thus there exists o € D} such that 27 = az7a™!
for all z € Dj. Since (z9%)° = z, we find a”« is in the center of Dg and hence aa” € E*.
Therefore (a’a)a = a(aq), and dividing by « from the right, we conclude a” commutes with
a. Then (aa”)’ = a’a = aa’. This shows aa” € E;. Thus a” = za* for z € EY and hence
a’ = az = za. Therefore o in the E-vector space D is an eigen vector of the E_ -linear map ot
with eigenvalue z. Since ot has order 2, we have z = +1 and a” = £a'.

Since E = E[V/A] for A € E*, if the sign of 2 does not match with the sign of D, for VA € E*

with VA~ = —V/A, we have v/Aa has matching parity. Replacing o by v/Aa, we may assume that
o’ = +a*, and we have B = D,,. In this way, every quaternion E,-subalgebra of Dg appears as
D,,. This proves (1).

We now prove (2). We may assume that § € D, N E*. Plainly Dg = D. Suppose a = {37 for
¢e Dy for0# 3€ EXND,. Then

7€ Do & ya=ay’ & VEPET = EBETYT & ETINER = BETNTET & £ B = B(ETITE)
This shows that D, = Dt 1.

To see the converse, suppose we have an isomorphism ¢ : D = B = D,, of E-algebras. Then we
can identify Dy = B ®@p, E; so, i is induced by z — z&™! for € € Dp.

The assertion (3) just follows from the definition. O

We state Lemma 3.2 (2) in a different way, whose proof we leave to the reader.

Corollary 3.3. Let 04(z) = az®a™' and DE¥ = {v € Dg|v’> = £v'}. The following three
conditions are equivalent:

o We have a = {BE'7 for f € Dy, N Dy and € € Dy ;

° Dfa = Dfﬁ as a quadratic space over E , and in this case, we have Dfa = {Dfﬁffl;

. Dio = D[jit,o as a quadratic space over E for Dio ={ve DI v+ =0}

Here is an adelized version. We assume that E is a finite extension of Q (i.e., a number field).
Let a € DF with N(a) # 0. An E, ,-subalgebra Bp, , of Dp, of rank 4 is called an adelic quaternion
algebra over I, if its projection to Dg, is a central simple quaternion algebra over E  for all places
v of E and is isomorphic to My (Ey,) for almost all v. Then define D, := {x € Dg,|ra = az”}.

Lemma 3.4. (1) If Br,, is an adelic quaternion E.,-subalgebra of Dg,, then there eists
a € D07E+A such that BE+A =D,.
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2) We have a = xbx‘° for 0 b€ D, and x € D} if and only if D, = Dy as an adelic
Ey Yy
quaternion algebra over E. ,, and in this case, we have D, = xDyz™?
(3) We have Dy = Dg,, if and only if a € ES N D,.

The proof follows from Lemma 3.2 place by place. We leave it to the reader.
Assume Ey = Q. Let V = Dio with quadratic form £N(v) = vv? = £ovv*. Let
(3.4) Oa = Opz ~and SOq = SO = which are independent of the sign.

If z € Q is a scalar in O,, then 22 = 1 by +22N(v) = £N(2v) = £N(v) for all v € V. Thus the
center Z(04)(A) = p2(A). Since V has dimension 3, det(z) = z3. Thus SO4(A4) N Z(04) = {1}.

Taking the associated symmetric matrix S for the symmetric form s*(x,y) on V, we find for
a € O,, ‘aSa = S; so, det(a)? = 1. Thus we find O, /SO, is embedded into uz by det. Since
—1 € Z(0,) has determinant —1, we find O, = po x SO,.

We identify SOp,_ as a quotient of GEU by op,. If Dp ®g R = My(ER), we identify the two Fg-
algebras and let G5 (R) act on $2 by (z,w) — (‘Ziifp Z:;Uis: ). The stabilizer of (v/—1,v/~1) € $2
gives rise to a maximal compact subgroup Coo(SOp, (R)). If D is definite, we put Co(SOp, (R)) =
SOp, (R). For an open compact subgroup U of SO, (A(>)), we define

(35) Sho = Sha,U = SOQ(Q)\SO(A)/UCQ = SOQ(Q)\SO(A)/UZ(OQ)(A)CQ

with the maximal compact subgroup Co = SO4(R) N Cs(SOp, (R)). Since g9 = 0p,, , : D* — SOq4
has kernel G,, /g and is surjective over Q, A and Q, for all places v of Q, we find

(3.6) Sha = D*\D} /o5 "(U)A 05 (Cla)

which is a quaternionic Shimura variety (strictly speaking, is the Shimura variety of the quaternionic
group D modulo the center).

4. INDEFINITE D, WITH E REAL.

For any (V,Q) as in §3.1, recall V4 =V ®q 4; e.g., D;A = DFf ®g A and D, = D®qg Ey =
Dp ®g A. We apply the principle (S) and (R) of Waldspurger described in the introduction to the
splitting D¥ = Z* @ DF and compute the period fSha 0* (F)(h)duy, for the theta lift 6*(F)(h) =
fXD(M) F(9)0(¢)(g,h)dg (9 € Mp(A), h € D, ) for a well-chosen Siegel-Weil theta series 0(¢)(g, h).
Depending on the choice of D, E, ¢ and the level M, 6*(F) could vanish. In this paper, we hereafter
assume, for our choice of ¢ and the level M determined by ¢,

(®'0) G}, (A) 3 h= 0°(F)(h) = [y, ) F(9)07 (6)(g. h)dpg # 0 as a function of h.
This condition (®’0) is almost equivalent to (®0) for the following reason (so, this is not an additional
restriction). By our choice, ¢(*) = ¢z @ ¢p, and ¢ = Zj (bffj ® (bJD“ (j € ZN10,k]) for the
weight k of F with ¢y € S(Vy(=)) and ¢} € S(Vk) (V = Z, Dy). Set f; := O(Qfﬂ-) and ®;(g) :=
w(g)(éD, ®¢JD“))(O) for g € Mp(A). Then {f;, ®;}; satisfies (®0) under (®'0) (except for a rare case
of an_|(F') = 0 for D in Theorem 4.7). Indeed, by Siegel- Weil formula, for the Shimura subvariety
S of D* in the automorphic manifold of Dy, we have mE(®;) = [ 6(do ® (bD“)(g, )d,uh (h e D))

for the mass m € C* in [AQF, §37.1], and Tr( (9) 228 E( i)(9)) = mTr(F(g) [ 0(¢)(g, h)dun)
cannot vanish as a function of g as its S-period given by the adjoint L-value does not vamsh (so,
otherwise 6*(F')(h) in (®'0) has to vanishes except for the rare case described above).

In this section, we assume Dg = M3(R) and Fg = R X R including the case £ = Q x Q. Under
this setting, We write S. (L', ¢) = S; (T, ) for the space of holomorphic elliptic cusp forms of weight
konT C SLy(Z) with character ¢. We write S, (I', ) for the anti-holomorphic version of Sk (T, ¢).

4.1. Explicit form of Siegel-Weil theta series. Let ¢ be a Schwartz-Bruhat function on D, 4.
As in [H06, (2.17)], define a Schwartz function Uy, on D, g for (7, z,w) € Hx (C—R)? and 0 < k € Z,

v;Z, w]*
ot e ) VT AP,

(4.1)  Wi(r;2,w)(v) = Im(7) 2| Im(z) Im(w)]
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where for v = (‘Cl )

(4.2) [v; z,w] = =Trp, /p(V'p(z,w)) = —(w,1)Jv" () = (2, 1)Jv (Y ) =wecz —aw +dz—b
for p(z,w) := (2, 1)(w,1)J = (Z{ %) with J = (% §). In [HO6, (2.17)], we have Im(z) Im(w) in

place of | Im(z) Im(w)|. This is because in [H06], we have chosen the connected component of the
hermitian symmetric domain $? for the orthogonal group given by Im(z) > 0. If we insert z or w
in place of z or w, we need to work the lower half plane; so, we need to replace Im(z) Im(w) by

| Im(2) Im(w)|. We choose a Bruhat function (> : D(Oo) — C and put
(4.3) ¢ =i =0 @V and O(¢x) = 0(¢r)(T;2,w) = > d(v

veD,
Write O(A) := Op,(A) and SO(A) = {g € GO(A)|det(g) = 1} as an algebraic group over Q.
Here det is taken regarding g as an automorphism: v — g~ lvg? of D,. Since
G'(Q) ={a € D§|IN(a) € Q}

is the even Clifford group of D, [AQF, Theorem 24.6], we have SO(A) = G*(A)/Zg+(A) for the

center Zg+ of G*. The action of g € D} on D, as an element of O (and GO) is given by v — g~ lvg°.

Since x +— x* = +a7 preserves N(z), t € O(A) and O(A) = SO(A) USO(A) = SO(A) UoSO(A).
We have for g € GO(R)

[ ‘vg7; 2, w] = [v;9(2), 97 (w)] (g, 2)7 (97, w),

(4.4) Tigy(2)) e () — Y9790 D

| 2

[g'vg?; z, W)

() Tmfw) 9 g ) (g ()
where j((2Y),7) = ¢r +d. These formulas tells us, if v € D with N(y) = 1 and () oy = ¢(>°)
(4.5) 0(61)(7(2),77 (w)) = 8(d1) (2, w)j (7, 2)* 5 (7, 0)*.
Over R, if F isreal, (Dyr,s) = (Dg, s); so, Op, (R) = Op(R) and SOp, (R) = SOp(R).
SOp, (R) = {(z,y) € (GL2(R) x GL2(R))/Zg+(R)| det(z)/ det(y) = 1}
— Op,(R) =S0Op, (R)LUSOp, (R)o,

regarding o € Aut(D,q) as an element of Op, (Q) [AQF, §25.3]. Here Zg+ (R) is the diagonal image
of R in GL2(R) x GLz(R). The special orthogonal group SOp, (R) has two connected components

SOJ,{,U (R) = {(z,y) € SOp, (R)|det(x) > 0}, SOp_(R) = {(z,y) € SOp, (R)|det(r) <0} and

(4.6) SO}, (R) = (SLa(R) x SLo(R))/{+1}.

4.2. Differential form coming from theta series. We write the Shimura subvariety associated
to Dy as Sh, hereafter. We just write Sh = Shs for § as in (3.1); so, Ds = D (since § € D, N E*).
See (4.13) for a precise definition of Shy. Since we want to compute the integral of the theta lift
over the Shimura subvariety Sh, we describe the differential form associated to the theta series of
degree 2 = dimp Sh.

Suppose that 6(¢) is automorphic on I'; C SLa(Z). Since 6(¢) has three variables (7, z, w), we
use the symbol T'; for the level group for the metaplectic variable 7 (as in [HO05, Proposition 2.3]).
Let Lg(n,A) be the space of homogeneous polynomials for a pair (X,Y) and (X’,Y”) of vari-
ables of degree n with coefficients in an E-algebra A. Suppose that Dp @9 A = M2(A) x M3(A)
for two projections inducing identity and o. Let Dg acts on P((X,Y; X" Y")) € Lg(n;A) by
YP(X,Y; X', Y") = P((X,Y)!", (X', Y")"*?). Then

(4.7) O(z,w) = O(7; z,w) := (i) (15 z, w)(X — zY)k72(X/ - EY/)]“de A dw

for O(¢x) in (4.3) is a C°-differential form with values in Lg(k — 2;C). Then we have

70 = 0(v(2),77 (w)) = 0(7;7(2), 7 (W) (X =v(2)Y ) (X' =7 (@)Y')*2dy(2) Ady(W) = 7-O(2)
and « - O is the action of v on the value in Lg(k — 2;C). We write O(7; 2) := O(7; 2, 2).
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Recall the maximal order R C D we fixed in (D) in §1.1, we consider R ®z A-module L(n; A) =
Lg(n; A) made of homogeneous polynomials of degree n in (S, T') with coefficients in A. We assume
that R ®z A — M3(A) and v € R acts on P(S,T) — vP(S,T) := P((S,T)'~").

We would like to project the locally constant sheaf of Lg(n; A) restricted to the Shimura subvariety
Sh of D* to compute the integral of Lg(n;C)-valued harmonic forms over Sh. The D*-module
Lg(n; A)|px has the following decomposition into irreducible factors

Lg(n; A)|px = Lg(n; A) ® Lg(n; A) = EBL@ (2n — 2j; A).

As in [H94, page 498], write 7 : Lg(n; A) = Lg(n,0; A) — A = L(0,n; A) for the SL(2)-equivariant
projection given by

02 92

4.8 P(X,Y;X',Y') =nl"?v"P for v = - :
(1) R(POXY; X, Y) = nl 20 P for v = s — =l
Here L(n; A) = L(n,0; A) under the notation of [H99]. By [H99, page 141], we have
(49) n!72ann7in'X/"*jy/j — (—1)1 (z) ifn= Z =+ ja

0 otherwise.
Thus we get from (X — 2Y)"(X' =2V )" =30 (1) (3) (=)@ Xy ix "y,
(4.10) T2V (X = 2Y)M(X —ZY)" = Z (n> (—2)i 2" = (2 —2)"

: J

7=0

Let n = k — 2 and write S,f (T, xp, ) for the space of cusp forms of weight k& holomorphic in Case
+ and anti-holomorphic in Case —, where we say Case + when we deal with DX. Applying VAl
to v*0 = - O(z), we get n! 2v"O(v(2)) = det(y)"n! *v"O(z) = n! *v"O(2).

Remark 4.1. Since H? (and hence the integral) with non-constant (irreducible) coefficients vanishes
over the Shimura subvariety we study, it appears not necessary to make explicit the projection given
by a power of the differential operator V to the constant sheaf. However for computational purposes,
this maneuver is indispensable to reach the final explicit period formula as the operator kills very
complicated redundant factors. Thus we will see many such operators in this paper. This point
is already clear from the automorphic proof of the exact rational factorization formula for Deligne
periods of GL(2)-automorphic forms done in [H94].

4.3. Factoring the theta series. Recall E = Q[vA] with 0 < A = —N(v/A) € Z. Plainly
Z+ = Dy and Dg = Z under s(z,y) = Tr(zy"), writing Z = Z*. We split the quadratic space

(4.11) (DE,4£N) = (Z*,£N|z+) @ (DF, +N|p,).

Then Dy = D7 is 3-dimensional of signature (1,2), and Z* has signature (1,0). An element a € D*
acts on Dy by z — a~lxa and on Z by the identity action. This action is compatible with the
action of Dy on D, by (D) in §1.1. We have an embedding Oz x Op, into O = Op, .

We apply the principles (S) and (R) to V = D,, Vo = Dy and V- = Z. Take a Bruhat functions
¢z € S(Zlgoo)) and ¢ € S(D((fz)). For 3 € Zlgoo) and r € D((f:), we assume

(4.12) the tensor decomposition (b(oo)(g Pr)=(02R00)(3Dr) :=d2z(3)Po(x)

of the Bruhat function in order to factor the theta series 6(¢).

Next we study the decomposition of the infinite part with respect to the decomposition D, =
Z @& Dy. Thus we need to decompose the spherical polynomial [«; 2z,Z]. Pick 3 € Z and ¢ € Dy.
Since s = sz @ sq for the restriction sz and sg of s to Z and Dy, the signature of sy depends on the
sign of DF. So we write s7 to indicate the sign of s;. Let P¥ be a positive majorant of s* (z,y)
(see [HMI §2.5.2] for majorants). When P* is compatible with the decomposition (4.11), we write
Pt = PjE &) PjE accordingly.

Recall p(z, w) (5 22). Then s*(p(z, W), p(z,w)) = £2det p(z,w) = 0. Similarly,

sT(p(z,0),p(z, W) = £Tr((; “Z) (Y 2)) =+(@—w)(z — %) € Ry.
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Let W be the subspace of Vg generated by Re(p(z,w)) and Im(p(z,w)). Then st > 0 on W and
s~ < 0on W. Decomposing Vg = W@W, we have st < 0 on W+ and s~ > 0 on W=. This means
PE(z,y) = s (xw,yw) F sT(xy L, ywo) for the orthogonal projection ?x of ? to X = W, W=.
Then the Schwartz function is given by

1
®(v) = Q(v)e(5 (s [v)g + P[e]nv/=T)).
We compute P*[v]. We start with
PE[v] & 5% [v] = £5T (zw, yw) F 5T (zwo, ywo) £ 57 (ow, vw) £ 55 (L, vws) = £255 (ow, vw ).

Write v = ep(2, W) + ep(Z, w) + = with z € W+ and ¢ € C. Then

PE[u] &+ sF[v] = £25F (ep(2, @) + p(Z, w), cp(z, @) +p(Z, w)) = +4|c|?sT (p(z, @), p(Z, w))
= 4|c]*(w — w)(z — %) > 0.

Since sT (v, p(z,w)) = esT (p(z,w), p(z,W)) = +e(W — w)(z — Z), writing [v; z, w] := s (v, p(z,w)),

)
_ [v;z,0]

we have ¢ (ORI Combining all these, we get

|[v; 2, ]|

:t'U: S:t'U —_ .
PRl =T ) (2]

Thus $P*[v] = =N (v) + [2Im(z) Im(w)| ~!{[v; 2, w]|? as in [HO6, (2.2)]. Since Q(v) is a polynomial,
we can write it as Q(v) = 3_; QJ-Z(;,)QJD“(;) forv=3@r with 3 € Z and ¢ € Dy.

— e
Recall that Case + means that we deal with DX. Write 7% := {T m ase Recall also

—7 in Case —.

[’U;E, w]k e(N(’U)Ti + \/__1 Im(T)

\I/k(T;Z,’LU)(’U):Im(T)(Z_EVC(w_w)k WH

v; 2,70 |%).

Thus
U (757(2), 77 (W) (v) = Wi (735 2,0) (v 0y )i(7, 2) (77, w)"

for v € D* with N(y) = 1 and 6(¢s) has positive weight (k, k) in z,w, and 6(¢;) has automorphic
factor j(v,7)* in Case + and j(v,7)* in Case — by [HMI, Theorem 2.65] as D has signature (2, 2).
We assume that I'; = I'g(M) for an integer M > 0. Define for a € D

Da,O = {.I S Dga |TI‘DE/E($) = 0},
(4.13) T = {2 € 0,(AC)|¢(®) (z0) = ¢(*)(v) for all v € Dy 400},
She = Sha.s = 0a(Q)\Oa(A) /Ty Cla,

where C, is a maximal compact subgroup of On(R) and ¢ : D — SO, = SOp, , is the projection
from the Clifford group D/ to the orthogonal group SOp, , described in §3.1. When D,, is definite,
we have o : D} p/R* = o(Cy) = SO4(R) with Cy = O4(R) = SO4(R) U SO4(R)e. If D, is
indefinite, identifying D, g with M>(R), C,, is the stabilizer of /=1 € § (though this depends on
the identification Dy g 2 M3(R) but the isomorphism class of Shy is well defined independent of
the choice). We assume that

(4.14) () = Hqﬁl for a local Bruhat function ¢; € S(Do,q,) with ¢i(v)) = ¢i(vr) for alll.
!

Choose ¢ so that 6(¢) has Neben character ¢~ *xp_ (i.e., it is an easy exercise to find such a ¢
by (1.1), and see §4.6 and §4.7 for our choice). Recall Sh = Shs for ¢ in (3.1). Note here Ds = D.
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Consider the period integral for F' € S;7 (T, pxp, ), ©(z,w) in (4.7) and 6(¢y) in (4.3):

(4.15) P§(F) := /Sh |:/F . n!=2v"O(T; z)F(7’)77k2d§d77] dzNdz (n=k—2)

WO ([ sz Pt Rdedy ) (o - s ndz
Sh r-\%

-1 (/ o<¢k><f;z,z>F<T>n“dsdn> (= — 2Py 2dady,
sh \Jr\9

Since s[r] = £2N(z) on DX, on Z, Fsy is positive definite, and sy has signature (1,2) on D
and (2,1) on D; . Thus Pz = Fsz.
Pick 3 € Z* = Q6+ and y € Dy. Then we have

k

sz = (el 4 i) = 3 () sl —Z() (5 — 2)) [ 7, 4.

J=0 J=
For y = (2 %), noting Rep(Z,2) € Dy ®g R and Imp(z,2) € Z ®g R,

72 =E 1) (%6)0(i) =2 —aZ—az —b=s(n,Rep(z,2)) €R, [37 2] =35(Z - 2).
5+0:22 = (=32 = 2) + [9:2,2)(6(z = 2) + [v3 2,7]) = [[0; 2, 2" = 5° (= — 2)*.

Write )
. . I . =]
WP (5, zp) o= (2 — 2) [ 7, Pe(N(p)rt + v TmDlE Al
2Im(2)?

j Im(7)(z — 5)252 5je(527') in Case +

\IJZ ) %3 =j3'e 2 i—\/—l— = . ’

7 (7' z 5) 3 (5 T 21H1(Z)2 5Je(—52F) in Case -,
where 7% — T in Case +,

—7  in Case —.
Since these functions for fixed 7 and z are restriction of a Schwartz function on Dy g to Zr and
Dy wr, they are Schwartz functions on the subspace. We get

k

(4.16) (z—2)fop =) (-1) (?) $zV7 @ gl

§=0
We now interchange the order of the two integrations one over Sh and another over Xo(M) in the
period integral in (4.15). Then the period integral for F' € S;"(I';, pxp,) now becomes

v-1
(4.17) Pi(F)= ——— / / (z = 2)*0(¢1) (T3 2, )y~ 2dxdyF (7)n*~2d&dn.
2 r\$/Sh
The interchange is justified if Sh is compact (i.e., D is division) and F' is a cusp form.

4.4. Siegel-Weil formula and period integrals. We now invoke the Siegel-Weil formula as
described in (R). Since Oz(R) = {£1}, the variable g € Oz is trivial. Thus

Im(7)(z — %)?32
(4.18) I‘Z(gq-)LZ(g)‘I’jZ( /—_1, [—1;5) (1+2J)/45 e(5 r V—l%)
n(1+2j)/45je(527-) in Case +,
n(1+2j)/45je(—52F) in Case —.

Since the Clifford algebra of Dy is D, we find SOp,(R) = PGL2(R) by 0o, and
(4.19) D, (g:) L, (9:)0° (V=1,V=T;1) = n®2D/ 400 (7, 2 )

=Pz = 2 sz e (o + VT AR,
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Let (bD“ = ¢0\1;D0 and (bZ = (bZ\IJZ Then g — (wp, (g)qﬁD“)(O) is left-invariant under B(Q) C
Mp(A) for the metaplectic cover SL; of SLs. For g € Mp(A), decompose its image g € SLa(A) into
bk for k € SL2(Z)SO42(R) and b € B(A). Writing b = (a(og) I), consider the Siegel Eisenstein series

E(P)(si9)= Y. lalg)li VP (wp, (19)6)(0).
Y7EB(Q)\SL2(Q)
Assuming that D is a division algebra, this Eisenstein series has meromorphic continuation over s € C
and finite at s = § [Sw90, Theorem 3.3.1] (or [MSS, §5.3]); so, we define E((bJD“)(g) = E((bJD“)(%; g).
This shows 0(¢) = n't(*/2)0(¢) is the sum of the product of Weil’s theta series as in Theorem 1.1
of ¢ (V=T;1) = ép, (£ U7 (V=T xs0) and 67 (3) = 62(:) 07 (V=T 3oc).

Recall the maximal order R of D. Let Os(A) = {z € (R®z A)*|N(z)? = 1}. Recall T5 C
Os(A)) as in (4.13) taking o = 6. Then we have Sh = Os(Q)\Os(A)/T5Cs for the maximal
compact subgroup Cs = O3(R) ﬁxing v/—1. Choose a lattice L of D, and assume L = Lz® Ly C D,
for lattices Ly C Z and Ly C D . Take the characteristic function ¢9 = ¢r,, of Lo C Do ®q Ale0) =

L(Oo). We choose later the finite part ¢z of ¢ which has open support in LZ We assume that

¢(°°) =0z @ L,
As the Siegel-Weil formula is stated with respect to the theta series of variable g € Op,(A) (not
with respect to z), we lift 6(¢x)(7; 2, z) to the function 8(¢y)(7; g) in the standard way by

0(¢x)(7:.9) = 0(w) (75 9(V=1), g(v=1)) |5 (g, V=-D)I7** (|5((23) . 2)| = |ez +d])
(so O(¢r)(T;9-) = 0(¢r)(7; 2,2)y*). The lifted theta series 0(¢J-Z)(7';g) =D ez w(g)qﬁjz(g) is the
Siegel-Weil theta series as in Theorem 1.1. We take the Haar measure dp, on Os(A) so that it induces

the discrete Dirac measure on O5(Q), measure of volume 1 on [5Cs and y~2dzdy on $ = O (R)/Cs.
By the Siegel-Weil formula in [Sw90, Theorem 3.3.1] (or [MSS, (5.3.3)])

(420) (2v=T) /5 D = 206 (2. )y dady

:/ _0(9) (75 9)dpg = mz ( ) 1)/6(¢7)E ((kajj) for a constant m # 0.
Opy (@\Opq (A)/T's

4.5. Mass factor m;. Let us make m; as in (0.1) explicit. Recall the Haar measure dpug defined
above (4.20). Then we have

(4.21)
771+(k/2)/ 0(dr) (75 2, 2)y" " 2dady = 771+(k/2)/ 0(61)(7; 9(V=1),9(V—1))dp,
Shs O

5(Q\0s (4)/T5Cs

1+(k/2) Yy = () JO 2 .
n ~/05(Q)\05(A)/f505 0(or) (159, 9)dpg = mz ; (67)E(62 )

for m > 0 such that du, = 5 dwo, for the half of the Tamagawa measure dwo; of Os. The factor
1 is to kill the Tamagawa number 7(Os5) = 2 so that theta integral with respect to fdwo, and
Siegel-Eisenstein series exactly match. The following result valid for indefinite and also definite D

is due to Shimura [Sh99]:

Theorem 4.2. Replace s* by p = es™ for 0 # e € 7 with minimal |e| so that the discriminant of
(/7|D0i is a square in Q* (cf. Remark 3.1) Take the measure dpgy on O(Q)\Os(A) with volume 1 on
['sCs for a mazimal compact subgroup Cs of Os(R) with invariant measure y~2dxdy on $ if DR =
My(R), and let L := RN DF with Ty := {3: € OJ(A(OO))|$L$ =L} = {z € O5(A)|zLz~1 = L}.

Then, defining (FL : F(;) = (FL : FJQFL)/(F(; : FJQFL) and assuming (4.14), we have the following
formula of the mass factor my as in (0.1):

my =my(L,Ts) = (T :To)[L: L] [[[27 '+t -17)],
110
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where L = {z € D¥|2¢(z, L) C Z}.

Defining I/ := {x € Df|s*(z,L) C Z}, L = (2¢)"'L/, [L : L] = 23¢*[L/ : L), and [L : L]
is the absolute value of the discriminant of s|;,. The constant e can be taken a factor of Adk as
d(Dg) ~ £Adk. In particular, if E — D (i.e., Dg & M>(FE)), we can take K = E and hence e = 1.

Proof. In [Sh99, Theorem 5.8], the volume fSOv(Q)\SOV(A)/f‘iCV dp’ is computed with respect to the
measure dy’ Shimura specified. For a maximal lattice L C V (i.e., maximal among lattices with
given fractional ideal 9 generated by Q(L)), the measure du’ has volume 1 over flLCV for a maximal
compact subgroup Cy C SOy (R) and flL = {2 € SOy (AC))| Lz = L} (note that Shimura takes a
convention of right action of his orthogonal group on V). The following three facts are noteworthy:

o Shs = 05(Q)\0s(A)/T5Cs = SOs(Q)\SO5(A)/TLCs under (4.14) (see (4.22)).

e The Tamagawa number formula 7(0O) = 2 given by Weil [W65] does not give an exact
formula of the volume, as we need to know the exact ratio of the Tamagawa measure %dw
and the more arithmetic measure dy, related to the L-value.

e Though the volume is calculated earlier by Shimizu [Sh65] for the algebraic group D* when
D is indefinite (here Os and D* are different groups), the definite case of V' = Dy is elusive
(because of non-validity of strong approximation outside an archimedean place), and there
is only a partial computation by Siegel for Os and Eichler for D*. The paper [Sh99] gives
an explicit form of the arithmetic measure on the symmetric space of the orthogonal group
and the exact volume via Dedekind L-values for any quadratic space over a totally real field
of any dimension. When the base field has a complex place, Hanke [Ha05] computed the
exact volume.

We specialize Shimura’s result to O = Op, and V = Dy. We may assume that f(; =T L as the
general formula follows directly from [Sh99, (5.8.1)]. If D is definite, the symmetric space for SO5(R)
is one point, and we take the volume 1-measure on f¢SO Do (R). Assuming Dg = M>(R), we choose
Cp fixing *(1,0) in the symmetric domain Z defined in [Sh99, §4.2] and take L := RN Dy which is a
maximal lattice. To get the exact value, we need to describe Z and its measure. Here, as in [Sh99,
§4.1], for V = D,
Z :={(u,v) € R*2u > —v?/2}.

Then putting B(z) = (:51 %2 ?) for z = (u,v) € Z, a € SO;(R) acts on Z by aB(z) =
B(a(z)) diag[k, p] for two automorphic factor y € C* and k € GL2(C). Here we regard SOs = SOp,
as the special orthogonal group with respect to the anti diagonal symmetric matrix 5" = (Tr(v;v$)): ;
for vi = (§¢), ve = diag[l,—1] and v3 = (9§). Then S’ is anti-diagonal with anti-diagonal en-
tries —1,—2,—1 in order. Since Shimura normalizes S’ via conjugation by GL3(R) and a scalar
multiplication so that the center entry is positive, we conjugate by Ad(diag[l, —1]) € GL3(R) and

multiplying by —1 to reach
s=(03279)
~10 0
getting the center entry 2 positive which plays the role of 6, for v = oo in [Sh99, (5.3.2)]. This is
because Ad(SLz2(R)) = SOs(R), and in this way, we identify I : § = Z sending v/—1 to (1,0) and
1(9(2)) = Ad(g)(I(2)) for g € SLy(R).

To make the isomorphism I explicit, we choose a basis B of s[(2) given by B := {'U, diag[1, —1], U}
for U = (3}) to compute Ad. To get the isomorphism between § and Z via I(a?y/—1 + ab) =
I(g(v=1)) = Ad(g)((1,0)) for g = (&%), we compute Ad((% °:) with respect to B. Though
we conjugated by Ad(diag[l, —1]), we can make variable change z — —Z to absorb this maneuver
without changing the invariant measure; so, we forget about it. Note Ad(a)(z) = o~ 'za with
respect to B for a € SLy(R) as Shimura chooses right multiplication of orthogonal group action on
quadratic spaces. Then

a2 ab —b * % (a27b2)

Ad((g b)) = (0 1 2afb> and Ad((% %) B((1,0) = ( « 2a-1b ) = B((u,v)) diag|k, u].

00 a? s a2

Thus ¢ = a=? and u = a?(a® — b?) and v = 2ab. Shimura’s measure corresponds to the differential
form (27 (2u+v?/2)) ~3/2dundv = 8a~2dandb = 4y~ 2dx Ndy for z+y/—1 = (¢ 1) (i) = a®i+ab.

0a"?t
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Thus we need to modify Shimura’s exact value by the factor 4. Noting SOp, = SOs and Cp, = Cs,
here is his value in [Sh99, Theorem 5.8]

| @

s

3

dp/ =204m) =P [L- 1) [[[27 a0+~
119

where L := {z € V|2s(z,L) C Z}. We have ddpg = dp' if Drp = M>(R) and dy’ = dpy when

Dg = H by our choice. Also as remarked in [Sh99, Lemma 5.6], the volume for Oy is twice of the

one for SOgs. Since f(; cT L is a subgroup of finite index, multiplying the index (f L: f(;), we get

the finial formula as in the theorem. O

/s,oa<@>\s05<A>/fzca

Remark 4.3. Take E = Q x Q and § = (1, -1). Let Ny = 1 and D/g be a definite quaternion
ramifying at only one odd prime p with a maximal order R. Let L = RN D}. Then R, =
{(p‘g< :g) la,b € Ok } for the unramified discrete valuation ring Ox = Zy[/u] for a non-square p-
adic unit v in Z,. Thus L = {(p‘g< o ) la € Zp,b e OK} An orthogonal basis of L over Z, is given

by (§29), ( 0 ﬁ) and (9§). Thus dets; with respect to this basis is given by 2%p*u. Thus

—pvu 0
e =271 for e as in Theorem 4.2. By [Sh99, (3.1.9)], we have [L : L] = | det(sy)|5* = p2. Thus

b’

mp; = ml(L, f(;) = p22*1(1 _l’_p)*l(l _ p72) _ (p; 1)'

We need to specify I's to make m; = ml(L,f(;) explicit down-to-earth. For [ 1 9, we identify
R, = R®y Z; with M5 (Z;). The Eichler order of level I¢ of R; = R ®z Z, is given by

Ri(1°) := {(2}) € My(Z)|c € I°%}
identifying R ®z Z; with M2(Z,;). Fix a level Ny prime to d with prime factorization H”NO 1¢0)  and
define the Eichler order R(Np) C D of level Ny by D N R(Ny) for R(Ng) := RN x TT, y, Ru(ic®),
where R(Vo) .= [Ty, Bi-

Recall 6, = 1and §_ = \/A_ for the square free part A_ of A. Note D = d+{v € D|Tr(v) = 0}.
For an integer Ny outside 9, decomposing Ny = [], 1Y), we define Ry(No) = Dy N 6+R(N, ) which
we call the Eichler lattice of level Ny. We take (;55:)0:) to be the characteristic function of RO (Ng) =
Ro(No) ®2 Z C Dy pior- Then Ts = {y € SO5(Q)|yRo(No)y™ C Ro(No)} = R(No)* /{+1}. Here,

as algebraic groups over Q, we identify D> /Z(D*) (for the center Z(D*) of D*) with SOs by 0o
in §3.1. Since Os = SO; U SOs¢ (the involution ¢ regarded as an Q-linear automorphism of Dy),

(4.22) Shs = O5(Q)\O5(A)/T5Coc(05) = D*\DjS /A R(No)* Coe (D),
where Co(G) is a maximal compact subgroup of the identity connected component of G(R) for a

reductive group G,q. As is well known, we have (R* : R(No)*) = Ny [Ty, (1 + [71). Then by
Theorem 4.2 (and [Sh99, (5.8.1)]) gives the following mass factor

(4.23) my=my(L,Ts) = No[L: L] | JJa+ 1Y) ][2 '@+t -1
1| No 116

We again note here that we need to assume (4.14) as Shimura’s computation is done for SO and we
need the result for O, and under (4.14), the formula for SO and for O is identical.

4.6. Choice of ¢z. We make an explicit choice of ¢ (and the theta series) for (Z*,Q%). To use
the results also for imaginary F, we do not assume that E is real in this subsection.

For a lattice L of a quadratic space (V,Q), we write ¢, : Vyeey — {0,1} for the characteristic
function of L = L Rz, 7. More generally, write ¢, , for the characteristic function of v + L. Let
L* = {v € Vl|s(v,L) C Z} (the dual lattice). Then we define the level 0 < M = My, € Z by the
minimal positive integer such that M - s[L*] C 2Z (or equivalently M - Q(L) C Z).

First, we deal with (Z*,Q"), which is always positive definite with QT (z) = 2? and 6, = 1.
We take a lattice L = L, := NZ of Z*. Since L* = (2N)7'L, the level of L = NZ is given by
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My := Myz = 4N2. Put ¢z := > wezynz Y (v)@L,o for a primitive Dirichlet character 1) modulo N

We write this function on Zy) = A as ¢, . For an integer k > 0 with ¢(2(°))z% is an even
function on Z, = A, we define ¥k o : $ X R — C by 91 oo(7, 2) 1= 2Fe(72?) (1 = £ +V/—1n € 9).
Then §(67) = n*+1/46, () for

Ok (1) 1= 0(th1r.00) = D Wh(n)ne(n’r)
neL
For k € {0,1}, 6k() is a modular form on I'g(Myz) for Myz = 4N? of weight k + 3 with Neben

character 1, = ( )k ¥ in Shimura’s sense as described in §1.3. For k > 1, 0;(¢) has mixed weight.

Second, take D, = D_ with F imaginary. Recall 6_ = \/K for the square-free part A_ < 0
of A and Q~(§_z) = |A_|z? from (Z*) in §3.1. We take L_ = §_NZ. The dual lattice L* of
L is given by 6-*(2N)"'Z = §_A~'(2N)~'Z. Thus N(L*) = A'(2N)~2; so, My := My, =
4|A_|N2. For a Dirichlet character ¢ modulo N, we take ¢z := > ve(s_z/6 nz) Y(6-v)dL_ 0. Then

0(¢7) = n+1/46% (0).(1)|[A_]), where f|][A_](T) = f(JA_|7) and §* at the front of the left-hand-
side comes from our choice of Schwartz function ¢ (7) = Q™ (z)*e(Q~(z)7). In the half integral

case, this operation changes the Neben character ¥ of f to ¢ (A;) [Sh73, Proposition 1.3].

Last, take D, = D, with E real. Recall A_ > 0. We take L_ = §_NZ. Then Q (6_n) =
—A_n? is negative definite. The dual lattice L* of L is given by 6 _'(2N)™'Z = §_A~*(2N)~'Z.
Thus N(L*) = AZ'(2N)~2; so, Mz := My, = 4A_N?. For a Dirichlet character ¢ modulo N
we take ¢z 1= 3 ,c5 775 nzy) P(0-v)¢r_ . Then 8(¢7) = nFHED/ASE (0, ()| [A_])(=7), where we
need to plug in —7 by the standard choice of Schwartz function ¢o.(z) = Q™ (x)ke(—Q~ (x)7).

In summary, we find

(4.24) My+ = 4]6% |N2.
4.7. Verification of the assumption (V). For the Eichler order R(Ny) of level Ny, we take two
lattices in Dy which are

L = Ro(No) = {v € 6= R(Np)|v+v* =0} € Df and cL C DF for a chosen 0 < c € Z,
which has a Z;-basis {0+ diag[l, —1],0:U with U = (§3),0:No'U} for [ 9 whose dual basis is

{27 10" diag[l, —1], Ny 65U = (3 §), 65U}

If 1|0, Ry /Ry is killed by [; hence, the level My, of L is 4N08532F as D = 0_D; . Similarly the level
of cL is M., = 4Nodd%c?. Take ¢y to be
(4.25) goo) =cy'(¢pp —P¢,z) forcg=1—c*with 1<c€Z and ¢g=c; (7 —’¢.7)  boo-
Then ', =T(M) for
(4.26) M = My = [4|62|N?,4¢?|6%|Nod] (the LCM of 4|62 |N? and 4¢?[62| Nod).
This formula is valid for £ both real and imaginary. Writing T, for the closure of I'; in Mp(A(>)),
T, = To(M) > B(Z).
Lemma 4.4. We have r (8 ‘:lillb) (b(()oo)(()) = |a|§;/2 and r(J (8 ‘:l,lb))qb(oo)( ) =0 for all (a a lb) €
B(A)). For any Schwartz function ¢, on DiR, D(g) = (W(g)((b(()oo)(boo))( 0) with (b(oo) (4.25)
satisfies the condition (V) in §2.4.

Proof. We have (g t;iﬂb) = (50 (2.%). By (L1), r (a a*b) #8%) = |a>/%e(£N (v)b)d> (av).
Then by taking v = 0, the first assertion follows. Since r(J)¢ is proportional to the Fourier transform

(E = F(¢) by a constant independent of ¢, we need to compute the finite part of the Fourier transform
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over V() = Voo ¢

(4.27) 00.7:(|a|z/2e(:|:]\](v)b) g“)(av))(()) = ¢y /V(m) |a|§;/2e(:|:]\](v)b) goo)(av)e(si(v,w))dv|w:0

- / a3 %e(+N (v)b)p (av)dv — ¢ / a3/ %e(+N (v)b)¢ ; (av)dv
V() V (o0)

T [ R e N o (e - M [ ol N )b ey = 0.

V (o)

The value of ®(g) for g € JB(A) is proportional to F(|a¥2e(+N (v)b)¢* (av))(0) in (4.27) times
the corresponding Fourier transform f(|aoo|§;/2e(:|:N(voo)boo)¢oo (@00Vs0))(0) at co by (4.25). Then
the condition (V) follows from the vanishing of (4.27). O

Remark 4.5. The convolution integral over B(A) of Theorem 2.3 does not depend on the level M,
and the integral over B(A) with respect to goo) and ¢7 are equal, since E(¢p(®)¢s) = E(¢70c0)
over B(A). Thus we hereafter forget about the part ¢*¢_; from the integral over B(Q)\B(A)/ B(Z)
with respect to E(¢7¢o0) and 0(¢7 o). Hence hereafter (bJD“ = (bE\IJJD“ of §4.4 in Case RI (and in
the other cases, for the Schwartz function \IJJD ° defined later case by base).

4.8. Verification of the assumption (Key). To show the assumption (Key) in Theorem 2.5, we
need to compute 6(¢7)(g;) and (r(gf)¢ijj)(0). For ® € §(Dg ), we have

ro(a(§)®(r) = e(%&)‘?(zﬁ) for a(€) = (4 §), ro(diagly'/2,n~ ') @) = n** (' /%),

(4.28) o
rolgr)® () = ra(a(€) dingln' /%, 5/ b() = 5 e( 2O ).

By this,

(4.29) r(g-)(¢)(0) =0« ¢(0) =0 and r(g-)(¢)(0) = 773/4 if ¢(0) = 1.

Note (kaj ;(0) = 0 unless k = j as its infinite part is given by (4.19). This verifies the assumption
(Key) in Theorem 2.5.

4.9. Convolution. Recall Cs, = 7, (SO2(R)) C Mp(A) for the projection 74 : Mp(A) — SLa(A),
and let dy. be the Haar measure inducing n~2d¢dn on $, the volume one measure on I'yCog C Mp(A)
and the Dirac measure on each element of SLy(Q) C Mp(A). Write B := B(Q)\B(A)/B(Z). Thus
B = U(Z)\$ for the unipotent radical U of B. Lift F € Sf (I';, pxp, ) as in (2.1), 9((;5]1-3“) and 0(¢%)
to Mp(A) as in (4.19) and (4.18). From this, we have the following identities

(430)  F(7) =F(g-)n "2, 0(¢7) () T2/ = (1) (g:), E(d5°)(m)n** = E(¢5°)(g-).

where E(44°)(g,) is the Eisenstein series as a function on  and 0((;5}/)(h) = Zvev(w(h)qﬁ}/)(v) for
V = Dy and Z. Note the exponent of 7 for the lifting is the same for 8(¢4°) and E(¢5°). Then F and
6(¢7) are functions on SLy(Q)\Mp(A). Since B(R)SO2(R) = SLy(R) and SLy(A>)) = SLy(Q)T';
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by strong approximation, we have SLq (Q)B(A)fTC’OO = Mp(A). We have

k
asy [ I (’;)owf )(g-) B8P ) (g2~ dedn

=0
k

_ ik Z W Do

-/ e (J>7€B<@>Z\SL2<@>FW0(¢JWL) () (@P° ) (0)dpr (h)

k
2 [ 3w ()06 0nra (68 00 0) Remark 1.5)

Jj=0

) (qyh /_(F(T>77’“/2)(9(¢f Y)Y Ay (b) (as 1(g.)(62°)(0) = 74, (4.29))

B
= () [ oDt e,
Remark 4.6. To have the identity at (x), the conductor C of F has to be a factor of M as in (4.26).

By [HMI, Theorem 2.65], we find the Neben character of 6(¢) is ix for xp, = (M) Since

the product of Neben character of 8(¢) and F has to be trivial, the cusp form F need to have Neben
character v~y p, . Weput L = Ly ®Lo with Ly C Dy such that Ly = R(Ny)NDg for an Eichler order
R(Np) in Dg of level Ny. Write 7. = 7 and 7', —7. Note 0(¢7) = 0% 3, cp W(n)nFe(|AL|n?Ty),
and write F(17) = Y07 ane(ntg) € S (C, ¥ 'xp, ). Then (4.31) is equal to

(432) (~1)* /E F()8(67 ) ()~ 2dedn = (~ / / 0(67)(gr)den*\dn

= (-1 25k/ D aaspmet(n)n® exp(—4n| Asn’n)n* " dn

0<n€EZ

= (=1)"2(4m) "L AL T (k) Y ajag ey (n)n "

0<n€Z
Since 6_ > 0 when F is real, 6% |AL|™% = 6=F (while 6* |AL| ™% = (—6_) " if E is imaginary).

4.10. The period is an L-value. We study its Euler factorization assuming F' is a primitive
eigenform in S (C, ¢ ~'xp,) of conductor C. Put

(s; Fyup) : Z Yo(n)ayzn~? for the primitive character 1o induced by .

Write a, = a + 3 with a8 = ¥~ xp_ (p)p*~ 1. If it is necessary to indicate the dependence on p, we
2ntl_gntl

write ay, for o and 3, for 8. Suppose first a3 = ¢~ 1xp, (p)p"~! # 0. Then apen = & o
Thus by a well known computation

. ) a2n+1_62n+1 _ (1—01262)(2)
,;CLP%X _nz:; =g N TN a1 = PX)

Suppose wal(p)a = wal(p)ap # 0 but 8 =0. Then
- n n 1
7;) apen X" Z a?n X" = T-a2x

For an Euler product L(s) = ][, E,(s)7!, we write L™ (s) := (I Ep(s))L(s) (removing Euler
factors at p|m for an integer m > 0). Let Cy be the product of primes p ramified in E such that
¥|,x = XE|zx and the p-primary factor of C equals to the p-conductor of xg. Then for p|Co,

aa = p*~! and hence the Euler p-factor of D(s; F, ) is given by
(1—0[2])75) 1:(1 T 1pk 1— s) 1
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which is a half of the Euler p-factor (1—aa 'pF=1=%)"1(1—a tap*—1=%) "L of L(s—k+1, Ad(F)®F).
Thus one Euler p-factor of L(s — k + 1, Ad(F) ® xg) is missing at p|Cy. This type of discrepancy
does not occur at other prime factors of C'. Thus writing Cs(¢)) (resp. C(v)) for the product of
prime factors p of C' with either a, = 0 or ¥(p) = 0 (resp. the conductor of v),

(4.33) ¢ (25 +2 — 2k)D(s; F,1p) = L) (5, p5m™ g )

= | [J( = oy '@t ') | {9 (s — k + 1, Ad(F) ® xp, ).
UCo
This settles the case where D, = Df as 6, = A, = 1.
Here is how to modify the computation for D . We need to compute the Dirichlet series

D™ (s) :=2(4m) " T(k) > aja_petb(n)n .
0<n€ez

Only the Euler factor for a prime p|A_ matters, and it is given by

ot a2n+2 _ 62n+2 1 St St
g Xt =) —— X" = laz‘ > atxn— g2y X
0<nez n=0 a—p a—p n=0 n=0
1 a? 3? a—+pf
T a-p [1—a2X - 1—52)(] T (1-aZX)(1 - B2X)

_ ap _ ap(1 — afX)

1-a2X)1-5%X) (1-a2X)1-afX)(1-p5%2X)"
We get if D, = D_, D~ (s) =0 unless a, # 0 for all p|A_, and otherwise

(4.34) ¢9(2s 42— 2k)D(s; F, )

=aiy 0| [T = o @l 7%) | L (s — k41, Ad(F) @ xp, ),
l|Co
1 if V= DF
where a% = 1 v o’
- aja_| lfL’::l)U.
Since xp, = X = (E—/Q), all this combined, we obtain

Theorem 4.7. Suppose EFr = R x R and that D is division indefinite. Let F' be a primitive Hecke
eigenform in Si (C,v"'xp,) with F|T(n) = a,F for the conductor C|M for M as in (4.26) and
f=0"(F) be the theta lift holomorphic in z and anti-holomorphic in w:

flew) = / 0(6)(r: 2, w) F ()~ 2dédn
r-\9

for 08(¢) in (4.3). Choose (b(Zoo) associated to Dirichlet character ¢ of conductor N = C(¢) as

specified above and (b(()oo) be as in (4.25). Let ¢ = (b(Zoo) ® (b(()oo)\llk as a Schwartz-Bruhat function of
DiA. Assume k > 2 and define the Lg(k — 2; C)-valued harmonic form by

w(F) = fz,w)(X —2Y)" (X' —wY")"dz ANdw (n=Fk—2)

on the Shimura subvariety Shs as in (4.22). Then if f(z,w) # 0, for the mass factor my as in
(4.23),

W/ (n) 2V (@(F)) sns = miE*(1)05" (—V=1)* 1 (2m) "D (k)LD (1, Ad(F) © xp),
Shs

[Lic =1 T, (1 —ay'@p™) if V.= DI,

where E* (1) = Pt B L : 7
{alAlec(l—p )7 s pow (=P D e, (1 =y @p™) iV =D,
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Here the constant in front of the L-value comes from the constants in Theorem 2.5, (4.17), (4.20)
and (4.32). The source and the constant appearing these equations are summarized in the following
table whose product in the second row gives rise to the constant:

(4.17) | (4.20) | (4.32)
—27L/=T [ @v-DF | (-1)*2(4m) 61" = (—1)*217F(2m) k6"
If V.= D, aja_| can vanish killing the entire right-hand-side. The assumption f(z,w) # 0 implies
the matching condition (M) just above Example 2.1. If the converse is true, by the non-vanishing
of the adjoint L-values implies f(z,w) # 0.

Remark 4.8. We cannot choose ¢y with the property that r(diag[a,a=!])¢o = x(a)po for a non-
trivial character x as we need ¢o(0) # 0 to have non-trivial E(¢5°) (i.e., (r (¢ b)) J°)(0) # 0).

0a !

Similarly, for the theta function to have Neben character 1, we need to choose (b(Zoo) = 1.

4.11. Fourier expansion of theta descent. In this subsection, the choice of the Bruhat function
#(>) is arbitrary. As remarked in §3.1, we have a canonical surjection op, : GEU — SOp, for

G5, (Q) :={a € DE|N(a)/N(a”) = 1} with o € GJ,_(Q) acting on Dy by v — o~ 'va. Then
(4.35) Op, =SOp, USOp_t=8S0p, USOp_o
for the involution ¢ with Tr(z) = 2+ 2*, and Ker(op, ) = G, /g is embedded into GEU to the center
of D* C Dj, which is the center Zg+ of Gf, . Note that D ®g R = Ms(R) x Ma(R) by the
isomorphism sending E 3 e — (e,e”) € Ma(R) x Mz(R). Thus

Gh. (R) = {(h1, ho) € GLa(R) x GLy(R)| det(hy)/ det(hy) = 1}

with R* diagonally embedded onto the center of the product. Then GEU (R) has two connected
components whose identity component GEU (R)° modulo center is isomorphic to the target of

G}, (R)” = SOp, (R) = (SL2(R) x SLa(R))/{1},

where {£1} is embedded into SLy(R) x SL(R) diagonally. We put SO, (A) = SOp,_ (A(*))SOF, (R)
and SO}, (Q) = SOp, (Q) NSO}, (A) inside SOp, (A). Writing Dg 5 v — v € Mz(R) for the left
projection and v — 7 € Ms(R) for the right projection, we let v € Dj; with totally positive N (v)
act on H? by (z,w) — (v(2),77 (w)).

Pick a Schwartz—Bruhat function ¢ : D, 5 — C and assume that ¢oo = ¥y (7; 2, w) for Uy (7; 2, w)
as in (4.1). Since we compute the adjoint of the theta lift, we need to have complex conjugation
applied to Wy. In this subsection, the choice of the finite part ¢(°) is arbitrary. Consider Siegel’s
theta series and differential form for n =k — 2
01(9) = O(9) (T3 2,w) = D d(v), O(B)(732,w;x) = Oy () (75 2, w) (X = 2Y)" (X' —wY’)"dz A duw,

vED,
where x = (X,Y; X', Y’). This theta series depends on D, and hence on o. However the groups
Op, and SOp, do not depends on o as seen above. Let
Ty := {7 €50} (Q) = G}, /Za+ Q)¢ (v 'a77) = ¢ () for all & € Dy},
where SO}, (Q) =SOp, (Q) NSOF,_(R).

Let S(J;jk)(fqb) be the space of quaternionic modular forms f : D*\Dg — C of weight koo +kooo
left invariant under I'y (writing a fixed infinite place as oo and the other by coo) holomorphic
in z and anti-holomorphic in w. Pick f € S,i; (f¢) and restrict f to GEU (A). We compute the
Fourier expansion of the theta descent fSODU (@\SOp, (A) 0(¢)(g, h)f(h)duy and show that its Fourier
coefficient for e(N(a)7) is given by a finite sum of the period P, = [, (n!)72v"(w(f)) for the
harmonic differential 2-form w(f) produced from f. Since o € Op_(Q), we have Op_(Q)\Op, (A) =
SOp, (Q@)\SOp, (A). We extend f originally defined on SOp_ (A) to Op,_ (A) by putting f(cx) = f(z)
for € SOp, (A). Then f(xzo) = f(oxo) = f(z7), and by this extension, we have

(4.36)  0.(f)(9) == 0(¢)(g, h) f (h)dpn :/ 0(¢)(g, h) f (h)dpn.

/soza (Q\SO},_ (4) Ob, (Q\Ob, (4)
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The Haar measure dyy, satisfies fmci dpup, = 1 for the stabilizer Cj in SOEU (R) of i := (v/—1,v/—-1) €
92, dpn = dps . = y~2dzdyv—2dudv writing 2 = x + yv/—1 and w = u + vv/—1 and induces the
Dirac measure at each point of SOEU (Q). Plainly this integral vanishes if f(z7) = —f(x). In other
words, the descent factors through functions symmetric with respect to the action of o.

Pick a € D, with N(a) # 0. Let us look into the action o, of Gal(E/Q) different from o on
Dg for a € D,. Recall D, = H°({0,), Dg) which is an indefinite quaternion algebra over Q with
D, ®q E = Dg. Then D, is the even Clifford algebra of Dio ={x € 61 - Dy|x+ " = 0}. Write

Oq :=O0p,, and SO4(A) = {z € On(A)|detp, ,(z) = 1}.
Then SO, (A) = (Do ®g A)*/A*. Since D, is indefinite, we have SO, (R) = PGLy(R), whose
identity connected component is SO (R) = PGLJ (R), and
S04 (R) = SOF (R) LSO, (R) with SO (R) = PGLJ (R) diag[1, —1].
Let O} (R) = SOF (R) U SO (R)e, SO (Q) = SO, (Q) NSO (R) and OF(Q) = 0,(Q) N OL (R).

Note that the action of ¢ is scalar multiplication by —1 on the quadratic space D, o, which acts
on the symmetric space $ of O (R) trivially. Thus, for any point (29, wo) € $2, OF (R)(20,wo) =
SOL (R)(20,wp) = H. Let Ty := Ty NSO (Q). Then I',\SOZ (R)(z0,wp) is a Shimura sub-curve
inside the Shimura surface associated to SOp, ~ Dj;, whose isomorphism class is independent of
(20, wo) € H2. Taking (20, wp) =i := (vV—1,v/—1), we write Shy, := I's\SOZ (R)(i).

Pick a cusp form f(z,w) € S(J;k)(fqb). Consider the invariant form

(4.37) Winy = (2 = 2) " 2(w — W) " 2dz A dZ A dw A dTo.

The measure dw;n, associated to Wi, satisfies dwin, = (2v/—1)"2dpsw = —47 dp, . Then we
consider a differential 4-form given by
n|[e; 2, @] | _
T (z) Tm(uw)) ! (72 )i

We pick hr, hgr € SLa(R) so that o = h} '§hg for § € R*. Identify (SLo(R) x SLo(R))/{£1} =
SO}, (R) and put h = (hr, hg) € SOF_(R). Then

hah™ = (hr,hg)(a,a%)(hg' hr') = (hpahz', %) = (5, %).
Since (hah™°)? = h°a’h™! = £h?a*h™ = £(hah™7)7!, we find that * = +§ = §° in the o-
component of Eg. Thus in Dg,, we have a = h™16h° writing (8, £J) as § € Eg.
Noting that w;y, is invariant under the action of holomorphic automorphisms of £2,
nl[h="6h7; 2, ]|
[ Tm(z) Im(w)|

[0, 9(2), h(@)*j(hr, 2)"j(hr, @)" exp(—m

Qo (f) = [o; z,@]k exp(—m

(4.38) Qo (f) = [n"16h7; 2, ] exp(—m ) f(z, w)wine

n|[0: hi(2), hr(@)]|*
[ Tm (R (2)) Im(hg(w))|
w]

|2
)f|h (Za w)wmv,

h=(hr,hr)

)f(z, w)winv

n|[d; z, @

[ Tm(z) Im(w))
where flh™(z,w) = j(hr, 2)*j(hr, @) f(h; " (2), hp' (w)). The function f|h~! has invariance under
hTyh~!. Recalling SO, = SOp, ,, we have Sh, = I',\SO (R)(i) = h[',h~\SOL (R)(i) =: Sh"
and hToh~! C DX = GLy(R) ¥ (Dp,)* = GLo(R)? diagonally embedded. Then

[6;2,Z]= 6(2 Z)

hr (z)r—»zizR(w)r—»w [

57 2 w]k eXp(_

wZ(f)(z) = 572[5;z,2]kf|h71(z, 2)(z—2)" 2dz Ndz [0; 2, ]k 2f|h (2,2)dz Ndz

is a closed harmonic 2-form on Sh”, and pulling [8; 2, Z* " 2f|h~!(z, z)dz A dZ back to Sha by
h: She =2 Sh”, we define

(4.39) w(f)(z,w;x) == f(z,w)(X — 2Y)* (X' —@Y')*2dz Adw on $ x 9.

To introduce an SO p_-invariant pairing (-, ) : Lg(n; A)®a Lg(n; A) — A, we prepare another set
of variables s := (5, T; 5", T") as the variable of the right factor Lg(n; A), = Lia(n; A)r®4 Lo (n; A),:

Lig(n; A), := AS™ + AS"'T + ... + AT" and L, (n; A), := AS"™ + AT 4 AT
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The variable of the left factor Lg(n; A); are denoted by (X,Y; X', Y”) as before. We pair Liq(n; A); =
AX™ + AX"YY + .- + AY™ on the left with Lig(n; A), = AS™ + AS"'T + ... + AT™ on
the right to have the pairing (-,-)ia : Lia(n; A); ®a Lia(n; A), — A given by P(X,Y;S5,T) —
(n)72vY(P(X,Y;S,T)), where Vig = a‘iw - %. Similarly, we define v, = % - % :
Ly(n; A)y ®a Ly (n; A), — A. and put (+,-), = (n!)72v". Finally we define the desired pairing

(4.40) )= )n=0)a® () s Le(n; A) @a Lp(n; A) — A
by (P,Q)n = n!72v%n!=2v2(PQ). The pairing (-, -) is SO p,_-invariant [H94, (11.2a,b)].
Since 7, = (n!)72V" : Lg(n;A)lso, — A and np, = (n!)72v(n!)72v2 : Lg(n; A) @4

Lg(n; A) — A is SO,-equivariant, we have a commutative diagram up to constants

Lg(n; A)lso, ®4 Le(n; A)lso, —— Le(n; A) ®4 Le(n; A)

(4.41) ﬂa®ﬂal lm

A=A®4 A s A.
Writing the variables of the left (resp. right) factor of Lg(n; A)|so, as X, Y, X', Y’ (resp. S, T,S5",T"),
we find from [H99, page 141] 7o (X" IYIXY'" ™) = (=1)J (’;)*1 = To(S"ITISY T ) and
Tp, (XIYIiXIy I §n—imi g ) = (?)72; so, the above diagram commutes.

Note that (n!)=2v"(w(f)) is given by 627*[a; 2, W]k 2f|(z,w)dz A dw (o = h™16h° with h €
SOp, (R); so, 6% = N(«)), and

(4.42) (n) 729" (W(f))lshe = 6 R (Wh(F)(2)|snn)-
Then
(0(¢)(7; 2, w; x), w(f) (2, w;s)) = > ¢ ()Qa(f)e(EN(@)7).
acD,

We are going to compute 3> o r Jsn Q104 (f) converting it into an integral over I'y\$H?* by
averaging.

By the diagonally embedded SLy(R) 2 SL5(R) C SLy(ERr), exp(— %) is invariant
under SL5'(R). Note SL5(R)\$H2 = SO5(R)\$ whose coordinate on the right is given by (z,v)
(w =wu +vy/—1). Consider the exact sequence of analytic manifolds:

2 (bl =he PR, G A (R)\SLo(R)? = SLy(R) — 1.

(4.43) 1 — SL5'(R) < SLy(R)
Writing SO2 (R) for the image of SO5(R) in SLy(R)2, we make the quotient of SLS(R) by SO3 (R)
from the right. Since (hrg, hrg) — g~ *h};'hrg under the quotient map, this induces a conjugation
by SO2(R) on SL5 (R)\SLa(R)? 22 SLy(R).

We make the right quotient by SO (R)? of SL5 (R)\SLy(R)? 2 SLy(R), which produces

(4.44)  SL5(R)\$H? = SL5 (R)\SL2(R)?/SO2(R)? 22 SO2(R)\SL2(R)/SO5(R) = T*(R) = RY,

where T is the diagonal torus of SL(2) and T (R) is the identity connected component. This is
because of the Cartan decomposition SLa(R) = SO2(R)T+(R)SO2(R) for the diagonal torus T' of
SL(2) [SL2, VIIL.2], and the isomorphism is induced by w — v = Im(w) € RY. Thus we obtain

(SL5(R)/SO% (R)) x SL5 (R)\SL2(R)? 2  x SLy(R) given by ((gs,9:),9) < (2, 9)
(SL& (R)/SO% (R)) x SL5 (R)\H2 = § x R given by (g2, 9-), gu) < (2,0).

Then we have hT,h~1\$H2 = Sh? x (SLE(R)\H?) = Sh? x R by sending (z,w) € h[wh~"\H? to
the pair (z,z) € Sh and v = Im(w) € R.

Fix the differential form df inducing the Haar measure on SO2(R) = S of measure 1. We
have the factor RY = SO2(R)\$ in the above argument and hence $2 = H2 x SO2(R) x R by
923 (z,w) — ((2,2),0,v) € H2 x SO2(R) x R, where H2 is § diagonally embedded into $2. Then

(4.45)
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we can write win, = (2 —2)"2dz AdzZ A df A dp, for a differential form dy, on RY. We will compute
dy, later in the proof of Theorem 4.10. Thus

n|[6; z, w] |?

(4.46) W alf) = BTG A exp(-r gl 2

)dO A dp,,.
Define the period of w(f) over Sh, as

(447) Pa(f) = P(fia,T) =" [

() 29" (@( )] sn. <4§2>/ 16: 2, 252 F|h 1 (2, 2)dz A d,
Sha Shh

where a = h™16h° = §h=1h? for h € SOp, (R). Comparing this definition with (4.15), we find
(1.48) PAO* (F)) = 6" PYO* (F))

Since Shq =2 Shy-14+0 for v € I'y and this isomorphism brings wa(f) to wy-144-(f), Pa(f) only
depends on the class of o in D, /T'.

Remark 4.9. To have the non-vanishing period, the locally constant sheaf in which w(f) has values
needs to have trivial constant sheaf as a quotient (i.e., V"w(f) # 0), since the projection to any
non-constant simple direct factor has vanishing integral. In other words, the Neben character of the
theta lift has to be unramified everywhere. This follows from the fact that SOp, = GEU /Zg+ which
is embedded into Dj/E*, and hence the center acts trivially on the theta lift. Thus the theta lift
differs from the usual base-change lift (and actually it is the base-change lift twisted by a character
to have trivial central character; i.e., this is the central character identity imposed in [H99, §2.4]).

We have the following explicit g-expansion of the theta descent for any indefinit quaternion algebra
D q including My (F):
Theorem 4.10. Suppose ¢poo = Vi (7;2,w) for Vi (7;z,w) as in (4.1) and that f € S&fk)(fqb) is a
cusp form on SOp_ (A) of weight k > 0 anti-holomorphic in w and holomorphic in z as above. Then

/ 0 (9) (75 2,0) f (2, W)winy = (8V/=1) 71 > ¢ (@) Po(f)e(N(a)7=),
Le\H2 €Dy /T ;N (a)>0

where T =T and T_ = —T.

By applying complex conjugation to the formula in Theorem 4.10, we get the result for ¢ with
Doo = Vi (T; 2, w) for i (7; 2, w) as in (4.1); so, this assumption is harmless.

This theorem is far more explicit than [O77, Theorem 1] and covers general D, not treated in
[Sh81] II Proposition 5.1 and [HO6] Theorem 3.2. Another paper of Shimura [Sh82, Theorem 2.2]
gives a similar result for Dy in place of D, .

Remark 4.11. (1) Assume that f is the theta lift of an elliptic Hecke eigenform F via the
quadratic space (D ,+N) for o € D with D = D,. Then o = £6¢°* for £ € D} and a
scalar ¢ € Dfa by Lemma 3.2, and D, = §D§a§*1 by Corollary 3.3. Thus Sh, with respect
toa € Df is isomorphic to Shs ., for Shs s, = Shs with respect to Dfa, and if we compute
the period with respect to the theta lift for D, , Py(f) is the L-value L(1, Ad(F) ® xg)
times a constant depending on « as £ induces a correspondence between Shs ., and Shy.
The constant is an adjoint generalization of the mass of Siegel-Shimura. In particular, the
vanishing of the eigenvalue for T'() for a prime [ only comes from the vanishing of the mass
factor, which is an interesting fact.

(2) Since the Howe conjecture is solved for general dual reductive pairs in [W90] and [GT16], the
theta lift map is (essentially) Hecke equivariant for almost all SL(2)-Hecke operators, and
hence the theta descent is also essentially Hecke equivariant. The Howe conjecture concerns
only for SL or Mp, and hence it does not guarantee fully Hecke equivariance for GL-Hecke
operators. Therefore we expect that the period P,(f) vanishes if f is not the theta lift from
F via the quadratic space (Dfﬁ, +N) for any choice of 3 € DF. We study this point in our
subsequent paper.
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(3) If B € Dy cannot be written as £6§°*, it is not clear that the theta lift 673(F") of F' with
respect to Dy, coincides with the one 6 (F') with respect to D,? Since we expect that
the two theta lifts are Hecke equivariant, by a representation theoretic multiplicity one, if
0*(F)05(F) # 0, 0*(F) and 0%(F) span the same automorphic representation of Dy, , and
this would imply the periods with respect to Shimura subvarieties in Shg coming from D*
and D; have the almost equal integrality (i.e., a consequence of the Tate conjecture). We
hope to study this point in our subsequence paper.

We prove the result for D} as the proof of the case of D is almost identical.

Proof. Fix a € D}. To shorten the formula, we remove e(—N (a)7) from each term in the sum and
put it back at the end. First suppose that N(a) > 0. Let ® be a fundamental domain in $? of
I' =T'4. Then, writing I', := T N SO0, (Q),

*) 1= ex —7Tn|h Loz, W] a®; 2, W f(z, w)w;
=Y [ exp-mre T35 20407 0 e 2) 1 (@ o )i

_ exn(_p Mm@
_n‘/ra\ﬁ2 P( |Im(2’)1m(w)|)[ 32, 0]" f (2, w)wine

is the coefficient of e(— N (a)7). Here at (1), we made variable change: z — v~ 1(2) and w +— v~ (w).

Write SOp, (R) = SO}, (R) U SO}, (R) with SO, (R) = ((SLa2(R) x SLa(R))/{£1})(e, ) for
e = diag[—1,1]. Then SO2(R)?/{£1} U (SO2(R)?/{=£1})(¢, €) is a maximal compact subgroup of
SOp, (R). Let C = SO2(R)?/{£1} U (SO2(R)?/{%1})(e,¢) C SOp, (R) and C* = SO2(R)?/{£1} C
SO}, (R). Then

SOp, (R)/C = SO}, (R)/C* = PSLy(R)?/PSO2(R)? = H2.

The component SO (R) acts on $2 holomorphically, and SO~ (R) acts anti-holomorphically. In each
case, C, CT and PSO5(R)? are the stabilizer of i = (v/—1,v/—1) € H2.

Now we identify $? with SOf (R)(i). Choose a fundamental domain ®, of SO (R)\$? =
SL5 (R)\H?2 (by j) and write the image of (z,w) € ®, in SO (R)\H? as (zp,wo). Then for g €

i lloca(2).0” @I _ N~ ag~" 2l lfosz]/?
SO, (R), by (4.4), we have rr e cnTorstmn = © M) Tm(w)] ~ = () Tmew)] 204
|[a; z, w] |2 ok ,
(@49) ()= | expl-mp i (5 9(20), 97 (@o) ¥ £ (920, wo) dpadis,
o, | Im(2) Im(w) Lo \SOL (R)(z0,wo)

where dy,, is the differential form on T'\,\SOZ (R)(z0,wo) given by h*((z — Z)~2dz A dZ) for h as
in (4.38) and d¢’ is a measure associated to an invariant 1-form ¢’ on SO (R)\$H? = R so that
Winw = @a A @ Adf. Note that SLS(R)\$H2 = SL2 (R)\SLy(R)2/S0(R)? =5 [0,1). We will make
explicit the isomorphism 7 and the differential form ¢’ later.

As explained in (4.38), replacing Do g C D, by Dr = hDyrh™ C Dp,, we may assume that
a =4 € Eg (but 0 € Eg not necessarily in F); so, we pretend o = 0, and Dy g = Dgr. Then we just
as notation replace Shq by Sh”. Our § € EY satisfies 62 = N(8) = N(a). Since writing hTh~" for
I' and hT',h~! for T, all the time is cumbersome, we hereafter assume that § € E*. By doing this,
we do not lose the details and we can simplify a lot the notation. However we do need to conjugate
back at the end to « by h and remember that N(a) = N(9).

If we choose different (2, w()) € ®s, taking a path v := [(z0, wo), (2}, w()] in @5 diffeomorphic to
the real interval [0, 1], we find A := {I';\ (SO (R)(z,w))|(2,w) € v} is isomorphic to ['s\SOF (R) x 1,
and hence its boundary A = I's\SOF (R)(z0,wo) — I's\SOJ (R)(20,wo). Since SO5(R) = SLo(R),
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we identify SOF (R)(z,w) = $, I's\ (SO} (R)(z,w)) = T's\$ is a Shimura curve whose isomorphism
class is independent of (z,w). Thus we may take (29, wo) = i. Then we have

_ 52 exp(—m ez ]
(%) = 0°Ps(f)n x /so;(R)\fﬂ p( (=) Tm(w)]

§; 2, |?
= 52P X / exp —1TT H;
s(f)m SL& (R)\H2 (= | Im(2) Im (w)|

)dy'
)dy',

where SL5(R) is the image of SLy(R) embedded diagonally into SLy(RR)2.
We need to compute

P R T L
L P () ()] ¢ /SL2A<R>\ﬁz P () Ten ) 7

For g. = y~'/2(§7) € SLa(R) with g.(V~1) = 2, we have (g,9:) ' (z,w) = (V=1,9:"(w)).
If (vV=1,w) and (v—1,w’) is equivalent in SL5(R)\$?, then (v—1,w’) = (g(v/—1),g(w)); so,
g € SO2(R) and w’ = g(w). Thus SL5(R)\H2 = SO5(R)\$H. As before, write the variable of

w—y—1

w+\/j
D := {3 € C|[3] <1} whose inverse is \/—1}—2. Since SO2(R) acts on © by rotation, we find

SO2(R)\$ = SO2(R)\D 22 [0,1). We see |[v/—1—w|> =4|1 —3/72 and w —w = 2¢/—1 ltg"gg. Writing
3=re2™ 1% for r 0 € [0,1), we have 1 — 33 = 1 — r2. Thus

9 on the right-hand-side as w. Consider ¢ : w which induces an isomorphism $ =

!

i—w* 415

)

=4(1-335)"' =41 -r*)~"

Since i ((w — W) 2dw A dw) = (1 —33) " 2d3 A dj = —27v/—=1(1 — r?)"2rdr A df, we find
de' = —2mv/—1(1 — r?) " 2rdr

and

/ exp( 52T
SL& (R)\H2 | Im(z) Im(w)]

By the isomorphism i : § = ®, [/—1,00/—1) = [0,1) by v/=1v +— r with » = =L, Thus
dr =2(v+1)"2dv and 1 — r? = 4v(v + 1) 72. Therefore, we can rewrite

1
Ydy' = —2#\/—1/ exp(=8mn|6)*(1 — r*)" (1 — r¥) " 2rdr.
0

1
—2my/—1 / exp(=8mn[d[*(1 — r*) 1) (1 — ) 2rdr
0

’U2

= —4*17n/—1exp(—47r77|5|2)/ exp(—2mn[0* (v +v)) v; 1dv.
1

Writing a = 27n|6|? and f(v) = exp(—a(v™! + v)), we have f'(v) = —a”i;lf(v). Thus we have

v? —1

[ expt-ato + o) = —a(5(60) - 70)) = 0 exp(2a)

This shows

()= 2Rl = [ exp(-my 02Ty &V R,

SL4 (R)\$? | Im(z) Im (w)]

It is well known that if f is a cusp form, then the image of the theta correspondence is also a cusp
form; so, the term of o with N(«) < 0 vanishes (e.g., [Sh82, Lemma 2.1] or [O77, page 108]). O
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5. DEFINITE D WITH F REAL

In this section, we assume Egr = R X R and that N : D — Q is positive definite; so, D ®qg R = H.
We follow the notation and the assumption introduced in (D¥) in §3.1. In particular, K is an
imaginary quadratic field K so that D ®g K = M(K). We choose a maximal order R of D so that
R ®z O C M3(Ok) for the integer ring Ok of K. We identify SOp,, = GD /ZG+ .

Let L = KFE and (s) = Gal(L/F) and (o) = Gal(L/K). Then D;, = D®q L = MQ(L) x Ms(L)
on which o interchanges two components, and ¢ acts each component M (L) by ¢. To distinguish
two components, we write My(L); for the left component and My(L), for the right component. Let
(X,Y) be the variable vector on which Dy, acts through the left component M (L) by (X,Y)(4,¢') =
(X, YY) for (¢,0') € Ma(L)ixMa(L),. Let (X', Y”) be the variable vector on which (¢, ¢') € Ma(L); x
M, (L), acts by (X', Y")¢'*. We write simply x = (X,Y; X", Y"). Set [x] = [x]; := J[$][X', Y]
We will later define [x]|p in §6.2 when E is imaginary and D is definite, and if we need to distinguish
[x]; and [x]p, we add subscripts I and D. Then (¢,¢") € M3(L), x Mz(L), acts on [x] by

(5.1) (x] = €T [S)[X, Y0 = Je [$] X, Y')e".

We embed D, C Dg into Ma(L); x Ms(L),. Since s|p, is definite, a spherical homogeneous
polynomial of degree d on D, ®q L is a linear combination of v +— s(v,w)™ for w € Dy ¢ with
N(w) = £s(w,w) = 0 [HMI, §2.5.2]. Note that

Dy ={(60) € Ma(L) x Ma(L),|(€',0) = (¢, 0")} = Mo (L),
where the last isomorphism is the projection to the left factor. Similarly to (4.2), define, for v € Dic,

(6.2)  [vsx]:=Trp,/p(v'[x]) = Trp, /e (v[x]") = dY X' +bXX' —cYY' —aXY' (v= (‘C’ Z)).

Then we consider its power
(5.3) i x]" = 54 (v, [X))" = Trp (0" [X))" = Trp,e(ox])" (0 <n € Z).

Since N([x]) = det[x] = 0, the function v > [v;x]™ (for each x) is a spherical polynomial homoge-
neous in X,Y and in X', Y’ of degree n [HMI, §2.5.2]. We simply put [v;x]° = 1 for all v.

5.1. Definite theta series. Fix an infinite place co of E' and write its conjugate as coo. Identify
Ec=F®yC=CxCbye®z— (ez,e”z). For a subring A C C, consider polynomials P(x) €
AX)Y, XY in (X,Y) € E®pgia C? and (X',Y') € E®g, C% We let v € Dg act on P(x)
from the left by P|y(X,Y; X", Y") = P((X,Y)y"; (X", Y')¥*?); v € Dg acts on [x] as above; so,
iy = xrt] = Tt [ (X, Y]

Note for g € GL2(E¢),

(5.4)  [g'vg"sx) = Troy/p((g'vg”) [x") = Tep, p(s™v'glx]) = [v; glxlg™] = [v;xg']

with xg* = ((X,Y)g", (X', Y")g"?). Define a Schwartz function Wy, (of weight 2 < k € Z) by

(5.5) Uy (v) = [v;x]"e(-N(v)7+) € S(D, ) (n=k-2),

where 7, = 7 and 7_ = (the notation 75 = 74 is used in §4.3 which is different from 7). For

a Bruhat function ¢(>) € S( A(m)) putting ¢ = ()W, we consider, for 7 € § and h € GEU (A)
(5.6)
0(6)(1;:h) = Opz (T ;%) = Y (b ah?) = Y ¢ (b ah?)[hlahd ;x| e(—N(a)7).
aeDF aeDF

Since [a;x] € Lg(n; C), we may regard 6(¢) as having values in Lg(n; C).
Lemma 5.1. Write f¢ ={ue GEU (A))]|p() (u=Tou) = () (v) for all v € D, g }. Then

(1) 8(r;9h) = 0(r; h) for v € G, _(Q),

(2) O(r; hu) = 0(T; h) for allu € f¢,

(3) For z in the center ZG* (A) of Gf_(A), 6(; zh) = 0(7; h),

(4) For us € G}, _(R) with N(uoo) =1, 0(7; huoo; x) = 0(7; hy xul),

(5) As a functwn of T, Op=(1; ;%) is in S, () for a suitable congruence subgroup T of

SLa(Z).
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Proof. Since 6 is the sum of ¢(h~*ah?), we have (1-3). The assertion (4) follows from (5.4), and
the last assertion is a restatement of [HMI, Theorem 2.65]. O

As before, we split v = 3+ for 3 € Z* and ¢ € D(jf; S0,

o = (5 + [ = 3 (’;) 1207

Jj=0

To evaluate the integral over D*\D; /Dy, we need to project down to the Dy -invariant quotient
of Lg(n;C). Thus we need to compute (n') 2ynfa; x]™. By (4.9), we find, for a scalar 3 € Z+,

(5.7) ()20 [5x]" = (n) 2V (Y X — XY)" =50 . (1Y (") (=1 (" o "+ 1).
; ; sy () () =

For t € D, we can choose g in SLy(C) diagonally embedded in SLy(Ec) by g+ (g, ¢°) so that
5 x]]g = [97"vg; x| = [diag[z, —z];x] = 2(Y X' + XY)

for z € C and remark that [3;x]|g = [3xg7!]. Assuming 3 # 0 and ¢ # 0, by Clebsch-Gordan
decomposition [H94, (11.2a,b)], the action of SL(C) on the space spanned by the right translation
of [3;%]"77[r;x]7 by SL2(C) is isomorphic to the 2j-th symmetric tensor representation of SLy(C).
Since (n!)72v™P|g = (n!)"2V"P for g € SLy(C) — D¢ [H99, page 141], we have for any 0 < j <n

(5.8) ()" x]"nx) = (n) TPV (VX + XY (VX - XY')" ] =0,

5.2. Factoring theta series in the definite case with E real. Recall A, = 1 and we assume
A_>0. Then oy = \/A_i As described in §3.1, we decompose D = ZjEGBDgE sothat Z* =§,.Q C
DZ with Q(z) = 22 and Ly = N6.Z. We take the Bruhat function ¢ on L% /Ly = N~'Z/NZ
defined in §4.6 for a Dirichlet character ¢ : Z/NZ — C. We take an Eichler order R(Ng) in D for Ny
prime to the discriminant 0 of D. Then let (b(()oo) € S(Dg p(=)) be as in (4.25) for the characteristic
function ¢; of L= 0+ R (NO) N DO Ao -

(Oo) = ¢7. We put $(>) = (b(Zoo) ® ¢>(()OO)
(5.9) p(x) 1= ¢ (20°)) [woo; X| (N (200) T4 )-

Decompose X = 3 + r with scalar 3 € Zi and ¢ € D({R. Then [3;x] = 3(YX' — XY’) and
5+ 1;x] = [35%] + [r;x]. Thus we find

Remark 4.5 applies; so, often in computation, we pretend

n

ERRE —Z() (VX = XYY,

j=
Defining ¢ (3) = ¢~ ()37 e(A3%7+) and 67 = ¢6™ () [roc; X}7e(N (1 )74), we have
(5.10) 0(0)|osa) = D (VX' — XY')! (?) 0(¢7)6(0L".,).
§=0
and by (5.7) and (5.8)
(5.11) () 72V"0(0) 0, (a) = O((n) 2 V" 67)0(5").
5.3. Siegel-Weil formula in the real definite case. Note
(5.12) rz(9:)Lz(9) (3l e(32V—1)) = n" /%] e(3%ms) (T =E+nvV=T€9)
and for 71 as in (5.5),
(5.13) v, (9-) LDy (9) ([ X1 (N (roe) V=1)) = 2D/ 4[g; x} (N (£oc ) 7).

Recall 8(¢)(7) = > ey (W(gr)¢) () for ¢ € S(Vy) with V = Z, Dy and D,
Recall the Haar measure dy, defined above (4.20) and

Shs = D*\D} /05" (T5)Dx = S05(@)\SOs(4)/TsCs = 05(Q)\0s(A)/T'5Cs
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for Cs = C(05) as O5 = SOs U SOse. We now study
& —29on o ) —29n o
610 [ 0@y = [ > () 60068 g D mo((nt) 202 B0,
Shs Shs =0
where m is as in (4.23) and for ® € S(Dy ») and for g € Mp(A),
E(®) = > la(9)]*~ 2 (w(79)®)(0)] 41 -
v€B(Q)\SL2(Q)

At the identity (*), the sum Z?:o in (5.10) reduces to the term j = n because of (5.8) and Lemma 4.4
(see also Remark 4.5).

Take F (1) = > °_, ame(—m7s) € S (M, pxp,) for M as in (4.26). Again in the same manner
as getting (4.32) from (4.29) and (4.31): for B := B(Q)\B(A)/B(Z),

(5.15) /EF(T)nk/z’@((n!)”V"aﬁf)(gf)r(gf)((b(?“)(o)dur:/_F(TW((H!)*QV"(bf)(gr)nk*r"d&dn

- / h / F(r)B((n) 29767 (g, )den*

= 25:]?2/ Z 1/)(m)mk72 exp(—47r|Ai|m2n)nk72d77
0 o<mez

= 20572 AR Am) T 4+ DRk — 1) Y d(n)agem "
0<meZ

The factor (n 4 1) shows up at the end by (5.7), and 6§ 2|AL|'~* = §7*. Noting (n + 1)I'(k —1) =
(k) asn+ 1=k —1, we get in the same manner as in Theorem 4.7

Theorem 5.2. Suppose Er = R and Dr = H. Let F be a primitive form in S;7 (C,¢"'xp,) with
the conductor C|M for the level M as in (4.26) and f := 0*(F) be the theta lift:
f9) = [ 0@ s
A9

Choose (b(Zoo) associated to Dirichlet character ¢ of conductor C(v) as specified above and (b(()oo) as
in (4.25). Let ¢ be a Schwartz-Bruhat function of DiA as in (5.9), and choose the measure dpg on

Os(A) as in Theorem 4.2. Then if f(g) # 0, for the mass factor my as in (4.23) and E*(1) as in
Theorem 4.7,

m? /Sh (n1) 29" f(g)dpg = mi E*(1)85."2(4m) "I (k) LM (1, Ad(F) ® xp)

for the compatible system pp attached to F' and the finite set of points Shs as in (4.22).
5.4. Mass formula and the adjoint L-value formula. Recall from (4.22) that
Shs = 05(Q)\Os(A)/T505(R) = D*\DX /A R(No)* D
Since D is definite, Shs is a finite set, and du, is the measure given by
/ plpg = Y e tol(@),
Shs x€Shs

where e, = [#R(No)*z~! N0 D*|. Thus the measure computes the mass of the quotient Shy in the
sense of [Sh99, page 1]. Then Theorem 5.2 tells us

Corollary 5.3. Let the notation and the assumption be as in Theorem 5.2 in addition to Cy = 1.
Then if V = DY,

%2(4w)*k+1f(kﬂ)(05w))(1,Ad(F) ® XE) = Z egl(n!)72(vnf)($).
x€Shs
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A slightly more complicated formula holds when Cy # 1 or V' = D_ whose explicit form is left
to the reader. The above formula is an adjoint generalization of a mass formula of Siegel-Shimura
in (4.23):

m

ﬁ (2): Z egl,

x€Shs

and also a generalization of Dirichlet class number formula.

5.5. Fourier expansion of theta descent for £ = Q x Q and definite D. Since the Fourier
expansion in the definite case with £ = Q x Q is particularly simple, we insert here its description in
the simplest case of the weight k£ = 2 (and hence n = 0). The general case for a real quadratic field
E will be dealt with in §5.8. Note in this case, Df = D* = (D, £N) by D= > (v, 4+v') — v € D.
For simplicity, we assume that the weight is 2 on SLy and (2,2) on Dj;.

Let Sh = Shs = SOp, (Q)\SOp, (A®)/R*SOp,(R) = D*\D/AXR*D} and Shg = Sh x
Sh. Since N(R*) = Z* by [BNT, Proposition X.3.6] and AX = QXzXRfL, we may assume that
N(a) = 1 for all representatives of Sh. For the class [a] € Sh represented by a € D .., write
T, = aR*a=' N D* and define T, for the image of I', in D* /Q*, which are finite groups with
T4 = 2|T4|. Put e, := |Ty|.

As described in §3.1, g is an isomorphism of SO5 = SOp, onto D* /G, as algebraic groups,
where G, is identified with the center of D*. Also we know Op, = SOp, LI SOp,o (regarding the
Galois action as an element of Op,). Thus the stabilizer I, C Op,(Q) of the lattice aRa™* N Dy
fits into the following exact sequence:

(5.16) 1 — Gal(E/Q) =T, - T, —1,

as o0 € I/, Thus |I'| = |T'y| = e, and the number |I| appears in [Sh99, Introduction] as [T'; : 1];
so, in order to resort to the results in [Sh99], we need to use the alternative definition e, = |I',|.

Recalling some results in [HO5, §4], we study the Doi-Naganuma lift in this simplest case. Set for
a subring A of C

S(A) ={F:Sh— Al > e,'F([a]) =0}
laleSh

Sp(A)={f:Shg — Al > e;te, ' f(la],[b]) = 0} = S(A) ®4 S(A).
la],[b]JeSh

(5.17)

We take D} = D and () to be the characteristic function of Z® ﬁo for Ry = Dy N R with
boo(T30) = e(N(v)7) = 17 'rp(gr)d(v/—1;v). Thus writing ¢5) (resp. ) for the character-

istic function of Z (resp. Rg) and ¢z (resp. ¢o.o0) for e(@?7) = n=Y4rz(g,)e(v/—1z2) (resp.

e(N(v)r) =17/ *rp, (97)e(v/=IN(v))),
0(0)(1:9) = 0(¢2)(7)0(¢0)(7: 9),

where 0(¢z)(T) = >, cpe(n?7) and 0(do)(7; g) = > aceRog-1np, €N (a)7). They are holomorphic
modular form of level [4, 8] (see (4.26)) and of weight § and 2, respectively. As a function on Os(A),
0(¢o)(7; g) is invariant under RX = SOg(z) and o (Os = SOs U SOs0). Set, for F(z) = F(—3),

f(h) = / 6(6)(r; h)F(r)~2dédn
Xo0(409)

and for e, = [aR*a~! N DX,

518) [ o= 3 et [ Fopon) @0 e

acSh

= [ FO002)G) 3 e 00ntrs )i

acSh
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By Siegel-Weil formula, we have E(¢0)(T) = Y. cqn €a -0(d0(T; a)) is a Siegel-Weil Eisenstein series
on I'g(49) of weight 3. Note that 6(¢)(7;a,b) = Yeep P(a'Eb)e(N(§)T) = b4,p Since (a~'€b)" =
b='¢'a as N(a) = N(b) =1, we have 0, , = 0 ,. Thus
(5.19) f(a,b) = f(b,a).
Hereafter in this section, we assume
I) &€ A4,

and take the Schwartz-Bruhat functlon b = (25(00)(2500 shghtly different from ¢; i.e., we take the
charactenstm function ¢(>) of R in place of that of Z & Ry. The condition (I) assures us that
L ¢ A for all @ € Sh. We have a perfect A-linear pairings

(,):8(A4)xSA) — A

given by (p, ¢') =3 ocon €z Pla)¢’ ().
We have Hecke operators T'(n) acting on S(A) as follows: Let
T(n) := {b € R|N(b)Z = nZ}

for a positive integer n. Decompose T(n) = [ |.cc(n) cR*. Then F|T(n)(a) = > cec(n) F(ac). The
algebra H(A) is defined to be the A-subalgebra of End4(S(A)) generated by T'(n) for all positive
integers n. For F,G € S(A), we define F ® G : Shyp — A by F ® G(a,b) = F(a)G(b). In this
way, SE(A) = S(A) ®a S(A). Writing the variable h € Dp = Dy x Dy as h = (hg,hgr) and
Tg := R* x R* and taking the Schwartz-Bruhat function ¢ ¢(°°)¢Oo for the characteristic
function (;5(00) of R, define the theta descent 6. (F ® G) of F ® G by

0.(F @ G)(r) = /5 . 0(¢)(; ) F(hp)G(hr)dpn = Y F(a)G(bleg eyt > p(aeb)e(N(€)7).

(a,b)eSh? ¢eD

Note that Supp((b(oo)) Z®RyCR= Supp(¢(°°)); s0, the functions ¢(°) and ¢ are slightly
different. We have [R VA RO] =2 as Z @ Ry is the kernel of R 3 z — Tr(z) mod 2 € Fy. The theta
function 0(¢) has level group I'y = T'o(0).

Theorem 5.4. Assume § € A. Then we have 0, (F @ G) = Yo" (F|T(n),G)q" € S2(To(9); A).

We get an A-linear map 6, : Sg(A) — S2(I'9(8); A) given by 0. (F @ G) = > > [ (F|T(n),G)q™.
Since (F|T'(n),G) = (F,G|T'(n)), the map 60, factors through S(A) ®p(a) S(A). A main result in
[HO5, Theorem 4.1] assuming that 9 is a prime p is that this induces an A-linear isomorphism

(5.20) 0. : S(A) ®n(a) S(A) = 52(To(p); A),
if (p—1)(¢(2)/7%)~t = 6(p—1) is a unit in A. Since the image of 6, lands in the space of new forms,

for a general composite 0, the cokernel of 6, is large.

Proof. By definition,
0.F9G) = [ 06)(r: F ()G
Shg

= Y. Fl@gbe et Y dlahe(NET) = D etey  F(a)G(0)bap(T),
(a,b)eShxSh ¢eD (a,b)eShxSh

where 0,5 = 0(¢q,p) With the characteristic function (bl(fz) of aRb~! and the measure dpyp, is chosen
so that ng \Dj(ah)TsD}, /P oDy, dun = eg'e; b Since 0,5 € S2(To(9),Z) as is well known, we have
9*(f®g) GMQ(FO((?);A). R

For a decomposition T(n) = U.cc(n)cR*, we have F|T(n)(z) = > cowm) Flze). Writing
ac = &beu for & € T,\D* /Ty, by € Sh and u € R*, F|T(n)(a) = Y, F(b.) and £ € D* N
aRb;'. This shows 6.(F @ G)(1) = Y.°° (F|T(n),G)e(n7) as the constant term is given by
Yapeate, Fl@)Gd) =, e Fla) X, e, G(b) =0. O
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5.6. Hecke equivariance of the theta descent. We prove Hecke equivariance of the theta descent
keeping the assumption of §5.5. We first compute

a(n, 0,(F @ G)|T(p)) = a(% 0.(F ©G)) + p*La(pn, 0.(F ® G)),
while
6| T(p) = a(% Oab) + pa(pn, fay)

=e;ley (|{€ € aRb™I N D, N(€) = n/p}| + pl{€ € aRb"1 N D, N(€) = np}]).

Proposition 5.5. On Sk(Io(N), ), we have T(n)T(m) = 320 4(m.n),(a,5)=1 Y(d)dF 1T (22, the
same formula is valid on S(A) for k = 2 and N = 9, and writing a(n, f) for the n-th q-expansion
coefficient of f € Si(Lo(N), ), we have a(n, f|T(m)) = Zo<d|(m7n)7dﬂvw(d)dkfla(%, ).

Proof. We have a general formula [IAT, Theorem 3.24, (iv)]
P 7))
T(m)T(n) = > Y(d)d (=),

0<d|(m,n),(d,N)=1
This specializes to the formula for Si(To(N), ) as f|T(d,d) = ¥(d)d*=1f if f € Sp(To(N), ).
On S(A), we limit the formula to T'(I) with R; & Ms(Z;), there is no change. If [|0, as R; has a
sequence of two sided ideal w™R; with w"R;/w" ' R; = F; and N(w) = [, the formula becomes as
indicated. O

By Proposition 5.5, we get
0.(F @ (GIT(m))) = Y _(FIT(n),GIT(m)q" = > (FIT(n)T(m),G)q"

n>0 n>0

=Y Y (FITCER), 04" = 0.(F 2 G)[T(m).

n>0d|(n,m),dtd
Thus we get

Corollary 5.6. Letting h € H(A) act on S(A)®@ga) S(A) by (F®G)|h := F®(G|h), the morphism
0. : S(A) ®p(a) S(A) — S2(I'0(0); A) becomes Hecke equivariant.

Since 0. (F @ G)(1) = fShE 0(d)(r;hp, hg)F(h)G(hg)dun, by (5.19), we get
O(r;hy, hg)|Tr-(n) = 0(7; hr, hr)|Tr(n) = 0(7; hr, hr)|TL(n),

where T, (n) (resp. Tr(n),Tr(n)) is the elliptic Hecke operator (resp. the left and right quaternionic
Hecke operator).

5.7. Congruence number formula. We find in [EMI, §9.3.1] a congruence number formula via
an adjoint L-value for D = M5 (Q). We generalize this to a definite D under the assumption of §5.5.

The H(C)-module S(C) is semi-simple with multiplicity one for each algebra homomorphism A :
H(C) — C. Write Z[A] (resp. Q[)]) for the subring of C generated by A\(T'(n)) for all0 < n € Z over
Z (resp. Q). Since we have Hecke equivariant isomorphism 6, : S(C) ® g (c) S(C) = S5 (I'g(0)) by
Eichler and Jacquet-Langlands, choosing a Hecke eigenvector Fy € S(Z[)]), the Hecke equivariance
of Corollary 5.6 tells us that for F) := >~ A(T'(n))q™ € S5“(To(9)), 6*(Fx) = Qx(Fr @ Fy) for
a constant ) # 0. Since 6, induces an injection S(A) ®@g 4y S(A) — S5 ([o(0); A) with finite
cokernel C' by the argument of [HO5] applied to D, assuming A D Z[)\], the Hecke equivariance of
Corollary 5.6 tells us that for Fy := > o2, A(T'(n))g" € S5°“(I'o(9)), 67 (Fx)) = ex(Fr @ Fy) for a
constant €\ € A[é]x. We want to study Q) and .

Let for a Z[A]-subalgebra A of C,

S(A)y ={F € S(A)|F|T(n) = AT (n))F forall 0 <neZ},
S(A)N = {G € S(A) @4 Frac(A)|(G, S(A)\) C A}.
Define D-congruence module

(5.22) CP(X\ A):= S(A)*/S(A).

(5.21)
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Theorem 5.7. We have |(Fa, Fi)|p = “C(?()\;Z[)\])Hp for all primes p such that S(Z[N,)* and

S(Z[Np)a are both Z[N]y-free, where Z[N], is the subring of Q, generated by N(T(n)) for all n over
Zy, under the embedding of Z[)] into Q,, by the place p|p of Q[\] and |- |, is the p-adic absolute value
with |w|y, = NgpyjoP) ' for a prime element @ of the valuation ring of p in Q[A].

The right-hand-side of the formula of Corollary 5.3 applied to 6*(F)) is exactly (Fx, F), and
therefore “Cé’ (N ZIA)] ’p = |(Fx, Fa)lp gives an expression of the congruence number |CP (A; Z[A])|
by the adjoint L-value, generalizing the formula of [EMI, Theorem 9.3.2] for D = M>(Q) to the
definite D.

Proof. By integration over § = SOp,(Q)\SOp,(A)/R* identifying SOp, = D*/Z(D*) for the
center Z(D*) of the algebraic group D>, we get [ O(Fx)dun = Qx Y cg €a Fala)? = Qx(Fa, Fr).
Let A =Z[\],. If S(A)x is A-free, it is generated by one element over A, and hence S(A)y = AF,. If
S(A)N is A-free, again it is generated by one element, say F*. Then we may assume that (F*, Fy) =
1, and hence CP(\; A) = A/aA for a given by aF> = Fr. Thus (Fy, Fr) = (aF*,Fy) = a, and
[[CP (X A)] ’p = |aly. Since CP (N Z[A]p) = CP (A Z[N]) @7z Z[N]p, the desired assertion follows. [

Identify S(A4) ®4 S(A) = Enda(S(A)) by sending F ® G to Preg := H — (H,G)F. Write
S7e%(To(0)) for the space spanned by new forms inside S2(T'o(9)) and put S5 (Iy(d); A) =
ST (To(0)) N Al[q]]- Then defining h(A) = A[T(n)|n =1,2,...] C End(S5°*(I'¢(9); A)), we have a
morphism H : h(A) — Enda(S(A)) given by H(T'(n)) = T'(n)|sa). Since S(A) @ a) S(A) is sent
to Endg(4)(S(A)), we may regard H : h(A) — Endga)(S(A)). Is this a surjective isomorphism?
By the solution of Eichler’s basis problem, H is an isomorphism if A C C is a field, and in general
Coker(H) is A-torsion module.

Assume that @ = p and V = D}. Take 6 = 1. By Theorem 5.2 (and Theorem 0.1) specialized to
our case, we have

2

(5.23) [ 00y (P) o)y = o L0, Ad(P),

which is the Fourier coefficient of 8(¢).(6(4)*(F)) in e(r) by Theorem 5.9, taking ¢(>) to be the
charactenstm function of Z & Ry. Since Z & Ry is the kernel of R 3 2 — Tr(z) mod 2 € Fy, we find

:={a(Z @ Ry) C Z ® Ry} is equal to Z + myR, where my is the maximal two-sided ideal of R
above (2).

Recall ¢ defined in §5.5 below (I) and ¢ defined below (5.17). Since I's = SOp(Q) NIy =
SOp(Q)NTy, we find that Shs for ¢ and ¢ are equal. Thus by Theorem 5.9, the value (5.23) is also
the Fourier coefficient of (). (6(¢)* (F)) in e(r) taking ¢ to be the characteristic function of
R. Since 0(¢p) is R*-invariant, we find 0(h)«(0()*(F)) = 0(¢)(Tr(6(¢)* (F))), where Tr(f)(h) =
DB /R f(h7). By Hecke equivariance of 8(¢). and ¢, = ¢, for all places v outside 2, 6(¢p)*(F)
and 0(¢)*(F) has the same Hecke eigenvalues for T'(n) for n prime to 2, we have Tr(6(¢)*(F)) =
cB(¢p)* (F) for a constant ¢ by the strong multiplicity one theorem. Since their theta descents have
the equal non-zero Fourier coefficients in ¢ = e(7), we find ¢ = 1. Thus

p2

4m3(p+1)
This combined with Theorems 5.4, 5.7 and [EMI, Theorem 9.3.2] shows

(5.24) ()" (F) = Te(6(¢)" (F)) = L(1, Ad(F))(Fx ® Fx) € Se(C).

Corollary 5.8. Assume 0 = p, and let the notation and assumption be as in Theorem 5.7 for a
prime p of Z[A]. Then for a valuation ring A with Z]\] C A C Z[A\], N Q,

2

(5.25) 0(¢)(0(9)"(F)) = mL(l,Ad(F))F and Co(X; A) = CF (A A),

and A4772(P+1) e(si)ﬂ(F) =S(A)r ®a S(A)x inside Sp(A) for Qi = Q(£, A A) as in [EMI, (9.18)].

The assumption of this corollary holds if p is prime to 6(p — 1) as verified in [HO5, Theorem 4.1].
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5.8. Fourier expansion of theta descent for definite D and real E. In this subsection, the
choice of ¢(>) is arbitrary. Recall Op, = SOp, USOp,t and SOp, = G}, /Zgy . Note that

Dp, = Dp ®p R =2 H x H by an isomorphism sending F > e — (e,e?) € R x R. Thus
GEU (R) = {(h1,ho) € H* x H*|det(h1)/det(hy) =1} and SOp,(R) = GEU (R)/R*
with R* diagonally embedded into the center of the product, which is compact and connected. Note
that DiR = {(h,£h")|h € H} C Dg,. We identify D, with H by the left projection. Writing
Dp > v — v € H for the left projection and v +— ~7 € H for the right projection, we let v € D} act
on DiR =H by h— vy thy.
Pick a Schwartz-Bruhat function ¢ = ¢(*) ® ¢ Dy s — C and assume that
Poc(v) = Ui (v) = [v;x]"e(N(v)72) € (D7)

as in (5.5). Consider the associated classical theta series Oy (¢) = 0x(¢)(7;2,w) = > cp ¢(v). Let

Ty :={y €800, (A)) = G}/ Za+(AL) |6 (v 2y7) = ¢ (z) for all x € D, y() }.
An automorphic form f(h;x) : D*\Dg — Lg(n;C) (k = n +2) of weight koo + kooo satisfies
(5.26) foyzzu; x) = f(z;xuzl) for ueTyDL(R), z € EX and v € D},

where DL (A) = {y € (Dg ®g A)*|N(y) = 1} is an algebraic group over Q.

To define the theta descent, for any E-algebra such that Dg, = Ms(A) x M3(A), we describe
SLo(Eg)-invariant self duality of Lg(n; A). As before L(n,0; A) (resp. L(0,n;A)) is the space
of homogeneous polynomials of degree n in (X,Y) (resp. (X',Y")). Let (h,h,) € Dg act on
P(X,Y) € L(n,0; A) (resp. Q(X,Y) € L(0,n;A)) by P(X,Y) — P((X,Y)h') = P|h(X,Y) (resp.
P(X,Y) — Q((X,Y)h) = Q|ho(X,Y)). Then P(X,Y)® Q(X',Y') — P(X,Y)Q(X",Y") gives a
Dpg-equivariant isomorphism L(n,0; A) ®4 L(0,n; A) = Lg(n; A).

We prepare another set of variables s := (S, T; 8", T') for L(n,0; A) = AS™ + AS" 1T 4. ..+ AT"
and L(0,n; A) = AS" + AS"" " 'T" 4+ ...+ AT"". Regarding that L(n,0; A)®4 L(n, 0; A) is made of
polynomials in XY, S, T homogeneous of degree n in X,Y and also in S, T', we consider the pairing
(v)r : L(n,0; A) ®4 L(n,0; A) — A given by P(X,Y;S,T) — (n!)"2v}3(P(X,Y;S,T)), where
VL = a‘iw — BB;W' Similarly, we define Vi = % — % :L(0,n; A)®4 L(0,n; A) — A, and
put (+,-)r = (n!)"?V%. Finally we define (-,-) : Lg(n; A) ®a Lp(n; A) — Aby (-, )L @ (+,-)r. We
have (P[(h, ho), Q|(h, he)) = (N(R)N (ho))" (P, Q).

Taking the measure dpup, with fm dup, = 1 on SOp, (Q)\SOp, (A(>)) and restricting f in (5.26)

to G}, (A) C Dy, , we define the theta descent 6.(f)(r) by
(5.27) 0.() = [ (6(@)(ri i), £(hi )
Shg

for Shg :=SOp,_ (Q)\SOp, (A(Oo))/f¢. We now like to show that its Fourier coefficient for e(N (o))
is given by a finite sum of the period

Palf) = /5 (OO i) £ (05,

for She = S04 (Q)\SO, (A /Ty, with Ty = T'y N SO, (AC)).
By approximation theorem, we can choose a finite set A C SOp_ (A(>)) such that
SOp, (A) = | | SOp, (Q)al'y so, Shp = A.
acA
We have

/ - =1/ISO0p, (Q) Nalyat| = e,
SOp, (Q\SOp, (Q)al'ya~?t

for e, = [T'4| with 'y := SOp, (Q) N af(ﬁa*l, and for 74 as in (5.5)

0.()(7) = /Sh (O(@) (73 by x), f(his))dpn =Y et Y (dla™ aa%;s)(7), f(a;x))e(N (a)7s).

acA acD,
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Writing ¢, (v;s) = ¢(a 1va;s), we have for k =n + 2

(5:28) 0.(f)(1) =Y e’ D (dala;x), flass))e(N(a)7s)

acA acD,

=Y > ¢ aa”)(lasx]", flass))e(N(a)Ts).
acA aeDa/Fg
As before Op, = SOp, USOp,t = SOp, USOp_ o and Op,(Q)\Op, (A) = SOp_ (Q)\SOp, (A).
We extend f originally defined on SOp_(A) to Op,_ (A) by putting f(ox) = f(z) for x € SOp, (A).
Then f(zo) = f(oxo) = f(x7), and by this extension, we have

(5.29) | s@ s = | 0(0)(7: ) f ().
Shg Op, (Q\Op, (4)
Consider the embedding SO, < SOp, given by SO, = Aut(DiO, +N) 3 hy +— diaglidg+, hy| €

Aut(Dy, N) = SOp,, which is compatible with the natural embedding D} = GJ{,Q,D — GEU C Dj.
If the image of s, 8" € SO, (A) coincides in SOp_ (Q)\SOp, (A), we have vs = v's' for 5,8’ € SO4(A)
with 7,7 € SOp,(Q). Thus for § = yv~14/, we have s = ds’. Applying o, we find s = 5%« =
§92 /7% = §9% . Thus §92§~1 = §925'(§s')~1 = 1, which implies § € SO,(Q). Thus the natural
map SO, (Q)\SO4(A) — SOp, (Q\SOp, (A) is injective. More easily, we can show SO, (A()) /T,
injects into SOp, (AC))/Ty. We let SOp, (Q) act on SOp, (A(>))/T by left multiplication. If
€ € SOp, (Q) fixes the image of s € SOp_(A()) in SOp,_ (A(Oo))/f¢, we find s = sy for v € f¢.
Thus £ € SOp, (Q) N qubs*l which is a finite group and is trivial for all s € SOp_(A) if f¢ is
sufficiently small. Indeed, if ¢ o { # ¢ for any root 1 # ¢ € SOp_ (Q) of unity, SOp, (Q)N qubs*l is
trivial for all s € SOp,_ (A). Thus

(5.30) S04 (Q)\SO4 (A)) /T, injects into SOp, (Q)\SOp, (A)) /T,

if f¢ is small enough. We say that f¢ is neat if (5.30) holds.
Choose a complete representative set S, C SO, (A()) for

She :=SOp, (Q)\SOp, (Q)SO. (AT /Ty.

If f¢ is neat, S, = SOQ(Q)\SOQ(A(“))/fQ. By adjusting the representative set A, we may assume
that S, C .A. Then the period of f over Sh, is given by

(5.31) Pa(f) := /Sh (O(rs s x), f(his)) = Y ¢ (57 as”) ([a, X", f(s8)),

s€Sa

which only depends on the class a € D, /T’y and the support of the function a — P, (f) is contained
in a lattice of D,.
We thus obtain, combining (5.28) and (5.31)

Theorem 5.9. Suppose that f is an automorphic form on DEA satisfying (5.26). If n = 0, we
further assume that fSOD (@\SOp, (A=) f(R)dun, = 0. Then we have, for 4 as in (5.5)

0.(f)(1) = Z Po(f)e(N(a)rs) for an arbitrary ¢,

€D, /T 4;N(a)>0

We now compare f(s;s)|sn, and ([a;x]™, f(s;8)). Since 74 := (n!)72V" : Lr(n; A)|so, — A and
mp, = (n!) 72V (n!) 72V : Lep(n; A)®aLg(n; A) — A are SO,-equivariant, we have a commutative
diagram up to constants

Lg(n; A)lso, ®a Le(n; A)|lso, —— Le(n;A) ®a Le(n; A)

(532) Ta ®7TQJ( J{’TDU

A=A®\ A _— A.
Writing the variables of the left (resp. right) factor of Lg(n; A)|so, as X, Y, X', Y’ (vesp. S, T,5",T"),
we find from [H99, page 141] 7o (X" IYIXY'™ ™) = (=1)J (’;)*1 = To(S"ITISY T ) and
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7p, (X" IYIXY "I SnmiTigi T Ty = (?)72, and the above diagram commutes without am-
biguity. For § € Z*, we have ([5,x]", f(s;8)) = 6"((YX' — XY")", f(s;8)). Since YX' — XY’ =
(XL, Y)N(X,Y), (YX' —XY')" generates a unique sub-factor invariant under SOs. Thus ((Y X' —
XY (TS —T'S)") = ¢ for a constant ¢. Since w5((Y X' — XY")") = n+ 1 by (5.7), we find
c= (n+1)? from (5.32). Define

75(P) = ms(P)(YX' — XY')"/(n+1).
By the above commutative diagram (5.32), we find (7, (P), Q) = (P,7,(Q)). Thus we conclude

(16,X0", f(s;8)) = 8" (VX' = XY')", f(s38)) = 6" (mh((Y X' = XY')"), f(s:9))
= (VX = XY')", 75(f(5:8)) = " (n + D! 0l (f(s:9)).

For general a € DF outside ZF, since Do g = H = Dg, by Lemma 3.2, we find h € DER with
N(h) =1 such that a = h=15h° for § € R, and

(5.33) ([, x]", f(s558)) = ([h™'6h7,x]", f(s;8)) = ([0, xh]", f(s58)) = ([6,%]", f(s;8h™ "))
=" (n+ 1) TV (f(s;shTh) = N()™2(n+ D)7 'l 7o (f(s;sh™h)),

where the last identity follows from N(a) = N(h=16h%) = §2. Thus we find

Corollary 5.10. We have the following alternative expression of P (f):

Po(f) =D et S0 NG00 (s71s7) (n 4+ 1) T (f(sish 1),

sESq BeEa-sT,

where *T'y, = SO4(Q) N sf(ﬁs*l and h € D with N(h) = 1 such that hah™7 € zZZE.

6. GENERAL THEORY FOR IMAGINARY F

Hereafter, the field E is imaginary quadratic. We assume K as in (D¥) in §3.1 to be also imaginary
quadratic so that Dg = My(K). We have identified D = M3(K) so that R - Og C Ms(K) for
the Ok-linear span R- Og = R ®z Ok. Note that Dp ®g R = M3(C) by an isomorphism sending
Dp 3 (g k) ®@e— (4 L) € My(C). Thus Gf_(R) = {h € GLy(C)|det(h) € R*} and
SOp, (R) = G},_(R)/R* with R* embedded into the center of the product. Let GL3 (C) := {g €
GL2(C)|0 < det(g) € R}. Then SOEU (R) = GL3 (C)/R* is the identity connected component of
SOp, (R). We identify SOp_ with GEU /ZGE for the center Z+ = of GEU, and we let v € GEU act
on DF by v+ 4 1vy7. Then SOp, (R) has the identity connected component SOEU (R) isomorphic

Writing z — ¥ for complex conjugation on C, the diagonalized regular representation p : C —
GLy(C) is given by p(a) = diag[a,a]. If a € E, we have p(a) = diag[a,a’]. Take the real 3-
dimensional upper half space

H::{z:(i}y)’0<y€R,x€C}.
As in [H94, (2.2)], we let v = (24) € GLJ (C) act on H by

1(2) = (pla)z + (1)) (ple)z + p(d) ™"

Since PGLy(C)/SU(R) = GLJ (C)/R*SU3(R) = SLy(C)/SU(R), we can extend the action of
GL3 (C) to GLy(C) making the center to act trivially; in other words, for g € GLg(C), taking
g = \/det(g)ilg and define g(z) := ¢/(z). This action of g € GLy(C) outside GLJ (C) cannot be
written as (p(a)z + p(b))(p(c)z + p(d))~* for g = (24). For e = —J € 'H, the stabilizer of ¢ in
SL2(C) is SU3(R).
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6.1. Cohomological modular forms on SLy(C). In [H94, §3], we defined the notion of coho-
mological modular form on SLy(C) for an arithmetic group I' C SLy(C). We translate and adelize
the notion to SOp, (A) as SOEU (R) is isomorphic to PSLy(C) via the isomorphism G, (R)/R* =

SOp, (R). The arithmetic subgroup T is replaced by an open compact subgroup I' € SOp, (A(%).
A function f : SOp,(A) — L(n*;C) written as f(h;s) for the variable s = (S,T) of L(n*;C) is
called automorphic form of weight koo + kooo for k = n + 2 if f satisfies

(M1) f(yhu;s) = f(h;stug,) for h € SOp, (A), v € SOp, (Q) and u € T - SOp(R), where P is the
standard positive majorant of st in Lemma 6.1 and SOp(R) is as in (6.5);

(M2) D, f = ("72 + n) f for the Casimir operator D,, at each archimedean place v = 00, c00;

(M3) flsop, r) is slowly increasing towards cusps of I' if Dg = My (FE).
The theta series SOp_ (A) 3 h+— 0(7; h;s) € C[s] for each 7 satisfies (M1) and (M3). For an elliptic
cusp form F € Si(T,), 0*(¢)(F)(h;s) = fSLg(Q)\Mp(A) F(9)0(¢)(T; h; s)dpg satisfies (M2) (see [ST5,
§5-87]).
6.2. Realization of D;C. Note that Dg, = M3(C) @ M2(C). We use the notation introduced in
§3.1 in Cases II and ID. In Case II, identifying Dg = M>(R) and D¢ = M>(C), we have Dy =
H°({01), D¢) for o1 as in (II) in §3.1. In Case ID, identifying Dg = H and D¢ = M3(C), we have
Dg = H°({(0), Dc) for o as in (ID) in §3.1.

Note

Dt — {(z, £z")|x € M2(C)} if 0 =0y (i.e., in case II),
€7 {(z, +'x)|z € Ma(C)}  if 0 = 0 (i.e., in case ID),

since Jx*J ! = tz. We have an embedding D, g — D, ¢ given by

x— (x,T) in Case I with o = 04,
x (z,JzJ') in Case ID with 0 = 0.
We can identify Dic = M5(C) by the projection to the left factor. The action of GEU €) =
{(g, h) € GL2(C)?| det(g) = det(h)} on Mz(C) is different in the following way:
x v+ (g,h)x(g, h)7** = gzh* in Case II with o = oy,
x+— (g,h)z(g,h)°7" = gz'h  in Case ID with o = ;.

Consider x := (X,Y; X", Y') € (E ®g C)? = C? & C?, and define

o = [F1IX Y] = (3 570) and [l = J[F]X Y] = (X% %)

When the case we are working is clear in the context, we just write [x] for [x]; or [x]p. Then the
action of G}, (C) = {(g, h) € GLy(C)?| det(g) = det(h)} on M;(C) is as follows:

[x]1r — (g, h)[x]1(g, h)7t = g[x];h* = [(X,Y)g", (X', Y")h!] in Case II with o = o4,

[x]p — (g,h)[x|p(g,h)?7" = g[x|p*h = [(X,Y)'g,(X',Y')'h] in Case ID with o = 0.

The case o = o7 is verified in (5.1), and the case 0 = o7 can be verified by a computation. Define
forv=(2%) € D¢

6.1) [v;x] = Trp, /p(v'[x]1) =dY X'+ bXX' —cYY' —aXY' in Case Il with o0 = o1,
' [v;x] = Trp, /p(v'[x]p) = dX X' —bY X' —cXY' +aYY’ in Case ID with o = 0.

We then have for g € G}, (R)

(6.2)

t o1

[g'vg?; %] = [v; g[x]197"] = [v;xg"] in Case II with o = o1,
[g"'vg7; x| = [v; g[x]pg?7"] = [v; g[x]p'g°!] = [v;x'g] in Case ID with o = 0.

The first formula for ¢ = oy is (5.4). In the second formula, x'g = ((X,Y)g, (X, Y")!g"7).
Define a standard positive majorant of s; in Case ID by

(6.3) P(z,y) = Pp(z,y) = Trp, p(zJy'J ") = Trp, p(zy*)
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fory* =ty. Ifz € D(th and J € Dg, N Dg, for a finite extension A,p C C, then
(Jr)' = —2'J = FJ27 T = FJ27 = FJ 2% = F(Jx)°L.

Thus z — Jz induces an isomorphism DiEJ a4 = Djl 4- In particular, this isomorphism sends
[x]p € Dy, ¢ to [x]; € Dy, . Define the standard positive majorant in Case II by

(6.4) P(z,y) = Pr(z,y) = Pp(Jz, Jy) = Trp,/g(xy”) in Case IL.
Lemma 6.1. Let the notation be as above. Then P defined as above is a positive majorant of s1 and
v = [v;x]" ! is a spherical harmonic polynomial for the standard positive majorant P. Moreover

the stabilizer of P in SLy(C) is SU2(R),

Proof. Recall s(x,y) = s+(x,y) = Trp,/p(xx”) = £Trp, /p(xz'). As for P being a positive ma-
jorant, we only need to prove this for s = s; and ¢ = o (i.e., in Case ID). We have s(z,y) =
Trp,/e(xJyJ~!) over Dogr. On Zg, s = P and on Dyg, 0 < P(z,y) = Trp,/p(aJy'J t) =
—Trp,/e(xJyJ ') = —s(x,y), which shows that P is a positive majorant in Case ID. Since
P(z,y) = Trp,/e(zy*), its stabilizer in SLy(C) is SU2(R) by definition. Since J € SU2(R), SU2(RR)
is also the stabilizer of Pj.

Now we prove that [v;x]"T! is a spherical harmonic polynomial. Since N([x]) = det([x]) = 0, we
need to show sy (v; [x]) = £P(v, [x]) [HMI, page 143]. This follows from the above computation in
Case ID. By the isomorphism J : Diy 4= Djh 4 this also shows the result in Case II. O

Define g. = y=/2 (§ 1) € SLy(C) for z = ( ) € H. Then g.(e) = .

Corollary 6.2. Let P.(z,y) = P(g9; 292, g5 'yg?), which is a positive majorant associated to z € H.
Then if g(g) = z, the polynomial v — [g~vg?; x]" L is spherical harmonic with respect to P,.

Let
(6.5) SOp(R) :={u € SO+ (R)|P[u~tvu’] = P[v] forall v e DiR}.
If u € SU3(R) (ie., v'u’ =1 u=u" =u),
Plu'ou u ou?) = Trp, p(u ou” (u™vu?)?) = Trp, e (v'07) = P(v,v).

Thus SOp, (R) = SU3(R)/{£1} and SOp, (R) = J - SOp, (R)J~t = SU(R)/{+£1} as J € SU3(R).

By Lemma 6.1, the function v +— [v;x]"! is a spherical harmonic polynomial on D, ¢ of homo-
geneous degree n + 1. Write H,, for the space of spherical harmonics of homogeneous degree n + 1
on D, and homogeneous of degree n+ 1 in (X,Y) and (X',Y’). We have dim¢ H, = 2n + 3 (in
[A78, Lemma 2], this space is denoted Hy,41).

By (6.2), as a function of v € D, and x = (X, Y; X', Y"), [v;x]""! intertwines the representation
of SOp, on the space of spherical functions of degree n 4+ 1 with the symmetric (n + 1)-th power
representation of g — g ® g°. On the maximal compact subgroup SUz(R)/{£1} = SOp(R) C
SOp, (R), g — ¢ is equivalent to the standard representation. Thus, on Lg(n+ 1;C), the action of
SU2(R) is equivalent to the symmetric (n+ 1) power representation of g — g ® g which contains the
symmetric n*-power g — g% (for n* = 2n 4 2) with multiplicity one [H94, (11.2a)]. On the other
hand, as seen in [A78, Lemma 2], on the space H,, of spherical functions of degree n + 1, SU3(R)
acts by the symmetric n*-th tensor representation irreducibly.

6.3. Locally constant sheaves on I's\H. Recall PSLy(C) = SOp, (R) = G}, (R)/Z(G},_(R)).
Let M be a discrete left PSLy(C)-module. Regard M as a right PSLy(C)-module by mg = g~ 'm,
and write ' M for the right PSLy(C)-module M. Write PSU3(R) for the image of SU3(R) in PSLy(C).
We construct on the automorphic manifold S :=T'y\'H a covering space in the following two ways:

(A) M :=Ty\(H x M) via the action v(z,m) = (y(z),ym) for v € T'y and z € H;
(B) M* := ((I'4\PSL2(C)) x *M)/PSU(R) via the action v(g, m)u = (ygu, mu) (u € PSU3(R),
v € T'y) regarding *M as a right PSUs(R)-module.
We use the symbol S for T'y\'H (not Sh) as S is not an algebraic variety (so, not a Shimura variety).
The covering spaces are étale over S if 'y, N gPSUy(R)g™* = {1} for all g € PSLy(C). The definition
(B) as above works well for any right PSUs(R)-module X. However X* may not have a matching
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X (i.e., X may not have compatible left action of I'y, without enlarging X). In this way, we can
construct the sheaf L*(n*; C) on S for the PSUs(R)-module L(n*; C). Here is an archimedean version
of [H88, Proposition 6.1]:

Proposition 6.3. Let M be a discrete left PSLa(C)-module. We have a canonical isomorphism of
covering spaces M* = M induced by (g, m) — (g(€), gm) for g € PSLy(C), whose converse is given
by (2,m) = (gz,mgz) = (9=, 92 'm).

Proof. Define a map i : SLo(C) x M — H x M by (g,m) — (g(g), gm) as above. Then for v € T,
and u € SU2(R).

i(gu, mu) = (g(e), guu="m) = (g(), gm) and i(yg,m) = (v(g(c)),vgm) ~ (g(€), gm) (in M).

Thus ¢ indices a morphism of covering spaces i : M* — M. Since this is an isomorphism on the
fiber at g if v(g(e)) = g(e) for v € T'y implies v = 1, we conclude the isomorphism of the fiber

M) = Mgy at g(e) € H. Suppose the stabilizer I'y(c) in I'y of g(¢) is non-trivial. For 1 # v €

Tye), (9(2),gm) = (4(g(e)),vgm) = (g(¢),vgm) in Myy. This implies m € H(g™'Ty(eg, M).

Thus Mg(s) = H°(g 'Ty5y9, M). Note g~'T'ysyg C PSUz(R). Then in My, we have (g,m) =

(99~ 'vg,mg~ vg) = (vg,mg~'vg) = (9,mg~'vg). Thus again My, = H°(g™'Ty()g9, M), and
hence i induces an isomorphism fiber by fiber, as desired. O

We adelize the construction as follows: Write Sy = SOp_(Q)\SOp, (A)/ f¢SO p(R) adelically for
the closure T'y of 'y in SOp, (A(>)). Then we define an adelized covering space:

(Ba) My :=(Sa x tM)/f¢SOp(]R) through the action (g, m)u = (gu, Mmu) for u € f¢SOp(R).
By the strong approximation theorem for SOp_(A), we have Sy = S, and by [H88, Proposition 6.1],

Corollary 6.4. We have a canonical isomorphism My = M* = M induced by the projection to the
oo-component.

Remark 6.5. If the above covering space is étale, it defines a locally constant sheaf which we denote
by the same symbol X ,s = My, M*, M ; so, we have a well defined sheaf cohomology H*(S, X).
Even if the covering space is not étale, we have a normal subgroup of finite index I' C I'y, such that
the covering is étale over S’ = I'\H. Thus we can define the cohomology group H*(S, X /s) :=
H*(S', X/s/)'*, which is well defined as long as the multiplication by |T'y/I'| is invertible on X. In
this sense, we pretend that X is étale over S (assuming to have a choice of I" with |T'y/I'| invertible
on coefficients).

6.4. Vector valued theta series for imaginary FE. Define for the majorant P in Lemma 6.1
P
(6.6)  Wp(v;7) = n'/2[v;x]"e(£N(v)E + nT[v]\/—l) € S(DiR) (n=k—2,7€Hve D).

We have 7'/2 in front to adjust the metaplectic weight to be k (e.g., [HMI, Theorem 2.65]). Here,
for u € SU3(R)/{£1} = SOp(R) C SOp, (R) and g € SOp,_ (R), the coeflicient polynomial satisfies

n+1

"= (g g x e,

(6.7) gu— [u g7 ugTu; x|
where ‘u® = u~! or 'u according to whether in Case II (¢ = 1) or in Case ID (0 = o).

For ¢(>) ¢ S(DiA(N) ), putting ¢ = ¢(>*) W}, we consider, for 7 € § and g € SOp,_ (A)

(6.8) 0()(759) = 0(d)(T59;%x) = > (g 'ag”)

(JLGDUi

el o Plystogl] —
=07 3" 69 ag”)lgx a9 x| “e(iN(a)ﬁﬂLw -1
()¢€Dai
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As before, let T'y := {y € SOp,_(Q)[¢(*) oy = ¢(>)} and write f¢ for its closure in SOp, (A(>)).
Then for u € I',SU2(R) = SOp(R) as in (6.7) and g € SOp, (A),

(6.9) 6(¢)(7; gu; x) Z(bu Lo tagoul)

ozGDi

e n Pluz g5 agug
= /23 600 g gl g g s x]H e(N a)g + e O QOB

=" "¢ (g ag?) g agl; x"ul )" e(£N ()¢ + —np[ggzlag—&] V=1) = 0(¢)(7; g; x"ul,).

Since [a;X] € L(n*;C) (n* = 2n + 2) for the SUz(R)-module L(n*; C), we may regard 0(¢)(7; h;X)
has values in L(n*; C) with 0(¢)(gucc) = 0(9)(9)pn* (uso) writing the action of SU3(R) on L(n*;C)
as pp+. As seen in [AT8, §2], base change image using 6(¢) as the kernel function is an eigenfunction
of the Casimir operator with eigenvalue equal to that of Lg(n;C) (cf. [H94, §2.3]).

For v € G}, (Q)/ZGE (Q) =S0p, (Q), we have

(6.10) 0(d)(59g:%) = > dlg v 'ar7g”)
()¢€Dai
1.—1

) (11 o o1 1 o o _n nPlgse v a7 g3,
=02 6 (g v ey gL gt v ey g x] " e(EN () + : 5 ]\/—1)

1 & —1 o
TR 2N "6 (g ag?) g g XM e (£ N ()€ + L[g(}; s V=1) = 0(8)(7; 95 %).

[e3

Let h* = h* in Case Il and 'h in Case ID for h € G}, (A). Define

(6.11) 6(r; %) = 0(r39:5x02 ) = 0% Y ()| xgs '] e(£N ()¢ + 777]3[9;210‘9?] V=),
aeDUi

This definition could be given by choosing any g., with g.(¢) = z in place of g., as P[g; tag?] =
Plu=tg; Yag?u?] for any u € SU(R). We can check for any v € Ty,

nPlg L g7 )]
612) 07000 =1 5 6o el + 7]
ozGDi
1.—1

1/2 Z ¢(oo) a Xg )]"“e(j:N(a)§+nP[g; g O"-Yggg] \/__1>

2
ozGDi

ooy _tay” [e’e} —11n P ;101 g
T S 60 @)l xgs ) e (e + 10 00 o,
()¢€Dai
The last equality of (6.12) follows from (7.9) and (7.10). By Corollary 6.4 and the invariance in

(6.12), 6(¢)(7; 2; %) is a global section of Lg(n+1; C) over S and by the invariance (6.9), 8(¢)(7; ¢; x)
is the equivalent global section of Lj;(n + 1;C) over S.

6.5. Explicit form down to earth of Schwartz functions. By Lemma 3.2, there are two isomor-
phism classes of the action on D, of Gal(E/Q) over R and hence on D, g such that H°({01), D) =

M(R) and H%((0), D) = H. For z = (3, ) € H, we put g. =y~ /> (§ 1) € H; s0, g.(e) = 2.

We first deal with Case ID where o = o; so, Dp = H.
As a subspace of M3(C), we have
(6.13) D, = Df, o = {("F jir) [t eRand we €}

w

Let py(2) :=ygi92” = ygz 977 = (iff ny) Then p4(2) € D7, and p_(2) := v/~1p(z) € D

with +s4 [p+(2)] > 0. Let DX = Rp(2) ® (Rp+(2))*, and write V. := (Rp+(2))* on which Fsy
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is positive definite. For h € GEU] (R) € GL2(C), hg. = gn(z)u for v € H* with N(u) = N(h) € R*.
Thus ‘
W ipa(2)h? = h™lyg g2 b = u y(h(2)ghes hly = u” o (R(2))u?,

where y(h(z)) is the y-entry of h(z) € H. Hence we have verified the following fact for o = o5
(6.14) P[h™"ps(2)h?] = Plp+(h(2))]-
Writing v = ap1(z) + w and v/ = a/p1(z) +w' with sy (Rpy(2),Rw 4+ Rw') = 0 and a,a’ € R, we
define

P.(v,v") = ad’ s+ [p+(2)] — s+ (w,w'),
which is a positive majorant of s1. Note, for c =0
(6.15) P.(h"'wh? k™' h7) = ad’sy (W p1(2)h7) — s (b~ wh? ™ 'w'h7) = Pisy(v,0).
Then we find
s+ (p+(2),0)°

P.[v] + sefv] = a?ss[px(2)] — sx[w] + (a®s [p+(2)] + s [w]) = 20”5 [p(2)] =2
s+ [p+(2)]

3

since s4 (p+(2),v) = asx[p+(z)]. Note
s+ [p+(2)] = Trp.jc(p(2)p+(2)77) = £Trpejc(p£(2)p+(2)") = £2det(p+(2)) = 2y(2)?,

where y(z) =y for z = (

Y) € H. Write [z;v] = Trp, /c(p—(2)v*). Combining these formulas,

Yy x
Pfo] 1 [2; 0] (25 v]?

1 ==q- + =FN(v) + .
(0:10) e S =
Therefore, the exponential factor of the standard Schwartz function is

P.vnv-1, — . lmPnv-1
e(xN(v)¢ + 5 )=e(xN(v)T £ ()2 ).

By (6.15), P.[h"'vh7] = Py [v] for ¢ = o, and hence
[z:h” b2 [h(z);0]?
2y(2)? 2y(h(z))?’

which is also valid in Case II for [z; v] defined below. Therefore when o = o7, we choose a standard
Schwartz function ¢oo : Doa — C of weight & = n + 2 as follows

(6.17)

.2 1
(6.18) e (0) = Wil 2.7) = Wi (0,31 27) = 1l g2 s el ()7 & LY
y(z
as in (6.6).
We show a formula similar to (6.18) when o = o1 choosing py(z) differently. We are in Case II,
Dg = My(R), and

(6.19) DE :thR:{(éC VEZ’) |z € C and b,ceR}.

This Dfl has signature (3,1) and the one dimensional negative definite space is generated by

VEL(98). Let p-(2) = yot (03) 97 = (5'57) € Dy for = = (§3) € M and py(2) =
V—1p_(z) € D, . Again (6.14) is valid for ¢ = o for this choice of p+(z), and similar to the case of
Dg = H, defining P,(v,v") = —aad's4 [p+(2)] + st (w,w’) for v = apy(z) + w and v' = a'py () + v’
with s1 (Rp+(z), Rw +Rw’) =0 and a,d’ € R and we find

s+(p+(2), )

P.[v] — sy[v] = =2 54 [p1(2)]

3

and writing [z;v] = Trp./c(p4 (2)v"),

(6.20) Pl _
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Thus we choose the canonical Schwartz function of weight k = n 4 2 as follows:

(6:21) Goc(v) = Wi(,35 2,7) = W (0,35 2,7) = 129 ugZ0 13 (N ()7 %)

Though the formula is similar in the two cases, the definition of [z;v] is different in Case ID and
Case II. In the two cases 0 = o; and o1, we define a theta series by

(6.22) Or.0(¢) = O (@) = Ok (o) (7; 2, %) Z ¢(v) for o =0y and 0.
vED,

6.6. Invariant pairings and differential operators. To define the theta descent, for any FE-
algebra such that Dy, 2 My(A) x M3(A), we need the D*-invariant projection Lg(n; A) — A, the
D} -invariant self duality of Lg(n; A) and the SUs(R)-invariant self duality of L(n*; C) induced by
the invariant differential operators. The first projection we describe is the D*-invariant operator for

Lg(n; A)|px which depends on Cases II and ID. Since [x]|p — J[x]p = [x]; gives an isomorphism
of quadratic spaces: DjF c= Df > pulling back the invariant differential operator V = 3 )?;Y/ -
6}96 + in Case 121 by this gsomorphlsm the corresponding invariant differential in Case ID is V :
J*(GXGY/ - BY%X/) 8Y66Y/ + 6X6X/' We record this fact:

oxgy ~ ovgxw i CaselL
(623) V= 92 a2 .

XX’ + avoy’ in Case ID.

Thus we have a morphism of sheaves
(6.24) ()29 : Lip(n: A)lsns — Alsna.
A canonical D -invariant pairing is induced by
(6.25) ()= (,)n = () 2V ® (n) 72V : Lp(n; A) ® Lp(n; A) — A

In this case, the left and right factor GL2(A) acts by the corresponding embedding (so, no conjugation
action of ¢ involved), and therefore, we do not need to separate two cases I and ID. Writing the
variable of the identity (resp. o) factor of Lg(n;A) as (X,Y; X", Y") (resp. (S,T;5',7")), the
operators are

02 02
Vig : = —
0XoT 09YoS
Vg 1= —

oxX'oT"  9Y'9S"
We later need to have (-, ), written in two different ways:

Lemma 6.6. The following diagram

Lg(n;C) ®c Le(n;C) Lg(n;C) ®c Le(n;C)

n!72V"®n!72V"J( ln!”v{g@n!”v;‘

C C

15 commautative.

Proof. Regarding Lg(n;C) as a SLa(R)-module, Lg(n; C) ®c Lr(n; C) is a SLa(R) x SLa(R)-module
by the left and right factor. The left vertical map is a non-zero morphism of SLa(R) x SLa(R)-
modules, and the right hand side is a non-zero morphism of SLy(E¢)-modules, where we identify
SLa(Ec) = SL(C) x SL2(C). As SLy(R)-modules, we have Lg(n;C) = iio L(2k;C) and as
SLa(Ec)-modules, Lg (n; C)®cLp(n; C) = @7, @:", Le(2kid +2l0; C) by Clebsch-Gordan. They
have a unique constant quotient C. The canonical projection of Lg(n;C)|s,mr) to C is given by
n!"2v". Thus we have n!=2v" ® n!=2v" = ¢,n!=2v¥ @ n!~2v” for a non-zero constant ¢,. Since
72 @ n! 72V and n!7?V" ® n!7?V" have equal value 1 at X"Y"X""Y'"S"T"S"T'" by the
formula (4.9), we find ¢, = 1. O
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We have the second invariant pairing on the SU3(R)-module L(n*; A) given by

(6.27) (-,) = (n*!)*QV’"* : L(n*;C)® L(n*;C) — C,

where, writing the variable of the left (resp. right) factor L(n*;C) as (S,T) (resp. (S',T")),
2 2

(6.28) v 0 0

T 9S0T ~ 9TdS"

6.7. Invariance of [a;x]. For h € G}, (R), we have h™*ah’ = o and [a;x] = [h~'ah?;x] =
[o; xh?], where h’ = h* in Case IT and h? = *h in Case ID (see (6.2)).

Lemma 6.7. The polynomial [o; x|" T is an element of H(D} g, Lr(n 4+ 1;C)), and

o , n+1
Clx v (5] if Dag = j'Hj & a = j~'aj7,
[Oz;X]nJrl c . Y / _— ’
Cly) T ()] if Dar = MR @ 0 ey
for some j € SLa(C), where “=" means an identity up to a power of v/—1 and x = 1 if Dp =

Dor and © = J if Dr % Dor. Here h € SLy(C) acts on Lg(n;C) by the pullback action of

(X,)V; X, Y — (X, Y)h; (X', Y)h).

Proof. The identity HO(H!', Lg(n+ 1;C)) = HY(SU2(R), Lg(n+ 1;C)) = C(X X' + YY’)"*! shows
the assertion when Dg = j~'Hj. If Dy g = jM2(R)j 1, this follows again from

H(SLa(R), Lig(n + 1:C)) = C(XY’ — X'Y)"+1,
This finishes the proof. (I

6.8. Relation between SU;(R)-polynomial representations. The automorphic form f € My (T")

gives a global section of L*(n*; C). To relate the theta series with values in Lg(n+1; C) and modular

forms with values in L(n*; C), we study the relation of the two modules under the action of SU3(R).
Write 7 : Lg(n + 1;C) — L(n*; C) for the SUs-equivariant projection as in [H94, (11.2)].

Lemma 6.8. If we let GL2(C) act on Lg(n + 1; A) for a Ec-algebra A by the pull-back action of
(X, Y3 X Y") = ((X,Y)g; (X', Y")g), the map m: Lg(n + 1; A) — L(n*; A) given by

P T); (S, T =¢(5,T;,-T ; 11
O(—(S,T)J; (S, T)) = ®(T,-5;5,T) in Case ID
is SU3(R)-equivariant.
The projection 7 : Lg(n + 1;C) — L(n*; C) is given by the following variable change:

(T,—S;S,T) in CaselD

(6.30) x=(X,V; X' V)~ x:= .
(8, T;-T,S) in Casell

of SU3(R)-modules unique up to scalar multiplication. Write 7(®(x)) = ®(X); so,
(6.31) [v;X] := 7([v, X]).

Proof. We first deal with Case ID. Since u = J~'uJ for u € H' = Ker(N : H* — RX), in Case ID,
X]p = {(X,Y)(X',Y") and [®]p = J¢(S,T)(S, T) and

u X pu®’ = v X pu = u TS, T)(S, T)u = JJ tu=tJH(S, T)(S, T)u
— (S, T)(S, Thu = J'((S, T)u)(S, T)u = u- (x[x]p),
since ‘u = Ju~'J~!. This is compatible as DF = DT by [x]p — J[x|p. Similar to this
h='[X]ph = h- (n[x]p) for h € SLy(R).
The case II can be treated similarly. O
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We now compute the adjoint 7* : L(n*;C) — Lg(n + 1;C) of 7 : Lg(n+ 1;C) — L(n*;C) to
show integrality of 7* (though we do not use the formula explicitly in this paper). We have a bilinear
pairing (-, )n41 : LE(n+1; C)®c Lg(n+1;C) — C given by (6.25) and (-, -) : L(n*; C)®@cL(n*; C) —
C given in (6.27). Then (P, 7*Q) = (7P, Q) for the adjoint 7* of 7, and we write

WY Y . . -/ +17-/
W*SnJrl i+ Tn+1+1 i E Ci,i/;j,j/XJYnJrl JX/J Y/n J .

-1

JsJ
Since highest (resp. lowest) weight of sym®"" of SUy(R) is a — a™ (resp. a — a~ "), we have
(S"") = XY and 7 (T77) = Y™ X™ ! for non-zero constants ¢, ¢’. Thus

(632) Co,n+1;5,5" = 0 if (],]/) 7£ (n + 1, 0), and similarly, Cn+41,055,5" = 0 if (],]/) 7£ (0, n -+ 1)

Since m7* commutes with SUs(R)-action and L(n*;C) is irreducible SU3(C)-module, n7* is a
scalar multiplication. We have by [H99, page 141]

L natl—iq i . . .y nat1—i’ o, 1 1 —1
(XYY XAy T XY ) = 60y o (1) KH )(H >] |

i 4
Similar to this computation, (S™ ~*T*% SIT™ ~J) = 51-7j(—1)i("1.*)71. Since
W(XnJrlfiin/"JFl*i/Y/i/) _ (_1)n+17i/SnJrlfiJri/TnJrlJrifi/,
by (m*7P, Q) = (TP, 7Q),
(W*Sn+17i+i/Tn+1+i7i/, XjY"+17jX’j/Y’"+17j/)

— (_1)n+17i/ (W*WXn+lf’iin/n+1*i/Y/i/, ijn+lij/j/Y/n+1*j/)

. ~1
= (1) (gt i gt =g =i’y (1) s, L, n '
( ) < ’ > ( ) )= TL+1—|—’L—’L/
This shows

n*

. _1 k/ 1/71// Y
(6:33) (=170 ’kk(n+1+i—i’

i e 1—j5' _ K 1-k'
=N i g (XTY L Ty T ky etk oyt

I¥T
ool mE+E1I/n+1 -1
= Ciirg o0 k05w (—1)7 [( j )( ! >]
IRT

—1
Y - kK 1—k/
> _ (W*SnJrl it pmtl+i—i ,XkynJrl kX/ Y/"+ )

J J

o 1 N1
= iy (1) [(n+ )(TH: )] :
7 J J

Take a € C* with aa = 1 and put u, = diag[a,a] € SU2(R). Taking k =0 and ¥’ = n+ 1 in (6.33),

we find, if i/ =0
n [ mA+1N /41 -1
= e (T ()]

id’ J J
and by (6.32), cont1m+1,0 =1 and ¢p41,0.0,n+1 = 1. Therefore
(6.34) (8" = Xy and 7 (T = Yt x
Take h = (% %) € SO2(R)R*. Then
7 (hP(8,T)) = 7*(P((S,T)'h")) = =" (P)((X,Y)'h"s (X', Y")'),
and thus
™ (a8 — bT)"") = 7*(hS™") = hX"TY" ! = (aX — bY)" " (X' + aY’)" 1.
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Therefore
i=0 !
n+1 n+1
s Z (n + 1> ( 1> G —i—d it =gy iy dt
s/
Jj=0j'= J

From this we conclude
(T i) an®—irpi (n+1\(n+1 n+l— 13" mA1—5
(6.35) G D I Ea i A N C §E R XrH-iyixy
7 = J'
J+i'=i
We record this fact as

Lemma 6.9. We have the following explicit form of 7* : L(n*;C) — Lg(n + 1;C):

. * . * -1

i 0 (1 n* —1 n i a1

6.36 (ST = —1)7 XnHlmdy i Xy

O30y )= 2 (j)(n+1—j>(n+1>
Jty'=i

Note that { (", )S" ~iT%}; is an A-basis of the dual lattice L(n*; A)Y of L(n; A) under (-, -) for any

integral domain A of characteristic 0 and the same for {("1") (";CI)X"“*J'YjX’j/Y’"H*j/}j,j/ for

J
Lg(n+1;A)Y under (-,-). Thus by (6.35), 7* is integral with respect to the dual integral structure

of Lgp(n+1; A). Write

(6.37) s* = (7" (8™ '),

in the sense that 7* P(s) = P(s*) € Lg(n + 1;C) for P(s) € L(n*;C).

6.9. Vanishing of ([o; x|, f) if Dor = H. Write s = (S,T) for the variables of L(n*;C). Identi-
fying D, = GL2(C), a quaternionic modular form f(h;s) : D*\Dg — L(n*;C) (k = n + 2 and
n* =2n+ 2) on I' of weight koo + kooo satisfies

(6.38) f(”yzst) = f(z;s'u”) for u el -SUy(R),z € E and v € Dy,

where ‘u? = uZ! if 0 = 0y and ‘uy if 0 = 0. Here SU3(R) = {u € H*|N(u) = 1} is the stabilizer
in SLQ(C) of e = —J € H and u € GL2(A) acts on P(s) € L(n*; A) by P|u(s) = P(su*). Define for
f as above and j € SL2(C),

(6.39) fli(z:8%) == f(i(2);8"5") and flaj(h;s") := f(jh;s"),
where j7 = j* in Case II and j* = !j in Case ID. Then writing jg. = g;(.)u for u € SU(R)

flai(g=:5"92") = fig=38702 ") = F(g500387 (ugz ")) = F(92)3 87 (955)0)") = Flwi(2:8%).

Lemma 6.10. Let j € SLo(C). Assume f(j7'go;s*) # 0 for some go € Dy, . Then the sub-

space of Lg(n+ 1;C) spanned by { flai~"(g0; s*uss') bus esua(r) over C in LE(n—|—1 C) is equal to
7*(L(n*;C)) for n* : L(n*;C) — Lg(n+ 1;C) as in §6.8. In particular,

([, x]"*, flei ™ (9258) =0 if Dp = H and ([J,x]"*", flaj~ (9::87)) = 0 if Dr = Ma(R).

Proof. By a variable change j* g — g, we may assume that j = 1. Write V' for the subspace of
Lg(n+1; C) spanned by { f(go; s*us!) u. esus®). As an SUz(R)-module, 7*(L(n*; C)) is irreducible.
Since {f(g0; 5™ us!) bumesva) C T (L(n*;C)) as f(go;s*) = 7*(f(g038)). by f(g:8*) #0,0# V C
7*(L(n*;C)) is a non-trivial subspace stable under the action of SU3(R). The irreducibility of
7*(L(n*; C)) as an SUz(R)-module tells us that V = 7*(L(n*; C)) as desired.

Suppose Dg = H. Since [1;x'h7] = [hh=°7;x] for h € SU3(R) = D} if Dg = H, [1, x] is invariant
under SU3(R) and is orthogonal to 7*(L(n*; C)) under (-,-). This shows the desired vanishing.

Suppose Dr = M3(R). Since [J;xh%"] = [hJh™ ;%] for h € SU2(R), [J,x] is invariant under
SU2(R) and is again orthogonal to 7*(L(n*; C)) under (-,-). Thus the vanishing follows. O

We will see later in the proof of Proposition 7.2 that this lemma implies the vanishing of
([o; x| f) if Dy = HL.
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6.10. Theta differential form. We now interpret 6(¢) as a differential form. Let Qg be the
sheaf of analytic differential v-forms on & = I'y\'H. Since S does not have complex structure, we use
the symbol § instead of Shg. Note 2%, = Lj(1;C) ®@c Os (for the sheaf Os of analytic functions
on S) as we will see. We first prove

Lemma 6.11. We have a canonical inclusion ¢ : Lg(n +1;C) — Lg(n;C) ® Lg(1;C) of GLa(E)-
modules given by 1([v;x]" 1) = [v;x]" @ [v;s] for all v € D,,.

Proof. We prove that the formula in the lemma gives the linear injection. Write x = (X, Y; X', Y”)
(resp. s = (S, T; S’,T")) for the variables of Lg(n;C) (resp. Lg(1;C)). We write [v; s] for [v; X]|x=s.
Then the map ¢° : [v;x]" T — [v;x]" @ [v; 8] satisfies 1° (37T [v; x]" 1) = °([30; x| ) = [30;x]" ®
[3u;8] = 3" "L ([v; ]"“) for scalar 3. Since (° is a polynomial map in v, by Zariski density of
{z"|z € Gn(C )} inside G,(C), we find that ¢° extends to a linear map ¢ : Lg(n + 1;C) —
Lgr(n;C) ® Lg(1;C). Since ¢ plainly sends [¢7tvg?;x] to [g7 vg”;x]" ® [g~1vg?;s], by (6.2), ¢ is
SLa(E)-equivariant. By definition

t(u;x]™™) = [1;x]" ® [v;s] for all v € D,.
By irreducibility of Lg(n + 1;C), ¢ is an injection. O

This lemma is useful when we compute n!=2v"i*1(6(¢)). Indeed, we only need to compute
n!=2v"([v;x]™) not the derivative of [v; x|+ which is a coefficients of §(¢).

Proposition 6.12. We have a canonical monomorphism i, : L (n+1;C) — L (n; C) ®c Q3¢ for
v =1,2 as sheaves over S.

Proof. By Lemma 6.11, we have an inclusion ¢ : Lg(n + 1;C) — Lg(n;C) ®c Lg(1;C) of SLy(E)-
modules. Thus we need to embed L} (1;C) into Q5,c- Though Lg(1;C) is an irreducible SLy(C)-
module, it is reducible over SUz(R). Thus as SU3(R)-module, we have Lg(1;C) =2 C® L(2; C). Since
(X, V)u' (X, Y )u?) = (X, Y)u'u""(X',Y’), on the subspace C(XX' +YY’) C Lg(1,C), SU(R)
acts trivially. Identifying Lr(1;C)/(C(XX'+YY")) 2 C(-XY')+ C(XX' —YY’) + CX'Y, since
(X,Y) (% &) = (aX —b°Y,bX +a°Y) and (X', V') (%,%) = (X' — bY',b°X’ + aY”), the

matrix representation of
(XY XX -YY' YX)— (-XY' XX -YY' X'Y) u
for u=(_%- %) € SU3(R) is given modulo C(XX’ +YY") by

(-XY'  XX'-YY' XY) (% %)

a? 2ab b2
= (XY, XX =YY", X'Y) [ —av" aa” 07 0% | = (—XY', XX' =YY, X'Y)p2(u).
p2eo 2a°b° a2°

On the other hand, Let ¢ = —J = (¢ *1) € H Recall the isomorphisms SOp, (R) = Gf, (C)/R*
and SOp, (R)/SOp(R) = SLy(C)/SU2(R) = H = {z = (}, 3’) [+ € C,0 <y € R} (g9 — g(¢)) and
the standard automorphic factor given by ](( 1b),2) = plc)z + p(d). We let G}, (R) C GL3 (C)
act on H by (¢Y) (2) = (p(a)z + p(b))(p(c)z + p(d)) ™!, and identifying SOp, (R) with G, (R)/R*,
the orthogonal group acts transitively on H. The stabilizer of € is SOp(R) (congruent to SUz(R)
modulo center). For u = (fg g) € SUL(R),

t

) ="((F9) O +EM="(3L) =u €SU(R) & j(u,2) =T
As in [H94, (2.4), (2.9b)], writing
(6.40) wy = (dz, —dy, —dT) and wy:=y '(dy A dz,—2dz A dT,dy A dT)

as the vector valued differential forms, we have (u*w, )| = p2(*j(u,€))w, | for v = 1,2, and

a b S2 a? 2ab b2 S2
P2 (7ba aa) ST | = —ab? aa? —bb? a’b ST | .
T2 B2 _924°b° 42° T2
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More generally, as j(g.,€) =y~ /2, for v = 1,2,

1 1

(6-41) U*gztwu|5 = pQ(tj(gzu, 5))twu|z =y twu|z <~ U*g:wu|5 = El,|zp2(tj(gzu, 5)) =y wu|z-
Thus replacing the basis (- XY, XX’ =YY’ , X'Y) of Lg(1;C)/C(XX'+YY') by y~'w,|., we get
a morphism
(6.42) i=1iy,: Lp(n+1,C) — Lyp(n;C) @c Qg forv=1,2.
Writing the stalk at e of Q3 as Y, consider the morphism i : Ly(n+1;C) — Ly (n; C) @ QY
induced by the stalk at €. By the pull-back action of the stabilizer of ¢, SU2(R) acts on QY. We
have an isomorphism QY 2 L(2;C) ®¢ O, for the germ O, of analytic functions around € of H. By
Clebsch-Gordan, we have decomposition into irreducible factors

(1) Le(n+1:C)lsuam) = B) L(24;C)

(2) Lp(n:C)lsuam) e L(2:C) = @ L(2k; C) ®c L(2:C) = Bj_o By L(2i; C).
Since highest weight vectors of L(2j;C) in (1) survive in the product Lg(n; C)|su,®) ®@c L(2;C), ic
is an injection. By local constancy, the morphism ¢ is a monomorphism of sheaves. O

Corollary 6.13. We have an analytic global section

O(0)(7; ;%) = O, (0)(7; g5 X) := 1,x8(0)(7, g; X)
of L%, (n; C) ®c QE/(C by composing i, in Proposition 6.12 with 8(¢)(r, g;x).

Since 7* : L(n*;C) — Lg(n + 1;C)|syu,r) is an embedding of SUz(R)-modules, we have sheaf
inclusion 7* : L*(n*;C) — Lj(n + 1;C). In this sense, we consider 7* o f for f € My(I'y) and
regard it as a harmonic global section of Lj(n + 1;C) over S = I'y\H. By the isomorphism
L (n+1;C) = Lp(n + 1;C), we may also regard f* as a harmonic global section of Lg(n + 1; C).
Further composing iy,. for i, : Lp(n +1;C) — L (n; C) ®c Q5 ¢, we may regard

(6.43) wy(f) =iy (¥ 0 f)

as a harmonic closed form with values in Lj;(n; C) ®c 25 ¢ by (M1-3) [H94, Proposition 2.1] whose

cohomology class in de Rham cohomology HY (S, L} (n; C)) is the class of the cohomological form f
as in (M1-3) in §6.1. Then we define the 2-dimensional period of f over Sh, = T',\$ — S by

(6.44) P.(f) :== /Sha(n!)2v"w2(f) = /Sha wa(f) (V= 8)?’33/ - 8)?3}//)'

The second identity follows from the fact that the 2-cycle period is nontrivial only for constant
sheaves.

6.11. Compatibility of invariant paring and wedge product. Consider the pairing [-, ], =
()@ {5} (La(n C) ®@c Q% e) ®c (Ly (1 C) ®@c Qg c) — Q% ¢ for the invariant pairing (-, -)n :
L% (n; C) @c L (n; C) — C given by (n!)72v? ® (n!)72V? as in (4.40) and {w,w'} = w Aw'. We
compare two sheaf pairings (-, )41 and [+, ‘]p.

Lemma 6.14. The following diagram of sheaf pairing is commutative:
Lyp(n+1;0) ®c L(n +1;C) 2225 (Ly(n; €) @c 92 ¢) ®c (L (n; C) ®c 0 ¢)
(6.45) ()i | [v@rta.
C T Osdy,
where i is given by i(u) = io(u) - du, for the inclusion iy : C — Os.
Proof. The diagram (6.45) induces the diagram of stalks at e:
Lp(n+1;C)@c Lp(n+1;C) 2% (Lp(n;C) @c 93, ¢) ®c (Le(n; C) @c O, ¢)
(6.46) ()i | [

C Im— OS,sd,uz|5-
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We prove first commutativity of (6.46): Since SU2(R) C SL2(C) fixes €, by the construction of i,,
the left hand side of the top row is a morphism of SU3(R)-modules via the action of SLy(C) on
H. Regarding the sheaves in the top line of (6.45) as sheaves over H, it is a right module over
SL2(C) by the pullback action of the left action of SLa(C) on H. Then iz ® i1 in (6.45) is also
SLa(C)-equivariant. Since the pairings (-, )n+1 and [+, -], is SLa(C)-invariant, we have [iz(z), i1 (y)]n
is fixed by SLo(C). This implies [i2(2), 71 (y)]n = cni((x, Y)nt+1) With i((z, Y)n+1) = t0 (2, Y)nt1)di-
for a nonzero constant ¢, and io((x, y)n+1) € C.

We need to show that the constant ¢, is independent of n and is equal to 1. The construction of
i, is made in two steps:

(1) t: Lg(n+1;C) — Lg(n;C) ®c Le(1;C),

(6.47) (2) I : Le(1;C) — Q5

The item (1) is the morphism of SLy(C)-modules. The item (2) at the stalk of e is given by
(—XY" XX'-YY' YX')— y 'w, with (XX’ +YY’) — 0. We have an invariant pairing (-, -); on
Lg(1;C) ®c Le(1,C) given by Vig ® V,. Writing the left (resp. right) variables as (X,Y; X', Y”)
(vesp. (S,T;5",T")). We have

(XX' TT)=(YY',88)=1 and (XY',TS)=(YX' ST')=-1
and all other combinations of monomials vanishes for the pairing. Thus
(=XY'.TS)Y=(YX' -ST')=1 and (XX'—-YY' , TT' —85")=2.

Recall y~lws = y~2(dy A dz, —2dx A dT,dy A dT) and y~tw; = y~!(dx, —dy, —dT). As we have
done in the proof of Proposition 6.12, we apply complex conjugation to w,, getting

y '@y = y % (dy A dT, —2dT A dx, dy A dz) and y '@, =y~ (dT, —dy, —dx).

Then ia(—XY") AN i (TS") =y 2dy ANdz AdT, i2( XX — YY) Niy(TT' — SS') = 2y 3dy Adx A dT
and i2(YX') A i1 (=ST") = y~3dy A dxz A dT. Thus I, ® I; sends the pairing (-, )1 to {-,-}, and
(-, )n ® (+,-)1 is equivalent to (-, ), ® {-,-} under I, ® I at .

We now study how ¢ sends (-, *)p+41 to (-, )n ® (+, -)1. By Clebsch-Gordan [H94, (11.2b)], we have
a decomposition of SLg(E)-modules

Lg(n; E)®c Le(1;C)
=Lp(n+1;,C)® Le((n+1)id+(n —1)o;C) @ Le((n — 1)id+(n + 1)o;C) @ Lr(n — 1;C),

where Lg(2lid +2ko;C) = L(21;C) ®c L(2k; C) with g € GLa(E) acting by Sym®%'g on the left
factor and Sym®27g° on the right factor. The canonical projection of Lg(n;E) ®c Lg(1;C) to
the complement of Lg(n + 1;C) is given by Viq ® V, and the projection to Lg(n 4+ 1;C) is
given by 7 : P(X,Y; X"\ Y'; 5, T;5,T") — P(X,Y; X", Y X,Y; X', Y’") writing the left variable
as (X,Y; X',Y’) and the right variable as (S,T;5’,T'). Thus the inclusion Lg(n + 1;C) —
Lg(n; E) ®c Lg(1;C) is given by the adjoint 7* of m with respect to the invariant perfect pair-
ings (v, ) :== (-, )n41 and {-,) := (+,")n ® (-, -)1. Basically by construction, the two paring match on
the irreducible factors naturally isomorphic to Sym®?*!, and hence we conclude ¢, = 1. Of course
we can compute ¢, directly by evaluating the two pairings on the standard basis.

We finish the proof of Lemma 6.14. The product {-,-} is invariant under the center action while
(-, )1 isnot (ie., (y~ /2y~ /2.); = y~1(-,-)1). To adjust this, we need to multiply by y(z) to assure
the commutativity of the sheaf pairing in (6.45) from the commutativity at e. d

7. DEFINITE D WITH IMAGINARY F

In this section, we study the case where D is definite and E' is imaginary.

7.1. L-value formula for definite D and imaginary F. Recall §; = 1 and that A_ < 0 is
the square-free part of A with _ = \/A_. We have the decomposition D = Z*+ @ Dgt so that
7% = §.Q C DF with Ly = N6.Z. We take ¢5°° := ¢ on L}, /L, = N~'Z/NZ for a Dirichlet
character @ : Z/NZ — C. We take an Eichler order R(Ny) in Dg for Ny prime to 0. Then let
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(Oo) € S(Dg a=)) be as in (4.25) for the characteristic function ¢; of 6+R (NO) N Dy pce)- Again
Remark 4.5 applies; so, we pretend (;5( ) — = ¢7. Put

(1) 60 =657 @65 and o) = 65 (00 o (N () + T2y T)

for Pp(z,y) as in (6.3). Note that Z is positive and Dy is negative definite and
r2(9r)L2(9) (55 e(IN Goo) V1)) = 12/ e(IN (30)I7) (300 € Z2)
£ 0o (9r) Lo (9) (o0 X (=[N (re)|[V=1)) = 0 F [t x (=N (1)[T) (v € Dyg)-

Recall 0 (¢)(7; z,x) for 0 = 05 as in (6.22) and 0(¢J-Z)(7') = Zaez(w(gf)qﬁjz)(a). The theta kernel
0, (9)(7; z,x) has values in L}, (n + 1;C) and is different from the harmonic theta differential form
in Corollary 6.13.
By (6.1), we have [3 + ;%] = (XX’ + YY) + [r;x] for 3 € Z* and ¢ € D . Define
67 (133) = 057 ()skee(IN (3o0)I7).

o2 (1510) = B35 (1) [toc 1Je<—|N<xoo>|T>.

(7.2)

We remark 7(XX'+YY')=0forn: Lg(n+1;C) — L(n* n (6.29). Then we have
n+1 n+ 1
13 8Os = o0 = 3 (" )(XX’ FYYYO70068, ).

=0
Recalling we have a twist by /2 in front of (6.6), we now study
n+1

i(n+1
n(k+1)/2/ . 9(¢)(g)dﬂg _mZ(XX’+YY’)J< . >n1/20(¢JZ>E(¢7[l)ilj>,
0s(Q)\Os(A)/Ts =0 J

where m is as in (4.23) and for ® € S(Dg ) and g € Mp(A),
E@= Y gl Y (wrg)®)(0)],—y-
Y€B(Q)\SL2(Q)

Since J*(Y X' — XY') = XX'+YY’, for V in Case ID, by (5.7) and (5.8)
nt2="k ifj=0,
0 if j > 0.

Take F = >°_ ame(—m7) € S, (M,¢"'xp,) for M as in (4.26). Since (Z*, Q%) is positive
definite producing holomorphic 6(¢Z), F has to be anti-holomorphic. Since [r;X]|;—0 = 0, in the
same manner as getting (5.15) from (4.29) and (4.31), we obtain, for B := B(Q)\B(A)Cse/B(Z)Cse,

(7.4) ((n+ D)) 729" i x]" [ x) = {

n+1

(75) > (n;q) /EF(gr)nk+1/29(((n+1)!)*2V"“¢>J-Z)( 2(g2) (65— (0)dpar

Jj=0

[ Plao a0 1)) ) a0 (08 Ot

_/Ooo/ F(m)o((n+1)H72 n+1¢n+1)( T>d§nk7(3/2)dn

= 2(4m) FHORET AL TR (k- 5) Y d(n)amem”

0<m€Z

Here 6" YA _|7++(1/2) = _\/=T|5_|~*. Thus we get in the same manner as in Theorem 4.7

Theorem 7.1. Suppose that E is imaginary and that D s definite. Let F be a primitive Hecke
eigenform in Sy, (C,v " xp,) for C|M with M as in (4.26) and f = 0*(F) be the theta lift:

f(g;X):/F . O () (75 g, %) F (T)n*2d&dn.
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Choose (b(Zoo) associated to Dirichlet character ¢ of conductor C(v) as specified above and (;5(()00) as
in (4.25). Let ¢ be a Schwartz-Bruhat function of DiA as in (7.1), and choose the measure duy, on
Os(A) as in Theorem 4.2. Then if f(g;x) # 0, for the mass factor my as in (4.23) and E*(1) as in
Theorem 4.7,

”2/ ((n+ D)) 729"H f(hs x)dpn
Shs
=m EF(1)68 AL TR/ 22(4m) VD =RED (K — %)L(Csw”(l, Ad(F) ® xE)

for the compatible system pr attached to F and Ts := {u € SOs(A)|¢) ou = ¢(>)} = R(Ny)* /Z* .
The Shimura subvariety Shs is as in (4.22).

7.2. Theta descent. In this subsection, the choice of the Bruhat function ¢(>) is arbitrary. Recall
[ =Ty :={y€50p,(Q) =G}, /Zg: (@I (v 277) = ¢*)(2) for all z € D,y }-

Identifying D = GL2(C), from (6.38), a quaternionic modular form f(h;s) : D*\Dg —
L(n*;C) (k=n+2and n* = 2n+ 2) on I of weight koo + kooo satisfies
(7.6) fvzzuss) = f(z;s'u®) for u el -SUL(R), z € E[ and v € Dj.
where ‘u, = uzl if o = 01 and ‘us if 0 = 0. Here SU(R) = {u € H*|N(u) = 1} is the stabilizer
in SL(C) of e = —J € H, and u € GL2(A) acts on P(s) € L(n*; A) by Plu(s) = P(su").

Recall the projection 7 : Lg(n + 1;C) — L(n*; C) of SU3(R)-modules in (6.30) given by

x=(X,V; X Y)—x:=(T,-5;5,T).
By convention, we write m(®(x)) = ®(X). Recall also, for u € H! = Ker(N : H* — RX),
u ' X]pu®’ = u- (n[x]p) and h™'[X]ph =h-(r[x]p) for h € SLy(R).

Recall the adjoint 7* : L(n*;C) — Lg(n + 1;C) of m which is an embedding of SU3(R)-modules.
Write 7 (f(g;8)) as f(g;8*) (for s* asin (6.37)). Thus h - w(f(g;8*)) = f(g;s*h) for h € GLy(E).

Recall the pairings (+,+) = (-, *)n41 and (-, -) defined in §6.6. Restricting f in (7.6) to G}, (A) C
Dy, and taking the measure dyj, with ff¢SU2(R) dpp, = 1 and dun|y = y=3|dy A dz A dZ| on
SOp, (Q\SOp, (A), we define the theta descent 0, (f)(7) by

(7.7) 0.(N)(7) == (0(9) (73 h; x), f(h; s™))dpn,

/SODU (@Q\SODp, (4)/SU2(R)
:/ (0(0) (75 h; X), f(h;s))dpn
SOp, (Q\SOp, (A)/SU2(R)

for X as in (6.30) and 6(¢)(7; h; x) as in §6.4.
We now show that its Fourier coefficient for e(IN(«)7) is given by the period over Shy:

[ @@z, 5005 s
Shea

For h € G, (R) and u € Ty - SU2(R),

(O0(0) (75 hu; x), f(hu; 87)) = (0(0) (75 hs X'u,), f(Rhss'ug,)) = (0(0) (75 hs x), f(h;s™))
by (6.9) and (7.6). Thus (0(¢)(7; h;x), f(h;s*)) = (0(&)(7;92;%), f(gz;8%)) for z = h(e) € H, and
h — (0(¢)(1; h;x), f(h;s*)) factors through H = SL2(C)/SU3(R). We know (P(xh),Q(s*h)) =
det(hh)"*1(P(x), Q(s*)).
Recall A’ = h* in Case II and h” = *h in Case ID for h € GEEU (A). Even if we are working in

Case ID in this section, many formulas here are valid in Case IT under the action h — h’; so, we use
this notation h’ to indicate the formula valid in the two cases. Then

(0(0) (s hsxh ™), f(h;s*h™7)) = det(hR)" 1 ((9) (73 hi x), f(;5¥)).
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Since det(g.) = 1, this shows (6(¢)(: g3 %), f(92:5%)) = (6(6)(7; 923 %92 "), f(g:38%92")). In sum
s @)= [ (0(0)(7: -1 %0:7), S 02350

SOp, (Q)\SOp,, (A)/SU2(R)
where du, = y~3|dy A dz A dT|.

Note *ug, = ul, for ues € SU2(R) C G, (R). By f(huce;s*h™ " uz?) = f(h;s*h™"uz ug) =
f(h;s*h™7") for us € SU2(R), we find that h +— f(h;s*h~") factors through D*\Dg, /SUs(R). Thus
f(z;8*) := f(g.;5%g; ") is a well defined function on H. We have for v € I'y. writing vg. = g(»)u
with u € SU2(R),

(7.9) f(z5"77) = flg::5"(19:) ") = f(19:38"(39:) ™)
= F(9y(2) 48" (9r(2)0) ™7) = F(9y(2)387 95 () = F((2),8%).
This formula also applies to 6(; z;x) := 6(7; g.; xg7 ") in place of f(g;s*):
(7.10) 0(7; 2x7~") = 0(759(2), ).
By (6.2): [97'ag?;x97"] = [o;x], and by definition

1) B = Y o e (o + 2
a€Dgs

7.3. Vanishing of Fourier coefficients of e(N(«)7) when Do g = H. Since G, C D} and Dj;
satisfies the strong approximation theorem, we have GEU (A) = Useus GEU (Q)afGEU (R) for a finite

set Ag = Ag,¢ on which the reduced norm map induces a bijection N : Ag = Z* /(N(T) N QX).
Since SOp, = GEU/ZC% , we can choose a finite set A = A, C SOp_ (A(>)) such that N : A, =
Z*/((Z*)>N(T) NQ*) and
SOp, (A)) = | | SOp, (Q)aT'y.
acA

If ¢ is as in Theorem 7.1, f¢ > R(Np)* and hence Ay = {1}. We thus assume A = {1}. In the
following computation, to treat Case ID and Case II uniformly, we put 7p = 7 in Case ID, 77 = 7
in Case II, ny = n in Case ID and n;y = —n. Thus 7. = 71 or 7p and 1. = nr or np depending on
cases. The “—” sign of ny = —n is to present the following computation uniformly in the two cases
IT and ID as (6.18) and (6.21) has an opposite sign in front of [z;v]?/2y(2)?. Using (6.18) in Case
ID and (6.21) in Case II, we compute (recalling h* = h* in Case IT and h” = *h in Case ID), for a
fundamental domain F of I'y in H,

(7.12) 0.(f)(r) T 2 N e )

aeDai/F¢
1o L s e BV o A ol
<X o et s (N (@, £ ELI Iy,

©647) 172 () (@ o1 o s Vel N () + DE el /=1
! aeg/m(b ( >'y§¢‘/([ T Fz 87 )elxN @), 2y(v(2))? Jdp:

— p1/2 (=) (@ a:x1" L F(ss* v ") e )T [7(2);@]277*\/—_1
LIPS >v§¢/f([ T s e £ T ek

(19) 172 (09) (o o x| 2):s*)e )T (z); a?n.v—T
P ”%/A[ T TR e EN e T e

_ 1/2 (o0) o a:x|? 1 2:5%))e )T [Zaa]2n*\/__1
=2 6@ [ (s flas)elEN (o). & G

Ca
aeDai/F¢ \H
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If Dor = j7'Hj (& a = 571497 up to non-zero scalars) for j € SLy(C), writing = for the
equality up to non-zero scalars,

(fosx]™ ™, fz387) = (15775 x]™H, fz387) = (L1 f(z87)) = (LX) f(z8777)).
The constant is given by v/—1" for € = (1 F 1)/2 for the parity of D¥. Then noting |Ts| < oo,

Oz-x"Jrl z:s™))e Q)T, 7[2;()[]277*\/__1

S VTRt eV .

)dp

277157 Pney/—1
2y(2)?

)dp

z—j "1 (=) -1 T P (i () 5% Ve N(a) [ 1(2); 577 P/~ 1
= Ol [ VTG s eV £ Ty,
L [ VT S s e(N @+ B,
H 2y(2)
_ -1 € n+1 - [Z§1]277*\/—_1
=10 [ (VTR i s el @) 2 S

Proposition 7.2. Suppose D, r = H. Then in Cases ID and II, we have

[ ttesx s e BT
Lo\H 2y(z)

Proof. Under Do r = H, v = jaj = for j € SLo(C) and x = 1 if Dg 2 H and = = J if D = M>(R).

), = 0.

Here “=” means up to a power of v/—1. Then
[ x] = [ =73 x] = [25%577],
and ([a; x|, f(z;8%)) = ([2;x]" L, fli =t (2;8%)) = 0 by Lemma 6.10. O

7.4. Fourier coefficients of theta descent. We now assume that D is definite and Dy g = M2 (R).
We first interpret

a; x|" L f(z;8%))e o)T 7[2’;0[]277\/—_1
L s pess et e + G e,

as an integral of differential form. In this case |I'y| = oo with finite volume I',\SL2(R). By (7.12)

oo " N . zZ;« 2py/—1
110) 0.0 =0 Y @) [ (™ flas eV (T £ EE .
a€DE /Ty Fa\M i
Let Sy := T4 \H. We consider Oz (¢; 7; 23 x) € H°(Sy, L (n; C) ®Q%¢/C> as in Corollary 6.13 and

wi(f)(z;8*) :=1i1(f(gz;8)) € H*(Sy, L (n; C) ®le¢/(c) for a cusp form fonT =T as in (M1-3) in

§6.1. Here i, : L (n+1;C) — L} (n; C)®c Q% ¢ Is as in Proposition 6.12, and we write i : C — Os

for the constant inclusion for the structure sheaf Og of the real 3-dimensional analytic manifold S.
From (7.14) and Lemma 6.14 combined with Proposition 7.2, n~/20,(f)(7) is equal to

(7.15)
() (o 3 a: x|t z;s"))]e )T 7[2;0[]277 -1
> ' ( )/Fa\Hy[ ([0 X" ig L (f(2;8%))]e(£N ()T + Y R

a€DE /T4, Dy g2 Ma(R) 4
Choose j € SLy(C) as in Lemma 6.7 so that Dy g = j 1Ma(R)j, where a = j~1J*j7 with
Jt=y—1Jifae D and J- = Jifa € D;.

Assuming D, g = M>(R), we need to compute

. " . N z;a)?ny/—1
@16 = [yl i (s e L
Ta\H y(2)
as I* is the coefficient of e(+N(a)7). Here f|gj~! is as in (6.39). We also note

(7.17) +N(a) =£N(G1JE§97) <0
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which is consistent with F+Im(+7) > 0. By (6.1) in Case ID, we have [J;x] = Y X' — XY, so,
Y(2) v (5% ) 30,0 (flag ™ (925 8"))] = y(2)[in, o (Y X = XY)" ) i3 u(flas™ (9258))].
First suppose n = 0. Then writing x = v + v+/—1, by Proposition 6.12

y~H(dx — dx) = —2+/—1y tdv ifv=1,
y~2(dy A dx + dy A dT) = 2y~ 2(dy N du)  if v =2.

(718) i (VX' — XY')) = {
Since L (0;C) = C and Lg(1;C) = CSS' + CST" + CT'S’ + CI'T’, the function
(7.19)  f/(g:s) = flai ™ (g:38) = F(5 " g258) 1 JTJ\SLa(C) — L(2;C) = CS* + CST + CT*
has the form f7(g;s) = f]S% + 21 ST + fiT2. By (6.36),

(—1) (’f)w*(s"”m = > 1y (” ; 1) (”J* 1) Xy Xy

j+i'=i

and applying this to n =0, s* = (XY', (YY' - XX")/2, =Y X"). Thus we have f/(g;s*) = XY+
AYY — XX')— fJYX'. Therefore
—fly~ YT + fly tdy + fiy tda if v=1,
—fy 2 (dy AdT) + 2fly 2 (dz Ndx) — fiy 2 (dy Adz)  if v=2.
Since dx Adx =0 on 9, if v = 2,
(721) iz (7 (g:8"))|o = = [y~ (dy A dZ) + 2y~ (dT A d) — fRy~*(dy A da) = j~ wa(f).
Identifying H = $ x R by z +— (u +yv/—1,v), we get from (7.18),

(7.20) iy (f7(g:8%)) = {

(7.22) y(2)iw (VX' = XY)) i F)] = =(f + )y~ 2dy A dw A dz
=2V =1(f] + )y 2dy Adu A dv = =2/ =15 wa(f)|g A dv
which is independent of v =1, 2.
Write I, := jT,7571 C SLa(R). Then TV \'H = I'’\$ x R by z — (u + yv/—1,v). This shows
SLo(R)\H = R. By (6.17), we have
23 B twhoV ]2 [ ();v]* o LA IR [h(z); I
2y(2)? 2y(h(2))? 2y(2)? 2y(h(2))?
as h=1Jh?7 = h=1JJ=hJ = J for h € SLy(R). This shows that the function z — e(%)
factors through SLa(R)\$.
Recall py(2) = (HI_I ﬂgy) and [z;v] = Trp./c(py(2)v*) as in (6.16) for 0 = —1. Thus [z;J] =

—yr y

y(T — ) = —2/—1yv, and e(+ Qy(;;;/_) = e(2v?*ny/—1). Thus we get

I:t = C:I:/ 8(2’027]\/ —1)d'U / (fé + fg)y72dy /\ dua
SLo(R)\'H I'L\SL2(R)(2)

where ¢; =2 and ¢ = —2y/—1. Since z — [ \SL2(R)(Z)(fg + f3)y~2dy A du is independent of z (as
the integrand is a closed 2-form [H99, §3]), we have
(7.23) It = ci/ e(2v?nv/—1)dv - / (f] + £y~ 2dy A du.

SLa(R)\H I3\SL2(R) (<)

We now deal with the general case of n > 0. Similarly to (7.20), we write
(7.24)

Lo (172" (f (g:87)) = —fay 2 (dy AdT) +2f]y > (dT A dz) = [y~ (dy Andz) = (n}) "2V wa(f),

where ¢ is as in Lemma 6.11 and V is with respect to the factor Lg(n; C) (acting trivially the factor
Lg(1;C)). The down-to-earth explicit form of n!=2v™.(f7(g;s*)) can be found in [H99, page 141].
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We decompose H = § x R by z +— (u+ yv/—1,v). By (5.7), n!=2v"[J;x]" = (n + 1). Then we
get, for P, (f) in (6.44),

It = Ci,n/ e(2v*nyV/—1)dv - / (fg + )y 2dy A du
SLa(R)\'H I \SL2(R)(e)
= Ci,n/ e(2vnV/=1)dv - P,(f).
SLa(R)\'H

where ¢, =2v/—1 (n+1) and c_ ,, = —2v/—1(n + 1). The power of v/—1 comes from

V=1J;x]"* = V=1 [J;%]
as v—1J € D ,r> While J € D . As is well known [HMI, (2.5.5)], we have

/ e(2v*nV/—1)dv = / exp(—4mnu?)dv = 2~ /2,
SLo(R)\'H —o00

Thus

(7.25) IF = 2cq V2 Po(f).

Thus we conclude

Theorem 7.3. Suppose that f : H — L(n*;C) is a cusp form on SOp_ (A) of weight k =n+2> 2
satisfying (M1-3) in §6.1 for T = T'y with an arbitrary ¢(>). Then we have

0.(f) = 2cen > ¢! (@) Pa(f)e(£N(a)T),

a€DZ /T 4, Do x=M>(R)

where cx , =2v/=1 (n+1) and c_ , = —2/—1(n+ 1) and P,(f) as in (6.44).

8. INDEFINITE D WITH E IMAGINARY

In his section, we assume that D is indefinite. We regard S = SOp_(Q)\SOp, (A)/f¢ as the
automorphic manifold of Gf, and Dy, for the derived group Dj, = Ker(N) C G, .

8.1. Analytic theta differential form. For each f(g;x) € M(T'), we pick g € Of, (R) with
z =g(e) € H and define as in [H94, §2.2] foo(z;x) := f(g;x7(g,€)"). For u € SU3(R),

(8.1) foo(gu(e);x) = flgu; xj(gu, €)*) = f(g,xuj(u,£)"j(g,)") = f(9,%j(g,€)")-

At the end of [H94, §2.2], there is a typographical error, and “f(z;%5(7, 2)x)js (7, 2)*8” should be
“f(z;77(v, 2)%)js (7, 2)k5”. Here the left action x ~ j(7,z)x there is replaced by the left action
x — Xj(7, 2)". S0 foo(z;%x) is well-defined independent of the choice of g with g(e) =

We compute V"O(T; g;x) (9 € SOp,(R)) for © as in Corollary 6.13, where Vv = a)‘??ay 8)?26)”'
Note [(25);x] = dY X' +bX X' —cYY'—aXY’, and for v = 31o+r with 315 = (§ 3) andr= (2 %)

[v;x] = [3lo;x] + [55%] = 3(Y X' — XY') —a(Y X' + XY') +bX X' —cYY'.

Note [v;xg'] = [¢g'vg;x] for g € GED(R) = D and V"[v;xg]" = N(g9)"V"[v;x]" [H94, page
498]. If D is a division algebra, we can choose always (g,9) € (D ®g C)* = GL2(C) x GL3(C) so
that g~ 'rg = diagla, —a]. Since we can find g so that g~'rg = diag[a, —a] for ¢ in a Zariski open
non-empty subset of Dy (and the function V"[v;x]™ is a polynomial in v), we may assume that
v = 312 + diagla, —a] to compute V" [v;x]™. Since [diag[a, —a]; x] = —a(Y X' + XY”), we have

[ x]" = (Y X' = XY') —a(Y X'+ XY'))" = (G — )Y X' = (3 + a)XY')"

i( ) Y(a+3)G—a)" 7/ (YX)" I (XY').

j=0
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y [H99, page 141], we have (n!)"2v"[(Y X')"~I(XY")/] = (1) (’;)*1, and hence,

— n a - n n - j—a :
() 2o (79" 20 5x ZH@ I(3—a) =(3+a) Z(5+a>

Jj= J=

[(n—1)/2] nal
o —1 n+1 n+17 __ n—27 29
=2a)7 ' [G+a)" -G -a)"t] = Z (2j+1>5 23,

Since (n!)=2v"[(3E® 5Oa) :x]™ depends only on 3 and N(x) = —a? (as Tr(xr) = 0), this implies

[(n—1)/2] il
N—2gn B 1\ n—2j 7
(8.2) (n!)7"V" 312 + 1; x| ;:o (-1) (2j+1>5 N(r).

In view of Corollary 6.13, we need to compute for i, in (6.42)
of3le +5x] =i, (3lo;x] + [1;x]) =i G(Y X' — XY') —a(Y X' + XY') + bX X' — cYY').
Since Ker(i,) = C(XX' + YY), writing XX’ = (XX’ + YY) + (XX’ — YY) and YY’ =
(XX +YY') — (XX’ —YY")), we have from (6.41)

(8.3) iyof3la+rx=i,(G—a)YX +(G+a)(—XY')+ g(XX’ -YY') + g((XX’ -YY")))

_JGtaylde — (G- a)y~ T+ My dy ifv=1,
vy 2H{(G+a)dy Ndz + (3 —a)dy ANdx — (b+ c)dz Adx}  ifv=2.

Since D — Dy induces 3 x4+ yv/—1— (; ) € H with z € R, we find

Y

. 2ay~'do + My ~ldy  ifv =1
8.4 v o3l Exls = ; ,
(8.4) iy o [3l2 +1;X]|g {25(y2dy/\d56) ifv=2.

Recall (6.11)

9(7_; Z;X) _ 771/2 Z ¢(m)(a)[a;ng]n+1e(iN(a)§ + 77P[9§1049§] \/__1)

2
ozGDi
As before, we decompose DF = Z* @ DF so that Z+* = \/ALQ C DF with Q(z) = 22 and
Lz = N\/ALZ. To compute the factorization of P30 + feo], We Write voo = (\/a—lc gb) as in
_ 1 _ a /—1b. _ (3+V=1a —1b
(3.3). Then 3 = 5Tr(ve) and ¢ = (\/?lc . ), SO, Voo = ( W= 37\/7—1a) 3+ V— (C ,a)

where 3,a,b,c € R. Thus Plvs]/2 = 3% + a? + b% + ¢ and N(ve) = 3% + a® — be. This shows
P; =P|z =|N|z| and P = N & P, for Py = P|p, which is a positive majorant of sy |p,. Thus we
have a factorization
nPlg”

BPLT00) /) — (N (o )€ + 1IN (3o) VTN ac) + 22U Et] )

Suppose that ¢(>) = 67 @ o5 for ¢z € S(Zy) and ¢o € S(Dy pieor ), With ¢7,00(557) =
e(+3%26 + m3°v/—1) and ¢o oo(r;7;2) = e(EN(x)€ + M\/—l), where g, € DL such that
9:(vV—1)=2z€ $H CH. Then

0;(05) (1) = D 65 (@)ale(£N ()€ + nN (a)V/=1),

ac”Z

0,052 = 3 60 (@) N (@Y e(=N () + MUz 0%E] )

2
a€Dy

e(+N(vo)€ +

(8.5)

Since Q% = Lg(1;C) @c Os and the differential operator n!=?v" acts on the factor [v;x]" of
t([u;x]"™) = [v;x]™ ® [v;s] under the notation of (6.11), the factor [v;s] (v = 312 + 1) is sent to
23y~ 2dy A dz over Shs by (8.3).
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Proposition 8.1. Let the assumption and notation be as above. Suppose that v = 2. Then for the
image Shs of (e N D)\ in Ty\H, writing z =« + yv/—1 and Z = x — y/—1 for the variable on
ShJ)

(TL')72V"@(¢)(T' Z)| b = 2771/2 I—("Zl)/ﬂ(_l)] n+1
: 1715k 2j+1

)9"2j+1( SN (1)0;(65) (3 2)y 2 dy A d,
j=0

which is an analytic 2-form on Shs.

Here we have 6, _2;1 in place of 6,,_o; because of (8.4).

To prove Proposition 8.1, we used the realization of the sheaf L} (n;C) (the quotient by the
SUz(R)-action). In [H94], we used Lg(n;C) (the quotient by the I'g-action). Of course the outcome

is the same but the computation via Lg is more complicated. In the following remark, we shall give
a brief outline of the use of Lg(n;C) without the computation of its image under (n!)=2v"™. For
v € T'y, we have 8(¢)(7;vg; x) = 0(7; g;x). Thus

Ooo (V(2); %) = 0(T;79; % (79, €)") = 0(7; 95 x5 (79, €)")
= boo(2:%7(9,€)°5(7,2)) = pn= (3 (7, 2) )00 (75 2; %)
Here again the remark after (8.1) applies again and 'j(, z) in [H94] is replaced by j(7, 2)*.

Remark 8.2. Regard Lg(n;C) = L(n*;C) = Z?;O CS™ ~IT7 as a SUy(R) module for the coor-
dinate vector s* = *(S"", 8" ~'T,... . T""), and define the matrix expression p,-(g) of symmetric
n*-power by

pne (28)s" ="(aS +bT,cS +dT)" .
Now following [H94, (2.8a—e€)], we express 0(7;¢;x) = 0(7;9) : O£U (R) — L(n*;C) as {6; :
Take the polynomial column vector ¥(x;a) € Z[X,Y, X", Y’, A, B]*" as in [H94, (2.8a-b)] and put
0(t,g:x;8) = o 09 (15 9;x)A2"IB? = 0/(7; g) - ¥(x;a). Then we define a differential form with

values in Lp(n; C) @ Q% ¢ by

é(’?’, z;X) = yil(ﬁ(o)(T; g9;x)dy N dx — 29(1)(7'; g;x)dx A dT + 6 (15 9;x)dy A dT)
for g € O, (R) with g(¢) = z. Then we have by [H94, Proposition 2.1]

For v € T, v"6(73 g; %) := O(7;1(2); %) = O(7; 2:%7).
The direct computation of V"O(7;g;x) is more involved, and anyway v"© = v"© as they have

values in the constant sheaf; so, it follows from Proposition 8.1. We omit the details.

8.2. L-value formula in the indefinite imaginary case. In this subsection, we assume that D
is division indefinite. We now assume that D is an indefinite quaternion algebra over Q. Recall
the decomposition DF = Z* @ D so that Z* = §.Q C DF with Q(z) = 2? and Lz = NoLZ.
We take (b(Zoo) =1 on Ly/Lz = N"'Z/NZ for a Dirichlet character v : Z/NZ — C. We take
an Eichler order Rg(Np) in Dg for Ny prime to 9. Then let (b(()oo) € S(Dg =) be as in (4.25)
for the characteristic function ¢ of L= ﬁo (No) N Dy a(=). Again Remark 4.5 applies. We put
Qj(oo) =Y ® (25(()00) and

Prlvee
(36) B(0) = 9 (1) [ume: K] e(EN (0 )€ + o]
for Pr(x,y) as in (6.4). Note

r2(97) L2 (0) (e /D)) = 102451 e(£N (30)6 + |V (300)[1v/~T),
£ (92) L0 (9) (N (2 ©(N (520)VT)) = 173/ AN (£ (£ N (poo ) + 289 /)

2
for Py = Pr|p,- Recall again 0(¢J-Z)(7') = Zaez(w(gf)qﬁjz)(a).

nv-1)

(8.7)
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By Proposition 8.1, (n!)72v"O($)(7; 2)|sn, is equal to

) —
1/2 1
2D DN (2j +1

)9””1( SN (10, (65 (75 2)y~2dy A d,
7=0

and therefore it is equal to

[(n—1)/2]
8  2n S a2t
2j + 1

)On 251(85°)(1)8; (65 (75 2)y~2dy A dx.
7=0

We now compute 7*/% [g, (n!)=2v"0(¢)(7; 2)y~>dy A dx which is equal to

[(n—1)/2]
5 (—1)7 (n +1

1/2 Do
s 1) L O 8

=0

[(n—1)/2] natl
_ j 1/2 zZ D
=2m ; (_1)J (2] 4 1>T] / 0( n72j+1)E(¢j O)a

where m is as in (4.23) and for ® € S(Dg ) and g € Mp(A),

E@) = Y  lag)l " (w(y9)2)(0)],-s-

+EB(G)\SL: (@) ’

Take F = Y. °_, ame(—m7T) € ST (M, xp,) for M as in (4.26). In the same manner as

getting (4.32) from (4.29) and (4.31), for B := B(Q)\B(A)COO/B@)COO

[(n—1)/2]
89) 2 Y <—1>J‘(”.“) | P06 oy 00 (0,60 O

= 27 +1
—2(n+1) / F(r)n/20(6% 1) (g0 ) 2dedn = 2(k — 1 / / 0(6Z 1) (g )den* /D
=4(k —1)8%" / > p(m)mF T exp(—dn| A m®n)n* /D dn
m>0
= 4(4m) D 7E (e = 1) AL TR (R - o) Y w(n)amem”
0<meZ

As before 6* 1A _|7k+(1/2) = _|5_|~#\/=1. Thus we get, in the same manner as in Theorem 4.7,

Theorem 8.3. Suppose that E is imaginary and D is division indefinite. Let ¢ be a Schwartz-Bruhat
function of DiA as in (8.6). Choose (b(Zoo) associated to Dirichlet character ¢ of conductor C (1))

and (b(()oo) as in (4.25). Let F be a primitive Hecke eigenform in S, (C,v~'xp,) for the conductor
C as in (4.26) and define the Lg(n;C)-valued harmonic form by

w(F) = / O(6) (1 g)F () ~2dédn
r'-\9

for the analytic differential form ©(¢) as in Proposition 8.1. Then if w(F) # 0, for the mass factor
my as in (4.23) and E*(1) as in Theorem 4.7,

w/ () 72V "w(F) = my B (1)65 AL | F24(4m) 2 % (k — 1)D(k — %)L(Cs(¢>>(1,Ad(F)®XE)
Shs

for Shs as in (4.22) with Ts == {u € Os(A®))|p(®) o u = ¢(>)}. The measure is induced by
y~2dzdy identifying Shs = D*\D} /T sA* Coo(DZ) with Ty\'H.
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8.3. Fourier coefficients of theta descent. We assume D, g = M3(R), and we include the case
where D 22 M5(Q) (since the coefficient of e(£N(«)7) vanishes if D, g = H as seen in §7.3). Though
the line of the argument is almost identical to the one in Case ID, we give some details as we need
to make subtle modifications.

We first interpret the integral for the Schwartz function as in (6.21)

a: x|, f(z:8%))e V)T 7[2;0]277\/__1
L e s N (= g e

as an integral of differential form. In this case |I',| = co with finite volume I',$). By (7.12) in which
we replace the Schwartz function in (6.18) by the one in (6.21) in Case II

510) (DD =" Y 6w [ (fos ™, f(z:8) e (N (u)r 7 LY Ly

2
aeDE /T, Pa\H y
From (8.10) and Lemma 6.14 combined with Proposition 7.2, n~/20,(f)(7) is equal to

) (o 7 a; x|" ), 6 z:s™))]e )T M
> ' )/Fa\Hy[ v ([0 x]"77) ig—pu (f(2387))e(£N (0)T 5 )dpi.

2y
a€DE /Ty, Do n=M>(R)

Choose j € SLy(C) as in Lemma 6.7 so that D, g = j~ 1 My(R)j, where a = j~13% 91 with g+ =1
ifaeDf and - =y/—1ifae D, .
Assuming Dy, g = M>(R), we need to compute

(8.11) P \Hy(Z)[iu,*([a;X]"“),isu,*(f(z;s*))]e(ﬂF%__l)duz-

Similarly to (7.17), we have
(8.12) +N(a) = £N(715%57) > 0.
By (6.1) in Case II, we have [1;x] =YX’ — XY"; so,
Y i (LX), i3 (Flad ™ (9238"))] = y(2)[ins (VX = XY ) ig i (flei ™ (g2389)))-

Now by the same computation in §7.4 starting from (7.18) ending by (7.24), replacing J by 1, we
reach the equation (7.24) which we repeat:

L (n72V"(f7(g58%)) = = [y~ (dy AdT) +2f]y > (dT A da) = [y~ 2 (dy Ada) = () >V w2 (f7).
For P,(f) in (6.44), we get

P [ et/ o [ (f + )y~ 2dy A du
SLo(R)\'H 'L \SL2(R)(e)
= c¢7n/ e(2vnV/—1)dv - P,(f).
SLa(R)\'H

where ¢, =2v—-1 (n+1) and c_ ,, = —2v/—1(n + 1). Thus
(8.13) It =2y V2. Po(f).
Thus we conclude

Theorem 8.4. Suppose that f : H — L(n*;C) is a cusp form on SOp_ (A) of weight k =n+2 >0
satisfying (M1-3) in §6.1 for T = T'y with an arbitrary ¢(>). Then we have

0.(f) = 2¢x.n > ¢ () P, (f)e(£N(a)7),

a€DZE T, Do 22 M2 (R)

where c4 p =2+/=1 (n+1) and c_ , = =2v/—1(n+ 1) and P,(f) as in (6.44).
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