ADJOINT L-VALUE AS A PERIOD INTEGRAL
AND THE MASS FORMULA OF SIEGEL–SHIMURA

HARUZO HIDA

Abstract. Let F be an elliptic Hecke eigen cusp form. For a quaternion algebra D/\mathbb{Q} and a quadratic field $E = \mathbb{Q}(\sqrt{\Delta})/\mathbb{Q}$, we determine the period of the Doi-Naganuma lift of F to the Shimura variety of $(D \otimes_{\mathbb{Q}} E)^s$ over Shimura subvarieties associated to D as the product of $L(1, \text{Ad}(\rho_F) \otimes (\hat{\Delta}))$ and $m/\zeta(2)$ for the mass m of Siegel–Shimura of the norm form on the subspace of D of trace 0. Here ρ_F is the compatible system of Galois representations associated to F, and $\text{Ad}(\rho_F)$ acts on the Lie algebra $\mathfrak{sl}(2)$ via conjugation by ρ_F.

For an elliptic cusp form F, an idea of Waldspurger [W85] of computing the period of a theta lift of F for a quadratic space $V = Z \oplus W_0$ over an orthogonal Shimura subvariety $S_Z \times S_{W_0} \subset S_V$ is two-folds:

(S) Split $\theta(\phi)(\tau; z, h_0) = \theta(\psi)(h_Z) \cdot \theta(\phi_0)(h_0)$ (τ in the Poincaré half plane \mathfrak{H}, $h = (h_Z, h_0) \in \text{O}_{W_0}(A) \times \text{O}_Z(A)$) for a decomposition $\phi = \psi \otimes \phi_0$ (ψ and ϕ_0 Schwartz–Bruhat functions on $Z_\mathbb{A}$ and $W_{0, \mathbb{A}}$);

(R) For the theta lift $\Theta(F)(h) = \int_X F(\tau) \theta(\phi)(\tau; h) d\mu_\tau$ with a modular curve X, the period P over the Shimura subvariety $S_{Z_0} \times S_0$ (S_{Z_0} for O_Z and S_0 for O_{W_0}) is given by:

$$\int_{S_Z \times S_0} \int_X F(\tau) \theta(\phi)(\tau; h) d\mu_\tau d\mu_h = \int_X F(\tau) \left(\int_{S_Z} \theta(\psi)(\tau; h_Z) d\mu_h \right) \cdot \left(\int_{S_0} \theta(\phi_0)(\tau; h_0) d\mu_h \right) d\mu_\tau,$$

where $\tau = \xi + \eta \sqrt{-1}$ is the variable of the metaplectic side in the Poincaré half plane \mathfrak{H} and $d\mu_\tau = \eta^{-2} d\xi d\eta$. Then invoke the Siegel–Weil formula to convert inner integrals into the Siegel–Weil Eisenstein series $E(\psi)$ and $E(\phi_0)$, reaching Rankin-Selberg integral

$$P = \int_X F(\tau) E(\psi) E(\phi_0) d\mu_\tau = L\text{-value}.$$

Waldspurger [W85] applied in the early 1980s this scheme to $V = D$ for a quaternion algebra D/\mathbb{Q} with a splitting $V := D \cong E \oplus E$ for a quadratic field $E = \mathbb{Q}(\sqrt{\Delta})$ over \mathbb{Q} and expressed the period by the central critical value of the Hecke L-function $L(s, F \otimes \chi_E)$ for $\chi_E := (\hat{\Delta})$. In this paper, we apply his idea to a 4-dimensional quadratic space over \mathbb{Q} which produces the quaternionic Doi–Naganuma lift to the quadratic extension $E = \mathbb{Q}(\sqrt{\Delta})$ of \mathbb{Q} (including $\mathbb{Q} \times \mathbb{Q}$) as theta left, and we compute the period in terms of the adjoint L-value $L(s, \text{Ad}(F) \otimes \chi_E) = L(s, \text{Ad}(\rho_F) \otimes \chi_E)$ at $s = 1$.

Let D be a quaternion algebra over \mathbb{Q}, and we put $D_E := D \otimes_{\mathbb{Q}} E$ on which $1 \neq \sigma \in \text{Gal}(E/\mathbb{Q})$ acts through the factor E. Then the Doi–Naganuma lift of elliptic cusp forms to D_E^s is realized as a theta lift with respect to the quadratic space:

$$D_\sigma = D^\pm_\sigma := \{ v \in D_E | v^\sigma = \pm v^\sigma \}$$

for the involution i given by $v + v^i = \text{Tr}_{D_E/E}(v)$. The quadratic form on D^\pm_σ is induced by $v \mapsto vv^\sigma = \pm N(v)$ for the reduced norm $N : D_E \to E$ which has values in \mathbb{Q} over D^\pm_σ. In the late 1970s to the early 1980s, the quadratic \mathbb{Q}-space D_σ for $D = M_2(\mathbb{Q})$ is studied to establish Doi-Naganuma lift for E real in [K78] and for E imaginary in [A78] and [F83], though the investigation via theta lift of base-change has been somehow forgotten after the general theory of base-change lift by Langlands via trace formula. Doi-Naganuma lift via theta correspondence is not just a trace (or representation) identity but contains more arithmetic information as it computes the lift (ascent).
and descent explicitly. This paper is perhaps the first attempt of computing fully explicitly the period integral of the base-change over Shimura subvariety $D^\times \setminus D^\times_{\mathbb{A}}$ inside the ambient quaternionic Shimura variety $D^E_{\mathbb{A}} \setminus D^E_{\mathbb{A}}$.

Let $D_0 = D^\pm_0 = \{ v \in D^\pm_s | v^t = -v \}$ and $D = Z \setminus D^\pm := D^+ \cap E$ inside D_E. Then $\dim_Q Z^\pm = 1$ and $\dim_D D^\pm = 3$, and we have a splitting $D^\pm = Z^\pm \oplus D^+_0$ of quadratic spaces. Write $w = w_V$ for the Weil realization of the metaplectic cover $\text{Mp}(\mathbb{A}) \to \text{SL}_2(\mathbb{A})$ realized on Schwartz–Bruhat functions on $V_\mathbb{A}$ for $V = Z, D_0, D_\sigma$, and $O_V(\mathbb{A})$ for the orthogonal group of V acting from the right on $V_\mathbb{A}$. Note that O_{D_0} (resp. O_{D_0}) is close to D^E_0 (resp. D^E). We have the theta kernel $\theta_V(\phi; g, h) = \sum_{\alpha \in E} (w_V(\phi; \alpha) \sigma(h))$ with $g \in M_\mathbb{A}$ and $h \in O_V$. Since Z^\pm is definite, we have theta series $\theta_Z(\psi) = \sum_{\alpha \in \mathbb{Z}} \psi(\alpha^2) e(2\pi i \alpha \tau)$ with $e(\tau) := \exp(2\pi i \alpha \tau)$ for the variable τ in the Poincaré half plane \mathfrak{H} (on the metaplectic side) and a Dirichlet character ψ regarded as a Schwartz–Bruhat function on $Z_\mathbb{A}$.

The Eichler order $R_0(N)$ of D gives rise to a lattice $L \subset D^+_0$, and we consider a Schwartz–Bruhat function ϕ_0 on $D_{0,\mathbb{A}}$ whose finite part is the characteristic function of $L = L \otimes_\mathbb{Z} \mathbb{Z} \otimes_\mathbb{Z} \mathbb{Z}$ with a suitable choice of infinity part. Then we apply Waldspurger’s technique to $\theta_\mathfrak{D}_\mathbb{A}(\psi \otimes \phi_0) = \theta_Z(\psi) \theta_\mathfrak{D}_\mathbb{A}(\phi_0)$. Since Z^\pm is definite with negligible orthogonal group, we apply Siegel–Weil formula to $\theta_\mathfrak{D}_\mathbb{A}(\phi_0)$ which produces an Eisenstein series of half integral weight $E(\phi_0)$. The formula for our use is not in the convergent range Weil studied, and we need the formula in Sweeney’s thesis [Sw90, §3.3] computed by the method of Kudla and Rallis [MSS, §5.3].

The even Clifford group of D_0 (resp. D_0) is almost D^E_0 (resp. D^E); so, the period integral is over a Shimura subvariety associated to D^\times inside the Shimura variety of D^E_0. Assume that F is a Hecke eigenform with an appropriate level determined by ϕ_0 and ψ with Neben character $\psi^{-1} \chi_E$, and write $\rho_\mathfrak{F}$ for the compatible system of Galois representations of F. Define $L(s, \text{Ad}(F)) = L(s, \text{Ad}(\rho_\mathfrak{F}))$ for the adjoint representation $\text{Ad}(\rho_\mathfrak{F})$ of $\rho_\mathfrak{F}$ on $\mathfrak{sl}(2)$ on which the Galois group acts via conjugation by $\rho_\mathfrak{F}$. The final formula has the following form:

$$P = c \cdot m_1 \cdot L(1, \text{Ad}(F) \otimes \chi_E)$$

for an explicit (rather trivial) constant c involving some Euler factors and the mass m_1 described below. As well known, the analytic continuation of $L(s, \text{Ad}(F))$ was first given by Shimura in [Sh75] as a Rankin product of $\theta_Z(\psi)$ and F over a modular curve, and therefore it is natural to have the adjoint L-value as the period over the Shimura subvariety associated to D^\times. The exact formulas are in Theorem 4.5 when D is indefinite and E is real, Theorem 5.2 when D is definite and E is real, and Theorem 7.1 when D is definite and E is imaginary and in Theorem 8.3 when D is indefinite and E is imaginary.

The other constant $0 < m_1 \in \mathbb{Q}$ is theoretically significant. For the Riemann zeta function $\zeta(s)$, it is the ratio $m_1 := m/\zeta(2)$ for the mass m of Siegel–Shimura [AQF, §3.17] for the quadratic space D_0 with respect to the lattice L for the level N of $\theta(\phi)$ (and F). The Siegel–Weil formula by Weil [W65, no.52] is formulated with respect to the Tamagawa measure $d\omega$ for the orthogonal group O_{D_0}, while the period is computed with respect to another canonical measure $d\mu_\mathfrak{h}$ with volume 1 over the image of $R_{0}(\mathfrak{N}) \in O_{D_0}(\mathbb{A}^{(\infty)})$. One can define the mass m to be the ratio $d\mu_\mathfrak{h}/4d\omega$ (we need to have $\frac{1}{2}d\omega$ as the Tamagawa number of O_{D_0} is equal to 2; see [MSS, (5.3.3)]). In the three dimensional case, apart from some initial (partial) results by Siegel, the exact form of the mass m was not known until Shimura’s determination for all quadratic spaces over a totally real field in [Sh99], and by his formula, m in our case is a multiple of $\zeta(2)$ by a simple (but hard to determine) constant m_1, though, as Siegel discovered, m_1 is a product of local factors. Our formula resembles the Siegel–Shimura mass formula (with $L(1, \text{Ad}(F) \otimes \chi_E)$ in place of $\zeta(2)$), particularly when D is definite (see §5.4).

Shintani [S75] and Waldspurger [W81] had another idea of computing the Fourier expansion on the metaplectic side of the theta descent (the adjoint map of theta left) from O_{D_0}, and the period of the form P is expected to show up as a Fourier coefficient of the Doi-Naganuma descent from O_{D_0}.

More precisely the coefficient in $e(\pm N(\alpha)\tau)$ (or $e(\pm N(\alpha)\tau)$) for $\alpha \in D^\times_s \cap D^E_{\mathbb{A}}$ with the variable $\tau \in \mathfrak{H}$ on the metaplectic side is the period with respect to an orthogonal group O_{α} depending on α times the adjoint mass m_α dependent on α (see Theorems 4.8, 5.8, 7.5 and 8.4), where $m_\alpha = m_1$ if α is a scalar in Z. The even Clifford group of O_{α} is the multiplicative group of a quaternion subalgebra $D_\alpha \subset D_E$ over \mathbb{Q} dependent on α and $D_\alpha = D$ if $0 \neq \alpha \in Z$. When E is imaginary,
those α appearing in the q-expansion must satisfy $D_\alpha \otimes_\mathbb{Q} \mathbb{R} \cong M_2(\mathbb{R})$, while if E is real, all quaternion subalgebras over \mathbb{Q} of D_E appear.

The result in this paper should be generalized to a general base field and low dimensional quadratic spaces V. The author plans to do all computations in near future, as he hopes to make progress in the integral period relations predicted in [DHI] and [H99] of the above type of periods, where in the latter paper, the computation of P was done for D given by the 2×2 matrix algebra over the base field E_+ with $E = E_+ \times E_+$ without recourse to the theta correspondence, and the result in [H99] has been used in the study of period relations in [TU21].

Contents

1. Theta correspondence 4
 1.1. Weil representation 4
 1.2. Siegel–Weil theta series 5
 1.3. Explicit form of metaplectic groups 5
2. Rankin convolution 7
 2.1. Adelic Fourier expansion cusp forms of integral weight 7
 2.2. Adelic Fourier expansion, cusp forms of half integral weight 9
 2.3. Eisenstein series 10
 2.4. Adelic Rankin product, integral weight versus half integral weight 11
 2.5. Adelic Rankin product for cusp forms of mixed weight 14
3. Quadratic space over \mathbb{Q} 16
 3.1. List of quadratic spaces we study 16
 3.2. Choices of D for a fixed D_E 18
4. Period for indefinite D_σ with E real 20
 4.1. Explicit form of Siegel–Weil theta series 20
 4.2. Differential form coming from theta series 21
 4.3. Factoring the theta series 22
 4.4. Siegel–Weil formula and period integrals 24
 4.5. Mass factor m 24
 4.6. Choice of ϕ_Z 27
 4.7. Verification of the assumption (V) 27
 4.8. Verification of the assumption (Key) 28
 4.9. The period is an L-value 29
 4.10. Fourier expansion of theta descent 30
5. Definite D with E real 36
 5.1. Definite theta series 37
 5.2. Factoring theta series in the definite case with E real 37
 5.3. Siegel–Weil formula in the definite case 38
 5.4. Mass formula and the adjoint L-value formula 39
 5.5. Fourier expansion of theta descent for $E = \mathbb{Q} \times \mathbb{Q}$ and definite D. 39
 5.6. Hecke equivariance of θ_* 41
 5.7. Congruence number formula 41
 5.8. Fourier expansion of theta descent for definite D and real E 42
6. General theory for imaginary E 45
 6.1. Cohomological modular forms on $\text{SL}_2(\mathbb{C})$ 45
 6.2. Realization of $D_\sigma^+ \mathbb{C}$ 45
 6.3. Locally constant sheaves on $\Gamma_\phi \backslash \mathcal{H}$ 47
 6.4. Vector valued theta series for imaginary E 48
 6.5. Explicit form down to earth of Schwartz functions 49
 6.6. Invariant pairings and differential operators 50
 6.7. Invariance of $[\alpha; x]$ 51
 6.8. Relation between $\text{SU}_2(\mathbb{R})$-polynomial representations 51
 6.9. Vanishing of $([\alpha; x]^n, f)$ if $D_{\alpha, \mathbb{R}} \cong \mathbb{H}$ 53
 6.10. Theta differential form 54
7. Definite D with imaginary E 55
7.1. Siegel–Weil formula for definite D and imaginary E 55
7.2. Theta descent 56
7.3. Vanishing of Fourier coefficients of $e(N(α)τ)$ when $D_{α,R} \cong \mathbb{H}$ 58
7.4. Computation of Fourier coefficients of $e(±N(α)τ)$ when $D_{α,R} \cong M_2(\mathbb{R})$ 59
8. Indefinite D with E imaginary 63
8.1. Analytic theta differential form 63
8.2. Siegel–Weil formula in the indefinite imaginary case 65
8.3. Computation of Fourier coefficients of theta descent in Case II 66
References 67

1. Theta correspondence

We describe basics of theta correspondences between the metaplectic cover Mp of $SL(2)$ and orthogonal groups O_V for quadratic spaces V over \mathbb{Q}. Write U for the upper unipotent subgroup of $SL(2)$ and T for the diagonal torus of $SL(2)$ and put $B = TU \subset SL(2)$ (the upper triangular Borel subgroup).

1.1. Weil representation. Let (V,Q) be a quadratic space over \mathbb{Q} with dimension m. The quadratic form $V \ni x \mapsto Q(x) \in \mathbb{Q}$ produces a \mathbb{Q}-bilinear symmetric pairing $s(x,y) = Q(x+y) − Q(x) − Q(y)$. We choose a basis v_1, \ldots, v_m of V over \mathbb{Q} and define $S = (s(v_i,v_j))_{i,j} \in M_m(\mathbb{Q})$. The discriminant $d(V) := \det(S)$ modulo $(\mathbb{Q}^\times)^2$ is well defined independent of the choice of the basis. We also denote this class modulo square as $d(V)$. In particular, $k_V := \mathbb{Q}[\sqrt{(-1)^{m(m-1)/2}\det(Q)}]$ is \mathbb{Q} or a quadratic extension of \mathbb{Q} independent of the choice of the basis. If $m = \dim V$ is even, we put χ_V for the character $(\frac{k_V}{\mathbb{Q}})$. If m is odd, χ_V is the “Neben” character of half integral weight for the characteristic function of a maximal lattice of V (we will specify it later in §3.1 for specific V).

Define $e = e_A : A/\mathbb{Q} \to S^1$ be the standard additive character such that $e_A(x) = \exp(2\pi i x)$ for $x \in \mathbb{Q}_\infty = \mathbb{R}$. Write \mathbb{A} for the adele ring of \mathbb{Q} and $A^{(v)} = A \cap \prod_{v \neq \infty} \mathbb{Q}_v$ for a place v of \mathbb{Q}.

The group $SL_2(k)$ for a field k is generated by $J := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, diagonal matrices and upper unipotent matrices [PAF, Lemma 4.46]; so, the density of $SL_2(\mathbb{Q}) \subset SL_2(A^{(v)})$ (removing one place v by strong approximation tells us that $SL_2(A^{(v)})$ is topologically generated by these elements. By Iwasawa decomposition, $SL_2(A) = SL_2(A^{(\infty)}) \times SL_2(\mathbb{R})$ is generated by $B(\mathbb{A})SO_2(\mathbb{R})$ and J. Write $S(V)$ for the space of Schwartz-Bruhat functions on $V_X = V \otimes_{\mathbb{Q}} X$ for $X = \mathbb{Q}_p, \mathbb{R}, A, A^{(\infty)}$.

Well defined in [W64, no.13] an action of $U(X), T(X)$ and $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ on $S(V_X)$ as follows:

$$r\left(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}\right) \phi(v) = e_A(\langle Q(v)\rangle) \phi(v), \quad r\left(\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}\right) \phi(v) = |a|^{m/2} \phi(av) \quad \text{and} \quad r(J)\phi(v) = \widehat{\phi}(v),$$

where $\phi \mapsto \widehat{\phi}$ is the Fourier transform with respect to $e_A(s(x,y))$ normalized so that $\widehat{\phi}(x) = \phi(-x)$. By computation, $r(-1)$ commutes with $r(g)$ for all g as above, and $r(-1)\phi(v) = \phi(-v)$.

The metaplectic group $Mp(X)$ is defined to be the subgroup of the continuous \mathbb{C}-linear automorphism group $\text{Aut}(S(V_X))$ generated by $r(g)$ for g as in (1.1). Since it is known that $r(gg') = r(g)r(g')$ up to scalars $z \in \mathbb{C}$ with $|z| = 1$, we have a canonical exact sequence of locally compact groups:

$$1 \to S^1 \to Mp(X) \to SL_2(\mathbb{R}) \to 1,$$

where $S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}$ acts on ϕ by scalar multiplication $\phi \mapsto z\phi$. The center of $Mp(X)$ is isomorphic to $S^1 \times \{ \pm 1 \}$ generated by S and $r(-1)$ ($(z, -1) \in S^1 \times \{ \pm 1 \}$ acts as $\phi(v) \mapsto z\phi(-v)$).

Let $\Omega = \left\{ \begin{pmatrix} c & d \\ a & b \end{pmatrix} \in SL_2(\mathbb{A}) \mid c \in \mathbb{A}^\times \right\}$. Then, we have $r(b)r(\sigma)r(b') = r(\sigma abb')$ for $b, b' \in B(\mathbb{X})$ and $\sigma \in \Omega$ [W64, no.32]. Weil made a canonical section $r_{\Omega} : SL_2(\mathbb{Q}) \to Mp(A)$ which coincides with r on Ω [W64, no.40]. We identify $SL_2(\mathbb{Q})$ with the image of r_{Ω} in $Mp(A)$. The action of $Mp(X)$ on $S(V_X)$ gives rise to the Weil representation w of the metaplectic group $Mp(X)$ into $\text{Aut}(S(V_X))$.

Let O_V be the orthogonal group for V over \mathbb{Q} and GO_V be its similitude group (acting from the right on V); so,

$$GO_V(A) = \{ \alpha \in GL(V \otimes \mathbb{A}) | Q(x) = \nu_V(\alpha)Q(x) \text{ with } \nu_V(\alpha) \in A^\times \}$$
and $\text{SO}_V = \text{SL}(V) \cap \text{O}_V$. We let $g \in \text{GO}_V(\mathbb{A})$ acts on $\mathcal{S}(V)$ by

$$L(g)\phi(v) = |\nu_V(g)|_v^{-m/2} \phi(vg).$$

1.2. Siegel–Weil theta series. By [W64], the action \mathbf{w} and L on $\text{Mp}(\mathbb{A}) \times \text{O}_V(\mathbb{A})$; so, we may regard $\mathbf{w} \otimes L$ as a representation of $\text{Mp}(\mathbb{A}) \times \text{O}_V(\mathbb{A})$. The following result is [W64, Théorème 6].

Theorem 1.1. The generalized theta series of Siegel–Weil

$$\theta(\phi)(x; g) = \sum_{v \in V} (\mathbf{w}(x)L(g)\phi)(v) \quad \text{(for each } \phi \in \mathcal{S}(V))$$

gives an automorphic form defined as a function on $(\text{SL}_2(\mathbb{Q}) \backslash \text{Mp}(\mathbb{A})) \times (\text{O}_V(\mathbb{Q}) \backslash \text{O}_V(\mathbb{A}))$.

1.3. Explicit form of metaplectic groups. The extension $S^1 \hookrightarrow \text{Mp}(\mathbb{A}) \twoheadrightarrow \text{SL}_2(\mathbb{A})$ actually descends down to $\mu_2 \hookrightarrow \text{SL}_2(\mathbb{A}) \twoheadrightarrow \text{SL}_2(\mathbb{A})$. In other words, the 2-cocycle: $\text{SL}_2(\mathbb{A}) \to S^1$ giving rise to the extension $\text{Mp}(\mathbb{A})$ is cohomologous to another one $\kappa : \text{SL}_2(\mathbb{A}) \to \mu_2$ with values in μ_2 (as we will describe it later in this subsection). As we will see, we have the following commutative diagram:

$$
\begin{array}{ccc}
\mu_2 & \longrightarrow & \text{SL}_2(\mathbb{A}) \\
\cap & & \cap \\
S^1 & \longrightarrow & \text{Mp}(\mathbb{A}) \longrightarrow \text{SL}_2(\mathbb{A}).
\end{array}
$$

The representation \mathbf{w} descends (non-canonically) to $\text{SL}_2(\mathbb{A})$ if $m = \dim V$ is even, and in this case, we can replace SL_2 by SL_2 choosing a descent.

For integers $a, b \neq 0$, we define Shimura’s symbol $(\frac{a}{b})$ in [Sh73, page 442] by

1. $$(\frac{a}{b}) = 0 \text{ if } (a, b) \neq 1 \text{ (where } (a, b) \text{ is the GCD of } a \text{ and } b),$$
2. b is an odd prime, $(\frac{a}{b})$ is the Legendre symbol (i.e., it is less one than the number of solutions of $x^2 \equiv a \pmod{b}$),
3. $b > 0, a \mapsto (\frac{a}{b})$ is a character modulo b,
4. $a \neq 0, b \mapsto (\frac{a}{b})$ is a character modulo $4a$ whose conductor is the conductor of $\mathbb{Q}[\sqrt{a}]$.
5. $\left(\frac{a}{-1}\right) = 1$ or -1 according as $a > 0$ or $a < 0$,
6. $\left(\frac{0}{1}\right) = 1$.

Consider $\theta : \mathcal{H} \to \mathbb{C}$ given by $\theta(\tau) = \sum_{n \in \mathbb{Z}} e(n^2\tau)$, where $\mathcal{H} = \mathcal{H}^+$ and

$$\mathcal{H}^\pm := \{z \in \mathbb{C} | \pm \text{Im}(z) > 0\},$$

which are isomorphic to $\text{SL}_2(\mathbb{R})/\text{SO}_2(\mathbb{R})$ by $g \to g(\pm \sqrt{-1})$ respectively.

Define for $\gamma \in \Gamma_0(4)$, $h(\gamma, \tau) := \theta(\gamma(\tau))/\theta(\tau)$. Then by [Sh73, (1.10)]

$$h((a \ b \ c \ d), \tau) = \varepsilon_d^{-1} \left(\frac{c}{d}\right) j((a b \ c d), \tau)^{1/2} \text{ with } j((a b \ c d), \tau) = \varepsilon_d + d,$$

where $\varepsilon^2 = \sqrt{|z|} \exp(\pi i \delta)$ if $z = |z| e(\delta)$ with $-\pi < \theta \leq \pi$ and $\varepsilon_d = \sqrt{-1}$ or 1 according as $d \equiv 3$ or 1 mod 4.

We can realize $\text{SL}_2(\mathbb{R}) = \{ (g, J(g, \tau)) | g \in \text{SL}_2(\mathbb{R}), J(g, \tau)^2 = j(g, \tau) \}$ with multiplication given by $(g, J(g, \tau))(h, J(h, \tau)) = (gh, J(h, \tau)J(h, \tau))$. Here $\tau \mapsto J(g, \tau)$ is supposed to be a holomorphic function on \mathcal{H}. Thus we have the central extension $\mu_2 \hookrightarrow \tilde{\text{SL}}_2(\mathbb{R}) \twoheadrightarrow \text{SL}_2(\mathbb{R})$ with $i(-1) = (1, -1)$ and $\pi(g, J) = g$. The center of SL2 is given by $\mu_2 \times \mu_2$. Then we can extend the covering $\mu_2 \hookrightarrow \tilde{\text{SL}}_2(\mathbb{A}) \twoheadrightarrow \text{SL}_2(\mathbb{A})$ so that the covering is trivial on $\text{SL}_2(\mathbb{Q})$ as described in §1.1. The map $\Gamma_0(4) \to \gamma \mapsto (\gamma, h(\gamma, \tau) \in \text{Mp}(\mathbb{R})$ is an embedding of a group.

There is an explicit description of the 2-cocycle $a_v(x, y)$ by T. Kubota [K67] giving the covering of $\text{SL}_2(\mathbb{Q}_v)$. For a local field \mathbb{Q}_v, it is expressed by Hilbert’s symbol (\cdot, \cdot) with values in μ_2 [BNT, XIII.5], and the product formula [BNT, Proposition XIII.5.8] of Hilbert’s symbol provides the splitting over $\text{SL}_2(\mathbb{Q})$ (see [WRS, §2]). Here writing $x((\frac{a}{c} \ b \ d)) = c$ or d according as $c \neq 0$ or $c = 0$,

$$a_v(\gamma, \delta) = (x(\gamma), x(\delta))(-x(\gamma)^{-1}x(\delta), x(\gamma\delta)).$$
For $\Gamma \subset \text{SL}_2(\mathbb{Z})$, we write $\widehat{\Gamma}$ for the closure of Γ in $\text{SL}_2(\mathbb{Z})$, and put $\widehat{\Gamma}_\gamma(N) = \widehat{\Gamma}(N)$ for $\gamma = 0, 1$. To describe a splitting of $\text{Mp}(\mathbb{A}) \to \text{SL}_2(\mathbb{A})$ over an open compact subgroup of $\text{SL}_2(\mathbb{A}(\infty))$, we define $s_p : \text{SL}_2(\mathbb{Q}_p) \to \mu_2$ for a prime p by

$$s_p\left(\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)\right) = \begin{cases} (c, d) & \text{if } cd \neq 0 \text{ and } \text{ord}_p(c) \equiv 1 \mod 2, \\
1 & \text{otherwise}, \end{cases}$$

and for $\mathbb{Q}_\infty = \mathbb{R}$, $s_\infty := 1$ (the constant function). Then we modify a_ν as

$$\kappa_\nu(\gamma, \delta) = a_\nu(\gamma, \delta)s_\nu(\gamma)s_\nu(\delta)s_\nu(\gamma\delta).$$

Thus the 2-cocycle κ_ν define an isomorphic central extension $\widetilde{\text{SL}}_2(\mathbb{Q}_\nu)$ of $\text{SL}_2(\mathbb{Q}_\nu)$ by μ_2. This modification makes κ_ν trivial on $\widehat{\Gamma}(4)$ [WRS, Proposition 2.8] and $\kappa(\gamma, \delta) = \prod_\nu \kappa_\nu(\gamma_\nu, \delta_\nu)$ makes sense for $(\gamma, \delta) \in \text{SL}_2(\mathbb{A})$. Thus the product cocycle gives the metaplectic extension $\widetilde{\text{SL}}_2(\mathbb{A}(\infty)) \to \text{SL}_2(\mathbb{A}(\infty))$. We extend this to $\text{SL}_2(\mathbb{A})$ by

$$\text{SL}_2(\mathbb{A}) = \{(g^{(\infty)}, \epsilon^{(\infty)})(g, \tau)|(g^{(\infty)}, \epsilon^{(\infty)}) \in \text{SL}_2(\mathbb{A}(\infty)) \times \mu_2, (g, J(g, \tau)) \in \widetilde{\text{SL}}_2(\mathbb{R})\}$$

with the product given by

$$(g, \epsilon^{(\infty)}J(g, \tau), h, \zeta^{(\infty)}J(h, \tau)) = (gh, \kappa(g, h)\epsilon^{(\infty)}\zeta^{(\infty)}J(g, h, \tau)J(h, \tau)).$$

This definition is an amalgamation of Shimura's definition of $\widetilde{\text{SL}}_2(\mathbb{R})$ in [Sh73] and that of $\widetilde{\text{SL}}_2(\mathbb{A})$ by Kubota–Gelbart [WRS]. Defining $z^{1/2} = \sqrt{r}e^{i\theta/2}$ if $z = re^{i\theta}$ with $\theta \in (-\pi, \pi]$, Shimura's group is isomorphic to the metaplectic cover of $\text{SL}_2(\mathbb{R})$ defined in [WRS, §2] by the cocycle κ_∞ via sending the pair $(g, J(g, \tau))$ to $(g, J(g, \tau)\cdot (c - d)^{1/2})$ in $\text{SL}_2(\mathbb{R})$, since $(g, h) \mapsto (J(gh, \tau)J(g, h(\tau))J(h, \tau)$ is the 2-cocycle κ_ν by (1.4). Indeed, by (1.4), κ coincides with

$$\kappa^{(\infty)}(g, h)J(g, h, \tau)/J(g, h, \tau)J(h, \tau)$$

on $\widehat{\Gamma}_4(4)$, and by strong approximation and triviality on $\text{SL}_2(\mathbb{Q}) \subset \widetilde{\text{SL}}_2(\mathbb{A})$, they coincide on $\widehat{\Gamma}_4(4)\text{SL}_2(\mathbb{Q})$ whose image in $\widetilde{\text{SL}}_2(\mathbb{R})$ is dense. The commutativity of the diagram (1.2) is clear from the above definition of $\widetilde{\text{SL}}_2(\mathbb{A})$ adapted to theta series automorphic factors.

Sending the set theoretic product $\text{SL}_2(\mathbb{Q}_\nu) \times \mu_2$ into $\text{SL}_2(\mathbb{A}) \times \mu_2$ produces group homomorphism $\text{SL}_2(\mathbb{Q}_\nu) \to \text{SL}_2(\mathbb{A})$. In particular, we have commutative diagrams

$$\begin{array}{ccc}
\mu_2 & \longrightarrow & \widetilde{\text{SL}}_2(\mathbb{A}) \\
\| & & \| \\
\mu_2 & \longrightarrow & \text{SL}_2(\mathbb{R})
\end{array}$$

and

$$\begin{array}{ccc}
\mu_2 & \longrightarrow & \widetilde{\text{SL}}_2(\mathbb{A}(\infty)) \\
\| & & \| \\
\mu_2 & \longrightarrow & \text{SL}_2(\mathbb{A}(\infty)).
\end{array}$$

Then one can define $\widetilde{\text{SL}}_2(\mathbb{A}) = (\widetilde{\text{SL}}_2(\mathbb{A}(\infty)) \times \widetilde{\text{SL}}_2(\mathbb{R}))/\Delta(\mu_2)$ for the diagonal embedding $\Delta : \mu_2 \to \text{SL}_2(\mathbb{A}(\infty)) \times \text{SL}_2(\mathbb{R})$.

For $g \in \text{SL}_2(\mathbb{A}) (\pi(g) \in \text{SL}_2(\mathbb{A}))$, we write the projection to $\widetilde{\text{SL}}_2(\mathbb{R})$ as $g_\infty = (\pi(g)_\infty, J(\pi(g)_\infty, \tau))$. The map $\text{SL}_2(\mathbb{A}) \ni g \mapsto (g, 1) \in \text{SL}_2(\mathbb{A})$ (for $\mathbb{A} = \mathbb{Q}_\nu, \mathbb{A}, \mathbb{A}(\infty)$) is not a group homomorphism. We simply write $J(g, \tau)$ for $J(\pi(g), \tau)$ and $g_\infty(\sqrt{-1}) = \pi(g)(\sqrt{-1}) \in \mathfrak{F}$. We put $C_\infty = \pi^{-1}(\text{SO}_2(\mathbb{R})) \subset \text{Mp}(\mathbb{A})$.

We have a splitting \(r_\mathbb{Q} \) over \(\text{SL}_2(\mathbb{Q}) \) into \(\widetilde{\text{SL}}_2(\mathbb{A}) \) as described in §1.1. Thus \(\Gamma_1(4) \subset \text{SL}_2(\mathbb{Q}) \subset \widetilde{\text{SL}}_2(\mathbb{A}) \) and a commutative diagram:

\[
\begin{array}{ccc}
\Gamma_1(4) & \longrightarrow & \widetilde{\text{SL}}_2(\mathbb{A}) \\
\uparrow & & \uparrow \\
\Gamma_1(4) & \longrightarrow & \text{SL}_2(\mathbb{R}).
\end{array}
\]

This inclusion of \(\Gamma_1(4) \) extends to \(\widehat{\Gamma}_1(4) \hookrightarrow \widetilde{\text{SL}}_2(\mathbb{A}^{(\infty)}) \) [WRS, Proposition 2.8], and we have a commutative diagram:

\[
\begin{array}{ccc}
\widehat{\Gamma}_1(4) & \longrightarrow & \widetilde{\text{SL}}_2(\mathbb{A}^{(\infty)}) \\
\uparrow & & \uparrow \\
\Gamma_1(4) & \longrightarrow & \text{SL}_2(\mathbb{Q}).
\end{array}
\]

Since \(h(\gamma, \tau) \) in (1.4) involves \(\varepsilon_d \in \mu_4 \) and \(h((a, b)_c \, d), \tau)^2 = (\frac{a}{d}) \tau \) for \((a, b) \in \Gamma_0(4) \), we can embed \(\Gamma_0(4) \hookrightarrow \text{Mp}(\mathbb{R}) \) by \(\gamma \mapsto \tilde{\gamma}_\infty := (\gamma, h(\gamma, \tau)) \). Since \(\text{SL}_2(\mathbb{Q}) \hookrightarrow \text{Mp}(\mathbb{A}) \), by \(\Gamma_0(4) \ni \gamma \mapsto \gamma \gamma^{-1}_\infty \), we get an embedding \(\Gamma_0(4) \hookrightarrow \text{Mp}(\mathbb{A}^{(\infty)}) \). Then we put \(\widehat{\Gamma}_0(4) := \widehat{\Gamma}_1(4) \Gamma_0(4) \subset \text{Mp}(\mathbb{A}^{(\infty)}) \). Therefore

\[
\text{(1.8)} \quad \text{we can lift the inclusion} \quad \widehat{\Gamma}_1(4) \hookrightarrow \widetilde{\text{SL}}_2(\mathbb{A}^{(\infty)}) \quad \text{to} \quad \widehat{\Gamma}_0(4) \hookrightarrow \text{Mp}(\mathbb{A}^{(\infty)}).
\]

Define \(\phi \in S(\mathbb{A}) \) by \(\phi(x) = \begin{cases} 0 & \text{if } x^{(\infty)} \not\in \mathbb{Z}, \\ e(\sqrt{-1} x^{(\infty)}_\infty) & \text{if } x^{(\infty)} \in \mathbb{Z}. \end{cases} \) Let \(\theta(g) := \sum_{n \in \mathbb{Q}} r(g) \phi(n) \) for \(g \in \text{Mp}(\mathbb{A}) \) taking the quadratic space \((\mathbb{Q}, x^2) \). By definition, for \(\tau = \xi + \eta \sqrt{-1} \in \mathcal{H} \) and \(g_\tau = \eta^{-1/4} \left(\begin{smallmatrix} g & \xi \\ \bar{\xi} & \bar{g} \end{smallmatrix} \right) \),

\[
\theta(\tau) = \theta(g_\tau) = \eta^{1/4} \sum_{n \in \mathbb{Z}} e(n^2 \tau).
\]

For \(\gamma \in \Gamma_0(4) \),

\[
\theta((g_\tau, \eta^{-1/4}(\gamma)) = \theta(\gamma^{-1} g_\tau, \eta^{-1/4}) \]

\[
= \theta((\gamma^{-1}, \theta(\gamma^{-1}(\gamma)))(g_\tau, \eta^{-1/4}) = \theta(g_\gamma^{-1}(\gamma)) \theta(\gamma^{-1}(\gamma))/\theta(\gamma)^{-1} = \theta(g_\gamma). \]

Since we made splitting of \(\pi_\mathbb{R} : \text{Mp}(\mathbb{R}) \twoheadrightarrow \text{SL}_2(\mathbb{R}) \) over \(\Gamma_0(4) \) by setting \(h(\gamma, \tau) := \theta(\gamma(\tau))/\theta(\gamma) \), the above argument is essentially tautology. Anyway, since \(\widehat{\Gamma}_0(4) \) is a closure of \(\Gamma_0(4) \) in \(\text{Mp}(\mathbb{A}^{(\infty)}) \), the stability of \(\theta \) under \(\Gamma_0(4) \) implies

Lemma 1.2. The above theta function \(\theta \) is fixed by the right multiplication by \(\widehat{\Gamma}_0(4) \) embedded in \(\text{Mp}(\mathbb{A}) \).

2. Rankin convolution

We make explicit adelic Rankin convolution in [LFE, Chapter 9] in the ordinary and the metaplectic cases.

2.1. Adelic Fourier expansion cusp forms of integral weight.

Let \(F \in S_\kappa(\Gamma_0(C), \varphi) \) be a cusp form of weight \(\kappa \) for \(0 < \kappa \in \mathbb{Z} \), where \(\varphi \) is a Dirichlet character modulo \(C \) and \(\varphi((a, b)_{c \, d}) = \varphi(d) \) for \((a, b) \in \Gamma_0(C) \). Then \(F(\gamma(\tau)) = \varphi(\gamma) F(\tau) j(\gamma, \tau)^\kappa \) for \(j(\gamma, \tau) \) as in (1.4). The character \(\varphi : \Gamma_0(C) \to \mathbb{C}^\times \) extends to \(\varphi : \widehat{\Gamma}_0(C) \to \mathbb{C}^\times \) by continuity. Then \(\varphi((a, b)_{c \, d}) = \varphi(d c \mod C\mathbb{Z}) \) for \(Z_C = \prod_{l | C} Z_l \) and the projection \(d_C \) of \(d \) to \(Q_C := \prod_{l | C} Q_l \).

Since \(\mathbb{A}^X/Q^X \mathbb{R}^X \cong \mathbb{Z}^X \to \mathbb{C}^X \), we extend \(\varphi \) to a character \(\varphi^* : \mathbb{A}^X/Q^X \to \mathbb{C}^X \) so that \(\varphi^*(l) = \varphi(l) \) for primes \(l \nmid C \) regarded in \(Q_l^X \subset \mathbb{A}^X \). We lift \(F \) to \(\mathbf{F} : \text{SL}_2(\mathbb{Q}) \backslash \text{SL}_2(\mathbb{A}) \to \mathbb{C} \) by putting

\[
\mathbf{F}(\alpha u) = \varphi^*(u) f(u_{\infty}(\sqrt{-1})) j(u_{\infty}, \sqrt{-1})^{-\kappa}
\]

for \(\alpha \in \text{SL}_2(\mathbb{Q}) \) and \(u \in \widehat{\Gamma}_0(C) \text{SL}_2(\mathbb{R}) \) [H10, §1.1], where \(\varphi^*(u) = \varphi(u)^{-1} \).
Define an idele character $\varphi : \mathbb{A}^\times / \mathbb{Q}^\times \to \mathbb{C}^\times$ by $\varphi(a) = \varphi^*(a)|a|_{A}^{-\infty}$. Write the Fourier expansion of F as $F(\tau) = \sum_{n=1}^{\infty} a_n(F) e(n\tau)$. For $g \in B(\mathbb{Z})B(\mathbb{R})$ with $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, the adelic Fourier expansion of $F(\tau)$ is

$$F(g) = \varphi^*(a(\infty))^{-1} a_\infty^{\infty} \sum_{n=1}^{\infty} a_n(F) e(n\tau) = \varphi^{-1}(a) \sum_{n=1}^{\infty} a_n(F) \exp(-2\pi n a_\infty^2) e(na_\infty b_\infty).$$

Recall the additive character $e : \mathbb{Q} \setminus \mathbb{A} \to \mathbb{C}^\times$ defined by

$$e(x) = \prod_{v} e(x_v)$$

with $e(x_v) = \exp(-2\pi \sqrt{-1} |x_v|)$ if v is a prime l for the fraction part $[x_v]_l$ for the l-adic expansion of x and $e(x_\infty) = \exp(2\pi \sqrt{-1} x_\infty)$. Let $v(u) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in U(\mathbb{A})$. Then for $b = v(u) \text{diag}[a, a^{-1}] \in B(\mathbb{A})$, write $F(a, u) := F(b)$. Since $F(a, u + \alpha) = F(v(\alpha)b) = F(a, u)$ for $\alpha \in \mathbb{Q}$, we have the adelic Fourier expansion of $F(a, u)$ over $u \in \mathbb{A}$:

$$F(a, u) = \sum_{\alpha \in \mathbb{Q}} a_F(\alpha; a) e(\alpha u).$$

By $\text{diag}[\beta, \beta^{-1}] v(u) \text{diag}[a, a^{-1}] = v(\beta^2 u) \text{diag}[\beta a, (\beta a)^{-1}]$, we have

$$\sum_{\alpha \in \mathbb{Q}} a_F(\alpha; a) e(\alpha u) = F(a, u) = F(\beta a, \beta^2 u) = \sum_{\alpha \in \mathbb{Q}} a_F(\alpha; \beta a) e(\alpha \beta^2 u).$$

From the uniqueness of the Fourier expansion, we conclude

$$a_F(\alpha; a) = a_F(\alpha; a \beta^{-2}, \beta a) \quad \text{for } \beta \in \mathbb{Q}^\times \text{ and } \alpha \in \mathbb{Q},$$

$$a_F(\alpha; a) = \varphi^{-1}(a) a_\alpha(\beta a) \exp(-2\pi \alpha a_\infty^2) \quad \text{if } 0 < \alpha \in \mathbb{Z} \text{ and } a \in \mathbb{A}_1^\times.$$

By $v(u) \text{diag}[a, a^{-1}] \text{diag}[t, t^{-1}] = v(u) \text{diag}[ta, (ta)^{-1}]$, for $t \in \mathbb{Z}^\times \mathbb{R}^\times$, we get

$$a_F(\alpha; at) = \varphi^{-1}(t(\infty)) a_F(\alpha, a).$$

If $x \in \mathbb{Q}^\times (\mathbb{A}^\times)^2 \cap \mathbb{A}^\times$, choose $\alpha \in \mathbb{Q}$, and $a \in \mathbb{A}^\times$ so that $x = a a_\infty^2$, define

$$a_F(\alpha a^2) := \varphi(\alpha) a_F(\alpha, a) \exp(2\pi \alpha a_\infty a_\infty^2),$$

which is equal to $a_\alpha(F)$ if $0 < \alpha \in \mathbb{Z}$ and $a \in \mathbb{A}_1^\times$, and $a_F(x) = 0$ if $x \notin \mathbb{Z} (\mathbb{Z}^\times \mathbb{R}^\times)^2$. If $\alpha a_\infty^2 (\mathbb{Z}^\times)^2 = \beta b^2 (\mathbb{Z}^\times)^2$, then writing $\alpha a_\infty = \beta b^2 t^2$ for $t \in \mathbb{A}_1^\times$, we have

$$a_F(\alpha a^2) := \varphi(\alpha) a_F(\alpha, a) \exp(2\pi \alpha a_\infty a_\infty^2) = \varphi(\alpha) a_F(\alpha a^2) \exp(2\pi (\alpha a_\infty a_\infty^2) (\beta a)^2)$$

$$= \varphi(\beta a) a_F(\alpha \beta^{-2}, \beta a) \exp(2\pi (\alpha a_\infty a_\infty^2) (\beta a)^2),$$

since $\varphi(\beta a) = \varphi(a)$. By (2.3), this shows that $a_F(x)$ is well defined independent of the choice of the expression $x = a a_\infty^2$ with $a \in \mathbb{A}^\times$ and $\alpha \in \mathbb{Q}^\times$.

Since

$$F(at, u) = F(a(u) \begin{pmatrix} at & 0 \\ 0 & (at)^{-1} \end{pmatrix}) = F(b \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}) = \varphi^*(t(\infty))^{-1} F(b \begin{pmatrix} t_\infty & 0 \\ 0 & t_\infty \end{pmatrix}) = \varphi^{-1}(t) F(at, u)$$

for $\varphi(t) = \varphi^*(t(\infty))|t|_{\mathbb{A}}^{-\infty}$, we have

$$\sum_{\alpha \in \mathbb{Q}} a_F(\alpha; at) e(\alpha u) = \varphi^{-1}(t) \sum_{\alpha \in \mathbb{Q}} a_F(\alpha; at_\infty) e(\alpha u) \quad \text{for } t \in \mathbb{A}_1^\times \mathbb{R}^\times.$$

This shows, for $t \in \mathbb{A}_1^\times \mathbb{R}^\times$,

$$\varphi^{-1}(at) a_F(\alpha a^2 t^2) \exp(-2\pi (\alpha a_\infty a_\infty^2)) = a_F(a, at) = \varphi^{-1}(t) a_F(\alpha; at_\infty) \exp(-2\pi (\alpha a_\infty a_\infty^2))$$

$$= \varphi^{-1}(t) \varphi(a)^{-1} a_F(\alpha a^2) \exp(-2\pi (\alpha a_\infty a_\infty^2)),$$

and

$$a_F(x) = a_F(x t^2) \quad \text{for } t \in \mathbb{A}_1^\times \mathbb{R}^\times,$$

$$F(a, u) = F(v(u) \text{diag}[a, a^{-1}]) = \varphi^{-1}(a) \sum_{\alpha \in \mathbb{Q}} a_F(\alpha a^2) e(\alpha a_\infty a_\infty^2 \sqrt{-1}) e(\alpha u).$$
Since a_F is supported over $\mathbb{A}_e^\times = \mathbb{A}^{(\infty)}\mathbb{R}_e^\times$, a_F only depends on the finite part of the idele.

2.2. Adelic Fourier expansion, cusp forms of half integral weight. We describe in detail the adelic Fourier expansion in case of half integral, though the discussion is similar to the integral weight case.

Writing the level of a half integral weight modular form as M, so, $4 | M$. Let $f \in S_{k/2}(\Gamma_0(M), \psi_1)$ be a cusp form of weight $\frac{k}{2}$ for odd k, where ψ_1 is an even Dirichlet character modulo M. Then $f(\gamma(\tau)) = \psi_1(\gamma)f(\tau)h(\gamma, \tau)^k$ for $\gamma \in \Gamma_0(M)$ and $h(\gamma, \tau)$ in (1.4), and as before $\psi_1\left(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)\right) = \psi_1(d)$ for $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma_0(M)$. The cuspidal form f has its Fourier expansion: $f(\tau) = \sum_{n=1}^{\infty} a_n(f)e(n\tau)$. As before, we extend ψ_1 to a character of $\mathbb{A}_e^\times \rightarrow \mathbb{C}^\times$ and then ψ_1^\ast to $\tilde{\Gamma}_0(M)$. We lift f to $f: \text{SL}_2(\mathbb{Q}) \backslash \text{Mp}(\mathbb{A}) \rightarrow \mathbb{C}$ by putting

\begin{equation}
(2.7) \quad f(\alpha(u, \zeta(u, \tau))) = \psi_1^\ast(u)f(u_{\infty}(\sqrt{-1}))^k J(u_{\infty}, i)^{-k}
\end{equation}

for $\alpha \in \text{SL}_2(\mathbb{Q}) \subset \text{Mp}(\mathbb{A})$ and $(u, J(u_{\infty}, \tau)) \in \tilde{\Gamma}_0(M)\text{Mp}(\mathbb{R})$ ($\zeta \in S^1$ and $u_{\infty} = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)$) regarding $\text{SL}_2(\mathbb{R}) \subset \text{SL}_2(\mathbb{A}) \subset \text{Mp}(\mathbb{A})$ by (1.6).

Since $B(\mathbb{A})$ is canonically lifted into $\text{Mp}(\mathbb{A})$ by r and this lifting coincides with the splitting $\text{SL}_2(\mathbb{Q}) \hookrightarrow \text{Mp}(\mathbb{A})$ over $B(\mathbb{Q})$ as already remarked, we regard $B(\mathbb{A}) \subset \text{SL}_2(\mathbb{A}) \subset \text{Mp}(\mathbb{A})$ and think of $f|_{B(\mathbb{A})}$. We get back to $f(\tau)$ by reversing the process:

\begin{equation}
(2.8) \quad f(\tau) := f(g_\tau, j(g_\tau, \tau)^{1/2})j(g_\tau, i)^{1/2} = f(g_\tau, \eta^{-1/2})\eta^{-k/4} \quad \text{for } g_\tau = \eta^{-1/2} \left(\begin{smallmatrix} \eta \xi \\ 0 \end{smallmatrix}\right),
\end{equation}

which is holomorphic in $\tau = \xi + \eta\sqrt{-1}$.

Write $\theta: \text{SL}_2(\mathbb{Q}) \backslash \text{Mp}(\mathbb{A}) \rightarrow \mathbb{C}$ for the lift of $\theta(\tau) = \sum_{n \in \mathbb{Z}} e(n^2\tau)$. We have an inclusion $\tilde{\Gamma}_0(4) \hookrightarrow \text{Mp}(\mathbb{A})$ as in (1.8). Since $B(\mathbb{Z}) \subset \tilde{\Gamma}_0(4)$, we regard $B(\mathbb{Z}) \subset \text{SL}_2(\mathbb{A})$. This inclusion coincides over $B(\mathbb{Z})$ with the one induced by r and hence matches with the inclusion $B(\mathbb{Q}) \hookrightarrow \text{SL}_2(\mathbb{A})$.

Define an idele character $\psi_1: \mathbb{A}_e^\times \rightarrow \mathbb{C}^\times$ by $\psi_1(a) = \psi_1^\ast(a)|a|^{-k/2}$. Thus for $g \in B(\mathbb{Z})B(\mathbb{R}) \subset \text{SL}_2(\mathbb{A})$ with $g = \left(\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}\right)$, from (2.7), we find for $\tau = a_{\infty}(a_{\infty}i + b_{\infty})$

\begin{equation}
(2.8) \quad f(g) = \psi_1^{-1}(a) \sum_{n=1}^{\infty} a_n(f)e(n\tau) = \psi_1^{-1}(a) \sum_{n=1}^{\infty} a_n(f) \exp(-2\pi na_{\infty}^2) e(na_{\infty}b_{\infty}).
\end{equation}

Let $v(u) = (\begin{smallmatrix} 1 \\ 0 \\ u \end{smallmatrix}) \in U(\mathbb{A})$. Then we consider for a general $b = v(u) \text{diag}[a, a^{-1}] \in B(\mathbb{A})$. Write $f(a, u) := f(b)$. Then $f(a, u + \alpha) = f(v(\alpha)b) = f(b)$ if $\alpha \in \mathbb{Q}$. Thus $f(a, u)$ has a Fourier expansion over $u \in \mathbb{A}$ of the form

\begin{equation}
(2.9) \quad f(a, u) = \sum_{\alpha \in \mathbb{Q}} amr(\alpha; a)e(\alpha u).
\end{equation}

By $\text{diag}[\beta, \beta^{-1}]v(u) \text{diag}[a, a^{-1}] = v(\beta^2u) \text{diag}[\beta a, (\beta a)^{-1}]$, we have

\begin{equation}
(2.9) \quad \sum_{\alpha \in \mathbb{Q}} ar(\alpha; a)e(\alpha u) = f(a, u) = f(\beta a, \beta^2 u = \sum_{\alpha \in \mathbb{Q}} ar(\alpha; \beta a)e(\alpha \beta^2 u).
\end{equation}

By the uniqueness of the Fourier expansion, we get

\begin{equation}
(2.10) \quad ar(a; a) = ar(\alpha; \beta^2, \beta a) \quad \text{and} \quad ar(a; a) = \begin{cases} \psi_1^{-1}(a)a(\alpha)f \exp(-2\pi a a_{\infty}^2) & \text{if } 0 < a \in \mathbb{Z}, \\ 0 & \text{otherwise.} \end{cases}
\end{equation}

By $v(u) \text{diag}[a, a^{-1}] \text{diag}[t, t^{-1}] = v(u) \text{diag}[ta, (ta)^{-1}]$, for $t \in \mathbb{Z}^\times \mathbb{R}_e^\times$, we get

\begin{equation}
(2.10) \quad ar(\alpha; at) = \psi_1^{-1}(t(\infty)) ar(\alpha, a).
\end{equation}

Define

\begin{equation}
(2.10) \quad ar(\alpha a^2) := \begin{cases} \psi_1(a)ar(\alpha, a) \exp(2\pi a a_{\infty} a_{\infty}^2) = a(\alpha) & \text{if } \alpha a^2 \in \mathbb{Z}(\mathbb{Z}^\times \mathbb{R}_e^2) \cap \mathbb{A}_e^\times, \\ ar(\alpha a^2) = 0 & \text{otherwise.} \end{cases}
\end{equation}
Thus a_t is supported over $\mathbb{Z}(\mathbb{R}^\times)^2 \cap A^\times$. If $aa^2(\mathbb{Z}^\times)^2 = \beta b^2(\mathbb{Z}^\times)^2$, then writing $aa^2a^2 = \beta b^2t^2$ for $t \in \mathbb{Z}^\times$, we have

$$a_t(aa^2) := \psi_1(a)a_t(a, a)\exp(2\pi\alpha_\infty a^2_\infty) = \psi_1(\alpha)a_t(\alpha\beta^{-2}, \beta)\exp(2\pi(\alpha_\infty\beta^{-2}_\infty)(\beta a^2_\infty))$$

$$= \psi_1(\beta)a_t(\alpha\beta^{-2}, \beta)\exp(2\pi(\alpha_\infty\beta^{-2}_\infty)(\beta a^2_\infty)),$$

since $\psi_1(\beta a) = \psi_1(a)$. This shows that $a_t(x)$ is well defined independent of the choice of the expression $x = aa^2$ with $a \in A^\times$ and $\alpha \in \mathbb{Q}^\times$.

Since

$$f(at, u) = f(\alpha(u) \left(\begin{array}{cc} a & 0 \\ 0 & (at)^{-1} \end{array} \right)) = f(b \left(\begin{array}{cc} t & 0 \\ 0 & t^{-1} \end{array} \right)) = \psi_1(t)^{-1}f(at, u)$$

for $\psi(t) = \psi_1(t^{(\infty)})|t|_\mathbb{A}^{-k/2}$, we have

$$\sum_{\alpha \in \mathbb{Q}} a_t(\alpha; at)e(\alpha u) = \psi_1^{-1}(t)\sum_{\alpha \in \mathbb{Q}} a_t(\alpha; at_\infty)e(\alpha u) \text{ for } t \in \mathbb{Z}^\times\mathbb{R}^\times.$$

This shows, for $t \in \mathbb{Z}^\times\mathbb{R}^\times$,

$$\psi^{-1}(at)a_t(\alpha a^2t^2)\exp(-2\pi(\alpha a^2t^2)_\infty) = a_t(\alpha, at) = \psi_1^{-1}(t)a_t(\alpha, at_\infty)\exp(-2\pi(\alpha a^2t^2)_\infty)$$

and

$$\psi^{-1}(at)a_t(\alpha a^2t^2)\exp(-2\pi(\alpha a^2t^2)_\infty) = \psi^{-1}(t)\psi(a)^{-1}a_t(\alpha a^2)\exp(-2\pi(\alpha a^2t^2)_\infty),$$

and

$$a_t(x) = a_t(x^2) \text{ for } t \in \mathbb{Z}^\times\mathbb{R}^\times.$$

Since a_t is supported over $A^\times = A^{(\infty)}\mathbb{R}^\times$, a_t only depends on the finite part of the idele. Thus we can recover

$$f(a, u) = f(v(u) \text{ diag}[a, a^{-1}]) = \psi(a)^{-1}\sum_{0 < \alpha \in \mathbb{Q}} a_t(\alpha a^2)\exp(-2\pi\alpha a^2_\infty)e(\alpha u).$$

Pick a Dirichlet character χ modulo N with $\chi(-1) = (-1)^{r(x)} (\epsilon(\chi) \in \{0, 1\})$ and consider the adelic form $\theta_{\epsilon(x)}(\chi)(\tau)$ corresponding to

$$\theta_{\epsilon(x)}(\chi)(\tau) = \sum_{\alpha \in \mathbb{Z}} \chi(\alpha)\alpha^{n^{(\infty)}}e(n^2\tau)$$

Note that $\theta_{\epsilon(x)}(\chi)(\tau) \in S_{\epsilon(x)}^+(\Gamma_0([4, N^2]), \chi_1) \text{ [Sh73, Proposition 2.2], where } \chi_1(d) = \chi \left(\frac{-1}{d} \right)^{e(x)}$ and $[4, N^2]$ is the LCM of 4 and N^2. Then $\theta_{\epsilon(x)}(\chi)$ is right invariant under $\Gamma_0([4, N^2])$.

(2.13) Taking $a \equiv n \pmod{N}$, we find $a_{\theta_{\epsilon(x)}(\chi)}(a^2) = \chi(n)|n|^{e(x)}$ and $a_{\theta_{\epsilon(x)}(\chi)}(x) = 0 \text{ if } x \notin (\mathbb{Z}^\times)^2$.

Define

$$\theta_j(\chi)(\tau) = \sum_{n \in \mathbb{Z}} \chi(n)\frac{n^j}{n^{2\tau}} \text{ and } \theta_j(\chi)(\tau) = d^r\theta_{\epsilon(x)}(\chi)(\tau) \text{ if } j = \epsilon(\chi) + 2r$$

for an integer $r \geq 0$ and $d = \frac{q^{-d}}{d^2} = 2\pi i\frac{\theta_j}{\gamma_j}$. If the parity of j and $\epsilon(\chi)$ does not match, $\theta_j(\chi) = \theta_j(\chi) = 0 \text{ (so, anyway, they are modular forms).}$

2.3. Eisenstein series. For the projection $\pi_X : \text{Mp}(X) \rightarrow \text{SL}_2(X)$, write $C_{\infty} := \pi_{\mathbb{R}}^{-1}(\text{SO}_2(\mathbb{R})) \subset \text{Mp}(\mathbb{R}) \subset \text{Mp}(A)$ and $\text{Mp}(\mathbb{Z}) := \pi_{\mathbb{Z}}^{-1}(\text{SL}_2(\mathbb{Z}))$. We have $B(A)\text{Mp}(\mathbb{Z})C_{\infty} = \text{Mp}(A)$ by Iwasawa decomposition. Note that $B(\mathbb{Q})\backslash B(A) = (A^\times/\mathbb{Q}^\times) \times A/\mathbb{Q}$. Since $\mathbb{Z} \times [0, 1)$ is the fundamental domain of the translation action of \mathbb{Q} on A, A/\mathbb{Q} is compact. Since $A^\times = \mathbb{Z}^\times\mathbb{R}^\times\mathbb{Q}^\times$, we find $A^\times/\mathbb{Q}^\times \cong \mathbb{Z}^\times\mathbb{R}^\times$. Thus $B(\mathbb{Q})\backslash B(A) \cong \mathbb{Z} \times \mathbb{Z}^\times \times \Gamma_\infty \backslash \mathfrak{H}$ for $\Gamma_\infty := \{ \pm \left(\begin{array}{cc} 1 & \tau \\ 0 & 1 \end{array} \right) \mid m \in \mathbb{Z} \}$.

Write $S^1 = \{ z \in \mathbb{C}^\times : |z| = 1 \}$ for the center of $\text{Mp}(X)$ (independent of the choice of X). Let

$$\Phi : B(\mathbb{Q})\backslash \text{Mp}(A) \rightarrow \mathbb{C}$$

be a continuous function such that

(1) if $z \in S^1$, $\Phi(zg) = \chi(z)\Phi(g)$ for a continuous character $\chi : S^1 \rightarrow \mathbb{C}^\times$,}
(2) For an open subgroup \(\hat{\Gamma} \subset \hat{\Gamma}_0(4) \), if \(u \in \hat{\Gamma} \), \(\Phi(gu) = \phi(u) \Phi(g) \) for a continuous character \(\phi : \hat{\Gamma} \to \mathbb{C}^\times \).

(3) \(\Phi(g(u_\infty, \zeta J(u_\infty, \tau)) = \Phi(g) \zeta^\ell J(u_\infty, i)^\ell \) for \((u_\infty, \zeta J(u_\infty, \tau)) \in \mathcal{C}_\infty \), where \(\ell \) is an integer.

Since \(J(g, \tau) \mod \{ \pm 1 \} \) is an automorphic factor, the above conditions imply \(\chi(-1) = (-1)^\ell \) as long as \(\Phi \neq 0 \). Thus \(\chi(z) = z^{\pm \ell} \) can be a good choice. In the same manner, we have \(\phi(\zeta) = \chi(\zeta) \) for \(\zeta \in S^1 \cap \hat{\Gamma} \).

Assuming an absolute and local uniform convergence, we define

\[
E(\Phi)(g) := \sum_{\gamma \in B(\mathbb{Q})/SL_2(\mathbb{Q})} \Phi(\gamma g) \quad (g \in \text{Mp}(\mathbb{A})).
\]

Then \(E(\Phi) \) satisfies \(E(\Phi)(z \gamma gu) = \chi(z) \phi(u(\infty)) E(\Phi)(g) \zeta^\ell J(u_\infty, i)^\ell \) for \(z \in S^1 \), \(\gamma \in SL_2(\mathbb{Q}) \) and \(u \in \hat{\Gamma}_C \) with \(u_\infty = (u_\infty, \zeta J(u_\infty, \tau)) \) as a function of \(g \in \text{Mp}(\mathbb{A}) \).

Writing \(\tau(g) = bu \) \(b \in B(\mathbb{A}) \) and \(u \in SL_2(\mathbb{Z})SO_2(\mathbb{R}) \) for \(g \in SL_2(\mathbb{A}) \), we define \(|a(g)|_\mathbb{A} \) by \(|a|_\mathbb{A} \) if \(b = (a \, a^{-1}) \). This function does not depend on the choice of the decomposition and factors through \(B(\mathbb{Q})\backslash \text{Mp}(\mathbb{A}) \). For \(s \in \mathbb{C} \), we define \(\Phi_s(g) = \Phi(g)|a(g)|_\mathbb{A} \). We assume that

(A) \(E(\Phi_s) \) converges absolutely and locally uniformly if \(\text{Re}(s) \gg 0 \) and continued to a meromorphic function of \(s \) over the entire \(\mathbb{C} \).

The meromorphy in (A) means that for any \(s_0 \in \mathbb{C} \), there exists an open neighborhood \(U_{s_0} \) of \(s_0 \) and a holomorphic function \(h : U_{s_0} \to \mathbb{C} \) such that \(s \mapsto h(s)E(\Phi_s)(g) \) is a holomorphic function of \(s \in U_{s_0} \) for each \(g \).

2.4. Adelic Rankin product, integral weight versus half integral weight. We keep assuming \(4M \). We pick \(C|M \). As in §2.1, let \(F \) be an integral weight cusp form \(F \in S_\kappa(C, \varphi) \), and using \(SL_2(\mathbb{A}) = SL_2(\mathbb{Q})\hat{\Gamma}_0(1)SL_2(\mathbb{R}) \), lift it to \(SL_2(\mathbb{Q})/SL_2(\mathbb{A}) \) as in §2.1 by

\[
F(\alpha u) = \varphi^*(u(\infty)) F(g(u(\infty), \sqrt{-1})) j(u_\infty, \sqrt{-1})^{-\kappa} \quad \text{for} \quad u \in \hat{\Gamma}_0(1)SL_2(\mathbb{R}).
\]

Let \(\tilde{F}(z) = F(-\bar{z}) \). Then \(\tilde{F} \) is an anti-holomorphic cusp form in \(S^\kappa_\kappa(C, \varphi) \), where \(S^\kappa_\kappa(C, \varphi) \) is made up of anti-holomorphic cusp forms \(G : \hat{\mathfrak{F}} \to \mathbb{C} \) satisfying \(G(\gamma(\tau)) = \varphi(\gamma)G(z)j(\gamma, \bar{\tau})^\kappa \) for \(\gamma \in \hat{\Gamma}_0(1) \).

Lift \(\tilde{F} \) to \(SL_2(\mathbb{A}) \) by

\[
\tilde{F}(g) = \varphi^*(u(\infty)) \tilde{F}(g(u(\infty), \sqrt{-1})) j(u_\infty, -\sqrt{-1})^{-\kappa} \quad \text{for} \quad u \in \hat{\Gamma}_0(1)SO_2(\mathbb{R}).
\]

Since \(\tilde{F}(\frac{a_1 + b_1}{c_1 + d_1}) = \varphi(d) \tilde{F}(z(cz + d)^k \quad \text{for} \quad (\frac{a \, b}{c \, d}) \in \hat{\Gamma}_0(1) \), we have

\[
\tilde{F}(\gamma gu) = \varphi^*(u) \tilde{F}(g) j(u_\infty, -\sqrt{-1})^{-\kappa} \quad \text{for} \quad u \in \hat{\Gamma}_0(1)SO_2(\mathbb{R}).
\]

Pick a half integral cusp form \(f \in S_{\kappa/2}(\Gamma_0(1), \psi) \) and lift it to \(f : SL_2(\mathbb{Q})/\text{Mp}(\mathbb{A}) \to \mathbb{C} \) as in §2.2; so, we have

\[
f(\gamma g(u, \zeta J(u_\infty, \tau))) = \varphi^*(u(\infty)) f(g) \zeta^k J(u_\infty, -\sqrt{-1})^{-k} \quad \text{for} \quad u \in \hat{\Gamma}_0(1)SO_2(\mathbb{R}).
\]

Take a continuous \(\Phi : B(\mathbb{Q})\backslash \text{Mp}(\mathbb{A}) \to \mathbb{C} \) and consider

(\(\Phi_1 \)) \(\Phi(x \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right)) = (\varphi \psi^*)^{-1}(d_1) \Phi(x) \quad \text{for} \quad (\frac{a \, b}{c \, d}) \in \hat{\Gamma}_0(1) \),

(\(\Phi_2 \)) \(\Phi(x(u_\infty, \zeta J(u_\infty, \tau))) = \Phi(x) \zeta^k J(u_\infty, \sqrt{-1})^k j(u_\infty, -\sqrt{-1})^{-\kappa} \quad \text{for} \quad (u_\infty, \zeta J(u_\infty, \tau)) \in C_\infty \),

(\(\Phi_3 \)) \(\Phi|_{B(\mathbb{A})}(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right)) = |a|_\mathbb{A}^2 \quad \text{for} \quad a \in A^\times, \ b \in A \) and \(s \in \mathbb{C} \).

For the moment, we suppose \((\Phi_1–2) \). Then we have

\[
f(g)\tilde{F}(g)\Phi(g) = f(gu)\tilde{F}(gu)\Phi(gu) \quad \text{for all} \quad u \in \hat{\Gamma}_0(1)C_\infty.
\]

This follows from the above properties \((\Phi_1–2) \) of \(\Phi \) and \((2.15) \) and \((2.15) \).

Take an open compact subgroup \(\hat{\Gamma} \subset \hat{\Gamma}_0(1) \) inside \(\text{Mp}(A(\infty)) \). Consider the space \(\mathcal{F}_\infty(\hat{\Gamma}) := B(\mathbb{Q})\backslash B(\mathbb{A}) \{ \pm 1 \} \hat{\Gamma}C_\infty/\{ \pm 1 \} \hat{\Gamma}C_\infty \). Since \(B(\mathbb{A}) \{ \pm 1 \} \hat{\Gamma}C_\infty/\{ \pm 1 \} \hat{\Gamma}C_\infty = B(\mathbb{A})/B(\mathbb{A}) \cap \{ \pm 1 \} \hat{\Gamma}C_\infty \),

\[
\mathcal{F}_\infty(\hat{\Gamma}) = B(\mathbb{Q})\backslash B(\mathbb{A})/B(\mathbb{A}) \cap \{ \pm 1 \} \hat{\Gamma}C_\infty = B(\mathbb{Q})\backslash B(\mathbb{A})/B(\tilde{\mathbb{Z}}) \cap \{ \pm 1 \} \hat{\Gamma} = \mathbb{R}/\mathbb{Z} \times \mathbb{R}^\times_+ \cong [0, 1) \times \mathbb{R}^\times_+.
\]

Let \(\hat{\Gamma}_0 := B(\mathbb{A}) \cap \hat{\Gamma} \). If \(\tilde{F}(gu)f(gu) \) is invariant under \(\hat{\Gamma} \subset \hat{\Gamma}_0(1) \), defining

\[
\text{Tr}_{\hat{\Gamma}_0(1)/\hat{\Gamma}_0(1)} \Phi(g) := \sum_{u \in \hat{\Gamma}_0(1)\backslash \hat{\Gamma}_0(1)} \Phi(gu),
\]
Lemma 2.1. The natural map \(\pi_1 : B(Q) \backslash B(\mathbb{A})C_\infty \rightarrow SL_2(Q) \backslash \text{Mp}(\mathbb{A}) \) is an isomorphism.

This is an adelic analogue of \(B(\mathbb{R}) \rightarrow B(\mathbb{R}) / \mathbb{R}^\times = \mathcal{S} \rightarrow \Gamma \backslash \mathcal{S} = SL_2(\mathbb{Q}) \backslash SL_2(\mathbb{A}) / \tilde{\Gamma} : SO_2(\mathbb{R}) \) for any subgroup \(\Gamma \subset SL_2(\mathbb{Z}) \) with closure \(\tilde{\Gamma} \subset SL_2(\mathbb{A}(\infty)) \).

Proof. Since \(SL_2(Q)K = SL_2(\mathbb{A}(\infty)) \) for any open subgroup \(K \) of \(\tilde{\Gamma}_0(4) \) (strong approximation) and \(B(\mathbb{R})C_\infty = \text{Mp}(\mathbb{R}) \), we have \(SL_2(Q)B(\mathbb{A})KC_\infty = \text{Mp}(\mathbb{A}) \). Thus we have a natural continuous surjection, sending \(b \in B(\mathbb{A}) \) to its class in \(SL_2(Q) \backslash \text{Mp}(\mathbb{A}) \)

\[
\pi_K : B_K := B(Q) \backslash B(\mathbb{A})KC_\infty \rightarrow SL_2(Q) \backslash \text{Mp}(\mathbb{A}) = SL_2(Q) \backslash SL_2(Q)B(\mathbb{A})KC_\infty.
\]

Thus we have a continuous map \(\pi_1 : B_1 = \lim_{\mathbb{K} \supset B(\hat{\mathbb{Z}})} B(Q) \backslash B(\mathbb{A})KC_\infty \rightarrow SL_2(Q) \backslash \text{Mp}(\mathbb{A}) \).

For an open subgroup \(K' \subset K \), \(\pi_{K',K} : B(Q) \backslash B(\mathbb{A})K'C_\infty \rightarrow B(Q) \backslash B(\mathbb{A})KC_\infty \) is a finite map, thus for each compact subset \(X \) of \(B_K \), \(\pi_{K',K}^{-1}(X) \) is compact surjecting down to \(X \) and hence \(\pi_1^{-1}(X) = \lim_{K \supset B(\hat{\mathbb{Z}})} \pi_{K',K}^{-1}(X) \) is compact and non-empty. Thus the projection \(B_1 \rightarrow B_K \) is onto.

If \(X \) is open compact, \(\pi_1^{-1}(X) \) is open compact; so, \(B_1 \) is locally compact. Since \(B(Q) \backslash B(\mathbb{A})C_\infty \) is locally compact with dense image in the locally compact space \(B_1 \), we see that \(B(Q) \backslash B(\mathbb{A})C_\infty \rightarrow B_1 \).

Since \(B(Q) \) is discrete in \(B(\mathbb{A})C_\infty \), we find \(B(Q) \backslash B(\mathbb{A})C_\infty \cong B_1 \).

Identifying \(B_1 \) and \(B(Q) \backslash B(\mathbb{A})C_\infty \), we find \(\pi_1 : B(Q) \backslash B(\mathbb{A})C_\infty \rightarrow SL_2(Q) \backslash \text{Mp}(\mathbb{A}) \) is a continuous morphism with dense image of locally compact spaces; so, \(\pi_1 \) is onto.

If \(\pi_1(b) = \pi_1(b') \) for \(b,b' \in B(\mathbb{A}) \), then \(\gamma b = b'u \) for \(\gamma \in SL_2(\mathbb{Q}) \) and \(u \in B(\hat{\mathbb{Z}})C_\infty \). By projecting down to \(SL_2(\mathbb{A}) \), we find \(\gamma b = b'\pi_1(u) \), comparing the finite part, we conclude \(\gamma \in B(Q) \); so, we find \(\pi_1 \) is an isomorphism. \(\square \)

Remark 2.2. For an open compact subgroup \(K \) of \(\text{Mp}(\mathbb{A}(\infty)) \) and regarding \(K \subset \text{Mp}(\mathbb{A}) \) by the natural inclusion \(\text{Mp}(\mathbb{A}(\infty)) \rightarrow \text{Mp}(\mathbb{A}) \), \(SL_2(Q) \backslash \text{Mp}(\mathbb{A}) / K C_\infty \) is a modular curve \(\Gamma_K \backslash \mathcal{S} \) for \(\Gamma_K = \pi(K) \cap SL_2(Q) \). Similarly \(B(Q) \backslash B(\mathbb{A})C_\infty / (K \cap B(\mathbb{A})C_\infty) = (\Gamma_K \cap B(Q)) / \mathcal{S} \), which is an infinite covering of \(\Gamma_K \backslash \mathcal{S} \).

Note \(B(Q) \backslash C_\infty B(\mathbb{A}) / C_\infty \cong B(Q) \backslash B(\mathbb{A}) \cong \{(a,u) \in A^\times / Q^\times \times A / Q\} \) and for the diagonal torus \(T = JB^{-1} \cap B \), \(T(Q) \backslash B(\mathbb{A}) \cong \{(a,u) \in A^\times / Q^\times \times A\} \). Thus, as we have seen

\[
B(Q) \backslash B(\mathbb{A}) / (B(\mathbb{A}) \cap \Gamma_0(M)) \cong B(Q) \backslash B(\mathbb{A}) / B(\hat{\mathbb{Z}}) \cong \mathbb{R}^+_T \times \mathbb{R} / \mathbb{Z} \cong \mathbb{R}^+_T \times [0,1)
\]

by \(B(\mathbb{A}) \ni b^\infty g_T \rightarrow g_T \rightarrow (\eta, \xi) \in \mathbb{R}^+_T \times [0,1) \). By Lemma 2.1, choose a fundamental domain \(\mathcal{F} \) of \(SL_2(Q) \backslash \text{Mp}(\mathbb{A}) / \Gamma_0(M) \subset X_0(M) \) so that

\[
(2.18) \quad \mathcal{F} \subset B(Q) \backslash C_\infty B(\mathbb{A}) / (C_\infty B(\mathbb{A}) \cap C_\infty \hat{\Gamma}_0(M)) = B(Q) \backslash B(\mathbb{A}) / B(\hat{\mathbb{Z}}) \cong [0,1) \times \mathbb{R}^+_T \subset \mathcal{S}.
\]

Consider \(\bigcup_{\gamma \in B(Q) \backslash SL_2(Q)} \gamma \mathcal{F} \) which is a fundamental domain of

\[
B(Q) \backslash \text{Mp}(\mathbb{A}) / C_\infty \hat{\Gamma}_0(M) = B(Q) \backslash SL_2(Q)B(\mathbb{A})C_\infty \hat{\Gamma}_0(M) / C_\infty \hat{\Gamma}_0(M).
\]

Since \(SL_2(Q) = B(Q) \backslash JB(Q) \), we find

\[
B(Q) \backslash SL_2(Q)B(\mathbb{A})C_\infty \hat{\Gamma}_0(M) / C_\infty \hat{\Gamma}_0(M) = B(Q) \backslash B(\mathbb{A}) / B(\hat{\mathbb{Z}}) \cup T(Q) \backslash JB(\mathbb{A}) / B(\hat{\mathbb{Z}}).
\]
Taking the invariant measure \(d\mu \) on \(\text{Mp}(A) \) inducing the Dirac measure on each point in \(\text{SL}_2(\mathbb{Q}) \) with \(\int_{\tilde{F}_0(M)C_{\infty}} d\mu = 1 \), we have

\[
\tag{2.19} \int_{\text{SL}_2(\mathbb{Q}) \setminus \text{Mp}(A)} f(g) \overline{F}(g) E(\Phi)(g) d\mu(g) = \int_{\mathcal{F}} \sum_{\gamma \in B(\mathbb{Q}) \setminus \text{SL}_2(\mathbb{Q})} f(\gamma g) \overline{F}(\gamma g) \Phi(\gamma g) d\mu(g)
\]

\[
= \int_{U \gamma \mathcal{F}} f(g) \overline{F}(g) \Phi(g) d\mu(g) = \int_{B(\mathbb{Q}) \setminus B(A)} f(g) \overline{F}(g) \Phi(g) d\mu(g) + \int_{T(\mathbb{Q}) \setminus J B(\mathbb{A})} f(g) \overline{F}(g) \Phi(g) d\mu(g).
\]

We assume

\[
(V) \int_{T(\mathbb{Q}) \setminus J B(\mathbb{A})} f(g) \overline{F}(g) \Phi(g) d\mu(g) = 0.
\]

The (standard) Rankin convolution is computed classically as a good L-value when \(F \) is integrated against the Eisenstein series of the infinity cusp. The integral in (V) corresponds to Theorem 2.3. Suppose (\(\Phi_3 \)) in addition to (\(\Phi_{1–2} \)). We continue computation:

Taking \(d\mu(b) = d\mu(\begin{pmatrix} a & 1 \\ 0 & 1 \end{pmatrix}) = d^* a(\infty) \otimes |a_{\infty}|^{-1} d a_{\infty} \otimes d x(\infty) \otimes d x_{\infty} \) for the Lebesgue measure \(d a_{\infty} \) and \(d x_{\infty} \) on \(\mathbb{R} \) with \(\int_{\mathbb{R}} d x(\infty) = 1 \) and \(\int_{\mathbb{R}} d^* a = 1 \), we have

\[
\int_{B(\mathbb{Q}) \setminus B(\mathbb{A})C_{\infty} \tilde{F}_0(\mathcal{M})} f(g) \overline{F}(g) \Phi(g) d\mu(g) = \int_{B(\mathbb{Q}) \setminus B(A)/B(\mathbb{R})} f(g) \overline{F}(g) \Phi(g) d\mu(b).
\]

Suppose (\(\Phi_3 \)) in addition to (\(\Phi_{1–2} \)). We continue computation:

\[
\tag{2.20} \int_{B(\mathbb{Q}) \setminus B(\mathbb{A})} f(g) \overline{F}(g) \Phi(g) d\mu(g)
\]

\[
= \sum_{\alpha, \beta \in \mathbb{Q}} \int_{\mathbb{A}^\times / \mathbb{Q}^\times} \sum_{\beta \in \mathbb{Q}} a_x(\alpha a^2) f(\alpha + \beta) u \exp(-2\pi(\alpha - \beta a^2) a_{\infty}) |a|^2 s^{-1} d\mu(g)
\]

\[
= \int_{\mathbb{A}^\times / \mathbb{Q}^\times} \sum_{\alpha, \beta \in \mathbb{Q}} a_x(\alpha a^2) f(\alpha + \beta) u \exp(-2\pi(\alpha - \beta a^2) a_{\infty}) |a|^2 s^{-1} d\mu(g)
\]

\[
= \sum_{n=1}^{\infty} \int_{0}^{\infty} a_x(n) f(n) \exp(-\pi n a_{\infty}^2) |a|^2 s^{-1} d a_{\infty}
\]

\[
\tag{2.1,2.8} = 2 \sum_{n=1}^{\infty} \int_{0}^{\infty} a_x(n) f(n) \exp(-\pi n t) |t|^s t^{-1} dt
\]

\[
= 2(4\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} a_x(n) f(n) n^{-s} = 2(4\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} a_x(F) a_n(f) n^{-s}.
\]

Here the identity (\(* \)) follows that \(t \mapsto f(b \text{diag}(t, t^{-1}) \overline{F}(b \text{diag}(t, t^{-1}))) \) for \(t \in \mathbb{Z}^\times \) is a constant function equal to 1 by (\(\Phi_1 \)), and the identity (\(** \)) is justified as long as the two sides are absolutely convergent. Thus we have

Theorem 2.3. Let the notation be as above. Suppose (\(\Phi_{1–3} \)) and (\(V \)). Then

\[
\int_{\text{SL}_2(\mathbb{Q}) \setminus \text{Mp}(A)/\tilde{F}_0(\mathcal{M})C_{\infty}} f(g) \overline{F}(g) E(\Phi)(g) d\mu(g) = \int_{B(\mathbb{Q}) \setminus B(\mathbb{A})/B(\mathbb{R})} f(g) \overline{F}(g) \Phi(g) d\mu(b)
\]

\[
= 2(4\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} a_x(F) a_n(f) n^{-s}.
\]
2.5. Adelic Rankin product for cusp forms of mixed weight. For a function \(\phi : \text{Mp}(\hat{A}) \to \mathbb{C} \) and a compact subgroup \(K \) of \(\text{Mp}(\hat{A}) \), if \(\phi(gu) = \phi(g)\chi(u) \) with any \(u \in K \) for a character \(\chi : K \to \mathbb{C}^\times \), the character \(\chi \) is called the \(K \)-type of \(\phi \). If there is no such character, we say that \(\phi \) has mixed \(K \)-type. If \(K = \text{C}_\infty \) and \(\chi(r(\theta)) = e^{ik\sqrt{-1}} \) for an integer \(k \), we say \(\phi \) has weight \(k \) if it has \(C_\infty \)-type given by \(\chi \), where \(r(\theta) = \left(\begin{array}{cc} \cos(\theta) - \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array} \right) \in \text{SO}_2(\mathbb{R}) \) as before. The following remark will not be referred to in this paper.

Remark 2.4. The theta series \(\theta_j(\chi) \) has mixed \(C_\infty \)-type if \(j > 1 \). We can decompose \(\theta_j(\chi) \) as a sum of non-holomorphic modular forms with \(C_\infty \)-type using a formula relating Shimura–Maass differential operators and Ramanujan differential operators \(\theta \) [LFE, Chapter 10, (3)]. Since we do not need the exact formula, we do not recall the formula.

Lemma 2.5. For an open subgroup \(\hat{\Gamma} \subset \text{SL}_2(\hat{\mathbb{Z}}) \), we have a disjoint decomposition

\[
\text{SL}_2(\mathbb{Q})\backslash \text{SL}_2(\hat{A})/\hat{\Gamma} : \text{SO}_2(\mathbb{R}) = \bigsqcup_{u \in \text{SL}_2(\hat{\mathbb{Z}})/\hat{\Gamma}} B(\mathbb{Q})\backslash B(\hat{A}) u \hat{\Gamma} : \text{SO}_2(\mathbb{R})/\hat{\Gamma} : \text{SO}_2(\mathbb{R}).
\]

Proof. By Iwasawa decomposition, we have \(\text{SL}_2(\hat{A}) = B(\hat{A})\text{SL}_2(\hat{\mathbb{Z}})\text{SO}_2(\mathbb{R}) \). From this, the decomposition in the lemma is clear. \(\square \)

For an open subgroup \(\hat{\Gamma} \) of \(\text{SL}_2(\hat{\mathbb{Z}}) \) and a right \(\hat{\Gamma} \)-invariant function \(f : \text{SL}_2(\mathbb{Q})\backslash \text{SL}_2(\hat{\mathbb{Z}}) \to \mathbb{C} \), we define the trace \(\text{Tr}_{\hat{\Gamma}}(f)(g) = \sum_{u \in \hat{\Gamma} \backslash \text{SL}_2(\hat{\mathbb{Z}})} f(gu) \) which is a right \(\text{SL}_2(\hat{\mathbb{Z}}) \)-invariant function. We apply also this operator to \(f : \text{Mp}(\hat{A}) \to \mathbb{C} \) as long as \(f \) satisfies the quotient SL2(\hat{A}). For two open compact subgroups \(\hat{\Gamma} \) and \(\hat{\Gamma}' \), we have

\[
\text{SL}_2(\hat{\mathbb{Z}}) : \hat{\Gamma}^{-1}\text{Tr}_{\hat{\Gamma}}(f) = (\text{SL}_2(\hat{\mathbb{Z}}) : \hat{\Gamma}')^{-1}\text{Tr}_{\hat{\Gamma}'}(f)
\]
as long as the sides are well defined; so, we just write the condition \(\text{Tr}_{\hat{\Gamma}}(f) = 0 \) as \(\text{Tr}(f) = 0 \) choosing \(\hat{\Gamma} \) sufficiently small.

Now suppose that we have a finite set of cusp forms \(\{f_j\} \) on \(\text{SL}_2(\mathbb{Q}) \backslash \text{SL}_2(\hat{\mathbb{Z}}) \) which have \(\hat{\Gamma}_0(M) \)-type \(\psi^* \) but may have a mixed \(C_\infty \)-type. We assume the index set of \(j \) is integers \([0, k] \cap \mathbb{Z} \) for \(0 < k \in \mathbb{Z} \). We assume that the right translations of \(f_j \) by \(C_\infty \) span a finite dimensional space of functions on \(\text{SL}_2(\mathbb{Q}) \backslash \text{SL}_2(\hat{\mathbb{Z}}) \). Thus \(f_j \) is a finite sum of cusp forms of different \(C_\infty \)-types. For example, \(f_j \) can be \(\theta_{\chi,j} \) for \(0 \leq j \leq k \). We suppose to have \(\{\Phi_j\} \) satisfying (V), (Φ1) and (Φ3) but possibly not (Φ2). Instead we suppose

1. \(\text{(Φ0)} \) the reducible cuspidal automorphic representation \(\pi_{\Phi} \) generated by \(\hat{\Phi} \) has \(\text{SL}_2(\hat{\mathbb{Z}}) \)-type which is a contragredient of one of the \(\text{SL}_2(\hat{\mathbb{Z}}) \)-types of the automorphic representation generated by the set \(\{f_j E(\Phi_j)\} \).

2. \(\text{M} \) the irreducible cuspidal automorphic representation \(\pi_{\Phi} \) generated by \(\Phi \) has \(\text{SL}_2(\hat{\mathbb{Z}}) \)-type which is a contragredient of one of the \(\text{SL}_2(\hat{\mathbb{Z}}) \)-types of the automorphic representation generated by the set \(\{f_j E(\Phi_j)\} \).

Example 2.1. Here is an example of \(\{f_j\} \) and \(\{\Phi_j\} \) satisfying (Φ0–1) and (Φ3) with (F). Let \((V, Q) \) be a quadratic space with a decomposition \((V, Q) = (\mathbb{Q}, x^2) \oplus (W, Q') \) as a quadratic space. Take a Schwartz–Bruhat function \(\phi \) on \(V_A \) and suppose that the Siegel–Weil theta series \(\theta(\phi) \) has \(\hat{\Gamma}_0(M) \)-type \(\psi^* \) and a unique \(C_\infty \)-type \(k \).

1. \(\phi = \phi^{(\infty)} \otimes \phi_{\infty} \) for a Bruhat function \(\phi^{(\infty)} \) and a Schwartz function \(\phi_{\infty} \),
2. \(\phi_\infty = \sum_{j} \phi_{Q,j} \otimes \phi_{W,j} \) for Schwartz functions \(\phi_{Q,j} \) on \(\mathbb{R} \) and \(W(\mathbb{R}) \), respectively,
3. \(\phi^{(\infty)} = \phi_Q^{(\infty)} \otimes \phi_W^{(\infty)} \) for Bruhat functions on \(\mathbb{A}^{(\infty)} \) and \(W(\mathbb{A}^{(\infty)}) \), respectively,
4. \(\phi_{Q,j}(x) = x^{2j} \exp(-\pi x^2) \).

Let \(\phi^X_j = \phi_{Q}^{(\infty)} \otimes \phi_{X,j} \) for \(X = Q, W \). We have a natural diagonal embedding of \(\text{O}_Q \times \text{O}_W \) into \(\text{O}_V \). Note that \(\text{O}_Q = \{\pm 1\} \); so, we forget about it. Then we write \(\theta(\phi)(g, h) = \sum_{j=0}^{k} \theta(\phi^Q_{j})(g)\theta(\phi^W_{j})(g, h) \).
for $g \in \text{Mp}(A)$ and $h \in O_W(A)$. Consider

$$\int_{O_W(Q) \backslash O_W(A)} \theta(\phi_j^W)(g, h) d\mu(h).$$

By the Siegel–Weil formula, for $\Phi_j(g) = (w_W(g)\phi_j^W)(0)$ as a function on $B(Q) \backslash \text{Mp}(A)$, this integral is proportional to the Eisenstein series $E(\Phi_j)$. Ignoring the proportion,

$$\Theta(g) := \int_{O_W(Q) \backslash O_W(A)} \theta(\phi)(g, h) d\mu(h) = \sum_j \theta(\phi_j^Q)(g) \int_{O_W(Q) \backslash O_W(A)} \theta(\phi_j^W)(g, h) d\mu(h) = \sum_j \theta(\phi_j^Q) E(\Phi_j)$$

is a modular form whose $\hat{\Gamma}_0(M)$-type is given by ψ^* and has weight k as C_∞-type. However $\theta(\phi_j^Q)$ with $j > 1$ does not have a C_∞-type. We compute $\sum_j \theta(\phi_j^Q)(gu)E(\Phi_j)(gu)$ for $u \in C_\infty$:

$$\sum_j \theta(\phi_j^Q)(gu)E(\Phi_j)(gu) = \int_{O_W(Q) \backslash O_W(A)} \theta(\phi)(gu, h) d\mu(h)$$

$$= \int_{O_W(Q) \backslash O_W(A)} \theta(\phi)(g, h) j(u, i)^{-1} d\mu(h) = \sum_j \theta(\phi_j^Q)(g) E(\Phi_j)(g) j(u, i)^{-1}.$$

Thus choosing a cusp form F with the inverse $\hat{\Gamma}_0(M)C_\infty$-type and putting $f_j = \theta(\phi_j^Q)$, the pair $\{f_j, \Phi_j \}_{j \geq 1}$ satisfies the required conditions (Φ_0) and (F). If the theta descent

$$\theta_s(f) := \int_{O_V(Q) \backslash O_V(A)} \theta(\phi)(g, h) f(h) d\mu(h)$$

of any cusp form f on D_∞ does not generate the automorphic representation π_F, the matching condition (M) could fail. For example, if F has level 1 (i.e., principal everywhere) and $V = D$ for a division quaternion ramified at a prime q with ϕ is a Schwartz Bruhat function of \hat{R} for a maximal order R of D, irreducible factors of the representation generated by $\theta_s(f)$ is special at q, and by the new form theory, it does not have the identity representation as $\text{SL}_2(\mathbb{Z}_q)$-type; so, $\text{Tr}(\hat{F}\theta_s(f)) = 0$. Since any $\text{SL}_2(\mathbb{Z})$-type of $\sum_j \theta(\phi_j) E(\Phi_j)$ would appear as one of the $\text{SL}_2(\mathbb{Z})$-type of the theta descent $\theta_s(f)$ for some f, perhaps this implies the failure of the matching condition (M); i.e., the theta lift of π_F by $\theta(\phi)$ would vanish, and also the Rankin product (2.21) by the identity at (2). Another caution is that, to have (V), we need to choose ϕ_j carefully.

Noting the fundamental domain \mathcal{F} is chosen in $B(R)$, we reverse the earlier computation in (2.19):

(2.21) $\int_{B(Q) \backslash B(A) / (A) \cap \hat{\Gamma}_0(M)C_{\infty}} \hat{F}(g) \sum_j f_j(g) \Phi_j(g) d\mu(g) = \int_{\cup \mathcal{F}} \hat{F}(g) \sum_j f_j(g) \Phi_j(g) d\mu(g)$

$$= \int_{\mathcal{F}} \sum_{\gamma \in B(Q) \backslash \text{SL}_2(Q)} \hat{F}(\gamma g) \sum_j f_j(\gamma g) \Phi_j(\gamma g) d\mu(g) = \int_{\mathcal{F}} \hat{F}(g) \sum_j f_j(g) \sum_{\gamma \in B(Q) \backslash \text{SL}_2(Q)} \Phi_j(\gamma g) d\mu(g)$$

$$= \int_{X_0(M)} \hat{F}(g) \sum_j f_j(g) E(\Phi_j)(g) d\mu(g) = \int_{X_0(1)} \text{Tr}(\hat{F}(g) \sum_j f_j(g) E(\Phi_j)(g)) d\mu(g).$$

Before reaching identity (1), the computation is done inside $B(A)$, and we do not need left C_∞-invariance of $\hat{F}(g) \sum_j f_j(g) \Phi_j(g)$. The integral is extended from $B(A)$ to entire $\text{Mp}(A)$ by the left $\text{SL}_2(\mathbb{Z})C_\infty$-invariance of $\text{Tr}(\hat{F}(g) \sum_j f_j(g) E(\Phi_j)(g))$ in (Φ_0), and we replace \mathcal{F} by the isomorphic

$$\text{SL}_2(\mathbb{Q}) / \text{Mp}(A) / \hat{\Gamma}_0(M)C_\infty = \text{SL}_2(\mathbb{Q}) / \text{SL}_2(A) / \hat{\Gamma}_0(M)\text{SO}_2(R) = X_0(M)$$

at the identity (1).

Theorem 2.6. In addition to (Φ_0–1), (V) for all Φ_j and (F), assume

$$(\text{Key}) \Phi_0|_{B(A)}(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}) = |a|_A^{2 \nu} \text{ for } a \in \mathbb{A}_x \text{ and } b \in \mathbb{A} \text{ and } \Phi_j|_{B(A)} = 0 \text{ if } j \neq 0.$$
Then, assuming the Fourier expansion of $f_0(g_T)$ has the following form: $\sum_{n=0}^{\infty} a_n(f_0)e(nz)$, we have

$$\int_{X_0(M)} \mathbf{F}(g) \sum_j f_j(g)E(\Phi_j)(g) \, d\mu(g) = 2(4\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} a_n(F) a_n(f_0)n^{-s}.$$

Without the assumption (Key), the convolution integral would produce a sum of L-values (possibly evaluation points shifted). Thus (Key) is a purity condition in the mixed weight case.

Proof. By (2.21), we compute $\int_{B(\mathbb{Q})\backslash B(\mathbb{A})/B(\mathbb{A})} \mathbf{F}(g) \sum_j f_j(g) \Phi_j(g) \, d\mu(g)$. By (Key), this integral is reduced to $\int_{B(\mathbb{Q})\backslash B(\mathbb{A})/B(\mathbb{A})} \mathbf{F}((a_0 b_1)) f_0((a_0 b_1)) |a_0^2 b_1^2 \mu((a_0 b_1))$. Then by the same computation as in (2.20), replacing f in (2.20) by f_0, we get the desired formula. □

Note here f_0 in the above proof can have a reducible C_∞-type. It can be a finite sum of cusp forms with different irreducible C_∞-type as in Remark 2.4.

3. Quadratic space over \mathbb{Q}

Let V be a finite dimensional \mathbb{Q}-vector space with a quadratic form $Q : V \to \mathbb{Q}$. The corresponding symmetric bilinear form s is given by $s(x, y) = Q(x + y) - Q(x) - Q(y)$ or equivalently $2Q(v) = S(v, v) = S[v]$. For a \mathbb{Q}-algebra A, we write $V_A := V \otimes_{\mathbb{Q}} A$ as a quadratic space over A. We let the orthogonal group O_V of V act on V from the right.

Let E/\mathbb{Q} be a semi-simple quadratic extension $\mathbb{Q}[\sqrt{\Delta}]$ and D be a quaternion algebra over \mathbb{Q}. If $E = \mathbb{Q} \times \mathbb{Q}$, we take $\sqrt{\Delta} = (1, -1)$ and hence $\Delta = 1 \in \mathbb{Q}$. Write $\sigma = \text{Gal}(E/\mathbb{Q})$ for the non-trivial \mathbb{Q}-algebra automorphism of E/\mathbb{Q}. Put $D_E = D \otimes_{\mathbb{Q}} E$, and extend σ to D_E by $\sigma(d \otimes e) = d \otimes e^\sigma$ for $d \in D$ and $e \in E$. We write $N : D_E \to E$ (resp. $\text{Tr} : D_E \to E$) for the reduced norm (resp. trace) map which induces the reduced norm (resp. trace) map $D \to \mathbb{Q}$. The main involution of D_E is denoted by $x \mapsto x^\sigma$; so, $x^\sigma = \text{Tr}(x)^{-1} - x N(x)^{-1}$. Define $D_\sigma = D_\sigma^\pm := \{ x \in D_E | x^\sigma = \pm x \}$. We fix a pair of maximal orders $R \subset D$ and $R_E \subset D_E$ such that $R \otimes_{\mathbb{Z}} O_E \subset R_E$. Let K be a quadratic subfield of D. We write \mathbb{H} for the Hamilton quaternion algebra over \mathbb{R}.

3.1. List of quadratic spaces we study

We study the following low dimensional quadratic spaces (V/Q). Here we write as before m for the dimension of the quadratic space V over \mathbb{Q}.

(D$^\pm$) Let $V = D$ and $Q(x) = \pm xx^\sigma = \pm N(x)$ (for the reduced norm $N : D \to \mathbb{Q}$ and the main involution ι). Then $s(x, y) = \pm \text{Tr}(xy^\sigma)$. In this case, we have $m = 4$, and usually we assume the sign to be $+$ (we write D^+ for D if we need to indicate the sign). More explicitly, we have an expression $D = \{(a_0 b_1) | [a, b] \in \mathbb{Z} \}$ with $0 \neq \theta \in \mathbb{Z}$ for a quadratic field K/\mathbb{Q} with $\langle \delta \rangle = \text{Gal}(K/\mathbb{Q})$. Here δ is the discriminant of D/\mathbb{Q}. The maximal order R of D we fixed is assumed to satisfy $R \hookrightarrow M_2(\mathbb{O}_K)$ by the above embedding. We let $(\alpha, \beta) \in \mathbb{D} \times \mathbb{D}$ act from the right on D by $x \mapsto \alpha^{-1}x\beta$; so, $N(\alpha^{-1}x\beta) = N(\alpha)^{-1}N(\beta)N(x)$. Thus by this action, we have a morphism $\tau : \mathbb{Q} \times \mathbb{Q} : D^\times \times D^\times \to O_D$ for the orthogonal group O_D of (D, Q). Sometimes, we also use a slightly different action $x \mapsto \alpha x\beta$.

(D$^\pm$) Let $V = D^\pm := \{ x \in D_E | x^\sigma = \pm x \}$ and $Q(x) = xx^\sigma = \pm xx^\sigma = \pm N(x) \in \mathbb{Q} (x \in D^\pm_E)$. Then $s(x, y) = s_{\pm}(x, y) = \pm \text{Tr}_{D_E/E}(xy^\sigma) = \text{Tr}_{D_E/E}(xy^\sigma) \in \mathbb{Q}$. We have $m = 4$. Indeed, over \mathbb{C}, we can identify $D\otimes_{\mathbb{Q}} \mathbb{C} = M_2(\mathbb{C}) \oplus M_2(\mathbb{C})$ with σ interchanging the components $M_2(\mathbb{C})$, and we have $D_\sigma \otimes_{\mathbb{Q}} \mathbb{C} = \{ (X, \pm X^\sigma) \in M_2(\mathbb{C}) \oplus M_2(\mathbb{C}) | X \in M_2(\mathbb{C}) \}$ which has dimension 4 over \mathbb{C}. We may let $\alpha \in D^\times_E$ act on D^\pm_E by $x \mapsto \alpha x\alpha^\sigma$, as

$$(\alpha x\alpha^\sigma)^\sigma = \alpha x\alpha^\sigma = \pm \alpha x\alpha^\sigma = \pm (\alpha x\alpha^\sigma)'$$

This action preserves V and Q up to scalar $N(\alpha)N(\alpha)^\sigma \in \mathbb{Q}$. If $N(\alpha) \in \mathbb{Q}$, we can modify slightly the action by

$$(\alpha^{-1}x\alpha^\sigma)^\sigma = N(\alpha)^{-1}\alpha x\alpha^\sigma = \pm N(\alpha)^{-1}\alpha x\alpha^\sigma = \pm (\alpha^{-1}x\alpha^\sigma)'$$

By $x \mapsto \eta x\eta^\sigma$, we have a morphism $\tau_E : \{ \alpha \in D^\times_E | N(\alpha) \in \mathbb{Q} \} \to O_{D_\sigma}$ of algebraic groups. Regard $\text{Gal}(KE/E) = \langle \sigma \rangle$ and $\text{Gal}(KE/K) = \langle \sigma \rangle$. We have $\text{Gal}(KE/Q) = \langle \sigma \rangle \times \langle \sigma \rangle$. Write L for the fixed field of σ. Then $D^\pm_\sigma = \{ (\alpha x\alpha^\sigma) \} b \in \eta L, a \in \eta L \}$ for $0 \neq \eta, \eta^\sigma \in KE$ with $\eta^\sigma = \pm \eta, \eta^\sigma = \mp \eta$. Since σ and ι are involutions commuting each other, they act on D^\pm_σ. ADJOINT L-VALUE AS A PERIOD INTEGRAL 16
(D\pm) Let \(D_{0}^{\pm} = \{ x \in D_{0}^{\pm} \mid \text{Tr}(x) = x + x^\prime = 0 \} \) and \(Q^{\pm}(x) = xx^\prime = \pm N(x) \). We have \(D_{0}^{+} = \sqrt{\Delta}D_{0}^{+} \subset D_{E} \). Then \(s(x, y) = \pm \text{Tr}(xy^\prime) \). In this case, we have \(m = 3 \). We let \(D^{\times} \) act on \(D_{0} \) by \(x \mapsto \alpha^{-1}x\alpha \). By this action, we have a morphism \(\tau_{\alpha} : D^{\times} \to \text{O}_{D_{0}} \) of algebraic groups.

(Z\pm) Write \(\Delta_{\pm} \) for the square-free part of \(\Delta \), and put \(\Delta_{+} = 1 \). Here we assume that \(\Delta_{-} > 0 \) if \(\Delta > 0 \) and \(\Delta_{+} < 0 \) if \(\Delta < 0 \). Let \(Z^{\pm} = \{ x \in D_{0}^{\pm} \mid \text{Tr}(x) = \delta_{\pm}Q \text{ for } \delta_{\pm} = \sqrt{\Delta_{\pm}} \text{ with } s^{\pm}(\delta_{\pm}x, \delta_{\pm}y) = \text{Tr}(\delta_{\pm}x)(\delta_{\pm}y)^{\prime} = \pm 2\delta_{\pm}^{2}xy \text{ (so, } Q^{\pm}(\delta_{\pm}x) = \pm \delta_{\pm}^{2}x^{2}) \text{. Then } Z^{\pm} = Q \subset D_{0}^{\pm} \text{ and } Z^{\pm} = Q\sqrt{\Delta} \subset D_{0}^{\pm} \). Here \(Z^{\pm} = D_{\sigma} \cap Z(D_{E}) \) for the center \(Z(D_{E}) \) of \(D_{E} \). The space \((Z^{+}, Q^{+})\) is positive definite, and \((Z^{-}, Q^{-})\) is either positive definite or negative definite according to whether \(E \) is imaginary or real.

We record
\[
\delta = \delta_{+} = 1 \text{ for } D_{0}^{+} \text{ and } \delta = \delta_{-} = \sqrt{\Delta_{-}} \in E \text{ for } D_{0}^{-}.
\]

Cases \(D^{\pm} \) and \(D_{0}^{\pm} \) are not disjoint. Indeed, if we take \(E = Q \times Q \), we find \(D_{E} = D \times D \) with \(\sigma \) interchanging two simple components, and \(D_{0}^{\pm} = \{ (x, \pm x^\prime) \mid x \in D \} \cong D \) by \((x, \pm x^\prime) \mapsto x \). This identification is an identification of quadratic spaces \(D_{0}^{\pm} \cong D^{\pm} \). Because of this overlap, in this paper, we deal with \(D_{\sigma}^{\pm}, D_{0}^{\pm} \), and \(Z^{\pm} \) without losing the case \(D^{\pm} \).

Here is the list of the signature of \(D_{\sigma} \). We say \(E \) is real if \(E = Q[\sqrt{\Delta}] \) with \(0 < \Delta \in Z \) and this case include \(E = Q \times Q \) with \(\Delta = 1 \). Otherwise, we say \(E \) is imaginary.

(RI) If \(E \) is real and \(D \) is indefinite, we find
\[
D_{\sigma}^{\pm} \otimes \mathbb{R} = \{ (X, \pm X^\prime) \in M_{2}(\mathbb{R}) \oplus M_{2}(\mathbb{R}) \mid X \in M_{2}(\mathbb{R}) \} \cong M_{2}(\mathbb{R}).
\]

Thus it has signature \((2, 2)\).

(RD) If \(E \) is real and \(D \) is definite, then
\[
D_{\sigma} \otimes \mathbb{Q} \mathbb{R} = \{ (X, \pm X^\prime) \in \mathbb{H} \oplus \mathbb{H} \mid X \in \mathbb{H} \} \cong \mathbb{H}
\]
for Hamilton quaternion algebra \(\mathbb{H} \); so, it has signature \((4, 0)\) for \((D_{\sigma}^{\pm}, N) \) or \((0, 4)\) for \((D_{\sigma}^{\pm}, -N) \).

(ID) If \(E \) is imaginary and \(D \otimes \mathbb{Q} \mathbb{R} \cong \mathbb{H} \), let \(H := \{ x \in M_{2}(\mathbb{C}) \mid xJ = Jx \} \). Then by computation, we have \(H = \left\{ \left(\begin{array}{ll} a & b \\ -b & \bar{a} \end{array} \right) \right\} \cong \mathbb{H} \). Defining \(\sigma_{J}(x) := Jx^{\sigma}J^{-1}, \) \(\sigma_{J} \) gives an involution of \(M_{2}(\mathbb{C}) \) such that \(H^{0}(\sigma_{J}), M_{2}(\mathbb{C}) \) \(\cong \mathbb{H} \). Then
\[
D_{\sigma_{J}}^{\pm} = \left\{ \left(\begin{array}{ll} \sqrt{\tau a} & b \\ \pm b & \sqrt{\tau d} \end{array} \right) \mid a, d \in \mathbb{R}, b \in \mathbb{C} \right\}
\]
and \(N \left(\begin{array}{ll} \tau b \pm \tau \bagger \sqrt{\tau d} \end{array} \right) = \pm \tau d \bagger \bagger b \). Thus \(Q^{\pm} \) has signature \((1, 3)\) on \(D_{\sigma_{J}}^{\pm} \).

(II) If \(E \) is imaginary and \(D_{\mathbb{R}} := D \otimes \mathbb{Q} \mathbb{R} \cong M_{2}(\mathbb{R}) \), moving by an inner automorphism of \(M_{2}(\mathbb{C}) \), we may assume \(D_{\mathbb{R}} = M_{2}(\mathbb{R}) \subset M_{2}(\mathbb{C}) \). Thus \(\left(\begin{array}{ll} a & b \\ c & d \end{array} \right)^{\prime} = \left(\begin{array}{ll} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{array} \right) \) for \(\left(\begin{array}{ll} a & b \\ c & d \end{array} \right) \in M_{2}(\mathbb{C}) = D_{\mathbb{C}} \).

When we need to distinguish the action of \(\text{Gal}(E/\mathbb{Q}) \) in the two cases ID and II, we write the action of \(\sigma \) as \(\sigma_{1} \) in Case II and \(\sigma_{J} \) in Case ID. Then we find
\[
D_{\sigma}^{\pm} \otimes \mathbb{Q} \mathbb{R} = \{ \bar{X} = \pm X^\prime \mid X \in M_{2}(\mathbb{C}) \} \cong \left\{ \left(\begin{array}{ll} a & \sqrt{\tau}b \\ \pm \sqrt{\tau}b & \sqrt{\tau}c \end{array} \right) \mid a \in \mathbb{C}, b, c \in \mathbb{R} \right\}.
\]

Thus the signature is \((3, 1)\) for \((D_{\sigma}^{\pm}, \pm N) \) and \((1, 3)\) for \((D_{\sigma}^{\pm}, \mp N) \).

In Case II, on \(D_{\sigma} \otimes \mathbb{Q} \mathbb{R}, g \in (D \otimes \mathbb{Q} \mathbb{R})^{\times} \cong \text{GL}_{2}(\mathbb{C}) \) with \(N(g) \in \mathbb{R} \) acts by \(x \mapsto g^{-1}xg^{\sigma} \) which preserves \(s_{\pm} \). Thus PSL\(_{2}(\mathbb{C}) \) is isomorphic to SO(3, 1).

Let \(A^{\pm}(V) = A^{\pm}(V, Q) \) for the set of even or odd elements of the Clifford algebra \(A(V) \) of \(V \) as defined in [AQF, §23]. Write the graded Clifford algebra as \(A^{\sigma}(V) := A^{\sigma}(V) \oplus A^{-}(V) \). Put
\[
G_{V} = \{ \alpha \in A(V)^{\times} \mid \alpha^{-1}V\alpha = V \}
\]
as an algebraic group, and set \(G^{\pm}_{V} = G_{V} \cap A^{\pm}(V) \). By sending \(\alpha \in G_{V} \) to \(\tau_{\alpha}(\alpha) \in \text{Aut}(V) \) given by \(\tau_{\alpha}(\alpha)(v) = \alpha^{-1}\alpha v \), we have a morphism \(\tau_{V} : G_{V} \to \text{O}_{V} \) by the construction of the Clifford algebra [AQF, (24.1c)]. Then \(G^{\pm}_{V} = G^{\pm}_{V} \cup G^{\pm}_{V} \) is a subgroup of \(G_{V} \).

In the following statements, let \(A \) denote either a field extension of \(Q \) or the (finite or full) adele ring of a number field. We have (cf. [MSS, §8.5.3], [HMI, Proposition 2.65] and [AQF, §24–25]).
• If $(V, Q) = (D, N)$ for the reduced norm $N : D \to Q$, $\chi_D = 1$ and $A^+(D) = D \times D$ [AQF, Theorems 23.8 and 25.4]. The morphism τ_D induces surjections $G_p^+(A) \to O_p(A)$ and $G_D^+(A) \to SO_D(A)$ [AQF, Theorem 24.6]. In this case $d(D) = \partial^2 \sim 1$ modulo square.

• If $(V, Q) = (D^\pm, \pm N)$, writing the discriminant of D (resp. E, K) as ∂^2 (resp. Δ, d_K) with $0 < \partial, \Delta, d_K \in \mathbb{Z}$ (so, $E = \mathbb{Q}[\sqrt{\Delta}]$), $\chi_{D_k} = \left(\frac{\mathbb{Q}[\sqrt{\Delta}]}{D_k} \right)$. Indeed, by the expression of χ_{D_k} as in (D_k), for the fixed field $L = \mathbb{Q}[\sqrt{\Delta}]$ in KE of σ, $(D^\pm, \pm N) \equiv (L, N_{L/Q}) \equiv (L, \partial\Delta N_{L/Q})$ and $(D, -N) \equiv (L, -\Delta N_{L/Q}) \equiv (L, -\partial N_{L/Q})$. Thus $d(D) = (\partial \Delta)^2 \Delta d_K \sim \Delta d_K$. We also have $A^+(D_\sigma) = D_E [AQF, \text{Theorem } 23.8]$. The morphism τ_D induces surjections $G_{D_\sigma}^+(A) \to O_{D_\sigma}(A)$ and $G_{D_\sigma}^+(A) \to SO_{D_\sigma}(A)$ [AQF, Theorem 24.6]. $D_\sigma = SO_{D_\sigma} \cup SO_{D_\sigma}^t$, and $G_{D_\sigma}^+(Q) = \{ \alpha \in D_\sigma^\mathbb{C} \mid N(\alpha) \in \mathbb{Q} \}$ is the even Clifford group of D_σ [AQF, Theorem 24.6].

• If $(V, Q) = (D, \pm N)$, we put $\chi \chi \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) = \chi^{-1} \left(\begin{smallmatrix} a \chi \bar{d} \\ \bar{c} \chi \bar{b} \end{smallmatrix} \right)$ for $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma_0(4)$ (e.g., [S75, Lemma 1.2]).

Remark 3.1. When m is odd, we find $d(V, zQ) = z^m d(V, Q)$ for $z \in \mathbb{Q}^\times$. Since GO_V, OV, SO_V and $G^+(V)$ do not depend on scalar multiple of Q, for the statement concerning these groups, if $m = \dim V$ is odd, we may assume that $d(V) \sim 1$ modulo square.

3.2. Choices of D for a fixed D_E. The Shimura variety of D^\times gives rise to a subvariety of the Shimura variety or the automorphic manifold of D^\times := Res$_{E/Q} D^\times_E$. If we fix (the isomorphism class of) D_E, there are many choices of D which gives rise to the given D_E. They produce different cycles over which we compute the period. We fix D_E and study quaternion sub-algebras of D_E.

We discuss slightly more generally for a while. Let D be a quaternion algebra over a field $E_\mathbb{C}$ of characteristic 0 and for a semi-simple quadratic extension $E/E_\mathbb{C}$, we put $D_E = D \otimes_{E_\mathbb{C}} E$. Write σ for the generator of $\text{Aut}(E/E_\mathbb{C})$ and let it act on D_E through the factor E. Thus if $E = E_\times \times E_\mathbb{C}$, $\sigma(x, y) = (y, x)$ for $x, y \in E_\times$. Define $D^\pm = \{ x \in D_E \mid x^\sigma = \pm x \}$.

If we do not need to refer to the sign defining D^\pm, we just write D_σ for D^\pm. Pick $\alpha \in D_\sigma \cap D^\times$. Consider $x^\sigma = \alpha x^\sigma \alpha^{-1}$. Then $(x^\sigma)^\sigma = \alpha (x^\sigma)^\sigma \alpha^{-1} = \alpha (\alpha^\sigma x^\sigma \alpha^{-1}) \alpha^{-1} = x$. Thus we get a new action of $\text{Gal}(E/E_\times)$ on D_E. Then $D_\sigma := H_0(E/E_\times, D_E)$ under this new action is a quaternion algebra over \mathbb{Q}, and plainly $D_E = D_\sigma \otimes_{E_\times} E$. Often $D_\sigma \not= D$. Thus the Shimura variety Sh associated to D^\times_E has the Shimura subvariety Sh_α associated to D^\times_α. If $x \in D_\alpha$, then $x^\sigma = \alpha x^\sigma \alpha^{-1} = x$. Thus

$$D_\alpha := \{ x \in D_E \mid x \sigma = \alpha x \sigma \} \quad \text{and} \quad D^\alpha := \{ x \in D^\times_E \mid x \sigma = N(x) \alpha \}.$$

Lemma 3.2. Let the notation be as above.

1. If B is a central-simple E_\times-subalgebra of D_E of dimension 4, then there exists $\alpha \in D_\sigma$ such that $B = D_\alpha$.
2. We have $\alpha = \xi \beta \chi_{D_\beta}$ for $\beta \in D_\sigma \cap D^\times_E$ and $\xi \in D^\times_E$ if and only if $D_\alpha \cong D_\beta$ as a quaternion algebra over E_\times, and in this case, we have $D_\alpha = \xi D_\beta \xi^{-1}$ inside D_E.

3. We have $D_\alpha = D$ if and only if $\alpha \in D^\times \cap D_\sigma$.

Proof. Pick a quaternion E_\times-subalgebra $B \subset D_E$. Then we have an action of $\sigma \in \text{Gal}(E/E_\times)$ on D_E such that $H^0(E/E_\times, D_E) = B$. Identify $D_E = B \otimes_{E_\times} E$ and write the Galois action of this expression as σ_B; i.e., we have $b \otimes \sigma_B = b \otimes e^\sigma$ for $b \in B$ and $e \in E$. Then $x \mapsto (x^\sigma)^\sigma$ is an E-linear automorphism of D_E, which is inner. Thus there exists $\alpha \in D^\times_E$ such that $x^\sigma = \alpha x^\sigma \alpha^{-1}$ for all $x \in D^\times_E$. Since $(x^\sigma)^\sigma = x$, we find $\sigma \alpha = x^{-1}$ is the center of D_E and hence $\alpha \sigma \in E^\times$.

Therefore $(\alpha^\sigma)^\sigma = \alpha^\sigma \alpha = \alpha \sigma (\alpha^\sigma)$, and dividing by α from the right, we conclude α^σ commutes with α. Then $(\alpha^\sigma)^\sigma = \alpha^\sigma = \alpha \sigma = \alpha \sigma$. This shows $\alpha \sigma \in E^\times_\sigma$. Thus $\alpha^\sigma = \sigma \sigma \sigma$ for $z \in E^\times_\sigma$ and hence $\alpha^{\sigma} = \alpha\sigma = \alpha \sigma$. Therefore α in the E_\times-vector space D_E is an eigenvector of the E_\times-linear map σ with eigenvalue z. Since σ has order 2, we have $z = \pm 1$ and $\alpha^\sigma = \alpha^\sigma$.

Since $E = E_+ [\sqrt{\Delta}]$ for $\Delta \in E_+^\times$, if the sign of z does not match with the sign of D_α^\pm, for $\sqrt{\Delta} \in E_+^\times$, with $\sqrt{\Delta} = -\sqrt{\Delta}$, we have $\sqrt{\Delta} \alpha$ has matching parity. Replacing α by $\sqrt{\Delta} \alpha$, we may assume that $\alpha^\pm = \pm \alpha^\pm$, and we have $B = D_\alpha$. In this way, every quaternion E_+-subalgebra of D_E appears as D_α. This proves (1).

We now prove (2). We may assume that $\beta \in D_\sigma \cap E$. Plainly $D_\beta = D$. Suppose $\alpha = \xi \beta \xi^\sigma$ for $\xi \in D_\tau^\pm$ for $\beta \notin \beta \in E_+ \cap D_\sigma$. Then

$$\gamma \in D_\alpha \iff \gamma \alpha = \alpha \gamma^\sigma \iff \gamma \xi \beta \xi^\sigma = \xi \beta \xi^\sigma \gamma^\sigma \iff \xi^{-1} \gamma \beta = \beta \xi^\sigma \gamma^\sigma \xi^{-\sigma} \iff \xi^{-1} \gamma \beta = (\xi^{-1} \gamma^\sigma) \xi^\sigma.$$

This shows that $D_\alpha = \xi D_\beta \xi^{-1}$.

To see the converse, suppose we have an isomorphism $i : D \cong B = D_\alpha$ of E_+-algebras. Then we can identify $D_E = B \otimes_{E_1} E$; so, i is induced by $x \mapsto \xi x \xi^{-1}$ for $\xi \in D_E$.

The assertion (3) just follows from the definition. \[\square\]

We state Lemma 3.2 (2) in a different way, whose proof we leave to the reader.

Corollary 3.3. Let $\sigma_\alpha(x) = \alpha x^\sigma \alpha^{-1}$ and $D^\pm_{\sigma_\alpha} = \{ v \in D_E | v^{\sigma_\alpha} = \pm v^\sigma \}$. The following three conditions are equivalent:

- We have $\alpha = \xi \beta \xi^\sigma$ for $\beta \in D_\sigma \cap D_\tau^\pm$ and $\xi \in D_\tau^\pm$;
- $D^\pm_{\sigma_\alpha} \cong D^\pm_{\beta_\alpha}$ as a quadratic space over E_+, and in this case, we have $D^\pm_{\sigma_\alpha} = \xi D^\pm_{\beta_\alpha} \xi^{-1}$;
- $D^\pm_{\alpha,0} \cong D^\pm_{\beta,0}$ as a quadratic space over E_+ for $D^\pm_{\alpha,0} = \{ v \in D^\pm_{\alpha,0} | v + v^\sigma = 0 \}$.

Here is an adelic version. We assume that E_+ is a finite extension of \mathbb{Q} (i.e., a number field). Let $a \in D^\pm_\sigma$ with $N(a) \neq 0$. An $E^\times_+ \sigma$-subalgebra B_{E_+} on D_σ of rank 4 is called an adelic quaternion algebra over $E^\times_+ \sigma$ if its projection to D_{E_1} is a central simple quaternion algebra over $E_1\sigma$, for all places v of E, and is isomorphic to $M_2(E_1 v)$ for almost all v. Then define $D_\alpha := \{ x \in D_{E_1} | xa = ax^\sigma \}$.

Lemma 3.4. (1) If B_{E_+} is an adelic quaternion $E_+ \sigma$-subalgebra of D_σ, then there exists $a \in D_{E_+ \sigma}$ such that $B_{E_+ \sigma} = D_\alpha$.

(2) We have $a = xbx^\sigma$ for $\beta \notin \beta \in D_\sigma$ and $x \in D_+^\times$ if and only if $D_\alpha \cong D_b$ as an adelic quaternion algebra over $E_+ \sigma$, and in this case, we have $D_\alpha = xD_\beta x^{-1}$.

(3) We have $D_\alpha = D_{E_+ \sigma}$ if and only if $a \in D^\times_\sigma \cap D_\sigma$.

The proof follows by applying Lemma 3.2 place by place. We leave it to the reader.

Assume $E_+ = \mathbb{Q}$. Let $V = D^\pm_{0,0}$ with quadratic form $N(v) = vv^\sigma = \pm v v^\sigma = \mp v^2$. Let

$$O_\alpha = O_{D^\pm_{0,0}} \text{ and } SO_\alpha = SO_{D^\pm_{0,0}}, \text{ which are independent of the sign.}$$

If $z \in \mathbb{Q}$ is a scalar in O_α, then $\mp z^2 v^2 = N(zv) = N(v) = \mp v^2$ for all $v \in V$ implies $z^2 = 1$. Thus the center $Z(O_\alpha)(A) = \mu_2(A)$. Since V has dimension 3, $\det(z) = z^3$. Thus $SO_\alpha(A) \cap Z(O_\alpha) = \{ 1 \}$.

Taking the associated symmetric matrix S for the symmetric form $s^\pm(x, y)$ on V, we find for $\alpha \in O_\alpha$, $s^\pm \alpha S = \alpha S$; so, $\det(\alpha) = 1$. Thus we find O_α / SO_α is embedded into μ_2 by det. Since $-1 \in Z(O_\alpha)$ has determinant -1, we find $O_\alpha \cong \mu_2 \times SO_\alpha$.

For an open compact subgroup U of $SO_\alpha(\mathbb{A}(\mathbb{Q}))$, we define

$$Sh_\alpha = Sh_{\alpha, U} := SO_\alpha(\mathbb{Q}) \backslash SO(\mathbb{A}) / UC_\alpha = SO_\alpha(\mathbb{Q}) \backslash SO(\mathbb{A}) / UZ(\mathbb{O}_\alpha)(\mathbb{A}) C_\alpha$$

for an open compact subgroup $C_\alpha \subset SO_\alpha(\mathbb{R})$. Since $\tau = \tau_{D_{0,v}} : D^\times \rightarrow SO_\alpha$ has kernel $G_{m, \mathbb{Q}}$ and is surjective over \mathbb{Q}, \mathbb{A}, and \mathbb{Q}_v for all places v of \mathbb{Q}, we find

$$Sh_\alpha \cong D^\times \backslash D_{\mathbb{A}}^\times / \tau_{D_{0}}(U) \mathbb{A}^\times \tau_{D_{0}}^{-1}(C_\alpha)$$

which is a quaternionic Shimura variety (strictly speaking, is the Shimura variety of the quaternionic group D_{α}^\times modulo the center).
4. Period for indefinite D_σ with E real.

For any (V, Q) as in §3.1, recall $V_A = V \otimes Q A$; e.g., $D_{\sigma, A}^\pm = D_{\sigma}^\pm \otimes Q A$ and $D_{E, A} = D \otimes Q E_A = D_E \otimes Q A$. We apply the principle (S) and (R) of Waldspurger described in the introduction to the splitting $D_{E}^\pm = \mathbb{Z}^\pm \oplus D_0^\pm$ and compute the period $\int_{S_{\infty}} \theta^*(F)(h) d\mu_h$ for the theta lift $\theta^*(F)(h) = \int_{X_0(A)} \Phi(g)(h, h) dg$ (g ∈ Mp(A), h ∈ $D_{E, A}^\times$) for Siegel-Weil theta series $\theta(\phi)(g, h)$. Depending on the choice of D, E, ϕ and the level M, $\theta^*(F)$ could vanish. In this paper, we hereafter assume, for our choice of ϕ and the level M determined by ϕ,

\[(\Phi^0) \text{ } Mp(A) \ni g \mapsto \int_{D_{E, A}^\times} \theta^*(F)(g, h) d\mu_h \neq 0 \text{ as a function of } g.
\]

If $\phi^{(\infty)} = \phi_z \otimes \phi_0$ with $\phi_v \in S(V(A))$ for $V = Z, D_0$ and $\phi_\infty = \sum_j \phi_k^{j} \otimes \phi_j^{D_0}$ ($j \in \mathbb{Z} \cap [0, k]$) for the weight k of F with $\phi_j^V \in S(V_\mathbb{R})$ for $V = Z, D_0$, we set $\Phi_j(g) := r(g)(\phi_0 \otimes \phi_j^{D_0})(0)$ for $g \in Mp(A)$ and $f_j := \theta(\phi_z \otimes \phi_j^\mathbb{R})$. Then $\{f_j, \Phi_j\}$ satisfies (\Phi^0) under (\Phi^0). Indeed, by Siegel–Weil formula, for the Shimura subvariety S of D_{E} in the automorphic manifold of D_{E}, we have

\[\text{mE}(\Phi_j) = \int_S \theta(\phi_0 \otimes \phi_j^{D_0})(g, h) d\mu_h (h \in D_{E}^\times) \text{ for the mass } \text{m} = \mathbb{C} \text{ of Siegel–Shimura in [AQF, §37.1], and Tr}(\Phi_j) = \text{mTr}(\Phi_j)(g, h) d\mu_h) \text{ does not vanish as a function of } g \in Mp(A) \text{ as otherwise } \int_S \theta^*(F)(g, h) d\mu_h \text{ vanishes as a function of } g.
\]

In this section, we assume $D_{\sigma} \cong M_2(\mathbb{R})$ and $E_{\mathbb{R}} = \mathbb{R} \times \mathbb{R}$ including the case $E = \mathbb{Q} \times \mathbb{Q}$. Under this setting, we write $S_k(\Gamma, \varphi) = S_k^\mathbb{R}(\Gamma, \varphi)$ for the space of holomorphic elliptic cusp forms of weight k on $\Gamma \subset SL_2(\mathbb{Z})$ with character φ. We write $S_k^\mathbb{R}(\Gamma, \varphi)$ for the anti-holomorphic version of $S_k(\Gamma, \varphi)$.

4.1. Explicit form of Siegel–Weil theta series. Let ϕ be a Schwartz-Bruhat function on $D_{\sigma, A}$. As in [H06a, (2.17)], define a Schwartz function Ψ_k on $D_{\sigma, \mathbb{R}}$ for $(\tau, z, w) \in \mathfrak{h} \times (\mathbb{C} - \mathbb{R})^2$ and $0 \leq k \in \mathbb{Z}$,

\[\Psi_k(\tau; z, w)(v) = \text{Im}(\tau) \frac{[v; z, w]^k}{(z - \overline{z})^k (w - \overline{w})^k} \exp(\pm N(\nu)v + i \frac{\text{Im}(\tau)}{2 \text{Im}(z) \text{Im}(w)} |v; z, w|^2),\]

where for $v = (a \ b\ c \ d)$,

\[\begin{align*}
(\nu; z, w) &= -\text{Tr}_{D_{E}/E}(v^t p(z, w)) = -(w, 1)Jv^t (\overline{1}) = (z, 1)Jv (\overline{1}) = wcz - aw + dz - b
\end{align*}
\]

for $p(z, w) := t(z, 1), (w, 1)J = (0 \ 1)$. In [H06a, (2.17)], we have $\text{Im}(z) \text{Im}(w)$ in place of $[\text{Im}(z) \text{Im}(w)]$. This is because in [H06a], we have chosen the connected component of the hermitian symmetric domain \mathfrak{h}^2 for the orthogonal group given by $\text{Im}(z) > 0$. If we insert \overline{z} or \overline{w} in place of z or w, we need to work the lower half plane; so, we need to replace $\text{Im}(z) \text{Im}(w)$ by $[\text{Im}(z) \text{Im}(w)]$. We choose a Bruhat function $\phi^{(\infty)} : D_{\sigma, \mathbb{R}} \to \mathbb{C}$ and put

\[\phi = \phi_k = \phi^{(\infty)} \otimes \Psi_k\]

and consider Siegel’s theta series $\theta(\phi_k) = \theta(\phi_k)(\tau; z, w) = \sum_{v \in D_{\sigma}} \phi(v)$.

Write $O(A) := O_{D_{\sigma}}(A)$ which is independent of sign of D_{σ} and $SO(A) = \{g \in GO(A) \mid \text{det}(g) = 1\}$ as an algebraic group over Q. Here det is an automorphism of D_{σ}. Since $G^+ = \{\alpha \in D_{E}^\times \mid \text{N}(\alpha) \in \mathbb{Q}\}$ is the even Clifford group of D_{σ}, $A^+\langle A \rangle / Z_{G^+}(A)$ for the center Z_{G^+} of G^+. The action of $g \in D_{E}^\times$ on D_{σ} as an element of O (resp. GO) is given by $v \mapsto g^{-1}vg^\sigma$ (resp. $v \mapsto g^\sigma v g^\sigma$). Since $x \mapsto x^\tau = \pm x^\tau$ preserves $N(x)$, $x \in O(A)$ and $O(A) = SO(A) \sqcup iSO(A)$.

We have for $g \in GO(\mathbb{R})$

\[\frac{[v; g(z), g^\sigma(w)]}{\text{Im}(g(z)) \text{Im}(g^\sigma(w))} = (gg^\sigma)^{-1} j(g(z), g^\sigma(w)) \frac{[g^\sigma v g^\tau; z, w]}{\text{Im}(g(z)) \text{Im}(g^\sigma(w))},\]

\[\frac{[g^\sigma v g^\tau; z, w]}{\text{Im}(g(z)) \text{Im}(g^\sigma(w))} = (gg^\sigma)^{-1} j(g(z), g^\sigma(w)) \frac{[v; g(z), g^\sigma(w)]}{\text{Im}(g(z)) \text{Im}(g^\sigma(w))},\]

where $j((a \ b/\ c \ d), \tau) = c\tau + d$. These formulas tells us, if $\gamma \in D_{E}^\times \setminus N(\gamma) = 1$ and $\phi^{(\infty)} \circ \gamma = \phi^{(\infty)}$,

\[\theta(\phi_k)(\gamma(z), \gamma^\sigma(w)) = \theta(\phi_k)(z, w) j(\gamma, z)^k j(\gamma^\sigma, w)^k.\]
Over \mathbb{R}, if E is real, $(D_{\sigma,\mathbb{R}}, s) \cong (D_{\mathbb{R}}, s)$; so, $O_{D_{\sigma}}(\mathbb{R}) \cong O_D(\mathbb{R})$ and $SO_{D_{\sigma}}(\mathbb{R}) \cong SO_D(\mathbb{R})$.

$SO_{D_{\sigma}}(\mathbb{R}) \cong \{(x, y) \in (GL_2(\mathbb{R}) \times GL_2(\mathbb{R}))/Z_{G^+}(\mathbb{R}) \text{det}(x)/\text{det}(y) = 1\}$

$\hookrightarrow O_{D_{\sigma}}(\mathbb{R}) = SO_{D_{\sigma}}(\mathbb{R}) \cup SO_{D_{\sigma}}(\mathbb{R})\sigma,$

regarding $\sigma \in \text{Aut}(D_{\sigma}/\mathbb{Q})$ as an element of $O_{D_{\sigma}}(\mathbb{Q})$ [AQF, §25.3]. Here $Z_{G^+}(\mathbb{R})$ is the diagonal image of \mathbb{R} in $GL_2(\mathbb{R}) \times GL_2(\mathbb{R})$. The special orthogonal group $SO_{D_{\sigma}}(\mathbb{R})$ has two connected components

$SO^+_{D_{\sigma}}(\mathbb{R}) = \{(x, y) \in SO_{D_{\sigma}}(\mathbb{R}) | \text{det}(x) > 0\}$ and $SO^-_{D_{\sigma}}(\mathbb{R}) = \{(x, y) \in SO_{D_{\sigma}}(\mathbb{R}) | \text{det}(x) < 0\},$

and

(4.6) $SO_{D_{\sigma}}(\mathbb{R}) \cong \text{PSL}_2(\mathbb{R}) \times \text{PSL}_2(\mathbb{R})$.

4.2. Differential form coming from theta series. We write the Shimura subvariety associated to D_{α} as Sh_{α} hereafter. We just write $Sh = Sh_\delta$ for δ as in (3.1); so, $D_{\delta} = D_{\mu}$ (since $\mu \in D_{\delta} \cap E^\times$).

See (4.13) for a precise definition of Sh_{α}. Since we want to compute the integral of the theta lift over the Shimura subvariety Sh, we describe the differential form associated to the theta series of degree 2 is $\text{dim}_H Sh$.

Suppose that $\theta(\phi)$ is automorphic on $\Gamma_\tau \subset \text{SL}_2(\mathbb{Z})$. Let $L_E(n, A)$ be the space of homogeneous polynomials for each pair (X, Y) and (X', Y') of variables of degree n with coefficients in A for an E-algebra A. Suppose that $D_E \otimes A \cong M_2(A) \times M_2(A)$ for two projections inducing identity and σ. Let P_X acts on $P((X, Y; X', Y')) \in L_E(n, A)$ by $\gamma P((X, Y; X', Y')) = P((X, Y)^{\gamma'}, (X', Y')^{\gamma'})$. Then

(4.7) $\Theta(z, w) = \Theta(\tau; z, w) = \Theta(\tau(z, w)) = \Theta(z, w)(X - zY)^{k-2}(X' - \overline{w}Y')^{k-2}dz \wedge d\overline{w}$

is a C^∞-differential form with values in $L_E(k - 2; \mathbb{C})$. Then we have

$\gamma' \Theta = \Theta(\tau(z, w)) = \Theta(z, w)(X - zY)^{k-2}(X' - \overline{w}Y')^{k-2}dz \wedge d\overline{w}$

and $\gamma \cdot \Theta$ is the action of γ on the value in $L_E(k - 2; \mathbb{C})$. We write $\Theta(\tau; z) := \Theta(\tau, z, z)$.

Recall the maximal order $R \subset D$ we fixed in (D) in §1.1, we consider $R \otimes A$-module $L(n, A) = L_Q(n; A)$ made of homogeneous polynomials of degree n in (S, T) with coefficients in A. We assume that $R \otimes \mathbb{Z} \hookrightarrow M_2(A)$ and $\gamma \in R$ acts on $P(S, T) \mapsto \gamma P(S, T) := P((S, T)^{\gamma'})$.

The D^\times-module $L_E(n, A)|_{D^\times}$ has the following decomposition into irreducible factors

$L_E(n, A)|_{D^\times} \cong L_Q(n, A) \otimes L_Q(n, A) \cong \bigoplus_{j=0}^{n} L_Q(2n - 2j; A).$

As in [H94, page 498], write $\pi: L_E(n, A) = L_E(n, 0; A) \rightarrow A = L(0, n; A)$ for the SL(2) equivariant projection given by

(4.8) $\pi(P((S, T; S', T'))) = n!^{-2} \nabla^n P \text{ for } \nabla = \frac{\partial^2}{\partial S \partial S'} - \frac{\partial^2}{\partial T \partial S'}$

for $(S, T; S', T') = (X, Y; X', Y')$. Here $L(n, A) = L(n, 0; A)$ under the notation of [H99]. By [H99, page 141], we have

(4.9) $n!^{-2} \nabla^n S^{n-i} T^i S'^{n-j} T'^{j} = \begin{cases} (-1)^i \binom{n}{i}^{-1} & \text{if } n = i + j, \\ 0 & \text{otherwise}. \end{cases}$

Thus we get from $(X - zY)^n (X' - \overline{w}Y')^n = \sum_{j=0}^{n} \begin{pmatrix} n \\ i \end{pmatrix} (-1)^i z^i \overline{w}^{n-i} X^{n-i} Y^i X'^{n-j} Y'^{j},$

(4.10) $n!^{-2} \nabla^n (X - zY)^n (X' - \overline{w}Y')^n = \sum_{j=0}^{n} \begin{pmatrix} n \\ i \end{pmatrix} (-z)^i \overline{w}^{n-i} = (\overline{w} - z)^n$

Let $n = k - 2$ and write $S_{\pm}^+(\Gamma_\tau, \chi_{D_{\sigma}})$ for the space of cusp forms of weight k holomorphic in Case + and anti-holomorphic in Case -, where we say Case ± when we deal with D_{σ}^\times. Applying $n!^{-2} \nabla^n$ to $\gamma' \Theta = \gamma \cdot \Theta(z)$, we get $n!^{-2} \nabla^n \Theta(\gamma(z)) = \text{det}(\gamma)^n n!^{-2} \nabla^n \Theta(z) = n!^{-2} \nabla^n \Theta(z).$
4.3. Factoring the theta series. Recall $E = \mathbb{Q}[\sqrt{\Delta}]$ with $\Delta' = -\Delta$ with $0 < \Delta = -N(\sqrt{\Delta}) \in \mathbb{Z}$. Plainly $Z^\perp = D_0$ and $D_0^\perp = Z$ under $s(x, y) = \text{Tr}(xy')$, writing $Z = Z^{\pm}$. Thus we split the quadratic space

$$(4.11) \quad (D^+_\sigma, \pm N) = (Z^\pm, \pm N|_{Z^\pm}) \oplus (D^+_0, \pm N|_{D_0}).$$

Then $D_0 = D_0^\perp$ is 3-dimensional of signature $(1, 2)$, and Z^\pm has signature $(1, 0)$. An element $\alpha \in D^\times$ acts on D_0 by $x \mapsto \alpha^{-1} x \alpha$ and on Z by the identity action. This action is compatible with the action of D_0^\perp on D_0 by (D_0) in §1.1. We have an embedding $O_Z \times O_{D_0} \rightarrow O = O_{D_\sigma}$.

We apply the principles (S) and (R) in the introduction to $V = D_\sigma$, $V_0 = D_0$ and $V^\perp_0 = Z$. Take a Schwartz–Bruhat functions $\phi_Z \in \mathcal{S}(Z^\infty)$ and $\phi_0 \in \mathcal{S}(D_0^\infty)$. For $\mathfrak{z} \in Z^\infty$ and $\mathfrak{r} \in D^\infty$, we assume

$$(4.12) \quad \text{the tensor decomposition } \phi^\infty(\mathfrak{z} \oplus \mathfrak{r}) = (\phi_Z \otimes \phi_0)(\mathfrak{z} \oplus \mathfrak{r}) := \phi_Z(\mathfrak{z}) \phi_0(\mathfrak{r})$$

of the Bruhat function in order to factor the theta series $\theta(\phi)$.

Next we study the decomposition of the infinite part with respect to the decomposition $D_\sigma = Z \oplus D_0$. Thus we need to decompose the spherical polynomial $[\alpha; z, \mathfrak{r}]$. Pick $\mathfrak{z} \in Z$ and $\mathfrak{r} \in D_0$. Since $s = s_Z \otimes s_0$ for the restriction s_Z and s_0 of s to Z and D_0, the signature of s_0 depends on the sign of D^+_0. So we write s_0^\pm to indicate the sign of s_0. Let P^\pm be a positive majorant of $s^\pm(x, y)$. When P^\pm is compatible with the decomposition (4.11), we write $P^\pm = P^+_Z \oplus P^+_0$ accordingly.

Recall $p(z, \mathfrak{w}) = (\frac{1}{2} z \mathfrak{w})$. Then $s^\pm(p(z, \mathfrak{w}), p(z, \mathfrak{w})) = \pm 2 p(z, \mathfrak{w}) = 0$. Similarly, $s^\pm(p(z, \mathfrak{w}), p(z, \mathfrak{w})) = \pm 2 p(z, \mathfrak{w}) = 0$.

Let W be the subspace of V_0^\perp generated by $\text{Re}(p(z, \mathfrak{w}))$ and $\text{Im}(p(z, \mathfrak{w}))$. Then $s^+ > 0$ on W and $s^- < 0$ on W. Decomposing $V_0 = W \oplus W^\perp$, we have $s^+ < 0$ on W^\perp and $s^- > 0$ on W^\perp. This means $P^\pm(x, y) = s^\pm(x_W, y_W) \mp s^\pm(x_{W^\perp}, y_{W^\perp})$ for the orthogonal projection \mathcal{P}_X of \mathfrak{w} to $X = W, W^\perp$. Then the infinity part the Schwartz function is given by

$$\Phi(\mathfrak{v}) = Q(\mathfrak{v}) e\left(\frac{1}{2} (s^\pm(\mathfrak{v}; \mathfrak{v}) + P^\pm(\mathfrak{v}; \mathfrak{v}))\right).$$

We compute $P^\pm[\mathfrak{v}]$. We start with

$$P^\pm[\mathfrak{v}] + s^\pm[\mathfrak{v}] = \pm s^\pm(x_W, y_W) \mp s^\pm(x_{W^\perp}, y_{W^\perp}) \leq s^\pm(v_W, v_W) \pm s^\pm(v_{W^\perp}, v_{W^\perp}) = \pm 2 s^\pm(v_W, v_W).$$

Write $v = c p(z, \mathfrak{w}) + \tau p(x, w) + x$ with $x \in W^\perp$ and $c \in \mathbb{C}$. Then

$$P^\pm[\mathfrak{v}] + s^\pm[\mathfrak{v}] = \pm 2 s^\pm(c p(z, \mathfrak{w}) + \tau p(x, w), c p(z, \mathfrak{w}) + \tau p(x, w)) = \pm 4 |c|^2 s^\pm(p(z, \mathfrak{w}), p(x, w))$$

$$= 4 |c|^2 (\mathfrak{w} - w)(z - \mathfrak{r}) \geq 0.$$

Since $s^\pm(p(z, \mathfrak{w}), x_W, y_W) = c \mathfrak{v} s^\pm(p(x, w), p(z, \mathfrak{w})) = \pm \tau (\mathfrak{w} - w)(z - \mathfrak{r})$, writing $[v; z, w] := s^\pm(v, p(z, w))$, we have $\mathfrak{r} = \frac{1}{(\mathfrak{w} - w)(z - \mathfrak{r})}$.

Combining all these, we get

$$P^\pm[\mathfrak{v}] = \mp s^\pm[\mathfrak{v}] \mp \frac{\|c| v, \mathfrak{w}\|}{|\text{Im}(v) \text{Im}(\mathfrak{w})|}.$$

Thus $\frac{1}{2} P^\pm[\mathfrak{v}] = -N(\mathfrak{v}) + |2 \text{Im}(z) \text{Im}(\mathfrak{w})|^{-1} ||v; z, w||^2$ as in [H06a, (2.2)]. Since $Q(\mathfrak{v})$ is a polynomial, we can write it as $Q(\mathfrak{v}) = \sum_j Q_j^Z(\mathfrak{z}) Q_j^{D_\sigma}(\mathfrak{r})$ for $v = \mathfrak{z} \oplus \mathfrak{r}$ with $\mathfrak{z} \in Z$ and $\mathfrak{r} \in D_0$.

Recall that Case \pm means that we deal with D^\pm_σ. Write $\mathfrak{r}^\pm := \frac{\mathfrak{r}}{|\mathfrak{r}|}$ in Case \pm. Recall also

$$\Psi_k(\mathfrak{r}; z, w)(\mathfrak{v}) = \text{Im}(\mathfrak{v}) \left[\frac{|[v, z, w]|}{(z - \mathfrak{r})^k (w - \mathfrak{w})^k} e(N(\mathfrak{v}) \mathfrak{r}^k) + \frac{\text{Im}(\mathfrak{r})}{2 |\text{Im}(z) \text{Im}(w)|} ||v; z, \mathfrak{w}||^2\right].$$

Thus

$$\Psi_k(\mathfrak{r}; \gamma(z), \gamma^\sigma(w))(\mathfrak{v}) = \Psi_k(\mathfrak{r}; z, w)(\gamma^{-1} v \gamma^\sigma) j(\gamma, z) \gamma^k j(\gamma^\sigma, \mathfrak{w})^k$$

for $\gamma \in D^\times$ with $N(\gamma) = 1$ and $\theta(\phi_k)$ has positive weight (k, k) in z, \mathfrak{w}, and $\theta(\phi_k)$ has automorphic factor $j(\gamma, \mathfrak{r})^k$ in Case $+$ and $j(\gamma, \mathfrak{r})^k$ in Case $-$ by [HMI, Theorem 2.65] as D^\pm_σ has signature $(2, 2)$.
We assume that $\Gamma_\tau = \Gamma_0(M)$ for an integer $M > 0$. Define for $\alpha \in D_\sigma^+$

$$D_{\alpha, 0} = \{ x \in D_{\alpha} | \text{Tr}_{D_\sigma/E}(x) = 0 \},$$

(4.13)

$$\tilde{\Gamma}_\alpha := \{ x \in O_\alpha(A(\infty)) | \phi^{(\infty)}(xv) = \phi^{(\infty)}(v) \text{ for all } v \in D_{0, \Delta(\infty)} \},$$

$$S_{\alpha} = S_{\alpha, \phi} = (O_\alpha(E) / \tilde{\Gamma}_\alpha)$,$

where C_α is a maximal compact subgroup of $O_\alpha(\mathbb{R})$ and $\tau : D_{\alpha}^x \rightarrow SO_\alpha = SO_{D_{\alpha, 0}}$ is the projection from the Clifford group D_{α}^x to the orthogonal group $SO_{D_{\alpha, 0}}$ described in §3.1. When D_{α} is definite, we have $\tau : D_{\alpha}^x_{/\mathbb{R}} \cong C_\alpha = O_\alpha(\mathbb{R})$. If D_{α} is indefinite, identifying $D_{\alpha, \mathbb{R}}$ with $M_2(\mathbb{R})$, C_α is the stabilizer of $\sqrt{-1} \in \mathfrak{h}$ (though this depends on the identification $D_{\alpha, \mathbb{R}} \cong M_2(\mathbb{R})$ but the isomorphism class of S_{α} is well defined independent of the choice).

Choose ϕ so that $\theta(\phi)$ has Neben character $\varphi^{-1} \chi_{D_\alpha}$. Recall $Sh = S_{\delta}$ for δ in (3.1). Note here $D_\delta = D$. Consider the integral for $F \in S^k_{\text{odd}}(\Gamma_\tau, \varphi \chi_{D_\alpha}^e)$:

(4.14) $P^\prime_{\delta}(F) := \int_{Sh} \int_{\Gamma_\tau \setminus \mathfrak{h}} n^! n^\eta \Theta(\tau; z) F(\tau) \eta^{k-2} d\xi d\eta \ (n = k - 2)$$

$$= \int_{Sh} \left(\int_{\Gamma_\tau \setminus \mathfrak{h}} \theta(\phi_k)(\tau; z, z) F(\tau) \eta^{k-2} d\xi d\eta \right) (\tau - s)^{n} d\tau \wedge d\tau

$$= \frac{\sqrt{-1}}{2} \int_{Sh} \left(\int_{\Gamma_\tau \setminus \mathfrak{h}} \theta(\phi_k)(\tau; z, z) F(\tau) \eta^{k-2} d\xi d\eta \right) (\tau - z)^{k} y^{k-2} dxdy.$$

Since D^+_{α} has $s[x] = \pm N(x)$, on $Z, \mp s_Z$ is positive definite, and s_0 has signature $(1, 2)$ on $D^+_{0, \mathbb{R}}$. Thus $P^\prime_{Z} = \pm s_Z$.

Pick $z \in Z^\pm = \mathbb{Q}_\delta^\pm$ and $\eta \in D_0$. Then we have

$$[\eta; \tau; z] = (\eta, 1) \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \eta = \eta \xi - a \eta = \eta \xi - az - b = s(\eta, \text{Re} \varphi(z)) \in \mathbb{R}.$$

$$[\eta; \tau; z] = (\eta, 1) \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right) \eta = \eta \xi - a \eta = \eta \xi - az - b = s(\eta, \text{Re} \varphi(z)) \in \mathbb{R}.$$

$$||\eta; \tau; z||^2 = (\eta; \tau; z)^2 = (\eta; \tau; z)^{-1} (\eta; \tau; z) = ||\eta; \tau; z||^2 - \eta^2 (z - \tau)^2.$$

$$\Psi^Z_j(\tau; z; \xi) = \frac{\eta e^{j^2 \tau \xi}}{2 \text{Im}(z)^2} \left(\begin{array}{c} j e^{j^2 \tau} \\ j e^{-j^2 \tau} \end{array} \right) \text{ in Case +,}$$

$$\Psi^Z_j(\tau; z; \xi) = \frac{\eta e^{j^2 \tau \xi}}{2 \text{Im}(z)^2} \left(\begin{array}{c} j e^{j^2 \tau} \\ j e^{-j^2 \tau} \end{array} \right) \text{ in Case -,}$$

and

$$\Psi^{D_0}_j(\tau; z; \xi) = \frac{1}{2 \text{Im}(z)^2} \left(\begin{array}{c} j e^{j^2 \tau \xi} \\ j e^{-j^2 \tau \xi} \end{array} \right) \text{ in Case +,}$$

$$\Psi^{D_0}_j(\tau; z; \xi) = \frac{1}{2 \text{Im}(z)^2} \left(\begin{array}{c} j e^{j^2 \tau \xi} \\ j e^{-j^2 \tau \xi} \end{array} \right) \text{ in Case -,}$$

and

$$\Psi^Z_j(\tau; z; \xi) = \frac{1}{2 \text{Im}(z)^2} \left(\begin{array}{c} j e^{j^2 \tau \xi} \\ j e^{-j^2 \tau \xi} \end{array} \right) \text{ in Case +,}$$

$$\Psi^{D_0}_j(\tau; z; \xi) = \frac{1}{2 \text{Im}(z)^2} \left(\begin{array}{c} j e^{j^2 \tau \xi} \\ j e^{-j^2 \tau \xi} \end{array} \right) \text{ in Case -,}$$

and

$$\Psi^{D_0}_j(\tau; z; \xi) = \frac{1}{2 \text{Im}(z)^2} \left(\begin{array}{c} j e^{j^2 \tau \xi} \\ j e^{-j^2 \tau \xi} \end{array} \right) \text{ in Case +,}$$

$$\Psi^{D_0}_j(\tau; z; \xi) = \frac{1}{2 \text{Im}(z)^2} \left(\begin{array}{c} j e^{j^2 \tau \xi} \\ j e^{-j^2 \tau \xi} \end{array} \right) \text{ in Case -,}$$

Since these functions for η and z are restriction of a Schwartz function on $D_{\sigma, \mathbb{R}}$ to $Z_\mathbb{R}$ and $D_{0, \mathbb{R}}$, they are Schwartz functions on the subspace. We get

(4.15) $$\phi_k = \sum_{j=0}^{k} (-1)^j \left(\begin{array}{c} k \\ j \end{array} \right) \phi Z \Psi^Z_j \otimes \phi_0 \Psi^{D_0}_{k-j}.$$

Recall from (4.14) the integral for $F \in S^k_{\text{odd}}(\Gamma_\tau, \varphi \chi_{D_\alpha})$:

(4.16) $$P^\prime_{\delta}(F) = \frac{\sqrt{-1}}{2} \int_{\Gamma_\tau \setminus \mathfrak{h}} \int_{Sh} (\tau - z)^{k} \eta \theta(\phi_k)(\tau; z, z) y^{k-2} dxdy F(\gamma) \eta^{k-2} d\xi d\eta.$$

ADJOINT L-VALUE AS A PERIOD INTEGRAL 23
4.4. Siegel–Weil formula and period integrals. We now invoke the Siegel-Weil formula as described in (R). Since \(O_Z(\mathbb{R}) = \{ \pm 1 \} \), the variable \(g \in O_Z \) is trivial. Thus

\[
\Psi_j^Z(\sqrt{-1}, \sqrt{-1}; z) = \eta^{(1+2j)/4} e^{(3^2)\tau} = \frac{i \text{Im}(\tau)(z - \overline{z})^2}{2 |z|^2}.
\]

Since the Clifford algebra of \(D_0 \) is \(D \), we find \(SO_{D_0}(\mathbb{R}) \cong \text{PGL}_2(\mathbb{R}) \) by \(\tau_{D_0} \), and

\[
\Phi_j^D(\sqrt{-1}, \sqrt{-1}; \tau) = \eta^{(3+2j)/4} \Psi_j^Z(\tau, z; \overline{z}) = \frac{i \text{Im}(\tau)(|z|, z, \overline{z})^2}{2 |z|^2}.
\]

Let \(\phi_j^D := \phi_0 \Psi_j^D \) and \(\phi_j^Z := \phi_Z \Psi_j^Z \). Then \(g \mapsto (\Phi_j^D(\phi_j^D)(0)) \) is left-invariant under \(B(\mathbb{Q}) \subset Mp(\mathbb{A}) \) for the metaplectic cover \(SL \) of \(SL \). For \(g \in Mp(\mathbb{A}) \), decompose its image \(\gamma \in SL_2(\mathbb{A}) \) into \(bk \) for \(k \in SL_2(\mathbb{Z}) SO_2(\mathbb{R}) \) and \(b \in B(\mathbb{A}) \). Writing \(b = (\gamma^* \gamma) \), consider the Siegel Eisenstein series

\[
E(\phi_j^D)(s; g) := \sum_{\gamma \in B(\mathbb{Q}) SL_2(\mathbb{Q})} \left| a_{\gamma g} \right|^{-(1/2)}(\Phi_j^D(\gamma g)(0)).
\]

This Eisenstein series has meromorphic continuation over \(s \in \mathbb{C} \) and finite at \(s = \frac{1}{2} \) [Sw90, Theorem 3.3.1] (or [MSS, §5.3]); so we define \(E(\phi_j^D)(g) := E(\phi_j^D)(1/2; g) \). This shows \(\theta(\phi) = \eta^{1+(k/2)} \theta(\phi) \) is the sum of the product of Weil’s theta series as in Theorem 1.1 of \(\phi_j^D(\sqrt{-1}; \tau) = \phi_{D_0}(\tau; g) \Psi_j^D(\sqrt{-1}; \tau) \) and \(\phi_j^Z(\tau) = \phi_Z(\tau; g) \Psi_j^Z(\sqrt{-1}; \tau) \).

Recall the maximal order \(D \) of \(\mathbb{Q} \). Let \(O_{\delta}(\mathbb{A}) = \{ x \in (\mathbb{R} \otimes \mathbb{Z})^\times | N(x)^2 = 1 \} \). Recall \(\Gamma_\delta \subset O_{\delta}(\mathbb{A}) \) as in (4.13) taking \(\alpha = \delta \). Then we have \(Sh = O_{\delta}(\mathbb{A}) \). Fix \(\Gamma_\delta C_\delta \) for the maximal compact subgroup \(C_\delta = O_2(\mathbb{R}) \) fixing \(\sqrt{-1} \). Choose a lattice \(L \) of \(D_\sigma \) and assume \(L = L_Z \oplus L_0 \subset D_\sigma \) for lattices \(L_Z \subset Z \) and \(L_0 \subset D_0 \). Take the characteristic function \(\phi_{L_0}(\overline{L_0}) \subset D_0 \otimes Q \mathbb{A}(\infty) = L_0(\infty) \). We choose later the finite part \(\phi_Z \) of \(\phi \) which has open support in \(\mathbb{L} \). We assume that \(\phi(\infty) = \phi_Z \otimes \phi_{L_0} \).

As the Siegel–Weil formula is stated with respect to the theta series of variable \(g \in O_{D_0}(\mathbb{A}) \) (not with respect to \(z \)), we lift \(\theta(\phi_k)(\tau; z, z) \) to the function \(\theta(\phi_k)(\tau; z, z) \) on \(O_{D_0}(\mathbb{A}) \) in the standard way by

\[
\theta(\phi_k)(\tau; g) = \theta(\phi_k)(\tau; g(\sqrt{-1}), g(\sqrt{-1})) \left| j(g, \sqrt{-1}) \right|^{-2k} \left(\left| j(z, \frac{d}{z}) \right| \right) \]

(4.19)

\[
(2\sqrt{-1})^{-k} \int_{Sh} \eta^{1+(k/2)}(z, \overline{z})^k \theta(\phi_k)(\tau; z, z) \overline{\gamma}^{-2} dxdy \]

for a non-zero constant \(m \). Of course, the lifted theta series \(\theta(\phi_k^Z)(\tau; g) = \sum_{z \in Z} w(g) \phi_k^Z(j) \) is the Weil’s version of Siegel theta series.

4.5. Mass factor \(m \). Let us make \(m \) explicit. For that, we need to make a choice of Haar measures. We take the Haar measure \(d\mu_g \) on \(O_{\delta}(\mathbb{A}) \) so that it induces the discrete Dirac measure on \(O_{\delta}(\mathbb{Q}) \),
measure of volume 1 on $\Gamma_0 C_\delta$ and $y^{-2}dxdy$ on $\mathcal{H} = O_\delta(\mathbb{R})/C_\delta$. Then we have

\begin{equation}
\eta^{1+(k/2)} \int_{\mathcal{H}} \theta(\phi_k)(\tau, z)g^{-2}dxdy = \eta^{1+(k/2)} \int_{O(\mathbb{Q})\backslash O_\delta(\mathbb{A})/\tilde{\Gamma}_0 C_\delta} \theta(\phi_k)(\tau; g(\sqrt{-1}), g(\sqrt{-1}))d\mu_g
\end{equation}

\begin{equation}
= \eta^{1+(k/2)} \int_{O(\mathbb{Q})\backslash O_\delta(\mathbb{A})/\tilde{\Gamma}_0 C_\delta} \theta(\phi_k)(\tau; g, g)d\mu_g = m \sum_{j=0}^{k} \binom{k}{j} (-1)^j \theta(\phi_j^2) E(\phi_{k-j})
\end{equation}

for $m > 0$ such that $d\mu_g = \frac{m}{2}d\omega_{O_\delta}$ for the half of the Tamagawa measure $d\omega_{O_\delta}$ of O_δ. The factor $\frac{1}{2}$ is to kill the Tamagawa number $\tau(O_\delta) = 2$ so that theta integral with respect to $\frac{1}{2}d\omega_{O_\delta}$ and Siegel–Eisenstein series exactly match. The following result valid for indefinite and also definite D is due to Shimura [Sh99]:

Theorem 4.1. Replace s^\pm by $\varphi = es^\pm$ for $0 \neq e \in \mathbb{Z}$ with minimal $|e|$ so that the discriminant of $\varphi|_{D_0^\pm}$ is a square in \mathbb{Q}^\times (cf. Remark 3.1). Take the measure $d\mu_g$ on $O(\mathbb{Q})\backslash O_\delta(\mathbb{A})$ with volume 1 on $\Gamma_0 C_\delta$ for a maximal compact subgroup C_δ of $SO_\delta(\mathbb{R})$ with invariant measure $y^{-2}dxdy$ on \mathcal{H} if $D_\delta \cong M_2(\mathbb{R})$, and let $L := R \cap D_0^\pm$ with $\tilde{L} := \{x \in O_\delta(\mathbb{A}^\infty) | xLx^{-1} = \tilde{L} \} = \{x \in O_\delta(\mathbb{A}^\infty) | x\tilde{L}x^{-1} = \tilde{L} \}$. Then we have

\begin{equation}
m = m(L, \tilde{\Gamma}_\delta) = (\tilde{\Gamma}_L : \tilde{\Gamma}_\delta)[\tilde{L} : L] \left[\prod_{j \in \mathbb{Z}} 2^{-1}(1 + l)^{-1}(1 - l^{-2}) \right] \zeta(2) / \pi^{\epsilon_D}.
\end{equation}

where $\tilde{L} := \{x \in D_0^\pm | 2\varphi(x, L) \subset \mathbb{Z} \}$ and $\epsilon_D = \begin{cases} 1 & \text{if } D_\delta \cong M_2(\mathbb{R}), \\ 2 & \text{if } D_\delta \cong \mathbb{H}. \end{cases}$

Defining $L' := \{x \in D_0^\pm | s^\pm(x, L) \subset \mathbb{Z} \}$, $\tilde{L} = (2e)^{-1}L'$, $[\tilde{L} : L] = 2^{2\epsilon_D}[L' : L]$, and $[L' : L]$ is the absolute value of the discriminant of s^\pm_L. The constant e can be taken a factor of Δd_K as $d(D_0) \sim \epsilon_D$. In particular, if $E \leftrightarrow E$ (i.e., $E E \cong M_2(E)$), we can take $K = E$ and hence $e = 1$.

Proof. In [Sh99, Theorem 5.8], the volume $\int_{SO(\mathbb{Q})\backslash SO(\mathbb{A})/\tilde{\Gamma}_0 C_\delta} d\mu'$ is computed with respect to the measure $d\mu'$ Shimura specified. For a maximal lattice $L \subset V$ (i.e., maximal among lattices with $Q(L) \subset \mathbb{Z}$), the measure $d\mu'$ has volume 1 over $\tilde{\Gamma}_L C_\delta$ for a maximal compact subgroup $C_\delta \subset SO(V)$ and $\tilde{\Gamma}_L = \{x \in SO(V(\mathbb{A}^\infty)) | xLx^{-1} = \tilde{L} \}$ (note that Shimura takes a convention of right action of his orthogonal group on V). The following two facts are noteworthy:

- The Tamagawa number formula $\tau(O) = 2$ given by Weil [W65] does not give an exact formula of the volume, as the exact ratio of the Tamagawa measure $\frac{1}{2}d\omega$ and a more arithmetic measure $d\mu_g$ related to the L-value is not known most of the cases.
- Though the volume is calculated earlier by Shimizu [Sh65] for the algebraic group D^\times when D is indefinite (here O_δ and D^\times are different groups), the definite case of $V = D_0$ is elusive (because of non-validity of strong approximation outside an archimedean place), and there is only a partial computation by Siegel for O_δ and Eichler for D^\times. The paper [Sh99] gives an explicit form of the arithmetic measure on the symmetric space of the orthogonal group and the exact volume via Dedekind L-values for any quadratic space over a totally real field of any dimension.

We specialize Shimura’s result to $O_\delta = O_{D_0}$ and $V = D_0$. If D is definite, the symmetric space for $SO_\delta(\mathbb{R})$ is one point, and we take the volume 1-measure on $\tilde{\Gamma}_0 SO_{D_0}(\mathbb{R})$. Assuming $D_\delta \cong M_2(\mathbb{R})$, we choose C_δ fixing $[1, 0, 0, 1]$ in Shimura’s symmetric domain \mathcal{Z} defined in [Sh99, §4.2] and take $L := R \cap D_0$. To get the exact value, we need to describe the domain \mathcal{Z} and its measure. Here, as in [Sh99, §4.1], for $V = D_0$,

\begin{equation}
\mathcal{Z} := \{(u, v) \in \mathbb{R}^2 | 2u > -v^2/2 \}.
\end{equation}

Then putting $B(z) = \begin{pmatrix} 0 & z \\ -z & 0 \end{pmatrix}$ for $z = (u, v) \in \mathcal{Z}$, $\alpha \in SO_\delta(\mathbb{R})$ acts on \mathcal{Z} by $\alpha B(z) = B(\alpha(z))$ diag[κ, μ] for two automorphic factor $\mu \in \mathbb{C}^\times$ and $\kappa \in GL_2(\mathbb{C})$. Here we regard $SO_\delta = SO_{D_0}$
as the special orthogonal group with respect to the anti diagonal symmetric matrix S' with anti-
diagonal entries $-1, 2, -1$ in order. Since Shimura normalizes S' via conjugation by $\text{GL}_3(\mathbb{R})$ and
a scalar multiplication so that the center entry is positive, we conjugate by $Ad(\text{diag}[1, -1]) \in \text{GL}_3(\mathbb{R})$
and multiplying by -1 to reach

$$S = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

getting the center entry 2 positive which plays the role of θ_v for $v = \infty$ in [Sh99, (5.3.2)]. This is
because $Ad(\text{SL}_2(\mathbb{R})) = \text{SO}_3(\mathbb{R})$, and in this way, we identify $I : \mathcal{H} \cong \mathbb{C}$ sending $\sqrt{-1}$ to $(1, 0)$
and $I(g(z)) = Ad(g)(I(z))$ for $g \in \text{SL}_2(\mathbb{R})$.

To make the isomorphism I explicit, we choose a basis B of $\mathfrak{sl}(2)$ given by $B := \{t U, \text{diag}[1, -1], U\}$
for $U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ to compute Ad. To get the isomorphism between \mathcal{H} and \mathbb{C} via $I(a^2\sqrt{-1} + ab) = I(g(\sqrt{-1})) = Ad(g)((1, 0))$ for $g = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$, we compute $Ad(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix})$ with respect to B. Though
we conjugated by $Ad(\text{diag}[1, -1])$, we can make variable change $z \mapsto -\bar{z}$ to absorb this maneuver
without changing the invariant measure; so, we forget about it. Note $Ad(\alpha)(x) = \alpha^{-1}x\alpha$ with respect to B
for $\alpha \in \text{SL}_2(\mathbb{R})$ as Shimura chooses right multiplication of orthogonal group action on quadratic spaces. Then

$$Ad(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}) = \begin{pmatrix} a^2 & -b^2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} = \begin{pmatrix} * & * \\ 0 & a^{-2} \end{pmatrix}$$

and $Ad(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}) B((1, 0)) = \begin{pmatrix} * & * \\ 0 & a^{-1} \end{pmatrix} = B((1, 0))$.

Thus $\mu = a^{-2}$ and $\nu = a^2(a^2 - b^2)$ and $v = 2ab$. Shimura's measure corresponds to the differential form
$(2^{-1}(2u + v^2/2))^{-3/2}du \wedge dv = 8a^{-2}du \wedge db = 4y^{-2}dx \wedge dy$ for $x + iy = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}(i) = a^2i + ab$.
Thus we need to modify Shimura's exact value by the factor 4. Noting $SO_D = SO_\delta$ and $C_D = C_\delta$, here is his value in [Sh99, Theorem 5.8]

$$\int_{SO_4(\mathbb{Q}) \backslash SO_4(\mathbb{A})/\Gamma_\ell L C_\delta} d\mu' = 2(4\pi)^{1-\epsilon} \varpi [\overline{l} : L] \prod_{l \in \partial} \left(2^{-1}(1 + l)^{-1}(1 - l^{-2}) \right) \zeta(2\varpi) \pi,$$

where $\overline{l} := \{ x \in V[2s(x, L) \subset \mathbb{Z} \}$. We have $4d\mu_y = d\mu'$ if $D_\mathbb{R} \cong M_2(\mathbb{R})$ and $d\mu' = d\mu_y$ when
$D_\mathbb{R} \cong \mathbb{H}$ by our choice. Also as remarked in [Sh99, Lemma 5.6], the volume for $O_\mathbb{A}$ is twice of the one
for $SO_\mathbb{A}$. Since $\Gamma_\delta \subset \Gamma_\ell L$ is a subgroup of finite index, multiplying the index $(\Gamma_\ell L : \Gamma_\delta)$, we get
the final formula as in the theorem. \qed

We need to specify Γ_δ to make $m = m(L, \Gamma_\delta)$ explicit down-to-earth. For $l \not\mid \partial$, we identify
$R_l = R \otimes_\mathbb{Z} \mathbb{Z}_l$ with $M_2(\mathbb{Z}_l)$. The Eichler order of level l' of $R_l = R \otimes_\mathbb{Z} \mathbb{Z}_l$ is given by

$$R_l(l') := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}_l) | c \in l'[\mathbb{Z}_l] \}$$

identifying $R \otimes_\mathbb{Z} \mathbb{Z}_l$ with $M_2(\mathbb{Z}_l)$. Fix a level N_0 prime to ∂ with prime factorization $\prod_{l|N_0} l^{e(l)}$, and
define the Eichler order $R(N_0) \subset D$ of level N_0 by $D \cap \widehat{R}(N_0)$ for $\widehat{R}(N_0) := \widehat{R}(N_0) \times \prod_{l|N_0} R_l(l^{e(l)})$, where
$\widehat{R}(N_0) := \prod_{l|N_0} R_l$. \(\prod_{l|N_0} R_l(l^e)\)

Recall $\delta_+ = 1$ and $\delta_- = \sqrt{\Delta_-}$ for the square free part $\Delta_- \subset \Delta$. Note $D^\pm_0 = \delta_\iota \{ v \in D | Tr(v) = 0 \}$. For an integer N_0 outside ∂, decomposing $N_0 = \prod_{l|N_0} l^{e(l)}$, we define $R_0(N_0) = D_0 \cap \delta_\pm R_0(N_0)$, which we call the Eichler lattice of level N_0. We take $\phi_r^{(\infty)}$ to be the characteristic function of $R_0(N_0) = R_0(N_0) \otimes_\mathbb{Z} \widehat{C} \subset D_0, \delta_{\pm} \subset R_0(N_0) / \delta_{\pm} R_0(N_0) \cong 1 \pm 1 \}$. Here, as algebraic groups over \mathbb{Q}, we identify $D^\times / Z(D^\times)$ (for the center $Z(D^\times)$ of D^\times) with SO_δ by τ_D in §3.1. Since $O_\delta = SO_\delta \sqcup SO_\delta \sigma$ (the Galois action σ regarded as an \mathbb{Q}-linear automorphism of D_0),

$$Sh_\delta = O_\delta(\mathbb{Q}) \backslash O_\delta(\mathbb{A}) / \Gamma_\delta \mathcal{C}(O_\delta) \cong D^\times / D^\times_\delta \mathcal{C}(D^\times, D^\times_\delta \mathcal{C}(D^\times)),$$

where $C_\infty(G)$ is a maximal compact subgroup of the identity connected component of $G(\mathbb{R})$ for a
reductive group G / \mathbb{Q}. Therefore $[R^\times : \Gamma_\delta] = N_0 \prod_{l|N_0} (1 + l^{-1})$. We thus conclude

$$m = m(L, \Gamma_\delta) = N_0 [\overline{l} : L] \prod_{l|N_0} (1 + l^{-1}) \prod_{l|\partial} 2^{-1} (1 + l)^{-1} (1 - l^{-2}) \zeta(2\varpi) \pi.$$
4.6. Choice of ϕ_Z. We write down explicitly the theta series for (Z^+, Q^\pm). To use the results also for imaginary E, we do not assume that E is real in this subsection.

For a lattice L of a quadratic space (V, Q), we write $\phi_L : V_{h\infty} \to \{0, 1\}$ for the characteristic function of $\bar{L} = L \otimes \mathbb{Z} \tilde{\mathbb{Z}}$. More generally, write $\phi_{L,v}$ for the characteristic function of $v + \bar{L}$. Let $L^* = \{v \in V | s(v, L) \in \mathbb{Z}\}$ (the dual lattice). Then we define the level $0 < M = M_L \in \mathbb{Z}$ by the minimal integer such that $M \cdot s[L^*] \subset 2\mathbb{Z}$ (or equivalently $M \cdot Q(L) \subset \mathbb{Z}$).

First, we deal with (Z^+, Q^\pm), which is always positive definite with $Q^+(x) = x^2$ and $\delta_+ = 1$. We take a lattice $L = L_+ := N\mathbb{Z}$ of Z^+. Since $L^* = (2N)^{-1}L$, $N(L^*) = (2N)^{-2}\mathbb{Z}$, and hence the level of $L = N\mathbb{Z}$ is given by $M_L := MN_Z = 4N^2$. Put $\phi_L := \sum_{v \in \mathbb{Z}/N\mathbb{Z}} \psi(v) \phi_{L,v}$ for a primitive Dirichlet character ψ modulo N. We write this function on $Z_{h\infty} = \mathbb{A}^{h\infty}$ as ψ_+. For an integer $k \geq 0$ with $\psi(z)z^k$ is an even function on $Z_{h\infty}$, we define $\psi_{k,\infty} : \mathfrak{g} \times \mathbb{R} \to \mathbb{C}$ by $\psi_{k,\infty}(\tau, z) := z^k e(\tau z^2) \quad (\tau = \xi + \sqrt{-1}\eta)$.

Then $\theta_k(\psi) = \psi(\psi_k \psi_{k,\infty}) = \sum_{n \in \mathbb{Z}} \psi(n)b^n e(n^2\tau)$.

For $k \in \{0, 1\}$, $\theta_k(\psi)$ is a modular form on $\Gamma_0(MN_Z)$ for $M_N = 4N^2$ of weight $k + \frac{1}{2}$ with Neben character $\psi_1 = (\mathbb{A})^k \psi$ in Shimura's sense as described in §1.3. For $k > 1$, $\theta_k(\psi)$ has mixed weight.

Second, take $\Delta_0 = D_0^\perp$ with E imaginary. Recall $\Delta = \sqrt{\Delta}$ for the square-free part $\Delta_+ < 0$ of Δ and $Q^-(\delta-x) = |\Delta_+|^{-1/2}$ from (Z^k) in §3.1. We take $L = \delta_+ N\mathbb{Z}$. The dual lattice L^* of L is given by $\delta_+^{-1}(2N)^{-1}\mathbb{Z} = \delta_+ \Delta_+^{-1}(2N)^{-1}\mathbb{Z}$. Thus $N(L^*) = \Delta_+^{-1}(2N)^{-2}$, so $M_L := M_{L_Z} = 4\Delta_+ N^2$.

For a Dirichlet character ψ modulo N, we take $\phi_L := \sum_{v \in \mathbb{Z}/(\delta_+ N\mathbb{Z})} \psi(v) \phi_{L,v}$. Then $\theta_k(\psi) = \eta(k+1)/4 \delta_k^\perp(\theta_k(\psi)|[\Delta_+]|)$, where $f([\Delta_+])(\tau) = f(\Delta_+ \tau)$ and $\delta_k\perp$ at the front of the left-hand-side comes from our choice of Schwartz function $\phi_{\infty}(x) = Q^{-x}e(Q^{-x}\tau)$.

Last, take $\Delta_0 = D_0^\perp$ with E real. Recall $\Delta_+ > 0$. We take $L_+ = \delta_+ N\mathbb{Z}$. Then $Q^-(\delta_n) = -\Delta_+ n^2$ is negative definite. The dual lattice L^* of L is given by $\delta_n^{-1}(2N)^{-1}\mathbb{Z} = \delta_+ \Delta_+^{-1}(2N)^{-1}\mathbb{Z}$. Thus $N(L^*) = \Delta_+^{-1}(2N)^{-2}$, so $M_L := M_{L_Z} = 4\Delta_+ N^2$.

For a Dirichlet character ψ modulo N, we take $\phi_L := \sum_{v \in \mathbb{Z}/(\delta_n N\mathbb{Z})} \psi(v) \phi_{L,v}$. Then $\theta_k(\psi) = \eta(k+1)/4 \delta_k^\perp(\theta_k(\psi)|[\Delta_+]|)$, where we need to plug in τ by the standard choice of Schwartz function $\phi_{\infty}(x) = Q^{-x}e(-Q^{-x}\tau)$.

In summary, we find

\begin{equation}
M_{Z+} = 4|\delta_+^2|N^2.
\end{equation}

4.7. Verification of the assumption (V). For the Eichler order $R(N_0)$ of level N_0, we take two lattices in D_0 which are

$L = R_0(N_0) = \{v \in \delta_+ R(N_0)v + v' = 0\} \subset D_0^\perp$ and $cL \subset D_0^\perp$ for $0 < c \in \mathbb{Z}$

which has a \mathbb{Z}_c-basis $\{\delta_0 \delta_1 U | \delta_0, \delta_1 N_0 U\}$ for l in δ_0 whose dual basis is

\begin{equation}
\{2^{-1}\delta_0^{-1} \delta_1^{-1} \delta_0^{-1} U \mid \delta_0, \delta_1^{-1} U\}.
\end{equation}

If $l|\partial$, R_l^+ / R_l is killed by l; hence, the level of L is $4N_0 \delta\delta_0^2$. $M_L = 4N_0 \delta\delta_0^2$ as $D_0^\perp = \delta_+ D_0^\perp$. Similarly the level of cL is $M_{cL} = 4N_0 \delta\delta_0^2$. Taking ϕ to be

\begin{equation}
\phi_{0, \infty} = c_0^{-1}(\phi_0 - c^3 \phi_{cL})
\end{equation}

for $c_0 = 1 - c^3$ with a fixed $1 < c \in \mathbb{Z}$ and

\begin{equation}
\phi_0 = c_0^{-1}(\phi_0 - c^3 \phi_{cL}) \cdot \phi_{\infty}.
\end{equation}

Then $\Gamma_\tau = \Gamma_0(M)$ for

\begin{equation}
M = M_\pm = [M_L, M_{D_0}] = [4|\delta_\pm^2|N^2, 4c^2|\delta_\pm^2|N_0 \partial]
\end{equation}

(the LCM of M_{D_0} and M_{D_0}).

This formula is valid for E both real and imaginary. Writing $\hat{\Gamma}_\tau$ for the closure of Γ_τ in $\Mp(\mathbb{A}^{h\infty})$, $\hat{\Gamma}_\tau = \hat{\Gamma}_0(M) \supset B(\mathbb{Z})$.

Lemma 4.2. We have $r(\frac{a}{0} \begin{smallmatrix} a & -1 \\ 0 & a \end{smallmatrix}) \phi_{0, \infty}(0) = |a|^{3/2}$ and $r(J(\begin{smallmatrix} a & -1 \\ 0 & a \end{smallmatrix})) \phi_{0, \infty}(0) = 0$. For any Schwartz function ϕ_{∞} on $D_{\mathbb{R}, \infty}^\perp$, $\Phi(g) = (\mathfrak{g}(\phi_{0, \infty} \phi_{\infty}))(0)$ with $\phi_{0, \infty}$ in (4.25) satisfies the condition (V) in §2.4.
Proof. We have \(\left(a \ a^{-1} b \right) = (1 \ 0) \left(a \ a^{-1} \right) \). By (1.1), \(r \left(a \ a^{-1} b \right) \phi_0^{\infty} = |a|^{3/2} e(\pm N(v)b) \phi^{\infty}(av) \). Then by taking \(v = 0 \), the first assertion follows. Since \(r(J) \phi \) is proportional to the Fourier transform \(\hat{\phi} = \mathcal{F}(\phi) \) by a constant independent of \(\phi \), we need to compute the finite part of the Fourier transform over \(V^{(\infty)} = V_{\hat{\phi}}^{(\infty)} \):

\[
(4.27) \quad c_0 \mathcal{F}(|a|^{3/2} e(\pm N(v)b) \phi^{\infty}(av)) = c_0 \int_{V^{(\infty)}} |a|^{3/2} e(\pm N(v)b) \phi^{\infty}(av)e(s_\pm(v,w)) dv|_{v=0} = \int_{V^{(\infty)}} |a|^{3/2} e(\pm N(v)b) \phi_L^{\infty}(av)e(s_\pm(v,w)) dv - c_0 \int_{V^{(\infty)}} |a|^{3/2} e(\pm N(v)b) \phi_L^{\infty}(av) dv = e^{-1} V \int_{V^{(\infty)}} |a|^{3/2} e(\pm N(v)b) \phi_L^{\infty}(av) dv - c_0 \int_{V^{(\infty)}} |a|^{3/2} e(\pm N(v)b) \phi_L^{\infty}(av) dv = 0.
\]

The value of \(\Phi(g) \) for \(g \in JB(A) \) is proportional to \(\mathcal{F}(|a|^{3/2} e(\pm N(v)b) \phi^{\infty}(av)) \) in (4.27) times the corresponding Fourier transform \(\mathcal{F}(|a|^{3/2} e(\pm N(v)\infty b) \phi^{\infty}(a_\infty v)) \) at infinity by (4.25). Then the condition (V) follows from the vanishing of (4.27).

Remark 4.3. The convolution integral over \(B(A) \) of Theorem 2.3 does not depend on the level \(M \) and the integral over \(B(A) \) with respect to \(\phi^{\infty} \) and \(\phi_L^{\infty} \) are equal, since \(E(\phi^{\infty}\phi_L^{\infty}) = E(\phi_L^{\infty}\phi^{\infty}) \) over \(B(A) \). Thus we hereafter forget about the part \(c^2 \phi_L^{\infty} \) from the integral over \(B(Q) \setminus B(A) \) with respect to \(\phi_L^{\infty} \) and \(\theta(\phi_L^{\infty}) \). Hence hereafter \(\phi_{D_0}^\tau = \phi_L^{\infty} \Psi_{D_0}^\tau \) of §4.4 in Case RI (and in other cases, for the Schwartz function \(\Psi_{D_0}^\tau \) defined later case by case).

Let \(C^{\infty} \) be the maximal compact subgroup of \(SL_2(\mathbb{R}) \) and \(d\mu_{\tau} \) be the Haar measure inducing \(\eta^{-2} d\xi d\eta \) on \(\gamma \), the volume one measure on \(\Gamma, C^{\infty} \subseteq \text{Mp}(A) \) and the Dirac measure on each element of \(SL_2(Q) \subseteq \text{Mp}(A) \). Thus \(B(Q) \setminus B(A) / C^{\infty} \) is \(\approx B(Z) / (C - \mathbb{R}) = U(Z) / U(\mathbb{R}) \) for the unipotent radical \(U \) of \(B \). Lift \(F \in S(\Gamma, \varphi, \Sigma_D) \) as in (4.14) and \(\theta(\phi_{\alpha}^{\infty}) \) to \(SL_2(A) \) by \(F(h) = F(h_\infty) h_\tau \chi_D \), and \(\theta(\phi_{\alpha}^{\infty}) \) in \((\phi_{\alpha}^{\infty})_\tau \) of \(\Gamma_\tau \) and \(\theta(\phi_{\alpha}^{\infty}) \) in \(\Phi(h)(\phi_{\alpha}^{\infty})_\tau \) of \(\Phi(h) \). Then \(F \) and \(\theta(\phi_{\alpha}^{\infty}) \) is a function on \(SL_2(Q) \setminus \text{Mp}(A) \). Since \(B(\mathbb{R})C^{\infty} = SL_2(\mathbb{R}) \) and \(SL_2(A^{(\infty)}) = SL_2(Q) \Gamma^{\tau} \) by strong approximation, we have \(SL_2(Q) \setminus B(A) \Gamma^{\tau} C^{\infty} = \text{Mp}(A) \). We have

\[
(4.28) \quad \int_{X(0)(M)} F(\tau) \sum_{j=0}^k (-1)^j \left(k \atop j \right) \theta(\phi_{j}^{\infty})(\tau) \eta^{-1-(k/2)} E(\phi_{k-j}^{\infty})(g_\tau) \eta^{k-2} d\xi d\eta
\]

\[= \int_{X(0)(M)} \sum_{j=0}^k (-1)^j \left(k \atop j \right) \sum_{\gamma \in B(Q) \setminus B(L) \gamma(\phi_{j}^{\infty})} F(\gamma) \theta(\phi_{j}^{\infty})(\gamma) \omega(\gamma)(\phi_{k-j}^{\infty})(0) \eta^{-1+(k/2)} d\mu_{\tau}(h) \]

\[= \int_{X(0)(M)} \sum_{j=0}^k (-1)^j \left(k \atop j \right) \sum_{\gamma \in B(Q) \setminus B(L) \gamma(\phi_{j}^{\infty})} F(\gamma) \theta(\phi_{j}^{\infty})(\gamma) \omega(\gamma)(\phi_{k-j}^{\infty})(0) \eta^{-1+(k/2)} d\mu_{\tau}(h) \]

\[= \int_{X(0)(M)} \sum_{j=0}^k (-1)^j \left(k \atop j \right) \int_{B(Q) \setminus B(L) \gamma(\phi_{j}^{\infty})} F(\tau) \eta^{k/2} \theta(\phi_{j}^{\infty})(\tau) \omega(\tau)(\phi_{k-j}^{\infty})(0) \eta^{-1+(k/2)} d\mu_{\tau}(h). \]

Remark 4.4. To have the identity at (*), the conductor \(C \) of \(F \) has to be a factor of \(M \) as in (4.26).

4.8. Verification of the assumption (Key)

To show the assumption (Key) in Theorem 2.6, we need to compute \(\theta(\phi_{j}^{\infty})(g_\tau) \) and \((r(g_\tau) \phi_{k-j}^{\infty})(0) \). For \(\Phi \in S(D_{0, \Lambda}) \), we have

\[
r_Q(\alpha(\xi)) \Phi(\xi) = e^{(\frac{s[\xi]}{2})} \Phi(\xi) \quad \text{for} \ \alpha(\xi) = (1 \ 0). n_Q(\text{diag}[\eta^{1/2}, \eta^{-1/2}]) \Phi(\xi) = \eta^{3/4} \Phi(\eta^{1/2})
\]

\[
r_Q(g_\tau) \Phi(\xi) = r_Q(\alpha(\xi) \text{diag}[\eta^{1/2}, \eta^{-1/2}]) \Phi(\xi) = \eta^{3/4} e^{(\frac{s[\xi]}{2})} \Phi(\eta^{1/2})
\]

By this,

\[
r_Q(g_\tau) \phi(0) = 0 \iff \phi(0) = 0.
\]
Note $\phi_{k-j}^D(0) = 0$ unless $k = j$ as its infinite part is given by (4.18). This verifies the assumption (Key) in Theorem 2.6.

By [HMI, Theorem 2.65], we find the Neben character of $\theta(\phi)$ is $\psi\chi$ for $\chi = \chi_{D_\sigma} = \left(\det(S)^2\right)^{\frac{1}{2}}$. Since the product of Neben character of $\theta(\phi)$ and F has to be trivial, we need to have $\psi\chi_{D_\sigma} = \varphi^{-1}\chi_{D_\sigma}$. We put $L = L_0 \oplus I_0$ with $I_0 \subset D_0$ such that $I_0 = R(N_0) \cap D_0$ for an Eichler order $R(N_0)$ in D_E of level N_0. Write $\tau_+ = \tau$ and $\tau_- = -\tau$. Since $\theta(\phi_k) = \delta_{\pm}^k \sum_{n \in \mathbb{Z}} \psi(n)\eta^k e(\Delta_{\pm}n^2\tau_{\pm})$, writing $F(\tau) = \sum_{n=1}^\infty a_n e(n\tau_+) \in S_k^+(C, \varphi_{D_\sigma})$,

\[
(4.31) \quad (-1)^k \sum_{j=0}^k (-1)^j \binom{k}{j} \int_{B(Q) \cap B(A)/B(\mathbb{Z})} F(\tau) \eta^{k/2} \theta(\phi_k^\varepsilon)(g_\tau)(\phi_{D_\sigma}^j)(0) \eta^{-1+(k/2)} d\mu_+(b)
\]

\[
= \int_{B(Q) \cap B(A)/B(\mathbb{Z})} F(\tau) \eta^{k+1} \theta(\phi_k^\varepsilon)(g_\tau) \eta^{-2} d\xi d\eta = \int_0^\infty \int_0^1 F(\tau) \theta(\phi_k^\varepsilon)(g_\tau) d\xi \eta^{-1} d\eta
\]

\[
= 2\delta_{\pm}^k \sum_{0 < n \in \mathbb{Z}} a_{|\Delta_{\pm}|n^2}\varphi^{-1}(n)n^k \exp(-4\pi|\Delta_{\pm}|n^2\eta) \eta^{-1} d\eta
\]

\[
= 2(4\pi)^{-k}\delta_{\pm}^k |\Delta_{\pm}|^{-k} \Gamma(k) \sum_{0 < n \in \mathbb{Z}} a_{|\Delta_{\pm}|n^2}\varphi^{-1}(n)n^{-k}.
\]

Since $\delta_- > 0$ when E is real, $\delta_{\pm}^k |\Delta_{\pm}|^{-k} = \delta_{-\pm}^k$ (while $\delta_{\pm}^k |\Delta_{\pm}|^{-k} = (\delta_{-\pm})^{-k}$ if E is imaginary).

4.9. **The period is an L-value.** We study its Euler factorization assuming F is a primitive eigenform in $S_k^+(C, \varphi_{D_\sigma})$ of conductor C. Put

\[
D(s; F, \varphi^{-1}) := \sum_{n=1}^\infty \varphi_0^{-1}(n)a_n n^{-s} \text{ for the primitive character } \varphi_0 \text{ induced by } \varphi.
\]

Write $a_p = \alpha + \beta$ with $\alpha \beta = \varphi_{D_\sigma}(p)\varphi^{-1}(p)$. Suppose first $\alpha \beta = \varphi_{D_\sigma}(p)\varphi^{-1}(p) \neq 0$. Then $a_{p^{2n}} = \frac{\alpha^{2n+1} - \beta^{2n+1}}{\alpha - \beta}$. Thus

\[
\sum_{n=0}^\infty a_{p^{2n}} X^n = \sum_{n=0}^\infty \frac{\alpha^{2n+1} - \beta^{2n+1}}{\alpha - \beta} X^n = \frac{1}{\alpha - \beta} \left[\alpha \sum_{n=0}^\infty \alpha^{2n} X^n - \beta \sum_{n=0}^\infty \beta^{2n} X^n \right]
\]

\[
= \frac{1}{\alpha - \beta} \left[\frac{\alpha}{1 - \alpha^2 X} - \frac{\beta}{1 - \beta^2 X} \right] = \frac{1}{\alpha - \beta} \left[\frac{\alpha(1 - \beta^2 X) - \beta(1 - \alpha^2 X)}{(1 - \alpha^2 X)(1 - \beta^2 X)} \right]
\]

\[
= \frac{1}{\alpha - \beta} \frac{\alpha - \beta - \alpha \beta X + \beta \alpha^2 X}{(1 - \alpha^2 X)(1 - \beta^2 X)} = \frac{1 + \alpha \beta X}{(1 - \alpha^2 X)(1 - \beta^2 X)} = \frac{1 - \alpha^2 \beta^2 X^2}{(1 - \alpha^2 X)(1 - \beta^2 X)}
\]

Suppose $\varphi_0^{-1}(p) = 0$ but $\beta = 0$. Then

\[
\sum_{n=0}^\infty a_{p^{2n}} X^n = \sum_{n=0}^\infty \alpha^{2n} X^n = \frac{1}{1 - \alpha^2 X}.
\]

For an Euler product $L(s) = \prod_p E_p(s)^{-1}$, we write $L^{(m)}(s) := (\prod_{p|m} E_p(s))L(s)$ (removing Euler factors at $p|m$ for an integer $m > 0$). Thus writing $C_\varepsilon(\varphi)$ (resp. $C(\varphi)$) for the product of prime factors p of C with either $a_p = 0$ or $\varphi^{-1}(p) = 0$ (resp. the conductor of φ).

\[
(4.32) \quad \zeta^{(C)}(2s+2-2k)D(s; F, \varphi^{-1}) = L^{(C_\varepsilon(\varphi))}(s, \varphi_{\varepsilon}^{p_{\text{sqm}}\otimes \varphi^{-1}}) = L^{(C_\varepsilon(\varphi))}(s-k+1, Ad(F) \otimes \chi_{D_\sigma}).
\]

This settles the case where $D_\sigma = D_\sigma^+$ as $\delta_+ = \Delta_+ = 1$.

Here is how to modify the computation for D_σ^-:

\[
D^-(s) := 2(4\pi)^{-k} \Gamma(k) \sum_{0 < n \in \mathbb{Z}} a_{|\Delta_{\pm}|n^2}\varphi^{-1}(n)n^{-k}.
\]
Only the Euler factor for a prime $p|\Delta_-$ matters, which are given by
\[
\sum_{0 \leq n \in \mathbb{Z}} a_{1+2n} X^n = \sum_{n=0}^{\infty} \frac{\alpha^{2n+2} - \beta^{2n+2}}{\alpha - \beta} X^n = \frac{1}{\alpha - \beta} \left[\alpha^2 \sum_{n=0}^{\infty} \alpha^{2n} X^n - \beta^2 \sum_{n=0}^{\infty} \beta^{2n} X^n \right] = \frac{1}{\alpha - \beta} \left[\frac{\alpha^2}{1 - \alpha^2 X} - \frac{\beta^2}{1 - \beta^2 X} \right] = \frac{\alpha + \beta}{(1 - \alpha^2 X)(1 - \beta^2 X)} = \frac{a_p}{1 - \alpha \beta X} \left(\frac{1}{1 - \alpha^2 X}(1 - \beta^2 X) \right).
\]
We get if $D_\sigma = D^+\sigma$, $D^-\sigma = 0$ unless $a_p \neq 0$ for all $p|\Delta_-$, and otherwise
\[
(4.33) \quad \zeta^{(C)}(2s + 2 - 2k)D(s; F, \varphi^{-1}) = a^{\pm}_p L^{(C, \varphi)}(s - k + 1, Ad(F) \otimes \chi_{D_\sigma}),
\]
where $a^{\pm}_\Delta = \begin{cases} 1 & \text{if } V = D^+\sigma, \\ a_{|\Delta^-|} & \text{if } V = D^-\sigma. \end{cases}$

Since $\chi_{D_\sigma} = \chi_E = \left(\frac{E}{\mathbb{Q}} \right)$, all this combined, we obtain

Theorem 4.5. Suppose $E_\mathbb{Q} \cong \mathbb{R} \times \mathbb{R}$ and that D is indefinite. Let F be a primitive Hecke eigenform in $S^+_k(C, \psi^{-1}\chi_{D_\sigma})$ with $F|T(n) = a_n F$ for the conductor $C|M$ for M as in (4.26) and $f = \theta^s(F)$ be the theta lift holomorphic in z and anti-holomorphic in w:
\[
f(z, w) = \int_{\Gamma_r \backslash \mathbb{H}} \theta(\phi)(\tau; z, w) F(\tau) \eta^{k-2} d\xi d\eta.
\]
Choose $\phi^{(\infty)}_Z$ associated to Dirichlet character ψ of conductor $N = C(\psi)$ and $\phi^{(\infty)}_0$ to be the characteristic function of the Eichler order of D intersected with D_0 as specified above. Let $\phi = \phi^{(\infty)}_Z \otimes \phi^{(\infty)}_0 \Psi_k$ as a Schwartz-Bruhat function of $D_{\sigma,K}$. Define the $L_E(k - 2; \mathbb{C})$-valued harmonic form by
\[
\omega(F) := f(z, w)(X - zY)^n(X' - wY')^n d\xi d\eta \quad (n = k - 2)
\]
on the Shimura subvariety Sh_s as in (4.21). Then if $f(z, w) \neq 0$, for the mass m as in (4.22),
\[
(4.32) \quad \zeta(2) \int_{Sh_s} (n!)^{-2} \eta^n (\omega(F))|_{Sh_s} = m E^{\pm}(1) \delta^{-k}_{\pm}(\sqrt{-1})^{k-1}(2\pi)^{-k-1}(k \Gamma(k) L^{(C, \varphi)}(k, 1, Ad(F) \otimes \chi_E),
\]
where $E^{\pm}(1) = \begin{cases} \prod_{p|\mathcal{C}} (1 - p^{-2})^{-1} a_{|\Delta_-|} \prod_{p|\mathcal{C}} (1 - p^{-2})^{-1} \prod_{p|\Delta_-, p|C} (1 - p^{-1}) & \text{if } V = D^+\sigma, \\ a_{|\Delta_-|} \prod_{p|\mathcal{C}} (1 - p^{-2})^{-1} \prod_{p|\Delta_-, p|C} (1 - p^{-1}) & \text{if } V = D^-\sigma. \end{cases}$

Here the constant in front of the L-value comes from the constants in Theorem 2.6, (4.16), (4.19) and (4.31). The source and the constant appearing these equations are summarized in the following table whose product in the second row gives rise to the constant:
\[
\begin{array}{c|c|c|c}
\hline
(4.16) & (4.19) & (4.31) \\
\hline
2^{-1} \sqrt{-1} & (2\sqrt{-1})^{k} & (-1)^{k}2^{(4\pi)^{-k-\delta_{\pm}^{k}} - 1} \end{array}
\]
If $V = D^+\sigma$, $a_{|\Delta_-|}$ can vanish killing the entire right-hand-side. The assumption $f(z, w) \neq 0$ implies the matching condition (M) just above Example 2.1. If the converse is true, by the non-vanishing of the adoint L-values implies $f(z, w) \neq 0$.

Remark 4.6. We cannot choose ϕ_0 with the property that $r(\text{diag}[a, a^{-1}])\phi_0 = \chi(a)\phi_0$ for a non-trivial character χ as we need $\phi_0(0) \neq 0$ to have non-trivial $E(\phi^{(\infty)}_0)$ (i.e., $(r[a a^{-1}])\phi^{(\infty)}_0(0) \neq 0$). Similarly, for the theta function to have Neben character ψ, we need to choose $\phi^{(\infty)}_Z = \psi$.

4.10. **Fourier expansion of theta descent.** In this subsection, the choice of the Bruhat function $\phi^{(\infty)}_0$ is arbitrary. As remarked in §3.1, we have a canonical surjection $\tau_{D_\sigma} : G^+_{D_\sigma} \twoheadrightarrow SO_{D_\sigma}$ for $G^+_{D_\sigma}(\mathbb{Q}) := \{ \alpha \in D^+_{\mathbb{C}} \mid N(\alpha)/N(\alpha^\sigma) = 1 \}$ with $\alpha \in G^+(D_\sigma)$ acting on D_σ by $v \mapsto \alpha^{-1}v\alpha^\sigma$. Then we have
\[
(4.34) \quad O_{D_\sigma} = SO_{D_\sigma} \sqcup SO_{D_\sigma}^1 = SO_{D_\sigma} \sqcup SO_{D_\sigma}^1.
for the involution ι with $\text{Tr}(x) = x + x^t$, and $\text{Ker}(\tau_{D_0}) = \mathbb{G}_m/\mathbb{Q}$ is embedded into G^+ to the center of $D^\times \subset D^\times_{E}$, which is the center Z_{G^+} of $G^+_{D_0}$. Note that $D_E \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{R}) \times M_2(\mathbb{R})$ by the isomorphism sending $E \ni e \mapsto (e, e^\sigma) \in M_2(\mathbb{R}) \times M_2(\mathbb{R})$. Thus

$$G_{D_0}^+(\mathbb{R}) = \{(h_1, h_2) \in GL_2(\mathbb{R}) \times GL_2(\mathbb{R}) | \det(h_1)/\det(h_2) = 1\}$$

with \mathbb{R}^\times diagonally embedded onto the center of the product. Then $G_{D_0}^+(\mathbb{R})$ has two connected components whose identity component $G_{D_0}^{+0}(\mathbb{R})$ modulo center is isomorphic to the target of

$$G_{D_0}^{+0}(\mathbb{R}) \to SO^+_D(\mathbb{R}) = (SL_2(\mathbb{R}) \times SL_2(\mathbb{R}))/\{\pm 1\},$$

where $\{\pm 1\}$ is embedded into $SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$ diagonally. We put $SO_{D_0}^+(\mathbb{A}) = SO_{D_0}(\mathbb{A}(\mathbb{R}))SO_{D_0}^+(\mathbb{R})$ and $SO_{D_0}^+(\mathbb{Q}) = SO_{D_0}(\mathbb{Q}) \cap SO_{D_0}^+(\mathbb{A})$ inside $SO_{D_0}(\mathbb{A})$. Writing $D_E \ni \gamma \mapsto \gamma \in M_2(\mathbb{R})$ for the left projection and $\gamma \mapsto \gamma^\sigma \in M_2(\mathbb{R})$ for the right projection, we let $\gamma \in D_E^+$ with totally positive $N(\gamma)$ act on \mathfrak{h} by $(z, w) \mapsto (\gamma(z), \gamma^\sigma(w))$.

Pick a Schwartz–Bruhat function $\phi : D_{\sigma,\mathbb{A}} \to \mathbb{C}$ and assume that $\phi_\infty = \Psi_k(\tau; z, w)$ for $\Psi_k(\tau; z, w)$ as in (4.1). Since we compute the adjoint of the theta lift, we need to have complex conjugation applied to Ψ. In this subsection, the choice of the finite part $\phi^{(\infty)}$ is arbitrary. Consider Siegel’s theta series and differential form for $n = k - 2$

$$\theta_k(\phi) = \theta_k(\phi)(\tau; z, w) = \sum_{\nu \in D_{\nu}} \phi(\nu), \quad \Theta(\phi)(\tau; z, w; x) = \theta_k(\phi)(\tau; z, w)(X - zY)^n(X' - wY')^n d\pi \wedge dw,$

where $x = (X, Y; X', Y')$. This theta series depends on D_{σ} and hence on σ. However the groups O_{D_0} and SO_{D_0} do not depend on σ as seen above. Let

$$\Gamma_\phi := \{\gamma \in SO_{D_0}^+(\mathbb{Q}) = G_{D_0}/Z_{G^+}(\mathbb{Q})|\phi^{(\infty)}(\gamma^{-1}x\gamma^\sigma) = \phi^{\infty}(x) \text{ for all } x \in D_{\sigma,\mathbb{A}(\mathbb{R})}\},$$

where $SO_{D_0}^{+0}(\mathbb{Q}) = SO_{D_0}(\mathbb{Q}) \cap SO_{D_0}^{+0}(\mathbb{R})$.

Let $S^k_{k, k}(\Gamma_\phi)$ be the space of quaternionic modular forms $f : D^\times \setminus D_{E_0}^\times \to \mathbb{C}$ of weight $k\infty + k\infty \sigma$ left invariant under Γ_ϕ (writing a fixed infinite place as ∞ and the other by $\infty \sigma$) holomorphic in z and anti-holomorphic in w. Pick $f \in S^k_{k, k}(\Gamma_\phi)$ and restrict f to $G_{D_0}^+(\mathbb{A})$. We compute the Fourier expansion of the theta descent $\int_{SO_{D_0}^+(\mathbb{Q}) \cap SO_{D_0}(\mathbb{A})} \theta(\phi)(g, h) f(h) d\mu_h$ and show that its Fourier coefficient for $e(N(\alpha))\tau$ is given by a finite sum of the period $P_\alpha = \int_{S_{bh}} (n!)^{-2} e_n(\omega(f))$ for the harmonic differential 2-form $\omega(f)$ produced from f. Since $\sigma \in O_{D_0}(\mathbb{Q})$, we have $O_{D_0}(\mathbb{Q}) \setminus O_{D_0}(\mathbb{A}) = SO_{D_0}(\mathbb{Q}) \setminus SO_{D_0}(\mathbb{A})$. We extend f originally defined on $SO_{D_0}(\mathbb{A})$ to $O_{D_0}(\mathbb{A})$ by putting $f(\sigma x) = f(x)$ for $x \in SO_{D_0}(\mathbb{A})$. Then $f(x^\sigma) = f(\sigma x^\sigma) = f(x^\sigma)$, and by this extension, we have

$$\int_{SO_{D_0}^+(\mathbb{Q}) \cap SO_{D_0}^{+0}(\mathbb{A})} \theta(\phi)(g, h) f(h) d\mu_h = \int_{O_{D_0}(\mathbb{Q}) \setminus O_{D_0}(\mathbb{A})} \theta(\phi)(g, h) f(h) d\mu_h.$$
inside the Shimura surface associated to $\text{SO}_{D_\alpha} \sim D_E^\times$, whose isomorphism class is independent of $(z_0, w_0) \in \mathbb{H}^2$. Taking $(z_0, w_0) = i := (\sqrt{-1}, \sqrt{-1})$, we write $\text{Sh}_\alpha := \Gamma_0(\text{SO}_{D_\alpha}^\times(\mathbb{R})(i))$.

Pick a cusp form $f(z, w) \in S_{k,h}(\Gamma_0)$. Consider the invariant form

$$\omega_{inv} : = \langle z - \overline{\tau}, w - \overline{\tau} \rangle^{-2} dz \wedge d\overline{\tau} \wedge dw \wedge d\overline{w}.$$ (4.36)

The measure $d\omega_{inv}$ associated to ω_{inv} satisfies $d\omega_{inv} = (2\sqrt{-1})^{-2} d\mu_{z,w} = -4^{-1} d\mu_{z,w}$. Then we consider a differential 4-form given by

$$\Omega(f) := \frac{\alpha; z, \overline{w}}{\sqrt{\text{Im}(z) \text{Im}(w)}}^k \exp\left(-\frac{\pi}{\text{Im}(z) \text{Im}(w)} \frac{\mid \alpha; z, \overline{w} \mid^2}{\eta} \right) f(z, w)\omega_{inv}.$$ (4.37)

We pick $h_L, h_R \in \SL_2(\mathbb{R})$ so that $\alpha = h_L^{-1} h_R \delta$ for $\delta \in \mathbb{R}^\times$. Identify $\SL_2(\mathbb{R}) \times \SL_2(\mathbb{R})/\{\pm 1\} = \SO_{D_\alpha}^\times$ (and put $h = (h_L, h_R) \in \SO_{D_\alpha}^\times$). Then

$$hah^{-\sigma} = h_L^{-1} h_R^{-1}.$$ (4.38)

Since $(hah^{-\sigma})^\sigma = h\delta^\alpha h^{-1} = \pm h\delta^\alpha h^{-1} = \pm (hah^{-\sigma})^{-1}$, we find that $\ast = \pm \delta = \delta^\sigma$ in the σ-component of $E_\mathbb{R}$. Thus in D_{E_k}, we have $\alpha = h\delta h^\sigma$ writing $(\delta, \pm \delta)$ as $\delta \in E_{\mathbb{R}}$.

Noting that ω_{inv} is invariant under the action of holomorphic automorphisms of \mathbb{H}^2,

$$\omega_{inv}(f) = \langle h h_L^\sigma; z, \overline{w} \rangle^k \exp\left(-\frac{\pi}{\text{Im}(z) \text{Im}(w)} \frac{h h_L^\sigma; z, \overline{w}}{\eta} \right) f(z, w)\omega_{inv}$$ (4.39)

is a closed harmonic 2-form on Sh_α, and pulling $[\delta; z, \overline{w}]^k f h^{-1}(z, z) dz \wedge d\overline{z}$ back to Sh_α by $h : \text{Sh}_\alpha \cong \text{Sh}_\alpha$, we define

$$\omega(f)(z, w; x) := f(z, w)(X - x Y)^{k-2}(X' - x Y')^{k-2} f(z, w) dz \wedge d\overline{w}$$ (4.40)

To introduce an \SO_{D_α}-invariant pairing $(\cdot, \cdot) : L_E(n; A) \otimes \text{L}_E(n; A) \rightarrow A$, we prepare another set of variables $s := (S, T, S', T')$ as the variable of the right factor $L_E(n; A)_r = L_{id}(n; A)_r \otimes \text{L}_E(n; A)_r$. $L_{id}(n; A)_r := \text{AS}^n + \text{AS}^{n-1} T + \cdots + \text{AT}^n$ and $L_{\sigma}(n; A)_r := \text{AS}^n + \text{AS}^{n-1} T' + \cdots + \text{AT}^n$.

The variable of the left factor $L_E(n; A)_l$ are denoted by (X, Y, X', Y') as before. We pair $L_{id}(n; A)_l = AX^n + AX^{n-1} Y + \cdots + AT^n$ on the left with $L_{id}(n; A)_r = AS^n + \text{AS}^{n-1} T + \cdots + \text{AT}^n$ on the right to have the pairing $(\cdot, \cdot)_{id} : L_{id}(n; A)_l \otimes \text{L}_{id}(n; A)_r \rightarrow A$ given by $P(X, Y; S, T) \mapsto (n!)^{-2} \nabla_{id}^n(P(X, Y; S, T))$, where $\nabla_{id} := \frac{\partial}{\partial x} \nabla_{id} - \frac{\partial}{\partial y} \nabla_{id}$. Similarly, we define $\nabla_{\sigma} := \frac{\partial}{\partial x} \nabla_{\sigma} - \frac{\partial}{\partial y} \nabla_{\sigma}$. Finally, we define the desired pairing

$$\omega(f)(z, w; x) := f(z, w)(X - x Y)^{k-2}(X' - x Y')^{k-2} f(z, w) dz \wedge d\overline{w}$$ (4.41)

by $(P, Q)_n = (n!)^{-2} \nabla_{id}^n(n!)^{-2} \nabla_{id}^n(PQ)$. The pairing (\cdot, \cdot) is \SO_{D_α}-invariant [H94, (11.2a,b)]. Since $\pi_{\alpha} := (n!)^{-2} \nabla_{\alpha} : L_E(n; A)_{SO_{\alpha}} \rightarrow A$ and $\pi_{D_\alpha} := (n!)^{-2} \nabla_{\alpha}^n(n!)^{-2} \nabla_{\alpha}^n : L_E(n; A)_{SO_{\alpha}} \rightarrow A$ is \SO_{α}-equivariant, we have a commutative diagram up to constants

$$\begin{array}{ccc}
L_E(n; A)_{SO_{\alpha}} & \longrightarrow & L_E(n; A)_{SO_{\alpha}} \\
\pi_{\alpha} \otimes \pi_{\alpha} & \longrightarrow & \pi_{D_\alpha} \\
A = A \otimes A A & \longrightarrow & A.
\end{array}$$ (4.42)
Writing the variables of the left (resp. right) factor of $L_E(n; A)|_{SO_n}$ as X, Y, X', Y' (resp. S, T, S', T'), we find from [H99, page 141] $\pi_\alpha(X^{n-j}Y X'^{j}Y'^{n-j}) = (-1)^j (n)^{-1} = \pi_\alpha(S^{n-j}T^j T'^{n-j})$ and $\pi_{D_\alpha}(X^{n-j}Y X'^{j}Y'^{n-j}S^{n-j}T^j T'^{n-j}) = (n)^{-2}$, and hence the above diagram commutes without ambiguity.

Note that $(n!)^{-2}\nabla^m(\omega(f))$ is given by $[\alpha; z, \overline{m}]^k f(z, w)dz \wedge d\overline{m}$, and
\begin{equation}
(n!)^{-2}\nabla^m(\omega(f))|_{Sh_\alpha} = h^*(\omega^\alpha_\alpha(f)(z)|_{Sh_\alpha}).
\end{equation}
Then
\[(\Theta(\phi)(r; z, w; x), \omega(f)(z, w; s)) = \sum_{\alpha \in D_\sigma} \phi^{(\infty)}(\alpha)\Omega(\alpha(f))e(\pm N(\alpha)\xi).
\]
We are going to compute $\sum_{\gamma \in \Gamma_\alpha/\Gamma_\alpha} \int_{Sh_\alpha} \Omega_{\gamma^{-1}\alpha\gamma^*}(f)$ converting it into an integral over Γ_α/γ^2 by averaging.

By the diagonally embedded $SL_2(\mathbb{R}) \cong SL_2^\Delta(\mathbb{R}) \subset SL_2(E_\mathbb{R})$, $\exp(-\pi \frac{\eta(z, w)^2}{\text{Im}(z)\text{Im}(w)})$ is invariant under $SL_2^\Delta(\mathbb{R})$. Note $SL_2^\Delta(\mathbb{R})/\gamma^2 \cong SO_2(\mathbb{R})/\gamma^2$ whose coordinate on the right is given by (z, v) ($w = u + v\sqrt{-1}$). Consider the exact sequence of analytic manifolds:
\begin{equation}
1 \to SL_2^\Delta(\mathbb{R}) \hookrightarrow SL_2(\mathbb{R})^2 \xrightarrow{(hL, hR)} SL_2^\Delta(\mathbb{R})/SL_2(\mathbb{R})^2 \cong SL_2(\mathbb{R}) \to 1.
\end{equation}
Writing $SO_2^\Delta(\mathbb{R})$ for the image of $SO_2(\mathbb{R})$ in $SL_2^\Delta(\mathbb{R})$, we make the quotient of $SL_2^\Delta(\mathbb{R})$ by $SO_2^\Delta(\mathbb{R})$ from the right. Since $(hlg, hrg) \mapsto g^{-1}h_l^{-1}h_r g^1$ under the quotient map, this induces a conjugation by $SO_2(\mathbb{R})$ on $SL_2^\Delta(\mathbb{R})/SL_2(\mathbb{R})^2 \cong SL_2(\mathbb{R})$.

We make the right quotient by $SO_2(\mathbb{R})$ of $SL_2^\Delta(\mathbb{R})/SL_2(\mathbb{R})^2 \cong SL_2(\mathbb{R})$, which produces
\begin{equation}
\begin{aligned}
SL_2^\Delta(\mathbb{R})/SO_2^\Delta(\mathbb{R}) &\cong SL_2(\mathbb{R})/SO_2(\mathbb{R}) \cong SO_2(\mathbb{R})/SO_2(\mathbb{R}) \cong T(\mathbb{R}) \cong \mathbb{R}_+^	imes,
\end{aligned}
\end{equation}
where T is the diagonal torus of $SL(2)$ and $T(\mathbb{R})$ is the identity connected component. This is because of the Cartan decomposition $SL_2(\mathbb{R}) = SO_2(\mathbb{R}) T(\mathbb{R}) SO_2(\mathbb{R})$ for the diagonal torus T of $SL_2(\mathbb{R})$ [SL2, VII.2], and the isomorphism is induced by $w \mapsto v = \text{Im}(w) \in \mathbb{R}_+$. Thus we obtain
\begin{equation}
\begin{aligned}
(SL_2^\Delta(\mathbb{R})/SO_2(\mathbb{R})) \times SL_2^\Delta(\mathbb{R})/SL_2(\mathbb{R})^2 &\cong \gamma \times SL_2(\mathbb{R}) \text{ given by } ((g_2, g_3), g) \mapsto (z, g),
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
(SL_2^\Delta(\mathbb{R})/SO_2^\Delta(\mathbb{R})) \times SL_2^\Delta(\mathbb{R})/SL_2(\mathbb{R})^2 &\cong \mathfrak{j} \times \mathbb{R}_+ \text{ given by } ((g_2, g_3), g) \mapsto (z, v).
\end{aligned}
\end{equation}
Then we have $h\Gamma_\alpha h^{-1}\gamma^2 \cong Sh_\alpha \times (SL_2^\Delta(\mathbb{R})/\gamma^2) \cong Sh_\alpha \times \mathbb{R}_+$ by sending $(z, w) \in h\Gamma_\alpha h^{-1}\gamma^2$ to the pair $(z, z) \in Sh_\alpha$ and $v = \text{Im}(w) \in \mathbb{R}_+$.

Fix the differential form $d\theta$ inducing the Haar measure on $SO_2(\mathbb{R}) \cong S^1$ of measure 1. We have the factor $\mathbb{R}_+ \cong SO_2(\mathbb{R})/\gamma$ in the above argument and hence $\gamma^2 = \gamma \times SO_2(\mathbb{R}) \times \mathbb{R}_+$ by $\gamma^2 \ni (z, w) \mapsto ((z, z), \theta, v) \in \gamma \times SO_2(\mathbb{R}) \times \mathbb{R}_+$, where $\gamma \Delta$ is γ diagonally embedded into γ^2. Then we can write $\omega_{\gamma^2} = \frac{d\tau}{\tau} \wedge d\theta$ for a differential form $d\varphi$ on \mathbb{R}_+. We will compute $d\varphi$ later in the proof of Theorem 4.8. Thus
\begin{equation}
h^{-1} \Omega(\alpha(f)) = h^{-\omega_\alpha^\gamma(f)} \wedge \exp(-\pi \frac{\eta[z; \overline{m}]^2}{\text{Im}(z)\text{Im}(w)}) d\theta \wedge d\varphi.
\end{equation}
Recall the period of $\omega(f)$ over Sh_α as
\begin{equation}
P_\alpha(f) = P(f; \alpha, \Gamma_\phi) := \int_{Sh_\alpha} (n!)^{-2}\nabla^m(\omega(f))|_{Sh_\alpha} = \int_{Sh_\alpha} [\delta; z, \overline{m}]^k f^{-1}(z, z) dz \wedge d\overline{m}.
\end{equation}
Since $Sh_\alpha \cong Sh_{\gamma^{-1}\alpha\gamma^*}$ for $\gamma \in \Gamma_\phi$ and this isomorphism brings $\omega_\alpha(f)$ to $\omega_{\gamma^{-1}\alpha\gamma^*}(f)$, $P_\alpha(f)$ only depends on the class of α in D_σ/Γ_ϕ.

Remark 4.7. To have the non-vanishing period, the locally constant sheaf in which $\omega(f)$ has values needs to have trivial constant sheaf as a quotient (i.e., $\nabla^m(\omega(f)) \neq 0$), since the projection to non-constant direct factor sheaves has vanishing integral. In other words, the Neben character of the theta lift has to be unramified everywhere. This follows from the fact that $SO_{D_\sigma} = G_0^+ / G_\sigma$ which is embedded into D_σ^X / E_σ^X, and hence the center acts trivially on the theta lift. Thus the theta lift differs from the usual base-change lift (and actually it is the base-change lift twisted by a character to have trivial central character; i.e., this is the central character identity imposed in [H99, §2.4]).
We have the following explicit q-expansion of the theta descent:

Theorem 4.8. Suppose $\phi_\infty = \overline{\Psi}_k(\tau; z, w)$ for $\Psi_k(\tau; z, w)$ as in (4.1) and that $f \in S_{k}^{+}(\tilde{\Gamma}_0)$ is a cusp form on $SO_{D_\sigma}(\mathbb{A})$ of weight $k > 0$ anti-holomorphic in w and holomorphic in z as above. Then we have

$$\int_{\Gamma_\phi \backslash \mathbb{H}^2} \theta_k(\phi(\infty))(\tau; z, w) f(\tau, z) \omega_{\text{inv}} = (8\sqrt{-1})^{-1} \sum_{\alpha \in D_{\sigma}/\Gamma, N(\alpha) > 0} \phi(\infty)(\alpha) P_\alpha(f) e(N(\alpha)\tau),$$

where $\tau_+ = \tau$ and $\tau_- = -\tau$.

By applying complex conjugation to the formula in Theorem 4.8, we get the result for ϕ with $\phi_\infty = \overline{\Psi}_k(\tau; z, w)$ for $\Psi_k(\tau; z, w)$ as in (4.1); so, this assumption is harmless.

This theorem is far more explicit than [077, Theorem 1] and covers general D_σ not treated in [Sh81] II Proposition 5.1 and [H06a] Theorem 3.2. Another paper of Shimura [Sh82, Theorem 2.2] gives a similar result for D_0 in place of D_σ.

Remark 4.9.

1. Assume that f is the theta lift of an elliptic Hecke eigenform F via the quadratic space $(D_\sigma^+, \pm N)$ for $\alpha \in D_\sigma^+$ with $D \cong D_\sigma$. Then $\alpha = \xi \delta \xi^\sigma$ for $\xi \in D_E^\circ$ and a scalar $\delta \in D_\sigma^\circ$ by Lemma 3.2, and $D_{\sigma} = \xi D_{\sigma}^\circ \xi^{-1}$ by Corollary 3.3. Thus Sh_{α} with respect to $\alpha \in D_\sigma^\circ$ is isomorphic to $\text{Sh}_{\delta, \sigma}$ for $\text{Sh}_{\delta, \sigma} = \text{Sh}_{\delta}$ with respect to D_{σ}°, and if we compute the period with respect to the theta lift for Sh_{σ}, $P_\alpha(f)$ is the L-value $L(1, \text{Ad}(F) \otimes \chi_E)$ times a constant depending on α as ξ induces a correspondence between $\text{Sh}_{\delta, \sigma}$ and Sh_{α}.

2. If this descent map is Hecke equivariant (as expected), the period $P_\alpha(f)$ would vanish if f is not the theta lift from F via the quadratic space $(D_\sigma, \pm N)$ for any choice of $\beta \in D_\sigma^\circ$?

3. If $\beta \in D_\sigma$ cannot be written as $\xi \delta \xi^\sigma$, it is not clear that the theta lift $\theta_\beta(F)$ of F with respect to D_{σ}° coincides with the one $\theta(F)$ with respect to D_σ. If the two theta lifts are Hecke equivariant, by multiplicity one, $\theta_\beta(F) \cong \theta_\delta(F)$, and further assuming $\theta(F) \neq 0$, this would imply the period integral formula (and non-vanishing of $\theta_\beta(F)$) for most of β.

We prove the result for D_σ° as the proof of the case of D_σ^- is almost identical.

Proof. Fix $\alpha \in D_\sigma^\circ$. To shorten the formula, we remove $e(-N(\alpha)\tau)$ from each term in the sum and put it back at the end. First suppose that $N(\alpha) > 0$. Let Φ be a fundamental domain in Σ^2 of $\Gamma = \Gamma_\phi$. Then, writing $\Gamma_{\alpha} := \Gamma \cap \Sigma_{\alpha}(\mathbb{Q})$,

$$\ast := \eta \sum_{\gamma \in \Gamma_{\alpha}} \int_{\phi} \exp(-\pi \eta |\gamma^{-1} \alpha \gamma^\sigma z, w|^2 / \text{Im}(z) \text{Im}(w)) |\gamma^{-1} \alpha \gamma^\sigma z, w|^k f(z, w) \omega_{\text{inv}}$$

$$= \eta \sum_{\gamma} \int_{\phi} \exp(-\pi \eta |\alpha \gamma(z), \gamma^\sigma(w)|^2 / \text{Im}(\gamma(z)) \text{Im}(\gamma^\sigma(w))) j(\gamma; z)^k j(\gamma^\sigma, \gamma^\sigma)^k |\alpha; \gamma(z), \gamma^\sigma(w)|^k f(z, w) \omega_{\text{inv}}$$

$$= \eta \sum_{\gamma} \int_{\phi} \exp(-\pi \eta |\alpha; z, w|^2 / \text{Im}(z) \text{Im}(w)) j(\gamma^{-1}(z)^k j(\gamma^\sigma, \gamma^\sigma)^k |\alpha; z, w|^k f(y^{-1}(z), \gamma^\sigma(w)) \omega_{\text{inv}}$$

is the coefficient of $e(-N(\alpha)\tau)$. Here at (1), we made variable change: $z \mapsto \gamma^{-1}(z)$ and $w \mapsto \gamma^\sigma(w)$.

Write $SO_{D_\sigma}(\mathbb{R}) = SO_{D_\sigma}^+(\mathbb{R}) \cup SO_{D_\sigma}^-(\mathbb{R})$ with $SO_{D_\sigma}(\mathbb{R}) = (SL_2(\mathbb{R}) \times SL_2(\mathbb{R})) / \{ \pm 1 \} (\epsilon, \epsilon)$ for $\epsilon = \text{diag}[-1, 1]$. Then $SO_{D_\sigma}(\mathbb{R}) / \{ \pm 1 \} \cong SO_{D_\sigma}(\mathbb{R}) / \{ \pm 1 \} (\epsilon, \epsilon)$ is a maximal compact subgroup of $SO_{D_\sigma}(\mathbb{R})$. Let $C = SO_{D_\sigma}(\mathbb{R}) / \{ \pm 1 \} \cup (SO_{D_\sigma}(\mathbb{R}) / \{ \pm 1 \} (\epsilon, \epsilon) \subset SO_{D_\sigma}(\mathbb{R})$ and $C^+ = SO_{D_\sigma}(\mathbb{R}) / \{ \pm 1 \} \subset SO_{D_\sigma}^+(\mathbb{R})$. Then

$$SO_{D_\sigma}(\mathbb{R}) / C \cong SO_{D_\sigma}^+(\mathbb{R}) / C^+ \cong \text{PSL}_2(\mathbb{R})^2 / \text{PSO}_2(\mathbb{R})^2 \cong \Sigma^2.$$
Now we identify \(\mathcal{F}^2 \) with \(\text{SO}^+_{1,\mathbb{R}}(\mathbb{R})/\mathcal{F} \). Choose a fundamental domain \(\Phi_\alpha \) of \(\text{SO}^+_{1,\mathbb{R}}(\mathbb{R})/\mathcal{F} \) (by \(j \)) and write the image of \((z, w) \in \Phi_\alpha \) in \(\text{SO}^+_{1,\mathbb{R}}(\mathbb{R})/\mathcal{F} \). Then for \(g \in \text{SO}^+_{1,\mathbb{R}}(\mathbb{R}) \), by (4.4), we have \[
abla \log \gamma^n(z, w) = \frac{\gamma^n(z, w)}{\gamma^n(z, w)} \] where \(d\varphi_\alpha \) is the differential form on \(\Gamma_\alpha \text{SO}^+_{1,\mathbb{R}}(\mathbb{R})/\mathcal{F} \) given by \(h^*((z - \overline{z})^{-2}dz \wedge d\overline{z}) \) for \(h \) as in (4.37) and \(d\varphi' \) is a measure associated to an invariant 1-form \(\varphi' \) on \(\text{SO}^+_{1,\mathbb{R}}(\mathbb{R})/\mathcal{F} \) so that \(\omega_{\text{inv}} = \varphi_\alpha \wedge \varphi' \wedge d\theta \). Note that \(\text{SL}^2_{1,\mathbb{R}}/\mathcal{F} \cong \text{SL}^2_{2,\mathbb{R}}/\text{SO}^2_{1,\mathbb{R}} \cong \mathbb{R}^*_+ \). We will make explicit the isomorphism \(i \) and the differential form \(\varphi' \) later.

As explained in (4.37), replacing \(\text{D}_\alpha \subset \text{D}_\delta \) by \(\text{D}_\alpha = h \text{D}_\alpha,h^{-1} \subset \text{D}_\delta \), we may assume that \(\alpha = \delta \in \text{E}_\mathbb{R} \) (but \(\delta \in \text{E}_\mathbb{R} \) not necessarily in \(E \)); so, we pretend \(\sigma = \sigma_\alpha \) and \(\text{D}_\alpha = \text{D}_\delta \). Then we just as notation replace \(\text{Sh}_\alpha \) by \(\text{Sh}_\delta \). Our \(\delta \in \text{E}_\mathbb{R} \) satisfies \(\delta^2 = N(\delta) = N(\alpha) \). Since writing \(h\Gamma_h^{-1} \) for \(\Gamma \) and \(h\Gamma_h^{-1} \) for \(\Gamma_\alpha \) all the time is cumbersome, we hereafter assume that \(\delta \in \mathbb{E}^* \). By doing this, we do not lose the details and we can simplify a lot the notation. However we do need to conjugate back at the end by \(h \) and remember that \(N(\alpha) = N(\delta) \).

If we choose different \((z', w') \in \Phi_\beta \), taking a path \(\gamma := [(z_0, w_0), (z', w')] \in \Phi_\beta \) diffeomorphic to the real interval \([0, 1] \), we find \(\Delta := \{(\beta \text{SO}^+_{1,\mathbb{R}}(\mathbb{R}), z, w)) \mid \gamma \} \) is isomorphic to \(\Gamma_\beta \text{SO}^+_{1,\mathbb{R}}(\mathbb{R}) \times \gamma \), and hence its boundary \(\partial \Delta = \Gamma_\beta \text{SO}^+_{1,\mathbb{R}}(\mathbb{R})/\mathbb{Z}_\alpha \mathcal{F} \). Since \(\text{SO}^2_{1,\mathbb{R}} \cong \text{SL}^2_{2,\mathbb{R}} \), we identify \(\text{SO}^+_{1,\mathbb{R}}(\mathbb{R}) \) with \(\text{SL}^2_{2,\mathbb{R}} \). Thus \(\text{SO}^+_{1,\mathbb{R}}(\mathbb{R}) \) is a Shimura curve whose isomorphism class is independent of \((z, w) \). Thus we may take \((z_0, w_0) = i \). Then we have

\[
(*) = \delta^2 P_\beta(f) \eta \times \int_{\text{SO}^+_{1,\mathbb{R}}(\mathbb{R})/\mathcal{F}} \exp(-\pi \eta |\gamma^n(z, w)|^2) \frac{|\gamma^n(z, w)|^2}{|\text{Im}(z) \text{Im}(w)|} \, d\varphi' \]

We need to compute

\[
\int_{\Phi_\delta} \exp(-\pi \eta |\gamma^n(z, w)|^2) \frac{|\gamma^n(z, w)|^2}{|\text{Im}(z) \text{Im}(w)|} \, d\varphi' = \int_{\text{SL}^2_{2,\mathbb{R}}/\mathcal{F}} \exp(-\pi \eta |\gamma^n(z, w)|^2) \frac{|\gamma^n(z, w)|^2}{|\text{Im}(z) \text{Im}(w)|} \, d\varphi',
\]

where \(\text{SL}^2_{2,\mathbb{R}} \) is the image of \(\text{SL}^2_{2,\mathbb{R}} \) embedded diagonally into \(\text{SL}^2_{2,\mathbb{R}} \). For \(g_\delta(i, j) = z \), we have \((g_\delta, g_\delta)^{-1}(z, w) = (i, g_\delta^{-1}(w)) \). If \((\sqrt{-1}, w) \) and \((\sqrt{-1}, w') \) is equivalent in \(\text{SL}^2_{2,\mathbb{R}} \), then \((\sqrt{-1}, w') = (g(\sqrt{-1}), w) \); so, \(g \in \text{SO}^2_{1,\mathbb{R}} \) and \(w' = g(w) \). Thus \(\text{SL}^2_{2,\mathbb{R}}/\mathcal{F} \cong \text{SO}^2_{1,\mathbb{R}}/\mathcal{F} \). As before, write the variable of \(\mathcal{F} \) on the right-hand-side as \(w \). Consider \(i : w \rightarrow \frac{w + \sqrt{-1}}{\sqrt{-1} + 1} \) which induces an isomorphism \(\mathcal{F} \cong \mathcal{D} := \{z \in \mathbb{C} : |z| < 1 \} \) whose inverse is \(z \mapsto \sqrt{-1} \frac{1 + z}{1 - z} \). Since \(\text{SO}^2_{1,\mathbb{R}} \) acts on \(\mathcal{D} \) by rotation, we find \(\text{SO}^2_{1,\mathbb{R}}/\mathcal{F} \cong \mathcal{D} \cong [0, 1] \). We see \(|\sqrt{-1} - z| = 2(1 - \sqrt{1 - \frac{z}{1 + z}}) \). Writing \(\varphi' = r^2 \pi i \theta \) for \(r, \theta \in [0, 1] \), we have \(1 - \frac{z}{1 + z} = 1 - r^2 \). Thus

\[
\frac{|1 - \frac{z}{1 + z}|^2}{|\text{Im}(w)|} = \frac{4|1 - z|^2}{|1 + z|^2} = 4(1 - \frac{z}{1 + z})^{-1} = 4(1 - r^2)^{-1}.
\]

Since \(i_*((w - \overline{w})^{-2} dw \wedge d\overline{w}) = (1 - \overline{\mathcal{F}})^{-2} \frac{d\varphi}{|\mathcal{F}|} \), we find

\[
\varphi' = -2\pi \sqrt{-1} (1 - r^2)^{-2} r dr \wedge d\theta,
\]

and

\[
\int_{\text{SL}^2_{2,\mathbb{R}}/\mathcal{F}} \exp(-\pi \eta |\gamma^n(z, w)|^2) \frac{|\gamma^n(z, w)|^2}{|\text{Im}(z) \text{Im}(w)|} \, d\varphi' = -2\pi \sqrt{-1} \int_0^1 \exp(-8\pi \eta |\delta|^2 (1 - r^2)^{-1}) (1 - r^2)^{-2} r dr.
\]
By the isomorphism \(i : \mathcal{O} \cong \mathcal{D} \), \(\sqrt{-1}, \infty \sqrt{-1} \cong [0, 1) \) by \(\sqrt{-1}v \mapsto r \) with \(r = \frac{\sqrt{-1}}{v+1} \). Thus \(dr = 2(v+1)^{-2}dv \) and \(1 - r^2 = 4v(v+1)^{-2} \). Therefore, we can rewrite

\[
- 2\pi \sqrt{-1} \int_0^1 \exp(-8\pi \eta|\delta|^2(1 - r^2)^{-1}(1 - r^2)^{-2}rdr
= -4^{-1} \pi \sqrt{-1} \exp(-4\pi \eta|\delta|^2) \int_1^\infty \exp(-2\pi \eta|\delta|^2(v^{-1} + v)) \frac{v^2 - 1}{v^2} dv.
\]

Writing \(a = 2\pi \eta|\delta|^2 \) and \(f(v) = \exp(-a(v^{-1} + v)) \), we have \(f'(v) = -a\frac{v^2 - 1}{v^2}f(v) \). Thus we have

\[
\int_1^\infty \exp(-a(v^{-1} + v)) \frac{v^2 - 1}{v^2} dv = -a^{-1}(f(\infty) - f(1)) = a^{-1} \exp(2a).
\]

This shows

\[
(\ast) = \delta^2 P_\delta(f) \eta \times \int_{SL_2(\mathbb{R})/\mathbb{Z}} \exp(-\pi \eta \frac{||z, w||^2}{\text{Im}(z) \text{Im}(w)}) d\mu_{z, w} = (8\pi \sqrt{-1})^{-1} P_\delta(f).
\]

It is well known that if \(f \) is a cusp form, then the image of the theta correspondence is also a cusp form; so, the term of \(\alpha \) with \(N(\alpha) \leq 0 \) vanishes (e.g., [Sh82, Lemma 2.1] or [O77, Sublemma, page 108]).

5. Definite \(D \) with \(E \) real

In this section, we assume \(E = \mathbb{R} \times \mathbb{R} \) and that \(N : D \to \mathbb{Q} \) is positive definite; so, \(D \otimes \mathbb{Q} \cong \mathbb{H} \). We follow the notation and the assumption introduced in (D\(^\pm \)) in \(\S 3.1 \). In particular, \(K \) is an imaginary quadratic field \(K \) so that \(D \otimes \mathbb{Q} K \cong M_2(K) \). We choose a maximal order \(R \) of \(D \) so that \(R \otimes \mathbb{Z} O_K \subseteq M_2(O_K) \) for the integer ring \(O_K \) of \(K \). We identify \(\text{SO}_D = G^+_D/Z_{G^+_D} \).

Let \(L = KE \) and \(\langle \zeta \rangle = \text{Gal}(E/K) \) and \(\langle \sigma \rangle = \text{Gal}(L/K) \). Then \(D_L = D \otimes \mathbb{Q} L = M_2(L) \times M_2(L) \) on which \(\sigma \) interchanges two components, and \(\zeta \) acts each component \(M_2(L) \) by \(\zeta \). To distinguish two components, we write \(M_2(L)_l \) for the left component and \(M_2(L)_r \) for the right component. Let \((X, Y) \) be the variable vector on which \(D_L \) acts through the left component \(M_2(L)_l \) by \((X, Y)(\ell, \ell') = (X, Y)\ell \) for \((\ell, \ell') \in M_2(L)_l \times M_2(L)_r \). Let \((X', Y') \) be the variable vector on which \((\ell, \ell') \in M_2(L)_l \times M_2(L)_r \) acts by \((X', Y')\ell' \). We write simply \(x = (X, Y) \). Set \([x] = [x]_l = J [X'] > [X, Y] \). We will later define \([x]_D \) in \(\S 6.2 \) when \(E \) is imaginary and \(D \) is definite, and if we need to distinguish \([x]_l \) and \([x]_D \), we add subscripts \(l \) and \(D \). Then \((\ell, \ell') \in M_2(L)_l \times M_2(L)_r \) acts on \([x] \) by

\[
[x] \mapsto \ell J [X'] > [X, Y'] \ell' = J \ell' [X', Y'] \ell' \cdot
\]

We embed \(D_\sigma \subset D_E \) into \(M_2(L)_l \times M_2(L)_r \). Since \(s|_{D_\sigma} \) is definite, a spherical homogeneous polynomial of degree \(d \) on \(D_\sigma \otimes \mathbb{Q} L \) is a linear combination of \(v \mapsto s(v, w)^m \) for \(w \in D_\sigma \mathbb{C} \) with \(N(w) = \pm s(w, w) = 0 \) [HMI, \(\S 2.5.2 \)]. Note that

\[
D_{\sigma, L}^\pm = \{(\ell, \ell') \in M_2(L)_l \times M_2(L)_r | (\ell', \ell) = \pm (\ell', \ell') \} \cong M_2(L)_l,
\]

where the last isomorphism is the projection to the left factor. Similarly to (4.2), define, for \(v \in D_{\sigma, \mathbb{C}} \),

\[
[v; x] := \text{Tr}_{D_E/E}(v'[x]) = \text{Tr}_{D_E/E}(v[x]^1) = dYX' + bXX' - cYY' - aXY' \ (v = \left(\begin{array}{c} a \\ b \\ c \\ d \end{array} \right))
\]

Then we define

\[
[v; x]^n := s_+(v', [x])^n = \text{Tr}_{D_E/E}(v'[x])^n = \text{Tr}_{D_E/E}(v[x]^1)^n \ (0 < n \in \mathbb{Z}).
\]

Since \(N([x]) = \det([x]) = 0 \), the function \(v \mapsto [v; x]^n \) (for each \(x \)) is a spherical polynomial homogeneous in \(X, Y \) and in \(X', Y' \) of degree \(n \) [HMI, \(\S 2.5.2 \)]. We simply put \([v; x]^0 = 1 \) for all \(v \).
5.1. Definite theta series. Fix an infinite place ∞ of E and write its conjugate as ∞σ. Identify
\(E_{\mathbb{C}} = E \otimes_{\mathbb{Q}} \mathbb{C} = \mathbb{C} \times \mathbb{C} \) by \(e \otimes z \mapsto (ez, e^z \sigma) \). For \(A \subset \mathbb{C} \), consider polynomials \(P(x) \in A[X, Y, X', Y'] \) in \((X, Y) \in E \otimes_{E, \mathbb{Q}} \mathbb{C}^2 \) and \((X', Y') \in E \otimes_{E, \mathbb{Q}} \mathbb{C}^2 \). We let \(\gamma \in D_E \) act on \(P(x) \) from the left by
\(P| \gamma (X, Y, X', Y') = P((X, Y) \gamma^{-1}; (X', Y') \gamma^{-1}) \); \(\gamma \in D_E \) acts on \([x]\) as above; so, \([x] | \gamma = [x \gamma]^t = J^t \gamma^t \left[\frac{x}{\gamma} \right] \left[X, Y \right] \gamma^{-1} \sigma \).

Note for \(g \in GL_2(E_{\mathbb{C}}) \),
\[
(5.4) \quad [g^* v g]^t : = T_{D_E/E}((g^* v g^*)^t[x]) = T_{D_E/E}(g^* v g[x]) = [v; g[x] g^*] = [v; x g^*]
\]
with \(x g^* = ((X, Y) g^*, (X', Y') g^*) \). Define a Schwartz function \(\Psi_k \) (of weight \(2 \leq k \in \mathbb{Z} \)) by
\[
\Psi_k(v) = [v; x]^n e(\text{N}(v) \tau_2) \in S(D_{\sigma, k}(n = k - 2), \text{ where } \tau_+ = \tau \text{ and } \tau_- = -\tau \text{ (the notation } \tau^\pm = \tau_\pm \text{ is used in §4.3 which is different from } \tau_\pm \text{). For a Bruhat function } \phi(\infty) \in S(D_{\sigma, k}(\mathbb{A})), \text{ putting } \phi = \phi(\infty) \Psi_k \text{ we consider, for } \tau \in \mathfrak{F} \text{ and } h \in G_{D_{\mathbb{A}}(\mathbb{A})} \).
\]

\[
(5.5) \quad \theta(\phi)(\tau; h) = \theta(\tau; h; x) = \sum_{\alpha \in D_+^\times} \phi(h^{-1} \alpha h^*) = \sum_{\alpha \in D_+^\times} \phi(\infty)(h^{-1} \alpha h^*)[h^{-1} \alpha h^*; x]^n e(-N(\alpha) \tau_\pm).
\]

Since \([\alpha; x] \in L_E(n; \mathbb{C})\), we may regard \(\theta(\phi) \) as having values in \(L_E(n; \mathbb{C}) \).

Lemma 5.1. Write \(\Gamma_\phi := \{ u \in G_{D_{\mathbb{A}}}(\mathbb{A}(\infty)) | \phi(\infty)(u^{-1} vu^\sigma) = \phi(\infty)(v) \text{ for all } v \in D_{\sigma, \mathbb{A}(\infty)} \} \). Then
\[
1. \quad \theta(\tau; \gamma h) = \theta(\tau; h) \text{ for } \gamma \in G_{D_{\mathbb{A}}}(\mathbb{Q}),
2. \quad \theta(\tau; hu^\sigma) = \theta(\tau; h) \text{ for all } u \in \Gamma_\phi,
3. \quad \text{For } z \text{ in the center } Z_{G_{D_{\mathbb{A}}}}(\mathbb{A}) \text{ of } G_{D_{\mathbb{A}}}(\mathbb{A}), \theta(\tau; zh) = \theta(\tau; h),
4. \quad \text{For } u_\infty \in G_{D_{\mathbb{A}}}(\mathbb{R}) \text{ with } N(u_\infty) = 1, \theta(\tau; hu_\infty; x) = \theta(\tau; h; xu_\infty^{-1}).
\]

Proof. Since \(\theta \) is the sum of \(\phi(h^{-1} \alpha h^*) \), we have (1–3). The last assertion follows from (5.4). \(\square \)

To evaluate the integral over \(D^{\times}_+ / D^{\times}_2 / D^{\times}_2 \), we need to project down to \(D^{\times}_2 \)-invariant quotient of \(L_E(n; \mathbb{C}) \). Thus we need to compute \((n!)^{-2} \nu^n[\alpha; x]^n \). By (4.9), we find, for a scalar \(j \in \mathbb{Z}_\pm \),
\[
(5.7) \quad (n!)^{-2} \nu^n[j; x]^n = (n!)^{-2} \nu^n [YX' - XY']^n = n^n \sum_{j=0}^{n} (-1)^j \left(\begin{array}{c} n \\ j \end{array} \right) (-1)^j \left(\begin{array}{c} n \\ j \end{array} \right)^{-1} = n^n(n + 1).
\]

We can choose \(g \in SL_2(\mathbb{C}) \) so that
\[
[z; x]|g = [\text{diag}[z, -z]; x] = z(YX' + XY')
\]
for \(z \in \mathbb{C} \) and remark that \([j; x]|g = [j; x]\). Assuming \(j \neq 0 \) and \(x \neq 0 \), by Clebsch–Gordan decomposition [H94, (11.2a,b)], the action of \(SL_2(\mathbb{C}) \) on the space spanned by the right translation of \([z; x]|g^{-j} [j; x]^j \) by \(SL_2(\mathbb{C}) \) is isomorphic to the 2j-th symmetric tensor representation of \(SL_2(\mathbb{C}) \). Since \((n!)^{-2} \nu^n P|g = (n!)^{-2} \nu^n P|g \in SL_2(\mathbb{C}) \hookrightarrow D^{\times}_2 \) [H99, page 141], we have for any \(0 \leq j \leq n \)
\[
(5.8) \quad (n!)^{-2} \nu^n [j; x]|_{\infty-j} [j; x]^j = (n!)^{-2} \nu^n [n-j, z][YX' + XY']^n [YX' - XY']^n [j; x]|_{\infty-j} = 0.
\]

5.2. Factoring theta series in the definite case with \(E \) real. Recall \(\Delta_+ = 1 \) and we may assume \(\Delta_- = 0 \). Then \(\delta_\pm = \sqrt{\Delta_\pm} \). As described in §3.1, we decompose \(D^{\times}_2 = \mathbb{Z}_+ \oplus \mathbb{Z}_0^{\times} \) so that \(\mathbb{Z}_\pm = \delta_\pm \mathbb{Q} \subset \mathbb{Z}_+^{\times} \) with \(Q(x) = x^2 \) and \(L_N = N\delta_\pm Z \). We take the Bruhat function \(\phi^{\infty} \) on \(L_N / Z \to N^{-1}Z / NZ \) defined in §4.6 for a Dirichlet character \(\psi : Z / NZ \to \mathbb{C} \). We take an Eichler order \(R(N_0) \) in \(D_E \) for \(N_0 \) prime to \(\partial \). Then let \(\phi^{\infty}(\infty) \in S(D^{\times}_{0, \mathbb{A}(\infty)}) \) be as in (4.24) for the characteristic function of \(\tilde{L} := \delta_\pm \tilde{R}(N_0) \cap D^{\times}_{0, \mathbb{A}(\infty)} \). We put \(\phi(\infty) = \psi \otimes \phi^{\infty} \) and for \(P \in L_E(n; A) \),
\[
(5.9) \quad \phi(x) := \phi(\infty)(x^{\infty})[x_{\infty}; x]^n e(\text{N}(x_{\infty}) \tau_\pm).
\]

Decompose \(x_{\infty} = j + \eta \) with scalar \(j \in \mathbb{Z}_\pm \) and \(\eta \in D^{\times}_{0, \mathbb{R}} \). Then
\[
[j; x] = j(YX' - XY')
\]
and \([j + \eta; x] = [j; x] + [\eta; x] \). Thus we find
\[
[j + \eta; x]^n = \sum_{j=0}^{n} \left(\begin{array}{c} n \\ j \end{array} \right) j^j \left(YX' - XY' \right)^j [\eta; x]|_{\infty-j}.
\]
Defining $\phi^Z_j(\xi) = \psi(\xi^{(\infty)})3^{j/2}\mathfrak{e}(\Delta_{\pm}^{1/2}\tau_{\pm})$ and $\phi^D_{j} = \phi^Z_j(\eta^{(\infty)})|\eta; x|^j\mathfrak{e}(N(\eta)\tau_{\pm})$, we have
\begin{equation}
\theta(\phi)|_{O_\pm(A)} = \sum_{j=0}^{n} (YX' - XY')^{j} \left(\begin{array}{c} n \\ j \end{array} \right) \theta(\phi^Z_j)\theta(\phi^D_{n-j}).
\end{equation}
and by (5.7) and (5.8)
\begin{equation}
(n!)^{-2}v^n\theta(\phi)|_{O_\pm(A)} = \theta((n!)^{-2}v^n\phi^Z_j)\theta(\phi^D_0).
\end{equation}

5.3. Siegel–Weil formula in the definite case. Note
\begin{equation}
r_Z(\gamma_1)D_Z(g)(3^{j/2}\mathfrak{e}(\Delta_{\pm}^{1/2}\tau_{\pm})) = \eta^{(3+2j)/4}3^{j/2}\mathfrak{e}(\Delta_{\pm}^{1/2}\tau_{\pm})
\end{equation}
and for τ_{\pm} as in (5.5),
\begin{equation}
r_{D_0}(\gamma_1)D_{D_0}(g)[|\eta; x|^j\mathfrak{e}(N(\eta)\tau_{\pm})] = \eta^{(3+2j)/4}|\eta; x|^j\mathfrak{e}(N(\eta)\tau_{\pm}).
\end{equation}
Recall $\theta(\phi^Z_j)(\tau) = \sum_{m \in \mathbb{Z}} w(\tau)\phi^Z_j(\alpha)$. Recall $D^\times \backslash D^\times_0(\mathfrak{T}_0)D_{\mathfrak{T}} = SO_{\delta}(\mathbb{Q}) \setminus SO_{\delta}(A)/\mathfrak{T}_0 C_{\delta} = O_{\delta}(\mathbb{Q}) \setminus O_{\delta}(A)/\mathfrak{T}_0 C_{\delta}$ for $C_{\delta} = C_{\infty}(O_{\delta})$ as $O_{\delta} = SO_{\delta} \sqcup SO_{\delta} \ell$. We now study
\begin{align*}
\int_{O_{\delta}(\mathbb{Q}) \setminus O_{\delta}(A)/\mathfrak{T}_0 C_{\delta}} \theta(\phi)(g) d\mu_g &= \int_{O_{\delta}(\mathbb{Q}) \setminus O_{\delta}(A)/\mathfrak{T}_0 C_{\delta}} \theta((n!)^{-2}v^n\phi^Z_j)\theta(\phi^D_0) d\mu_g \\
&= \sum_{\gamma \in \mathcal{B}(Q) \setminus \mathcal{B}(A)/\mathfrak{B}(\mathbb{Z})} |a(\gamma)|^{-2}(|\mathfrak{w}(\gamma)\Phi(0)|_{s=\frac{1}{2}}).
\end{align*}
At the identity (\ast), the sum $\sum_{j=0}^{n}$ reduces to the term $j = n$ because of (5.8) and Lemma 4.2 (see also Remark 4.3).

Take $F(\tau) = \sum_{m=1}^{\infty} a_m(\tau)\chi_{D_m}$ for M as in (4.26). Again in the same manner as getting (4.31) from (4.30) and (4.28): for $\mathfrak{B} := B(\mathbb{Q}) \setminus B(A)/B(\mathbb{Z})$, (4.14)
\begin{align*}
\int_{\mathfrak{B}} F(\tau)\eta^{k/2}\theta((n!)^{-2}v^n\phi^Z_n)(g_\tau)\theta(\phi^D_0)(0) d\mu_0 &= \int_{\mathfrak{B}} F(\tau)\theta((n!)^{-2}v^n\phi^Z_n)(g_\tau)\eta^{k-2} d\xi d\eta \\
&= \frac{1}{2}\delta^{k-2}_{\pm} \sum_{0 < m \in \mathbb{Z}} \psi(m) m^{k-2} \exp(-4\pi|m|\eta^{k-2} d\eta) \\
&= \frac{1}{2}\delta^{k-2}_{\pm} |\Delta_{\pm}|^{1-k}(4\pi)^{-k+1}(n+1)\Gamma(k-1) \sum_{0 < m \in \mathbb{Z}} \psi(n) a_{m_2} m^{-k}.
\end{align*}
The factor $(n+1)$ shows up at the end by (5.7), and $\delta^{k-2}_{\pm} |\Delta_{\pm}|^{1-k} = \delta^{-k}_{\pm}$. Noting $(n+1)\Gamma(k-1) = \Gamma(k)$ as $n+1 = k-1$, we get in the same manner as in Theorem 4.5.

Theorem 5.2. Suppose that E is real and that D is definite. Let F be a primitive Hecke eigenform in $S_{k+1}^\mathfrak{f}(C, \psi^{-1}\chi_{D_\infty})$ for the conductor $C|M$ for the level M as in (4.26) and $\mathfrak{f} := \theta^*(F)$ be the theta lift to $D^\times_{\mathfrak{f}}$:
\begin{equation}
f(g) = \int_{\Gamma \cap \mathfrak{f}} \theta(\phi)(\tau; g) F(\tau)\eta^{k-2} d\xi d\eta.
\end{equation}
Choose ϕ^Z_j associated to Dirichlet character ψ of conductor $C(\psi)$ and $\phi^{(\infty)}_j$ to be the characteristic function of the Eichler order restricted to $D_{0, \mathfrak{A}}^{(\infty)}$ as specified above. Let ϕ be a Schwartz–Bruhat function of $D^\times_{\mathfrak{f}, \mathfrak{A}}$ as in (5.9), and choose the measure $d\mu_g$ on $O_{\delta}(\mathfrak{A})$ as in Theorem 4.1. Then if $f(g) \neq 0$, for the mass m as in (4.22) and $E_{\pm}(1)$ as in Theorem 4.5,
\begin{align*}
\zeta(2) \int_{\mathfrak{A}} (n!)^{-2} v^n f(g) d\mu_g &= mE_{\pm}(1)\delta^{k-2}_{\pm} 2(4\pi)^{-k+1}\Gamma(k) L^{(C_\ast(\psi))}(1, \text{Ad}(F) \otimes \chi_E)
\end{align*}
for the compatible system ρ_F attached to F and the finite set of points $Sh_δ$ as in (4.21).

5.4. Mass formula and the adjoint L-value formula. Recall from (4.21) that

$$Sh_δ = O_δ(\mathbb{Q})/O_δ(\mathbb{A})/\hat{F}_δO_δ(\mathbb{R}) \cong D^X/D^X_A/\hat{A}^X\hat{R}(N_0)^X D^X_\mathbb{R}.$$

Since D is definite, $Sh_δ$ is a finite set, and $dμ_γ$ is the measure given by

$$\int_{Sh_δ} \varphi dμ_γ = \sum_{x \in Sh_δ} e_x^{-1} \varphi(x),$$

where $e_x = |x\hat{R}(N_0)^X x^{-1} \cap D^X|$. Thus the measure computes the mass of the quotient $Sh_δ$ in the sense of [Sh99, page 1]. Then Theorem 5.2 tells us

Corollary 5.3. Let the notation and the assumption be as in Theorem 5.2. Then if $V = D^+_σ$,

$$\zeta(C)(2)^{-1} 2m(4π)^{-k} + 1 \Gamma(k) L(C, σ)(1, Ad(F) \otimes \chi_E) = \sum_{x \in Sh_δ} e_x^{-1} (\eta) x^{-2} (n! - 2)(\nabla^m f)(x).$$

A slightly more complicated formula holds also for $V = D^−_σ$ whose explicit form is left to the reader. The above formula is an adjoint generalization of a mass formula of Siegel–Shimura in (4.22):

$$N_0[\hat{R}_0 : R_0] \left[\prod_{l \mid N_0} (1 + l^{-1}) \prod_{l \mid \theta} 2^{-1} (1 + l)^{-1} (1 - l^{-2}) \right] \frac{\zeta(2)}{\pi^2} = \sum_{x \in Sh_δ} e_x^{-1}$$

and also a generalization of Dirichlet class number formula.

5.5. Fourier expansion of theta descent for $E = \mathbb{Q} \times \mathbb{Q}$ and definite D. Since the Fourier expansion in the definite case with $E = \mathbb{Q} \times \mathbb{Q}$ is particularly simple, we insert here its description in the simplest case where the weight $k = 2$ (and hence $n = 0$). The general case for a real quadratic field E will be dealt with in the next subsection. Note in this case, $D^\pm_δ \cong D^\pm (D, ±N)$ by $D^\pm_δ \ni (v, ±v') \mapsto v \in D$. For simplicity, we assume that the weight is 2 on SL_2 and (2, 2) on D^X_E.

Let $Sh = Sh_δ := SO_{D_0}(\mathbb{Q}) \backslash SO_{D_0}(\mathbb{A}^{\infty})/\hat{R}_δ^X = D^X \backslash D^X_A/\hat{A}^X\hat{R}^X D^X_\mathbb{R}$ and $Sh_E = Sh \times Sh$. Since $N(\hat{R}^\times) = \hat{Z}^\times$ by [BNT, Proposition X.3.6] and $\hat{A}^X = \mathbb{Q}^X \hat{Z}^X \mathbb{R}^X$, we may assume that $N(a) = 1$ for all representatives of Sh. For the class $[a] \in Sh$ represented by $a \in D^\times_{δ(\infty)}$, write $\Gamma_a := a\hat{R}^X a^{-1} \cap D^X$ and define Γ_a for the image of Γ_a in D^X/\mathbb{Q}^X, which are finite groups with $[\Gamma_a] = 2[\Gamma_a]$. Put $e_a := |\Gamma_a|$.

As described in §3.1, τ_θ is an isomorphism of $SO_δ = SO_{D_0}$ onto D^X/\mathbb{G}_m as algebraic groups, where \mathbb{G}_m is identified with the center of D^X. Also we know $O_{D_0} = SO_{D_0} \cup SO_{D_0} σ$ (regarding the Galois action as an element of O_{D_0}). Thus the stabilizer $\Gamma_a' \subset O_{D_0}(\mathbb{Q})$ of the lattice $a\hat{R}^X a^{-1} \cap D^X$ fits into the following exact sequence:

$$(5.15) 1 \rightarrow \text{Gal}(E/\mathbb{Q}) \rightarrow \Gamma'_a \rightarrow \Gamma_a \rightarrow 1,$$

as $σ \in \Gamma'_a$. Thus $|\Gamma_a'| = |\Gamma_a| = e_a$ and the number $|\Gamma'_a|$ appears in [Sh99, Introduction] as $|\Gamma_1 : 1|$; so, in order to resort to the results in [Sh99], we need to use the alternative definition $e_a := |\Gamma'_a|$.

Recalling some results in [H06b, §4], we study the Doi–Naganuma lift in this simplest case. Set for a subring A of \mathbb{C}

$$S(A) := \{ \mathcal{F} : S \rightarrow A \mid \sum_{[a] \in S} e_a^{-1} \mathcal{F}([a]) = 0 \}$$

$$S(A) \otimes_A S(A) = \{ f : S_\mathbb{E} \rightarrow A \mid \sum_{[a],[b] \in S} e_a^{-1} e_b^{-1} f([a],[b]) = 0 \}.$$

(5.16)

We take $D^+_δ \cong D$ and $φ^{(∞)}$ to be the characteristic function of $\hat{Z} \oplus \hat{R}_0$ for $R_0 = D_0 \cap R$ with $φ^{(∞)}(τ; v) = e(N(v)τ)$ $η^{-1}r_D(gr_e)(\sqrt{-1}v)$; thus writing $φ^{(∞)}_Z$ (resp. $φ^{(∞)}_0$) for the characteristic function of \hat{Z} (resp. \hat{R}_0) and $φ^{(∞)}_{Z,∞}$ (resp. $φ^{(∞)}_{0,∞}$) for $e(x^2τ) = η^{-1/4}r_Z(τ)e(\sqrt{-1}x^2)$ (resp. $e(N(v)τ) = η^{-3/4}r_D(gr_e)e(\sqrt{-1}N(v))$),

$$θ(φ)(τ; g) = θ(φ_Z)(τ)θ(φ_0)(τ; g),$$

where $φ_0 := φ^{(∞)}_0$. Then Theorem 5.2 tells us
where \(\theta(\phi_Z)(\tau) = \sum_{n \in \mathbb{Z}} e(n^2 \tau) \) and \(\theta(\phi_0)(\tau; g) = \sum_{\alpha \in \mathbb{Q}} h_{a_\alpha} \sum_{D_{\alpha \beta}} e(N(\alpha)\tau) \). They are holomorphic modular forms of level \([4, \mathbb{Z}]\) (see (4.26)) and of weight \(\frac{1}{2} \) and \(\frac{3}{2} \), respectively. As a function on \(\Gamma_0(A) \), \(\theta(\phi_0)(\tau; g) \) is invariant under \(\tilde{R}^\times = \text{SO}_3(\mathbb{Z}) \) and \(\sigma (\Omega_3 = \text{SO}_3 \sqcup \text{SO}_3) \). Set

\[
f(h) = \int_{X_0(4\mathbb{Q})} \theta(\phi)(\tau; h)\tilde{F}(\tau)\eta^{-2}d\xi d\eta
\]

and for \(e_a = |a\tilde{R}^\times a^{-1} \cap D^\times| \),

\[
(5.17) \quad \int_S f(g)dg = \sum_{a \in S} e_a^{-1} \int_{X_0(4\mathbb{Q})} \tilde{F}(\tau)\theta(\phi_Z)(\tau)\theta(\phi_0(\tau; a))\eta^{-2}d\xi d\eta = \int_{X_0(4\mathbb{Q})} \tilde{F}(\tau)\theta(\phi_Z)(\tau) \sum_{a \in S} e_a^{-1} \theta(\phi_0(\tau; a))\eta^{-2}d\xi d\eta.
\]

By Siegel–Weil formula, we have \(E(\phi_0)(\tau) = \sum_{a \in S} e_a^{-1} \theta(\phi_0(\tau; a)) \) is a Siegel–Weil Eisenstein series on \(\Gamma_0(4\mathbb{Q}) \) of weight \(\frac{3}{2} \). Note that \(\theta(\phi)(\tau; a, b) = \sum_{\xi \in \mathbb{D}} \phi(a^{-1}\xi b)e(N(\xi)\tau) = \theta_{a,b} \). Since \((a^{-1}\xi b)^t = b^{-1}\xi a \) as \(N(a) = N(b) = 1 \), we have \(\theta_{a,b} = \theta_{b,a} \). Thus

\[
(5.18) \quad f(a, b) = f(b, a).
\]

Hereafter in this section, we assume

\[(I) \quad \frac{1}{a} \in A. \]

This condition assures us that \(e_a^{-1} \in A \) for all \(a \in S \). We have a perfect \(A \)-linear pairings

\[
\langle \cdot, \cdot \rangle : S(A) \times S(A) \to A
\]

given by \(\langle \phi, \varphi \rangle = \sum_{a \in S} e_a^{-1}\phi(a)\varphi(a) \).

We have Hecke operators \(T(n) \) acting on \(S_2(A) \) as follows: Let

\[
T(n) := \{ b \in \tilde{R} | N(b)\tilde{Z} = n\tilde{Z} \}
\]

for a positive integer \(n \). Decompose \(T(n) = \bigcup_{\mathfrak{C}(n)} e\tilde{R}^\times \). Then \(F|T(n)(a) = \sum_{a \in \mathfrak{C}(n)} F(ac) \). The algebra \(H(A) \) is defined to be the \(A \)-subalgebra of \(\text{End}_A(S_2(A)) \) generated by \(T(n) \) for all positive integers \(n \). For \(F, G \in S_2(A) \), we define \(F \otimes G : S_E \to A \) by \(F \otimes G(a, b) = F(a)\bar{G}(b) \). In this way, \(S_{(2,2)}(A) \cong S_2(A) \otimes_A S_2(A) \). Writing the variable \(h \in D_E = D_h \times D_h^\times \) as \(h = (h_L, h_R) \) and \(\tilde{F}_E := \tilde{R}^\times \times \tilde{R}^\times \), define

\[
\theta_*(F \otimes G)(\tau) = \int_{S_E} \theta(\phi)(\tau; h)F(h_L)G(h_R)dh = \sum_{(a,b) \in S \times S} F(a)\bar{G}(b)e_a^{-1}e_b^{-1} \sum_{\xi \in \mathbb{D}} \phi(a^{-1}\xi b)e(N(\xi)\tau).
\]

Theorem 5.4. Assume \(\frac{1}{b} \in A \). Then we have \(\theta_*(F \otimes G) = \bigoplus_{n=1}^{\infty} (F|T(n), G)q^n \in S_2(\Gamma_0(\mathfrak{c}); A) \).

We get an \(A \)-linear map \(\theta_* : S_{(2,2)}(A) \to S_2(\Gamma_0(\mathfrak{c}); A) \) given by \(\theta_*(F \otimes G) = \bigoplus_{n=1}^{\infty} (F|T(n), G)q^n \). Since \((F|T(n), G) = (F, G|T(n)) \), the map \(\theta_* \) factors through \(S_2(A) \otimes_{H(A)} S_2(A) \). A main result in [H06b, Theorem 4.1] under the assumption that \(\mathfrak{c} \) is a prime \(p \) is that this induces an \(A \)-linear isomorphism

\[
(5.19) \quad \theta_* : S_2(A) \otimes_{H(A)} S_2(A) \cong S_2(\Gamma_0(p); A),
\]

if \((p-1)(\zeta(2)/\pi^2)^{-1} = 6(p-1) \) is a unit in \(A \). Since the image of \(\theta_* \) lands in the space of new forms, for a general composite \(\mathfrak{c} \), the cokernel of \(\theta_* \) is large.

Proof. By definition,

\[
\theta_*(F \otimes G) = \int_{S_E} \theta(\phi)(\tau; h)F(h_L)G(h_R)dh = \sum_{(a,b) \in S \times S} F(a)\bar{G}(b)e_a^{-1}e_b^{-1} \sum_{\xi \in \mathbb{D}} \phi(a^{-1}\xi b) = \sum_{(a,b) \in S \times S} e_a^{-1}e_b^{-1}F(a)\bar{G}(b)\theta_{a,b}(\tau),
\]

where \(e_{x} = |a\tilde{R}^\times a^{-1} \cap D^\times| \).
where \(\theta_{a,b} = \phi(\phi_{a,b}) \) with the characteristic function \(\phi(\phi_{a,b}) \) of \(a\widehat{R}b^{-1} \) and the measure \(d\mu_b \) is chosen so that \(\int_{D^{+}E \setminus D^{+}E} f_{a,b} d\mu_b = e_{a}^{-1}e_{b}^{-1} \). Since \(\theta_{a,b} \in S_{2}(\Gamma_{0}(\partial),\mathbb{Z}) \) as is well known, we have \(\theta_{a,b}(\mathcal{F} \otimes \mathcal{G}) \in M_{2}(\Gamma_{0}(\partial);\mathbb{A}) \).

For a decomposition \(\mathcal{T}(n) = \bigcup_{c \in C(n)} c\widehat{R}^\times \), we have \(\mathcal{F}|T(n)(x) = \sum_{c \in C(n)} \mathcal{F}(xc) \). Writing \(ac = \xi b_{c}u \) for \(\xi \in \Gamma_{a} \setminus \Gamma_{b} \), \(b_{a} \in S \) and \(u \in \widehat{R}^\times \), \(\mathcal{F}|T(n)(a) = \sum_{c \in C(n)} \mathcal{F}(b_{c}) \) and \(\xi \in \Gamma_{a} \setminus \Gamma_{b} \). This shows \(\theta_{a,b}(\mathcal{F} \otimes \mathcal{G})(\tau) = \sum_{a,b} \sum_{\xi} \mathcal{F}(a)\mathcal{G}(b) = \sum_{a} e_{a}^{-1}f(a) \sum_{b} e_{b}^{-1}g(b) = 0 \). \(\square \)

5.6. Hecke equivariance of \(\theta_{a,b} \). We prove Hecke equivariance of the theta descent keeping the assumption of \(\S 5.5 \). We first compute

\[
\theta_{a,b}(\mathcal{F} \otimes \mathcal{G})(\tau) = \left(\frac{n}{p} \right) \theta_{a,b}(\mathcal{F} \otimes \mathcal{G}) + p^{k-1}a(pm, \theta_{a,b}(\mathcal{F} \otimes \mathcal{G}))
\]

while

\[
\theta_{a,b}(\mathcal{T}(p)) = \left(\frac{n}{p} \right) \theta_{a,b} + pa(pm, \theta_{a,b})
\]

\[
eq e_{a}^{-1}e_{b}^{-1} \sum_{\{ \xi \in a\widehat{R}b^{-1} \cap D N(\xi) = \mathbb{N} / p \}} + p^{k-1}a(pm, \theta_{a,b}(\mathcal{F} \otimes \mathcal{G}))
\]

Proposition 5.5. On \(S_{k}(\Gamma_{0}(N),\psi) \), we have \(\mathcal{T}(n)\mathcal{T}(m) = \sum_{\nu < d|(m,n),(d,N) = 1} \psi(d)q^{k-1}T\left(\frac{mn}{d^{2}} \right) \), the same formula is valid on \(S_{k}(\Gamma_{0}(N),\psi) \) for \(k = 2 \) and \(N = \partial \), and writing \(a(n,f) \) for the \(n \)-th \(q \)-expansion coefficient of \(f \in S_{k}(\Gamma_{0}(N),\psi) \), we have \(a(n,f)\mathcal{T}(m) = \sum_{\nu < d|(m,n),d|N} \psi(d)q^{k-1}a(\frac{mn}{d^{2}},f) \).

Proof. We have a general formula [IAT, Theorem 3.24, (iv)]

\[
\mathcal{T}(m)\mathcal{T}(n) = \sum_{\nu < d|(m,n),(d,N) = 1} \psi(d)q^{k-1}T\left(\frac{mn}{d^{2}} \right)
\]

This specializes to the formula for \(S_{k}(\Gamma_{0}(N),\psi) \) as \(f \mid \mathcal{T}(d,d) = \psi(d)q^{k-1}f \) if \(f \in S_{k}(\Gamma_{0}(N),\psi) \).

Corollary 5.6. Letting \(h \in H(A) \) act on \(S(A) \otimes_{H(A)} S(A) \) by \((\mathcal{F} \otimes \mathcal{G})(h) := (\mathcal{F} \otimes \mathcal{G})(h) \), the morphism \(\theta_{a,b} : S(A) \otimes_{H(A)} S(A) \rightarrow S_{2}(\Gamma_{0}(\partial);\mathbb{A}) \) becomes Hecke equivariant.

Since \(\theta_{a,b}(\mathcal{F})(h) = \int_{X_{\partial}(\partial)} \theta(\phi)(\tau|h_{L},h_{R})\mathcal{F}(\tau) d\xi d\eta \), by (5.18), we get

\[
\theta_{a,b}(\mathcal{F})(h) = \theta(\tau|h_{L},h_{R})T_{\tau}(n) = \theta(\tau|h_{L},h_{R})T_{\tau}(n) = \theta(\tau|h_{L},h_{R})T_{\tau}(n)
\]

where \(T_{\tau}(n) \) (resp. \(T_{L}(n), T_{R}(n) \)) is the elliptic Hecke operator (resp. the left and right quaternionic Hecke operator).

5.7. Congruence number formula. We computed in [EMI, §9.3.1] a congruence number formula via an adjoint L-value for \(D = M_{2}(\mathbb{Q}) \). We generalize this to a definite \(D \) under the assumption of \(\S 5.5 \).

Since \(H(\mathbb{C}) \)-module \(S(\mathbb{C}) \) is semi-simple with multiplicity of each algebra homomorphism \(\lambda : H(\mathbb{C}) \rightarrow \mathbb{C} \) appearing once and \(\theta_{a,b} : S(\mathbb{C}) \otimes_{H(\mathbb{C})} S(\mathbb{C}) \cong S_{2}^{\text{new}}(\Gamma_{0}(\partial)) \) by Eichler and Jacquet–Langlands, choosing a Hecke eigenvector \(\mathcal{F}_{\lambda} \in S_{2}(\mathbb{Z}[,\lambda]) \), the Hecke equivariance of Corollary 5.6 tells us that for \(\mathcal{F}_{\lambda} := \sum_{n=1}^{\infty} \lambda(T(n))q^{n} \in S_{2}^{\text{new}}(\Gamma_{0}(\partial)) \), \(\theta_{a,b}^{*}(\mathcal{F}_{\lambda}) = \Omega_{\lambda}(\mathcal{F}_{\lambda} \otimes \mathcal{F}_{\lambda}) \) for a constant \(\Omega_{\lambda} \neq 0 \).
Since \(\theta_\ast \) induces an injection \(S(A) \otimes_{H(A)} S(A) \hookrightarrow S_{2}^{\text{new}}(\Gamma_0(\vartheta); A) \) with finite cokernel \(C \) by the argument of [H06b] applied to \(D \), choosing a Hecke eigenvector \(\mathcal{F}_\lambda \in A(\mathbb{Z}!) \) the Hecke equivariance of Corollary 5.6 tells us that for \(F_\lambda := \sum_{n=1}^{\infty} \lambda(T(n))q^n \in S_{2}^{\text{new}}(\Gamma_0(\vartheta)), \theta_\ast^{-1}(F_\lambda) = \varepsilon(\mathcal{F}_\lambda \otimes \mathcal{F}_\lambda) \) for a constant \(\varepsilon_\lambda \in A(\mathbb{Z})^\times \). We want to study \(\Omega_\lambda \) and \(\varepsilon_\lambda \).

Let
\[
S(A)_\lambda = \{ \mathcal{F} \in S(A) \mid \mathcal{F}(T(n)) = \lambda(T(n))\mathcal{F} \text{ for all } 0 < n \in \mathbb{Z} \},
\]
(5.20)

\[
S(A)^\lambda = \{ \mathcal{G} \in S(A)_\lambda \otimes_A \text{Frac}(A) \mid [\mathcal{G}, S(A)_\lambda] \subset A \}.
\]

Define \(D \)-congruence module
\[
C^D_0(\lambda; A) := S(A)^\lambda / S(A)_\lambda.
\]
Write \(\mathbb{Z}! \) (resp. \(\mathbb{Q}! \)) for the subring of \(\mathbb{C} \) generated by \(\lambda(T(n)) \) for all \(0 < n \in \mathbb{Z} \) over \(\mathbb{Z} \) (resp. \(\mathbb{Q} \)).

Theorem 5.7. We have \(|\langle \mathcal{F}_\lambda, \mathcal{F}_\lambda \rangle|_p = \|C^D_0(\lambda; \mathbb{Z}!)\|_p \) for all primes \(p \) such that \(S(\mathbb{Z})! \lambda^\lambda \) and \(S(\mathbb{Z})! \lambda^\lambda \)-free, where \(\mathbb{Z}! \lambda^\lambda \) is the subring of \(\mathbb{Q}!_p \) generated by \(\lambda(T(n)) \) for all \(n \) over \(\mathbb{Z} \), under the embedding of \(\mathbb{Z}! \) into \(\mathbb{Q}!_p \) by the place \(\mathfrak{p} \mid \mathbb{Q}! \) and \(|\cdot|_p \) is the \(\mathfrak{p} \)-adic absolute value with \(v_p = N_{\mathbb{Q}! / \mathbb{Q}}(\mathfrak{p})^{-1} \) for a prime element \(\mathfrak{p} \) of the valuation ring \(\mathbb{Q}! \).

The right-hand-side of the formula of Corollary 5.3 applied to \(\theta^\ast(F_\lambda) \) is exactly \(\langle \mathcal{F}_\lambda, \mathcal{F}_\lambda \rangle \), and the left-hand-side therefore gives an expression of the congruence number \(\|C^D_0(\lambda; \mathbb{Z}!)\|_p \) by the adjoint L-value generalizing the formula of [EMI, Theorem 9.3.2] for \(D = M_2(\mathbb{Q}) \) to the definite \(D \).

Proof. By integration over \(S = SO_D(\mathbb{Q}) \backslash SO_D(\mathbb{A}) / SO_D(\mathbb{A}) \mathbb{R}^\times \) identifying \(SO_D = D^\times / Z(D^\times) \) for the center \(Z(D^\times) \) of the algebraic group \(D^\times \), we get
\[
\int_S \theta(F_\lambda) d\mu_h = \Omega_\lambda \sum_n e_1(F_\lambda(a))^2 = \Omega_\lambda \langle \mathcal{F}_\lambda, \mathcal{F}_\lambda \rangle.
\]
Let \(A = \mathbb{Z}! \). If \(S(A)_\lambda \) is \(A \)-free, it is generated by one element over \(A \), and hence \(S(A)_\lambda = A \mathbb{A} \). If \(S(A)_\lambda \) is \(A \)-free, it is again generated by one element, say \(\mathcal{F}_\lambda \). Then we may assume that \(\langle \mathcal{F}_\lambda, \mathcal{F}_\lambda \rangle = 1 \), and hence \(C^D_0(\lambda; A) = A / A \) for \(A \) given by \(a F_\lambda = \mathcal{F}_\lambda \). Thus \(\langle \mathcal{F}_\lambda, \mathcal{F}_\lambda \rangle = \langle a F_\lambda, \mathcal{F}_\lambda \rangle = a, \) and \(\|C^D_0(\lambda; A)\|_p = \|a\|_p \). Since \(C_0(\lambda; \mathbb{Z}!) \cong C^D_0(\lambda; \mathbb{Z}! \mathbb{A}) \otimes_{\mathbb{A}} \mathbb{Z}! \mathbb{A} \), the desired assertion follows. □

Identify \(S(A) \otimes_A S(A) = \text{End}_A(S(A)) \) by sending \(\mathcal{F} \otimes \mathcal{G} \) to \(\Phi_{\mathcal{F} \otimes \mathcal{G}} := H \mapsto \langle H, \mathcal{F} \rangle \mathcal{F} \). Write \(S_{2}^{\text{new}}(\Gamma_0(\vartheta)) \) for the space spanned by new forms inside \(S_2(\Gamma_0(\vartheta)) \) and put \(S_{2}^{\text{new}}(\Gamma_0(\vartheta); A) = S_{2}^{\text{new}}(\Gamma_0(\vartheta)) \cap A[q] \). Then defining \(\Phi_{\mathcal{F} \otimes \mathcal{G}} := H \mapsto \langle H, \mathcal{F} \rangle \mathcal{F} \), we have a morphism \(H : \mathfrak{h}(A) \to \text{End}_A(S(A)) \) given by \(H(T(n)) = T(n)|_{S(A)} \). Since \(S(A) \otimes_A S(A) \) is sent to \(\text{End}_H(S(A)) \), we may regard \(H : \mathfrak{h}(A) \to \text{End}_H(S(A)) \). Is this a surjective isomorphism? By the solution of Eichler’s basis problem, \(H \) is an isomorphism if \(A \subset C \) is a field, and in general \(\text{Coker}(H) \) is \(A \)-torsion module.

5.8. **Fourier expansion of theta descent for definite \(D \) and real \(E \).** Again in this subsection, the choice of \(\phi^\ast(\infty) \) is arbitrary. Recall \(O_{D_\sigma} = SO_{D_\sigma} \cup SO_{D_\sigma}^- \) and \(SO_{D_\sigma} = G^+_\vartheta / Z_{G^+_\vartheta} \). Note that \(E_{\vartheta} = E_{D_\sigma} \otimes \mathbb{R} \cong \mathbb{H} \times \mathbb{H} \) by an isomorphism sending \(\mathbb{E} \) \(\eta \mapsto (\eta, \mathfrak{e}^\ast) \in M_2(\mathbb{R}) \times M_2(\mathbb{R}) \). Thus \(G^\ast_{\vartheta}(\mathbb{R}) = \{(h_1, h_2) \in \mathbb{H} \times \mathbb{H} \mid \det(h_1) / \det(h_2) = 1\} \) and \(SO_{D_\sigma} = G^+_\vartheta(\mathbb{R}) / \mathbb{R}^\times \) with \(\mathbb{R}^\times \) diagonally embedded into the product, which is compact and connected. Note that \(D_{\sigma, \mathbb{R}} = \{(h, \pm h') \in \mathbb{H} \} \subset E_{\vartheta} \). We identify \(D_{\sigma, \mathbb{R}} \) with \(\mathbb{H} \) by the left projection. Writing \(D_{\vartheta} \varphi \mapsto \gamma \in \mathbb{H} \) for the left projection and \(\gamma \mapsto \gamma^\ast \in \mathbb{H} \) for the right projection, we let \(\gamma \in D_{\vartheta}^\ast \) act on \(D_{\sigma, \mathbb{R}} = \mathbb{H} \) by \(h \mapsto \gamma^\ast h \gamma^\ast \).

Pick a Schwartz-Bruhat function \(\phi : D_{\sigma, \mathbb{A}} \to \mathbb{C} \) and assume that
\[
\phi^\ast(v) = \Psi_k(v) = [v; x]_n \mathfrak{e}(N(v)\tau_{\pm}) \in S(D_{\sigma, \mathbb{R}}^\ast)
\]
as in (5.5). Consider a classical theta series
\[
\theta_k(\phi) = \theta_k(\phi)(\tau; z, w) = \sum_{v \in D_{\sigma}} \phi(v).
\]
By Lemma 3.2, writing \(\sigma_\sigma(v) = \alpha v^\sigma \alpha^{-1} \), we get \(v^\sigma = \pm v^\sigma \iff v^\sigma = \pm v^\sigma \) by computation and the group \(SO_{D_\sigma} \), the algebra \(D_{\sigma} \) and the theta series do not depend on \(\sigma \). Let
\[
\Gamma = \Gamma_\phi := \{ \gamma \in SO_{D_\sigma}(\mathbb{Q}) \mid G^+_\vartheta(\mathbb{Q}) \phi^\ast(\infty)(\gamma^{-1} x \gamma^\ast) = \phi^\ast(\infty)(x) \text{ for all } x \in D_{\sigma, A}(\infty) \}.
\]
A quaternionic modular form \(f(h; x) : D^X \backslash D^X_{E_k} \to L_E(n; \mathbb{C}) \) \((k = n + 2)\) of weight \(k_\infty + k_\infty \sigma\) satisfies
\[
(5.22) \quad f(\gamma z x u; x) = f(x; x u^{-1}) \quad \text{for} \quad u \in \tilde{\Gamma} D^1_{E_k}, z \in E^\times_k \text{ and } \gamma \in D^X_k,
\]
where \(D^1_k(Q) = \{ \gamma \in D_k | N(\gamma) = 1 \} \) and an algebraic group over \(Q \) and \(D^1_k = D^1_k(E_k) \).

To define the theta descent, for any \(E \)-algebra such that \(D_{E_k} \cong M_2(A) \times M_2(A) \), we describe \(SL_2(E_k) \)-invariant self duality of \(L_E(n; A) \). As before \(L(n, 0; A) \) (resp. \(L(0, n; A) \)) is the space of homogeneous polynomials of degree \(n \) in \(X \) (resp. \(Y \)). Let \((h, h_\sigma) \in D_E^k \) act on \(P(X, Y) \in L(n, 0; A) \) (resp. \(Q(X, Y) \in L(0, n; A) \)) by \(P(X, Y) \mapsto P((X, Y) h_\sigma) = P(h(X, Y)) \) (resp. \(P(X, Y) \mapsto Q((X, Y) h_\sigma) = Q(h(X, Y)) \)). Then \(P(X, Y) \otimes Q(X', Y') \mapsto P(X, Y) Q(X', Y') \) gives a \(D_E^k \)-equivariant isomorphism \(L(n, 0; A) \otimes_A L(0, n; A) \cong L_E(n; A) \).

We prepare another set of variables \(s := (S, T; S', T') \) \(\forall (n, 0; A) = A S^n + A S^{n-1} T + \cdots + A T^n \) and \(L(0, n; A) = A S^n + A S^{n-1} T + \cdots + A T^n \). Regarding \(L(n, 0; A) \otimes_A L(0, n; A) \) is made of polynomials in \(X, Y, S, T \) homogeneous of degree \(n \) in \(X, Y \) and also in \(S, T \), we consider the pairing \(\langle \cdot, \cdot \rangle_L : L(n, 0; A) \otimes_A L(n, 0; A) \to A \) given by \(P(X, Y; S, T) \mapsto (n!)^{-2} \nabla^n_{id} P(X, Y; S, T) \), where \(\nabla \) id \(= \frac{\partial}{\partial X} \frac{\partial}{\partial Y} - \frac{\partial}{\partial S} \frac{\partial}{\partial T} \). Similarly, we define \(\nabla_R \) \(= \frac{\partial}{\partial X} \frac{\partial}{\partial Y} - \frac{\partial}{\partial S} \frac{\partial}{\partial T} : L(0, n; A) \otimes_A L(0, n; A) \to A \), and put \(\langle \cdot, \cdot \rangle_r \) \(= n!^{-2} \nabla^n_R \). Finally we define \(\langle \cdot, \cdot \rangle_L : L_E(n; A) \otimes \bar{L}_E(n; A) \to A \) by \(\langle \cdot, \cdot \rangle_L \otimes \langle \cdot, \cdot \rangle_r \). We have \(\langle P((h, h_\sigma), Q((h, h_\sigma)), (h, h_\sigma)) \rangle \) \(= \langle N(h) \rangle \langle N(h) \rangle^n \langle P, Q \rangle \).

Taking the measure \(d\mu_h \) with \(\int_{\tilde{\Gamma}} d\mu_h = 1 \) on \(SO_{D_s}(Q) \backslash SO_{D_s}(A^\infty) \) and restricting \(f \) in (5.22) to \(G^+_D(A) \subset D^1_{E_k} \), we define the theta descent \(\theta(f)(\tau) \) by
\[
\theta_s(f)(\tau) := \int_{Sh_E} (\theta(\phi)(\tau; h; x), f(h; s)) d\mu_h
\]
for \(Sh_E := SO_{D_s}(Q) \backslash SO_{D_s}(A^\infty) / \tilde{\Gamma}_\phi \). We now like to show that its Fourier coefficient for \(e(N(\alpha) \tau) \) is given by a finite sum of the period \(P_\alpha = \int_{Sh_\alpha} (\theta(\phi)(\tau; h; x), f(h; s)) d\mu_h. \)

By approximation theorem, we can choose a finite set \(A \subset SO_{D_s}(A^\infty) \) such that
\[
SO_{D_s}(A^\infty) = \bigcup_{a \in A} SO_{D_s}(Q) a \tilde{\Gamma}_\phi \quad \text{so,} \quad Sh_E \cong A.
\]
We have
\[
\int_{SO_{D_s}(Q) \backslash SO_{D_s}(Q) a \tilde{\Gamma}_\phi a^{-1}} = 1 \quad \text{for} \quad a^{-1} = e_a
\]
for \(e_a = |\Gamma^n_\phi| \) with \(\Gamma^n_\phi := SO_{D_s}(Q) a \tilde{\Gamma}_\phi a^{-1}, \) and
\[
\theta_s(f)(\tau) = \int_{Sh_E} (\theta(\phi)(\tau; h; x), f(h; s)) d\mu_h = \sum_{a \in A} e_a^{-1} \sum_{a \in D_s} (\phi(a^{-1} a a^n; s)(\tau), f(a; x)) e(N(\alpha) \tau)\).
\]
Writing \(\phi_a(v; s) = \phi(a^{-1} v a^n; s), \) we have for \(k = n + 2 \)
\[
\theta_s(f)(\tau) = \sum_{a \in A} e_a^{-1} \sum_{a \in D_s} (\phi_a(\alpha; x), f(a; s)) e(N(\alpha) \tau)\)
\[
= \sum_{a \in A} \sum_{a \in D_s / \Gamma_\phi} \phi^{(\alpha)}(a^{-1} a a^n)(\alpha; x^n, f(a; s)) e(N(\alpha) \tau).
\]
As before \(O_{D_s} = SO_{D_s} \cup SO_{D_s}, = SO_{D_s} \cup SO_{D_s} e \) and \(O_{D_s}(Q) \backslash O_{D_s}(A) = SO_{D_s}(Q) / SO_{D_s}(A) \).
We extend \(f \) originally defined on \(SO_{D_s}(A) \) to \(O_{D_s}(A) \) by putting \(f(\sigma x) = f(x) \) for \(x \in SO_{D_s}(A) \).

Then \(f(x) = f(\sigma x) = f(x^n) \), and by this extension, we have
\[
\int_{Sh_E} (\theta(\phi)(\tau, h), f(h) d\mu_h = \int_{O_{D_s}(Q) \backslash O_{D_s}(A)} \theta(\phi)(\tau, h) f(h) d\mu_h.
\]

Consider the embedding \(SO_{\alpha} \hookrightarrow SO_{D_s} \) given by \(SO_{\alpha} = Aut(D^+_\alpha, 0; \pm N) \ni h_\alpha \mapsto diag[i d_{2^\alpha}, h_\alpha] \in Aut(D_s, N) = SO_{D_s} \), which is compatible with the natural embedding \(D^+_{\alpha} = G^+_{D_s, \alpha} \hookrightarrow G^+_{D_s} \subset D^+_E \).

Decompose \(SO_{\alpha}(A^\infty) \) \(= \bigcup_{\sigma \in \mathcal{S}_\alpha} SO_{\alpha}(Q) s \tilde{\Gamma}_\alpha \) for a complete representative set \(\mathcal{S}_\alpha \) of \(Sh_\alpha \). Then we have \(\text{Im}(SO_{\alpha}) := \bigcup_{\sigma \in \mathcal{S}_\alpha} SO_{\alpha}(Q) s \tilde{\Gamma}_\alpha \subset SO_{D_s}(A^\infty) \).

If \(SO_{\alpha}(Q) s \tilde{\Gamma}_\alpha \cap SO_{\alpha}(Q) s' \tilde{\Gamma}_\alpha \) for \(s, s' \in \mathcal{S}_\alpha, \)
then $\gamma s = s' u$ for $\gamma \in \SO_\alpha(\mathbb{Q})$ and $u \in \tilde{\Gamma}_\phi$. This implies $\tilde{\Gamma}_\phi \ni u = s'^{-1} \gamma s \in \SO_\alpha(\mathbb{A}^{(\infty)})$. Thus $u \in \tilde{\Gamma}_\alpha = \tilde{\Gamma}_\phi \cap \SO_\alpha(\mathbb{A}^{(\infty)})$, and $\gamma \in \SO_{D_\sigma}(\mathbb{Q}) \cap \SO_\alpha(\mathbb{A}^{(\infty)}) = \SO_\alpha(\mathbb{Q})$ as $\gamma = s'u s^{-1}$, which implies $s = s'$. We then have a disjoint decomposition $\Im(\SO_\alpha) = \bigsqcup_{s_\alpha} \SO_{D_\sigma}(\mathbb{Q}) s\tilde{\Gamma}_\phi$. Thus by adjusting the choice of representative set \mathcal{A}, we may assume that $S_\alpha \subset \mathcal{A}$. Then the period of f over \Sh_α is given by

$$P_\alpha(f) := \int_{\Sh_\alpha} (\theta(\tau; h; x), f(h; s)) = \sum_{s \in S_\alpha} \phi(\infty)(s^{-1} \alpha s^n)([\alpha, x]^n, f(s; s)),$$

which only depends on the class $\alpha \in D_\sigma / \Gamma_\phi$ and the support of the function $\alpha \mapsto P_\alpha(f)$ is contained in a lattice of D_σ.

We thus obtain, combining (5.24) and (5.26)

Theorem 5.8. Suppose that f is an automorphic form on $D^\times_{E_\mathbb{A}}$ satisfying (5.22). If $n = 0$, we further assume that $\int_{\SO_{D_\sigma}(\mathbb{Q}) \setminus \SO_{D_\sigma}(\mathbb{A}^{(\infty)})} f(h) d\mu_h = 0$. Then we have, for τ_\pm as in (5.5)

$$\theta_\pm(f)(\tau) = \sum_{\alpha \in D_\sigma / \Gamma_\phi, N(\alpha) > 0} P_\alpha(f) \phi(N(\alpha) \tau_\pm) \text{ for an arbitrary } \phi(\infty).$$

We now compare $f(s; s)|_{\Sh_\alpha}$ and $([\alpha; x]^n, f(s; s))$. Since $\pi_\alpha := ((n!)^{-2} \varphi^n : L_E(n; A)|_{\SO_\alpha} \to A$ and $\pi_{D_\sigma} := ((n!)^{-2} \varphi^n|_{\SO_{D_\sigma}} : L_E(n; A) \otimes A L_E(n; A) \to A$ is SO_α-equivariant, we have a commutative diagram up to constants

$$
\begin{array}{c}
\pi_\alpha \otimes \pi_{D_\sigma} \\
\downarrow \\
\pi_{D_\sigma} \otimes \pi_{D_\sigma}
\end{array}
\begin{array}{c}
L_E(n; A)|_{\SO_\alpha} \otimes A L_E(n; A)|_{\SO_\alpha} \\
\longrightarrow \\
L_E(n; A) \otimes A L_E(n; A)
\end{array}
\begin{array}{c}
A \otimes A \\
\longrightarrow \\
A
\end{array}
$$

Writing the variables of the left (resp. right) factor of $L_E(n; A)|_{\SO_\alpha}$ as X, Y, X', Y' (resp. S, T, S', T'), we find from [IH99, page 141] $\pi_\alpha(X^{n-j} Y^j X'^j Y'^n) = (-1)^j (n^{-j}) = \pi_\alpha(S^{n-j} T^j S'^j T'^n)$ and $\pi_{D_\sigma}(X^n Y^j X'^j Y'^n) = (n^{-j})$, and hence the above commutative diagram commutes without ambiguity. For $\delta \in \mathbb{Z}^\pm$, we have

$$([\delta, x]^n, f(s; s)) = \delta^n((X' X' - XY')^n, f(s; s))$$

Since $X' Y' - XY' = (X' Y') (X, Y)$, $(X' Y' - XY')^n$ generates a unique sub-factor invariant under \SO_α. Thus $(X' Y' - XY')^n, (T'S' - T S) = c$ for a constant c. Since $\pi_\delta((X' Y' - XY')^n) = (n+1)^c$ by (5.7), we find $c = (n+1)^2$ from (5.27). Define $\pi_\alpha(P) = \pi_\alpha(P)(X' Y' - XY')^n$. By the above commutative diagram (5.27), we find $\pi_\alpha(P)(Q) = (P, \pi_\alpha(Q))$. Thus we conclude

$$([\delta, x]^n, f(s; s)) = \delta^n((X' Y' - XY')^n, f(s; s)) = \delta^n(\pi_\alpha((X' Y' - XY')^n, f(s; s))) = \delta^n((X' Y' - XY')^n, f(s; s)) = \delta^n((n+1)!)^{-1} n!^{-1} \varphi^n(f(s; s)).$$

For general $\alpha \in D^\times_{E_\mathbb{A}}$ outside Z^\pm, since $D_{\sigma, \mathbb{R}} \cong \mathbb{R} \cong D_{\mathbb{R}}$, by Lemma 3.2, we find $h \in D^\times_{E_\mathbb{A}}$ with $N(h) = 1$ such that $\alpha = h^{-1} \delta h^* \phi$ for $\delta \in \mathbb{R}$, and

$$P_\alpha(f) = \sum_{\beta \in \alpha^{-1} \Gamma_\alpha} \sum_{s \in S_\alpha} N(\beta)^{n/2} \phi(\infty)(s^{-1} \beta s^n)(n+1)!^{-1} n!^{-1} \varphi^n(f(s; sh^{-1}))$$

where the last identity follows $N(\alpha) = N(h^{-1} \delta h^*) = \delta^2$. Thus we find

Corollary 5.9. We have the following alternative expression of $P_\alpha(f)$:

$$P_\alpha(f) = \sum_{\beta \in \alpha^{-1} \Gamma_\alpha} \sum_{s \in S_\alpha} N(\beta)^{n/2} \phi(\infty)(s^{-1} \beta s^n)(n+1)!^{-1} n!^{-1} \varphi^n(f(s; sh^{-1}))$$

where $h \in D^\times_{E_\mathbb{A}}$ with $N(h) = 1$ such that $h \alpha^{-1} \phi^{-1} \in \mathbb{Z}^\pm_{\mathbb{R}}$.

6. General theory for imaginary E

Hereafter, the field E is imaginary quadratic. We assume K is also imaginary quadratic so that $D_K \cong M_2(K)$ as in (D) in §8.1. Recall the maximal order R of D with $R \otimes \mathbb{Z}O_K \subset M_2(O_K)$ for the integer ring O_K of K. Note that $D_E \otimes \mathbb{Q} \cong M_2(\mathbb{C})$ by an isomorphism sending $D_E \ni \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} \frac{a^2 + b^2}{2} & c/2 \\ c/2 & \frac{d^2 + c^2}{2} \end{pmatrix} \in M_2(\mathbb{C})$. Thus $\mathbb{G}_m^+(\mathbb{R}) = \{h \in GL_2(\mathbb{C})| \det(h) \in \mathbb{R}^\times\}$ and $SO_{D_e}(\mathbb{R}) = G^+_D(\mathbb{R})/\mathbb{R}^\times$ with \mathbb{R}^\times embedded into the center of the product. Let $GL_2^+(\mathbb{C}) := \{g \in GL_2(\mathbb{C})| 0 < \det(g) \in \mathbb{R}\}$. Then $SO^+_{D_e}(\mathbb{R}) = GL^+_2(\mathbb{C})/\mathbb{R}^\times$ is the identity connected component of $SO_{D_e}(\mathbb{R})$. We identify SO_{D_e} with $G^+_D/Z_{G^+_D}$ for the center $Z_{G^+_D}$ of G^+_D, and we let $\gamma \in G^+_D$ act on D^+_E by $v \mapsto \gamma^{-1}v\gamma^\prime$. Then $SO_{D_e}(\mathbb{R})$ has the identity connected component $SO^+_{D_e}(\mathbb{R})$ isomorphic to $PSL_2(\mathbb{C})$.

Writing $x \mapsto \overline{x}$ for complex conjugation on \mathbb{C}, the diagonalized representation $\rho : \mathbb{C} \mapsto GL_2(\mathbb{C})$ is given by $\rho(a) = \text{diag}[a, \overline{a}]$. If $a \in E$, we have $\rho(a) = \text{diag}[a, a^\sigma]$. Take the real 3-dimensional upper half space

$$\mathcal{H} := \left\{z = \left(\begin{smallmatrix} \gamma & -y \\ y & x \end{smallmatrix} \right) \bigg| 0 < y \in \mathbb{R}, x \in \mathbb{C}\right\}.$$

As in [H94, (2.2)], we let $\gamma = \left(\begin{array}{rr} a & b \\ c & d \end{array}\right) \in GL_2^+(\mathbb{C})$ act on \mathcal{H} by

$$\gamma(z) = (\rho(a)z + \rho(b))(\rho(c)z + \rho(d))^{-1}.$$

Since $PGL_2(\mathbb{C})/SU_2(\mathbb{R}) \cong GL_2^+(\mathbb{C})/\mathbb{R}^\times SU_2(\mathbb{R}) = SL_2(\mathbb{C})/SU_2(\mathbb{R})$, we can extend the action of $GL_2^+(\mathbb{C})$ to $GL_2(\mathbb{C})$ making the center to act trivially; in other words, for $g \in GL_2(\mathbb{C})$, taking $g' = \sqrt{\det(g)}^{-1}g$ and define $g(z) := g'(z)$. This action of $g \in GL_2(\mathbb{C}) - GL_2^+(\mathbb{C})$ cannot be written as $(\rho(a)z + \rho(b))(\rho(c)z + \rho(d))^{-1}$ for $g = \left(\begin{array}{rr} a & b \\ c & d \end{array}\right)$. For $\varepsilon = -J \in \mathcal{H}$, the stabilizer of ε in $SL_2(\mathbb{C})$ is $SU_2(\mathbb{R})$.

6.1. Cohomological modular forms on $SL_2(\mathbb{C})$. In [H94, §3], we defined the notion of cohomological modular form on $SL_2(\mathbb{C})$ for an arithmetic group $\Gamma \subset SL_2(\mathbb{C})$. We translate and adelize the notion to $SO_{D_e}(\mathbb{A})$ as $SO_{D_e}^+(\mathbb{R})$ is isomorphic to $PSL_2(\mathbb{C})$ via the isomorphism $G^+_D(\mathbb{R})/\mathbb{R}^\times \cong SO_{D_e}(\mathbb{R})$. The arithmetic subgroup Γ is replaced by an open compact subgroup $\tilde{\Gamma} \subset SO_{D_e}(\mathbb{A}(\infty))$.

A function $f : SO_{D_e}(\mathbb{A}) \rightarrow L(n^*; \mathbb{C})$ written as $f(h;s)$ for the variable $s = (S,T)$ of $L(n^*; \mathbb{C})$ is called automorphic form of weight $k \in \mathbb{R} + \infty$ for σ for $n = 2 \in \mathbb{F}$ satisfies

(M1) $f(\gamma h u; s) = f(h; s u^\sigma_\varepsilon)$ for $h \in SO_{D_e}(\mathbb{A})$, $\gamma \in SO_{D_e}(\mathbb{Q})$ and $u \in \tilde{\Gamma} : SO_P(\mathbb{R})$, where P is the standard positive majorant of s_ε in Lemma 6.1;

(M2) $D_v = \left(\begin{array}{cc} a^2 + n \\ 2 \end{array}\right)$ for the Casimir operator D_v at each archimedean place $v = \infty, \infty$, σ;

(M3) $f|_{SO_{D_e}(\mathbb{R})}$ is slowly increasing towards cusps of Γ if $D_E \cong M_2(E)$.

The theta series $SO_{D_e}(\mathbb{A}) \ni h \mapsto \theta(\tau; h; s)$ satisfies (M1) and (M3). For an elliptic cusp form $F \in S^\kappa(\Gamma_\tau)$, $\theta^\ast(\phi)(F) = \int_{SL_2(\mathbb{Q})/\text{Mat}(K)} F(g)\theta(\phi)(\tau; h; s)d\mu_\tau$ satisfies (M2) [A78] and [F83].

6.2. Realization of $D^\pm_{s,\mathbb{C}}$. Note that $D_E \cong M_2(\mathbb{C}) \oplus M_2(\mathbb{C})$. We use the notation introduced in §8.1 in Cases II and ID. In Case II, identifying $D_{\mathbb{R}} = M_2(\mathbb{R})$ and $D_{\mathbb{C}} = M_2(\mathbb{C})$, we have $D_{\mathbb{R}} = H^0(\sigma_1, D_{\mathbb{C}})$. In Case ID, identifying $D_{\mathbb{R}} = \mathbb{H}$ and $D_{\mathbb{C}} = M_2(\mathbb{C})$, we have $D_{\mathbb{R}} = H^0(\sigma_2, D_{\mathbb{C}})$. Note

$$D^\pm_{s,\mathbb{C}} = \begin{cases} \{(x, \pm x^t)| x \in M_2(\mathbb{C})\} & \text{if } \sigma = \sigma_1 \text{ (i.e., in case II)}, \\
\{(x, \pm x^t)| x \in M_2(\mathbb{C})\} & \text{if } \sigma = \sigma_2 \text{ (i.e., in case ID)}, \end{cases}$$

since $Jx^tJ^{-1} = tx$. We have an embedding $D_{s,\mathbb{R}} \hookrightarrow D_{s,\mathbb{C}}$ given by

$$\begin{cases} x \mapsto (x, \overline{x}) & \text{in Case II with } \sigma = \sigma_1, \\
x \mapsto (x, JxJ^{-1}) & \text{in Case ID with } \sigma = \sigma_2. \end{cases}$$

We can identify $D^\pm_{s,\mathbb{C}} = M_2(\mathbb{C})$ by projecting to the left factor. The action of $G^+_D(\mathbb{C}) = \{(g, h) \in GL_2(\mathbb{C})| \det(g) = \det(h)\}$ on $M_2(\mathbb{C})$ is different as follows

$$\begin{cases} x \mapsto (g, h)x(g, h)^{\sigma_1^t} = gxh^t & \text{in Case II with } \sigma = \sigma_1, \\
x \mapsto (g, h)x(g, h)^{\sigma_2^t} = gx^t h & \text{in Case ID with } \sigma = \sigma_2. \end{cases}$$
Consider \(\mathbf{x} := (X, Y; X', Y') \in (E \otimes \mathbb{Q})^2 = \mathbb{C}^2 \oplus \mathbb{C}^2 \), and define
\[
[x]_D := [x, y] \quad [X', Y'] = \left(\frac{XX'}{Y}, \frac{XY'}{Y'} \right) \quad \text{and} \quad [x]_J = J [x, y] \quad [X', Y'] = \left(\frac{X'Y}{X}, \frac{Y'X}{Y} \right).
\]
When the case we are working is clear in the context, we just write \([x]_J\) or \([x]_D\) depending on the cases. Then the action of \(G_{D_p}(\mathbb{C}) = \{ (g, h) \in \text{GL}_2(\mathbb{C})^2 \} \) on \(M_2(\mathbb{C})\) is as follows:
\[
\begin{align*}
[x]_J &\mapsto (g, h)[x]_J (g, h)^{-1} = g[x]_J h' = [(X, Y)g, (X', Y')h] \quad \text{in Case II with } \sigma = \sigma_1, \\
[x]_D &\mapsto (g, h)[x]_D (g, h)^{-1} = g[x]_D h' = [(X, Y)g, (X', Y')h] \quad \text{in Case ID with } \sigma = \sigma_J.
\end{align*}
\]
The case \(\sigma = \sigma_1\) is as in (5.1), and the case \(\sigma = \sigma_J\) can be verified by a computation. Define for \(v = (a, b)^T \in D_{\sigma, C}\)
\[
\begin{equation}
\begin{cases}
[x; y] = \text{Tr}_{D_E/E}([v; x]_J) = dXY' + bXX' - cYY' - aXY' \quad \text{in Case II with } \sigma = \sigma_1, \\
[x; y] = \text{Tr}_{D_E/E}([v; x]_D) = dXX' - bYY' - cXX' + aYY' \quad \text{in Case ID with } \sigma = \sigma_J.
\end{cases}
\end{equation}
\]
We then have for \(g \in G_{D_p}(\mathbb{R})\)
\[
\begin{equation}
\begin{cases}
[g'v'g''; x] = [v; g[x]_J g''] = [v; xg''] \quad \text{in Case II with } \sigma = \sigma_1, \\
[g'v'g''; x] = [v; g[x]_D g'']; = [v; xg''] \quad \text{in Case ID with } \sigma = \sigma_J.
\end{cases}
\end{equation}
\]
The first formula for \(\sigma = \sigma_1\) is (5.4). In the second formula, \(xv = ((X, Y)g, (X', Y')g'')\).

Define a standard positive majorant \(P_t\) of \(s_\pm\) in Case ID by
\[
(6.3) \quad P(x, y) = P_D(x, y) = \text{Tr}_{D_E/E}(xJy^{-1}) = \text{Tr}_{D_E/E}(xy^*)
\]
for \(y^* = \text{Tr}_{D_E/E}(xJy^{-1}) = \text{Tr}_{D_E/E}(xy^*)\). If \(x \in D_{\sigma, A}\) and \(J \in D_{E_E} \cap D_{E_E}\) for a finite extension \(A/\mathbb{Q} \subset \mathbb{C}\), then
\[
(Jx)^t = -(x')^t = Jx_s J^{-1} = Jx^{\sigma_1} = Jx^{\sigma_1} x^{\sigma_1} = (Jx)^{\sigma_1}.
\]
Thus \(x \mapsto Jx\) induces an isomorphism \(D_{\sigma, A}^\pm \cong D_{\sigma_1, D}^\pm\). In particular, this isomorphism sends \([x]_D \in D_{\sigma, C}\) to \([x]_J \in D_{\sigma_1, C}\). Define the standard positive majorant in Case II by
\[
(6.4) \quad P(x, y) = P_D(Jx, y) = \text{Tr}_{D_E/E}(xy^*)
\]
\[\text{Lemma 6.1. Let the notation be as above. Then } P \text{ defined as above is a positive majorant of } s_\pm \text{ and } v \mapsto [v; x]^{n+1} \text{ is a spherical harmonic polynomial for the standard positive majorant } P. \text{ Moreover the stabilizer of } P \text{ in } \text{SL}_2(\mathbb{C}) = \text{SU}_2(\mathbb{R}).\]

Proof. Recall \(s(x, y) = s_\pm (x, y) = \text{Tr}_{D_E/E}(xx^*) = \pm \text{Tr}_{D_E/E}(xx^*)\). As for \(P\) being a positive majorant, we only need to prove this for \(s = s_\pm\) and \(\sigma = \sigma_J\) (i.e., in Case ID). We have \(s(x, y) = \text{Tr}_{D_E/E}(xJy^{-1})\) over \(D_{\sigma, F}\). On \(Z_{\mathbb{R}}, \sigma = P\) and on \(D_{0, \mathbb{R}}, 0 \leq P(x, y) = \text{Tr}_{D_E/E}(xJy^{-1}) = -\text{Tr}_{D_E/E}(xJy^{-1}) = -s(x, y)\), which shows that \(P\) is a positive majorant in Case ID. Since \(P(x, y) = \text{Tr}_{D_E/E}(xy^*)\), its stabilizer in \(\text{SL}_2(\mathbb{C}) = \text{SU}_2(\mathbb{R})\) by definition. Since \(J \in \text{SU}_2(\mathbb{R})\), \(\text{SU}_2(\mathbb{R})\) is also the stabilizer of \(P_1\).

Now we prove that \([v; x]^{n+1}\) is a spherical harmonic polynomial. Since \(N([x]) = \text{det}([x]) = 0\), we need to show \(s_\pm (v; [x]) = \pm \text{det}(v; [x]) [\text{HMI, page 143}]. This follows from the above computation in Case ID. By the isomorphism \(J : D_{\sigma_1, A}^\pm \cong D_{\sigma_1, A}^\pm\), this also shows the result in Case II. \(\square\)

Define \(g_z = y^{-1/2} (z, \bar{y}) \in \text{SL}_2(\mathbb{C})\) for \(z = (\bar{y}, x) \in \mathcal{H}\). Then \(g_z(v) = z\).

\[\text{Corollary 6.2. Let } P_z(x, y) = P(v^{-1}g_z, g_z^{-1}y^z), \text{ which is a positive majorant associated to } z. \text{ Then if } g(z) = z, \text{ the polynomial } v \mapsto [g^{-1}v; x]^{n+1} \text{ is spherical harmonic with respect to } P_z.\]

Let
\[
\text{SO}_P(\mathbb{R}) := \{ u \in \text{SO}_{D_p}(\mathbb{R}) | P[u^{-1}vu] = P[v] \} \quad \text{for all } v \in D_{\sigma, \mathbb{R}}.
\]
If \(u \in \text{SU}_2(\mathbb{R})\) (i.e., \(u^{-1}u = 1 \leftrightarrow u = u^{-\sigma} = u^{\alpha}\)),
\[
P(u^{-1}vu^\sigma, u^{-1}vu^{\alpha} = \text{Tr}_{D_E/E}(u^{-1}vu^{\sigma} u^{-1}vu^{\alpha}) = \text{Tr}_{D_E/E}(v^{\sigma} v^{\alpha}) = P(v, v).
\]
Thus $\text{SO}_{P_0}(\mathbb{R}) = \text{SU}_2(\mathbb{R})/\{\pm 1\}$ and $\text{SO}_{P_1}(\mathbb{R}) = J: \text{SO}_{P_0}(\mathbb{R})J^{-1} = \text{SU}_2(\mathbb{R})/\{\pm 1\}$ as $J \in \text{SU}_2(\mathbb{R})$.

By Lemma 6.1, the function $v \mapsto [v; x]^{n+1}$ is a spherical harmonic polynomial on $D_{\sigma, C}$ of homogeneous degree $n + 1$. Write H_n for the space of spherical harmonics of homogeneous degree $n + 1$ on D_σ and homogeneous of degree $n + 1$ in (X, Y) and (X', Y'). We have $\dim_{\mathbb{C}} H_n = 2n + 3$ (in [A78, Lemma 2], this space is denoted H_{n+1}).

By (6.2), as a function of $x \in D_\sigma$ and $x = (X, Y; X', Y')$, $[x; x]^{n+1}$ intertwines the representation of SO_{D_σ} on the space of spherical functions of degree $n + 1$ with the symmetric $(n + 1)$-th power representation of $g \mapsto g \otimes g^\sigma$. On the maximal compact subgroup $\text{SU}_2(\mathbb{R})/\{\pm 1\} = \text{SO}_2(\mathbb{R}) \subset \text{SO}_{D_\sigma}(\mathbb{R})$, $g \mapsto g^\sigma$ is equivalent to the standard representation. Thus, on $L_2(n + 1; \mathbb{C})$, the action of $\text{SU}_2(\mathbb{R})$ is equivalent to the symmetric $(n + 1)$-th power representation of $g \mapsto g \otimes g$ which contains the symmetric n^\ast-power $g \mapsto g^{\otimes n^\ast}$ (for $n^\ast = 2n + 2$) with multiplicity one [H94, (11.2a)]. On the other hand, as seen in [A78, Lemma 2], on the space H_n of spherical functions of degree $n + 1$, $\text{SU}_2(\mathbb{R})$ acts by the symmetric n^\ast-th tensor representation irreducibly.

6.3. Locally constant sheaves on $\Gamma_\phi \backslash \mathcal{H}$. Recall $\text{PSL}_2(\mathbb{C}) = \text{SO}_{D_\sigma}(\mathbb{R}) = G_{D_\sigma}^\times(\mathbb{R})/Z(G_{D_\sigma}^\times(\mathbb{R}))$.

Let M be a discrete left $\text{PSL}_2(\mathbb{C})$-module. Regard M as a right $\text{PSL}_2(\mathbb{C})$-module by $mg = g^{-1}m$, and write tM for the right $\text{PSL}_2(\mathbb{C})$-module M. Let $\text{PSU}_2(\mathbb{R})$ for the image of $\text{SU}_2(\mathbb{R})$ in $\text{PSL}_2(\mathbb{C})$.

We construct on the automorphic manifold $\mathcal{S} := \Gamma_\phi \backslash \mathcal{H}$ a covering space in the following two ways:

(A) $\tilde{M} := \Gamma_\phi \backslash (\mathcal{H} \times M)$ via the action $\gamma(z, m) = (\gamma(z), \gamma m)$ for $\gamma \in \Gamma_\phi$ and $z \in \mathcal{H}$;
(B) $M^* := ((\Gamma_\phi \backslash \mathcal{P}_2(\mathbb{C})) \times ^tM)/\text{PSU}_2(\mathbb{R})$ via the action $\gamma(g, m)u = (\gamma gu, m)$ ($u \in \text{PSU}_2(\mathbb{R})$, $\gamma \in \Gamma_\phi$) regarding tM as a right $\text{PSU}_2(\mathbb{R})$-module.

We use the symbol \mathcal{S} for $\Gamma_\phi \backslash \mathcal{H}$ (not \mathcal{S}) as \mathcal{S} is not an algebraic variety (so, not a Shimura variety). The covering spaces are étale over \mathcal{S} if $\Gamma_\phi \cap g\text{PSU}_2(\mathbb{R})g^{-1} = \{1\}$ for all $g \in \text{PSL}_2(\mathbb{C})$. The definition (B) as above works well for any right $\text{PSU}_2(\mathbb{R})$-module X. However X^* may not have a matching \tilde{X} (i.e., X may not have compatible left action of Γ_ϕ without enlarging X). In this way, we can construct the sheaf $L^*(n; \mathbb{C})$ on $\Gamma_\phi \backslash \mathcal{H}$ for the $\text{PSU}_2(\mathbb{R})$-module $L(n^\ast; \mathbb{C})$. Here is an archimedean version of [H88, Proposition 6.1]:

Proposition 6.3. Let M be a discrete left $\text{PSL}_2(\mathbb{C})$-module. We have a canonical isomorphism of covering spaces $M^* \cong \tilde{M}$ induced by

$$(g, m) \mapsto (g(\varepsilon), gm)$$

for $g \in \text{PSL}_2(\mathbb{C})$, $\gamma \in \Gamma_\phi$ and $u \in \text{SU}_2(\mathbb{R})$.

Proof. Define a map $i: \text{SL}_2(\mathbb{C}) \times ^tM \to \mathcal{H} \times M$ by $(g, m) \mapsto (g(\varepsilon), gm)$ as above. Then

$$i(gu, mu) = (g(\varepsilon), guu^{-1}m) = (g(\varepsilon), gm) \quad \text{and} \quad i(\gamma g, m) = (\gamma g(\varepsilon), \gamma gm) \sim (g(\varepsilon), gm) \quad \text{(in } \tilde{M}).$$

Thus i induces a morphism of vector bundles $i: M^* \to \tilde{M}$. Since this is an isomorphism on the fiber at g if $\gamma(g(\varepsilon)) = g(\varepsilon)$ for $\gamma \Gamma_\phi$ implies $\gamma = 1$, we conclude the isomorphism of the fiber $M^*_g(\varepsilon) \cong \tilde{M}_g(\varepsilon)$ at $g(\varepsilon) \in \mathcal{H}$. Suppose the stabilizer $\Gamma(g(\varepsilon))$ in Γ_ϕ of $g(\varepsilon)$ is non-trivial. For $1 \not= \gamma \in \Gamma(g(\varepsilon))$, $(g(\varepsilon), gm) = (g(\varepsilon), \gamma gm) = (g(\varepsilon), gm)$ in $\tilde{M}_g(\varepsilon)$. This implies $m \in H^0(g^{-1}G(\varepsilon), M)$. Thus $\tilde{M}_g(\varepsilon) = H^0(g^{-1}G(\varepsilon), M)$. Note $g^{-1}G(\varepsilon) \subset \text{PSU}_2(\mathbb{R})$. Then in $M^*_g(\varepsilon)$, we have $(g, m) = (gg^{-1}g, mg^{-1}g) = (g, mg^{-1}g) = (g, mg^{-1}g)$. Thus again $M^*_g(\varepsilon) = H^0(g^{-1}G(\varepsilon), M)$, and hence i induces an isomorphism fiber by fiber, as desired.

We adelize the construction as follows: Write $S = \text{SO}_{D_\sigma}(\mathbb{Q}) \backslash \text{SO}_{D_\sigma}(\mathbb{A}) / \hat{\Gamma}_\phi C_\infty(\text{SO}_{D_\sigma}(\mathbb{R}))$ adelicly for the closure $\hat{\Gamma}_\phi$ of Γ_ϕ in $\text{SO}_{D_\sigma}(\mathbb{A}(\mathbb{A}^{\infty}))$. Then we define an adelized covering space:

$$(B_\lambda) M^*_\lambda := ((\mathbb{Q}) \backslash \text{SO}_{D_\sigma}(\mathbb{A}) / \hat{\Gamma}_\phi C_\infty(\text{SO}_{D_\sigma}(\mathbb{R})) \times ^tM)/C_\infty(\text{SO}_{D_\sigma}(\mathbb{R}))$$

through the action $\gamma(g, m)u = (\gamma gu, mu)$ for $u \in \hat{\Gamma}_\phi C_\infty(\text{SO}_{D_\sigma}(\mathbb{A}))$.

By the strong approximation theorem for $\text{SO}_{D_\sigma}(\mathbb{A})$ and [H88, Proposition 6.1], we have

Corollary 6.4. We have a canonical isomorphism $M^*_\lambda \cong M^* \cong \tilde{M}$ induced by the projection to the ∞-component.
Remark 6.5. If the above covering space is étale, it defines a locally constant sheaf which we denote by the same symbol \(X/S = M_k, M^*, M \); so, we have well defined sheaf cohomology \(H^\bullet(S, X) \). Even if the covering space is not étale, we have a normal subgroup of finite index \(\Gamma \subset \Gamma_\phi \) such that the covering is étale over \(S' = \Gamma \backslash \mathcal{H} \). Thus we can define the cohomology group \(H^\bullet(S', X_{/S}) := H^\bullet(S', X_{/S}, \mathcal{F}_\phi) \), which is well defined as long as the multiplication by \(|\Gamma_\phi/\Gamma| \) is invertible on \(X \). In this sense, we pretend that \(X \) is étale over \(S \) (assuming to have a choice of \(\Gamma \) with \(|\Gamma_\phi/\Gamma| \) invertible on coefficients).

6.4. Vector valued theta series for imaginary \(E \)

Define for the standard positive majorant \(P \) in Lemma 6.1.

\[
\Psi_k(v; \tau) = \eta^{1/2}[v; x]^{n+1}e(\pm N(v)\xi + \frac{\eta P[v]}{2} \sqrt{-1}) \in \mathcal{S}(D^\pm_{\sigma, R}) \quad (n = k - 2, \tau \in \mathcal{F}, v \in D^\sigma_\sigma).
\]

We have \(\eta^{1/2} \) in front to adjust the metaplectic weight to be \(k \) (e.g., [HMI, Theorem 2.65]). Here, for \(u \in SU_2(\mathbb{R}) = SO_P(\mathbb{R}) \subset SO_{D_\sigma}(\mathbb{R}) \) and \(g \in SO_{D_\sigma}(\mathbb{R}) \), the coefficient polynomial satisfies

\[
gu \rightarrow [u^{-1}g^{-1}v\gamma \sigma^* u; x]^{n+1} = \left[g^{-1}v\gamma \sigma^* [u \sigma^*]^{n+1} \right] = \left[g^{-1}v\gamma \sigma^* x^t \sigma^* \right]^{\alpha \gamma \sigma^*}.
\]

where \(u^* = u^{-1} \) or \(tu \) according to whether in Case II (\(\sigma = \sigma_1 \)) or in Case ID (\(\sigma = \sigma_f \)).

For \(\phi(\infty) \in \mathcal{S}(D^\pm_{\sigma, A(\infty)}) \), putting \(\phi = \phi(\infty)\psi_k \) we consider, for \(\tau \in \mathcal{F} \) and \(g \in SO_{D_\sigma}(\mathbb{A}) \),

\[
\theta(\psi)(\tau; g) = \theta(\tau; g; x) = \sum_{\alpha \in D^\pm_\sigma} \phi(u^{-1}g^{-1} \alpha g^\sigma u^*)
\]

\[
= \eta^{1/2} \sum_{\alpha \in D^\pm_\sigma} \phi(\alpha)(u^{-1}g^{-1} \alpha g^\sigma u^*)[u^{-1}g^{-1} \alpha g^\sigma u^*; x]^{n+1}e(\pm N(\alpha)\xi + \frac{\eta P[u^{-1}g^{-1} \alpha g^\sigma u^*]}{2} \sqrt{-1}).
\]

As before, let \(\Gamma_\phi := \{ \gamma \in SO_{D_\sigma}(\mathbb{A}) | \phi(\infty) \circ \gamma = \phi(\infty) \} \) and write \(\hat{\Gamma}_\phi \) for its closure in \(SO_{D_\sigma}(\mathbb{A}(\infty)) \). Then for \(u \in \hat{\Gamma}_\phi SU_2(\mathbb{R}) = SO_P(\mathbb{R}) \) as in (6.6) and \(g \in SO_{D_\sigma}(\mathbb{A}) \),

\[
\theta(\phi)(\tau; gu; x) = \sum_{\alpha \in D^\pm_\sigma} \phi(u^{-1}g^{-1} \alpha g^\sigma u^*)
\]

\[
= \eta^{1/2} \sum_{\alpha \in D^\pm_\sigma} \phi(\alpha)(u^{-1}g^{-1} \alpha g^\sigma u^*)= \frac{\eta P[u^{-1}g^{-1} \alpha g^\sigma u^*]}{2} \sqrt{-1}) - \theta(\psi)(\tau; g; x^t u^*).
\]

Since \([\alpha; \xi] \in L(n^*; \mathbb{C}) \) \((n^* = 2n + 2) \) for the \(SU_2(\mathbb{R}) \)-module \(L(n^*; \mathbb{C}) \), we may regard \(\theta(\phi)(\tau; h; \xi) \) as \(\eta^{1/2} \sum_{\alpha \in D^\pm_\sigma} \phi(u^{-1}g^{-1} \alpha g^\sigma u^*)[u^{-1}g^{-1} \alpha g^\sigma u^*; x]^{n+1}e(\pm N(\alpha)\xi + \frac{\eta P[u^{-1}g^{-1} \alpha g^\sigma u^*]}{2} \sqrt{-1}) \)

\[
\gamma^{-1} \alpha g^\sigma = \gamma^{-1} \sum_{\alpha \in D^\pm_\sigma} \phi(\alpha)(u^{-1}g^{-1} \alpha g^\sigma u^*)[u^{-1}g^{-1} \alpha g^\sigma u^*; x]^{n+1}e(\pm N(\alpha)\xi + \frac{\eta P[u^{-1}g^{-1} \alpha g^\sigma u^*]}{2} \sqrt{-1}) = \theta(\phi)(\tau; g; x).
\]

Define

\[
\theta(\tau; z; x) = \eta^{1/2} \sum_{\alpha \in D^\pm_\sigma} \phi(\alpha)(\alpha; x g^{-1} z)^{n+1}e(\pm N(\alpha)\xi + \frac{\eta P[g^{-1} \alpha g^\sigma]}{2} \sqrt{-1}).
\]
This definition could be given by choosing any \(g_\infty \) with \(g_\infty(\varepsilon) = z \) in place of \(g_z \), as \(P[g_z^{-1}\alpha g_z^\tau] = P[u^{-1}g_z^{-1}\alpha g_z^\tau u^\sigma] \) for any \(u \in \text{SU}_2(\mathbb{R}) \). We can check for any \(\gamma \in \Gamma_\phi \),

\[
(6.11) \quad \theta(\tau; \gamma(z); x) = \eta^{1/2} \sum_{\alpha \in D_\gamma^+} \phi^{(\infty)}(\alpha)[\alpha; xg_\gamma^{-1}]^n \mathbf{e}(\pm N(\alpha)\xi + \frac{\eta P[g_\gamma^{-1}\alpha g_\gamma^\tau]}{2} \sqrt{-1}) \\
= \eta^{1/2} \sum_{\alpha \in D_\gamma^+} \phi^{(\infty)}(\alpha)[\alpha; xg_\gamma^{-1}]^n \mathbf{e}(\pm N(\alpha)\xi + \frac{\eta P[g_\gamma^{-1}\alpha g_\gamma^\tau]}{2} \sqrt{-1})
\]

By Corollary 6.4 and the invariance in (6.11) (and (7.10)), \(\theta(\phi)(\tau; z; x) \) is a global section of \(\tilde{L}_E(n + 1; \mathbb{C}) \) over \(\mathcal{S} \) and by the invariance (6.8) earlier in \(\S 6.4 \), \(\theta(\phi)(\tau; g; x) \) is a global section of \(L_E(n + 1; \mathbb{C}) \) over \(\mathcal{S} \).

6.5. Explicit form down to earth of Schwartz functions. By Lemma 3.2, there are two isomorphism classes of the action on \(D_{E\kappa} \) of \(\text{Gal}(E/Q) \) over \(\mathbb{R} \) and hence of \(D_{\sigma; \kappa} \) such that \(H^0(\{\sigma\}, D_{E\kappa}) \cong M_2(\mathbb{R}) \) and \(H^0(\{\sigma_j\}, D_{E\kappa}) = \mathbb{H} \). For \(z = (x \ y) \in \mathbb{H} \), we put \(g_z = y^{-1/2}(y \ x) \in \mathbb{H} \); so, \(g_z(z) = z \). We first deal with Case ID where \(\sigma = \sigma_j \); so, \(D_\kappa \cong \mathbb{H} \).

As a subspace of \(M_2(\mathbb{C}) \), we have

\[
D_{\sigma; \kappa} = D_\kappa \cap \mathbb{R} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R} \mid a + d = 1 \right\}.
\]

Let \(p_\pm(z) = p(x, y) := gg_\gamma g_\gamma^{-1} = (1 + y^2 - x^2) \). Then \(p_\pm(z) \in D_\kappa \) and \(p_- := \sqrt{-\text{Tr}(z)} \in D_\kappa \) with \(\pm s \pm (p_\pm(z)) > 0 \). Let \(D_\kappa^\pm = \mathbb{R} p_\pm(z) \cong \mathbb{R} p_\pm(z) \), and write \(V_\pm := (\mathbb{R} p_\pm(z))^\perp \) on which \(\mp \pm \) is positive definite. For \(h \in \mathcal{G}_{D_{\sigma; \kappa}}(\mathbb{R}) \subset \text{GL}_2(\mathbb{C}) \), \(g_h = g_{h(z)}w \) for \(u \in \mathbb{H} \) with \(N(u) = N(h) \in \mathbb{R}^\times \). Thus \(h^{-1}p_\pm(h)h^{-1} = h^{-1}y^{-1}g_\gamma^{-1}g_\gamma^{-1}h^{-1} = u^{-1}y(h(z))g_{h(z)}g_{h(z)}^{-1}g_{h(z)}^{-1} = u^{-1}p_\pm(h(z))w^\tau, \) and hence we have verified the following for \(\sigma = \sigma_j \)

\[
(6.13) \quad P[h^{-1}p_\pm(h)h^{-1}] = P[p_\pm(h)].
\]

Writing \(v = ap_\pm(z) + w \) and \(v' = a'p_\pm(z) + w' \) with \(s \pm (\mathbb{R} p_\pm(z), \mathbb{R} w + Rw') = 0 \) and \(a, a' \in \mathbb{R} \), we define

\[
P_z(v, v') = aa' s \pm (p_\pm(z)) - s \pm (w, w'),
\]

which is a positive majorant of \(s \pm \). Note, for \(\sigma = \sigma_j \)

\[
P_z(h^{-1}v h^\sigma, h^{-1}v' h^\sigma) = aa' s \pm (h^{-1}p_\pm(z)h^\sigma) - s \pm (h^{-1}wh^\sigma, h^{-1}w' h^\sigma) = P_h(z)(v, v').
\]

Then we find

\[
P_z[v] + s \pm [v] = a^2 s \pm (p_\pm(z)) - s \pm [w] + (a^2 s \pm (p_\pm(z)) + s \pm [w]) = 2a^2 s \pm (p_\pm(z)) = 2 \frac{s \pm (p_\pm(z), v)^2}{s \pm (p_\pm(z))},
\]

since \(s \pm (p_\pm(z), v) = s \pm (p_\pm(z)) \). Note

\[
s \pm (p_\pm(z)) = \text{Tr}_{D_{\sigma; \kappa}}(p_\pm(z)p_\pm(z)) = \pm \text{Tr}_{D_{\sigma; \kappa}}(p_\pm(z)p_\pm(z)) = \pm 2 \det(p_\pm(z)) = 2y(z)^2,
\]

where \(y(z) = y \) for \(z = (x \ y) \in \mathcal{H} \). Write \([z; v] = \text{Tr}_{D_{\sigma; \kappa}}(p_-)(z)u^\tau \). Combining these formulas,

\[
(6.15) \quad \frac{P_z[v]}{2} = 2 \left\{ -s \pm [v] \pm \frac{[z; v]^2}{2y(z)^2} \right\} = \mp (z; v)^2 \pm \frac{[z; v]^2}{2y(z)^2}.
\]

Therefore, the exponential factor of the standard Schwartz function is

\[
\mathbf{e}(\pm N(v)\xi + \frac{P_z[v] \eta \sqrt{-1}}{2}) = \mathbf{e}(\pm N(v)\xi + \frac{[z; v]^2 \eta \sqrt{-1}}{2y(z)^2}).
\]

By (6.14), \(P_z[h^{-1}v^\sigma] = P_{h(z)}[v] \) for \(\sigma = \sigma_j \), and

\[
(6.16) \quad \frac{[z; h^{-1}v^\sigma]^2}{2y(h(\tilde{z}))^2} = N(h^{-1}v^\sigma) + P_z[h^{-1}v^\sigma] = N(v) + P_{h(z)}[v] = \frac{[h(z); v]^2}{2y(h(z))^2}.
\]
Therefore when \(\sigma = \sigma_J \), we choose a standard Schwartz function \(\phi_\infty : D_{\sigma,A} \to \mathbb{C} \) of weight \(k = n+2 \) as follows
\[
(6.17) \quad \phi_\infty(v) = \Psi_k(v, z, \tau) = \Psi_{k,\sigma_J}(v, z, \tau) = \eta^{1/2}[g_z^{-1}v g^{\sigma_J}_z; \mathbf{x}]^{n+1}e(\pm N(v)V \mp |z; v|^{2} \eta \sqrt{-1} g \mp 2g(y(z)^2})
\]
as in (6.5).

We show a formula similar to (6.17) when \(\sigma = \sigma_1 \) choosing \(p_\pm(z) \) differently. We are in Case II, \(D_\mathbb{R} = M_2(\mathbb{R}) \), and
\[
(6.18) \quad D_{\sigma_1}^\pm = D_{\sigma_1,\mathbb{R}} = \left\{ \left(\frac{x}{\sqrt{-1}}, \frac{y}{\sqrt{-1}} \right) \mid x \in \mathbb{C} \text{ and } b, c \in \mathbb{R} \right\}.
\]
This \(D_{\sigma_1}^\pm \) has signature \((3, 1) \) and the one dimensional negative definite space is generated by \(\sqrt{-1}(\begin{smallmatrix} 1 \\ 0 \\ 0 \end{smallmatrix}) \). Let \(p_-(z) = yg_z^z(\begin{smallmatrix} 1 \\ 0 \\ 0 \end{smallmatrix}) g^{\sigma_1}_z = (-xy, -\frac{1}{2}) \in D_{\sigma_1}^\pm \) for \(z \in (\frac{1}{2}, \infty) \in \mathcal{H} \) and \(p_+(z) = \sqrt{-1}p_-(z) \in D_{\sigma_1}^\pm \). Again (6.13) is valid for \(\sigma = \sigma_1 \) for this choice of \(p_\pm(z) \), and similar to the case of \(D_\mathbb{R} = h \), defining \(P_{\pm}(v, v') = -a\pm s_\pm(p_\pm(z)) + s_\pm(w, w') \) for \(v = ap_+(z) + w \) and \(v' = ap_-(z) + w' \) with \(s_\pm(Rp_\pm(z), Rw + Rw') = 0 \) and \(a, a' \in \mathbb{R} \) and we find
\[
P_{\pm}(v) - s_{\pm}[v] = -2\frac{s_{\pm}(p_\pm(z), v)^2}{s_{\pm}[p_\pm(z)]},
\]
and writing \(|z; v| = \text{Tr}_{D_{\mathbb{C}}/\mathbb{R}}(p_\pm(z) v') \),
\[
(6.19) \quad \frac{P_{\pm}[v]}{2} = \frac{1}{2} \left \{ s_{\pm}[v] + |z; v|^2 \frac{2}{g(y(z))^2} \right \} = \pm N(v) + \frac{|z; v|^2}{2g(y(z))^2}.
\]
Thus we choose the canonical Schwartz function of weight \(k = n+2 \) as follows:
\[
(6.20) \quad \phi_\infty(v) = \Psi_{k,\sigma_J}(v, z, \tau) = \eta^{1/2}[g_z^{-1}v g^{\sigma_1}_z; \mathbf{x}]^{n+1}e(\pm N(v)V \mp |z; v|^{2} \eta \sqrt{-1} g \mp 2g(y(z))^2}).
\]

Though the formula is similar in the two cases, the definition of \(|z; v| \) is different in Case ID and Case II. In the two cases \(\sigma = \sigma_J \) and \(\sigma_1 \), we define a theta series by
\[
\theta_{k,\sigma}(\phi) = \theta_k(\phi) = \phi(\tau; z) = \sum_{v \in D} \phi(v) \text{ for } \sigma = \sigma_1 \text{ and } \sigma_J.
\]

6.6. Invariant pairings and differential operators. To define the theta descent, for any \(E \)-algebra such that \(D_{E_A} \cong M_2(A) \times M_2(A) \), we need the two invariant self dualities of \(L_E(n; A) \) induced by the invariant differential operators similar to (5.27) as before. Thus the first one we describe is the \(D^\times \)-invariant operator for \(L_E(n; A)_{D^\times} \) which depends on Cases II and ID. Since \([\mathbf{x}]_D \mapsto J[\mathbf{x}]_D = [\mathbf{x}]_J \) gives an isomorphism of quadratic spaces: \(D^\pm_{\sigma,\mathbb{C}} \cong D^\pm_{\sigma,\mathbb{C}} \), pulling back the invariant differential operator \(\nabla = \frac{\partial^2}{\partial X \partial T} - \frac{\partial^2}{\partial Y \partial S} \) in Case II by this isomorphism, the corresponding invariant differential in Case ID is \(\nabla := J^*(\frac{\partial^2}{\partial X \partial T} - \frac{\partial^2}{\partial Y \partial S}) = \frac{\partial^2}{\partial Y \partial S} + \frac{\partial^2}{\partial X \partial T} \). We record this fact:
\[
(6.21) \quad \nabla := \begin{cases} \frac{\partial^2}{\partial X \partial T} - \frac{\partial^2}{\partial Y \partial S} & \text{in Case II}, \\ \frac{\partial^2}{\partial Y \partial S} + \frac{\partial^2}{\partial X \partial T} & \text{in Case ID}. \end{cases}
\]

A canonical \(D_{E_A}^1 \)-invariant pairing is induced by
\[
(6.22) \quad \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_n := (n!)^{-2} \omega^1_n \otimes (n!)^{-2} \omega^0_n : L_E(n; A) \otimes L_E(n; A) \to A.
\]
In this case, the left and right factor \(GL_2(A) \) acts by the corresponding embedding (so, no conjugation action of \(\sigma \) involved), and therefore, we do not need to separate two cases II and ID. Writing the variable of the identity (resp. \(\sigma \)) factor of \(L_E(n; A) \) as \((X, Y; X', Y') \) (resp. \((S, T; S', T') \)), the operators are
\[
(6.23) \quad \nabla_{id} := \frac{\partial^2}{\partial X \partial T} - \frac{\partial^2}{\partial Y \partial S},
\]
\[
\nabla_{\sigma} := \frac{\partial^2}{\partial X' \partial T'} - \frac{\partial^2}{\partial Y' \partial S'}. \]
We have the third invariant pairing on the $SU_2(\mathbb{R})$-module $L(n^*; A)$:

$$\langle \cdot, \cdot \rangle := (n^*)^{-2} q_{n^*} : L(n^*; \mathbb{C}) \otimes L(n^*; \mathbb{C}) \to \mathbb{C}$$

for, writing the variable of the left (resp. right) factor $L(n^*; \mathbb{C})$ as (S, T) (resp. (S', T'))

$$\nabla' := \frac{\partial^2}{\partial S \partial T'} - \frac{\partial^2}{\partial T \partial S'}.$$

6.7. Invariance of $[\alpha; x]$.

For $h \in G_{\alpha, R}(\mathbb{R})$, we have $h^{-1} \alpha h^\sigma = \alpha$ and $[\alpha; x] = [h^{-1} \alpha h^\sigma; x] = [\alpha; x h^2]$, where $h^2 = h^t$ in Case II and $h^2 = h$ in Case ID (see (6.2)).

Lemma 6.6.
The polynomial $[\alpha; x]^{n+1}$ is an element of $H^0(D_{\alpha, R}^1, L_E(n+1; \mathbb{C}))$, and

$$[\alpha; x]^{n+1} = \left\{ \begin{array}{ll}
\mathbb{C} \left[(X, Y)j^{-1} \frac{1}{\sqrt{-1}} \left(\frac{Y}{X} \right) \right]^{n+1} & \text{if } D_{\alpha, R} = j^{-1} \mathbb{H} j \Leftrightarrow \alpha \equiv j^{-1} x^\sigma, \\
\mathbb{C} \left[(X, Y)j^{-1} J'^{-1} \left(\frac{Y}{X} \right) \right]^{n+1} & \text{if } D_{\alpha, R} = j M_2(\mathbb{R}) j^{-1} \Leftrightarrow \alpha \equiv j^{-1} x^\sigma
\end{array} \right.$$

for some $j \in SL_2(\mathbb{C})$, where "\equiv" means an identity up to a power of $\sqrt{-1}$ and $x = 1$ if $D_{\mathbb{R}} \cong D_{\alpha, R}$ and $x = J$ if $D_{\mathbb{R}} \not\cong D_{\alpha, R}$. Here $h \in SL_2(\mathbb{C})$ acts on $L_E(n; \mathbb{C})$ by the pullback action of $(X, Y; X', Y') \mapsto ((X, Y)h; (X', Y')h)$.

Proof.
The identity $H^0(\mathbb{H}^1, L_E(n+1; \mathbb{C})) = H^0(SU_2(\mathbb{C}), L_E(n+1; \mathbb{C})) = \mathbb{C}(XX' + YY')^{n+1}$ shows the assertion when $D_{\mathbb{R}} = j^{-1} \mathbb{H} j$. If $D_{\alpha, R} = j M_2(\mathbb{R}) j^{-1}$, this follows from

$$H^0(SL_2(\mathbb{R}), L_E(n+1; \mathbb{C})) = \mathbb{C}(XY' - X'Y)^{n+1}.$$

\[\square \]

6.8. Relation between $SU_2(\mathbb{R})$-polynomial representations.

The automorphic form $f \in M_k(\Gamma)$ gives a global section of $L^*(n^*; \mathbb{C})$. To relate the theta series with values in $L_E(n+1; \mathbb{C})$ and modular forms with values in $L(n^*; \mathbb{C})$, we study the relation of the two modules under the action of $SU_2(\mathbb{R})$.

Write $\pi : L_E(n+1; \mathbb{C}) \to L(n^*; \mathbb{C})$ for the $SU_2(\mathbb{R})$-equivariant projection as in [H94, (11.2)].

Lemma 6.7.

If we let $GL_2(\mathbb{C})$ act on $L_E(n+1; A)$ for an E-algebra A by the pull back of $(X, Y; X', Y') \mapsto (\Phi(X, Y; X', Y')g; (X', Y')g)$, the map $\pi : L_E(n+1; A) \to L(n^*; A)$ given by

$$\pi(\Phi(X, Y; X', Y')) = \left\{ \begin{array}{ll}
\Phi((-S, T); J; (S, T)) & \text{in Case II}, \\
\Phi((-S, T); J; (S, T)) & \text{in Case ID}
\end{array} \right.$$

is $SU_2(\mathbb{R})$-equivariant.

The projection $\pi : L_E(n+1; \mathbb{C}) \to L(n^*; \mathbb{C})$ is given by the following variable change:

$$x = (X, Y; X', Y') \mapsto \bar{x} := \left\{ \begin{array}{ll}
(T, -S; S, T) & \text{in Case ID}, \\
(S, T; -T, S) & \text{in Case II},
\end{array} \right.$$

of $SU_2(\mathbb{R})$-modules unique up to scalar multiplication. Write $\pi(\Phi(x)) = \Phi(\bar{x})$; so,

$$[v; \bar{x}] := \pi[v; x].$$

Proof.

We first deal with Case ID. Since $\pi = J^{-1} u J$ for $u \in \mathbb{H}^1 = \ker(N : \mathbb{H}^\times \to \mathbb{R}^\times)$, in Case ID, $[x]_D = J'(X, Y)(X', Y')$ and $[\bar{x}]_D = J'((S, T); (S, T))$ and

$$u^{-1}[\bar{x}]_D u^{-1} = u^{-1}[x]_D u = u^{-1}J'(S, T)(S, T)u = JJ'^{-1}u^{-1}J'(S, T)(S, T)u = J'((S, T)u)u = u \cdot (\pi[x]_D),$$

since $u = J u^{-1} J^{-1}$. This is compatible as $D_{\alpha, R}^\pm \cong D_{\alpha, \sigma}^\pm$ by $[x]_D \mapsto J[x]_D$. Similar to this

$$h^{-1}[\bar{x}]_D h = h \cdot (\pi(x)_D) \text{ for } h \in SL_2(\mathbb{R}).$$

The case II can be treated similarly. \[\square \]
We now compute the adjoint \(\pi^*: L(n^*; \mathbb{C}) \leftrightarrow L_E(n + 1; \mathbb{C}) \) of \(\pi: L_E(n + 1; \mathbb{C}) \rightarrow L(n^*; \mathbb{C}) \). We have a bilinear pairing \((\cdot, \cdot)_n + : L_E(n + 1; \mathbb{C}) \otimes L_E(n + 1; \mathbb{C}) \rightarrow \mathbb{C} \) given by (6.22) and \((\cdot, \cdot) : L(n^*; \mathbb{C}) \otimes L(n^*; \mathbb{C}) \rightarrow \mathbb{C} \) given in (6.24). Then \((P, \pi^*Q) = (\pi P, Q) \) for the adjoint \(\pi^* \) of \(\pi \), and we write
\[
\pi^* S^{n + 1 - i'} T^{n + 1 + i'} = \sum_{j,j'} c_{i',j,j'} X^{j} Y^{n + 1 - j} X^{j'} Y^{n + 1 - j'}.
\]
Since highest (resp. lowest) weight of \(\text{sym}^n S^* \) of \(SU_2(\mathbb{R}) \) is \(a \mapsto a^* \) (resp. \(a \mapsto a^{-*} \)), we have \(\pi^*(S^n) = c X^{n + 1} Y^{n + 1} \) and \(\pi^*(T^n) = c' Y^{n + 1} X^{n + 1} \) for non-zero constants \(c, c' \). Thus
\[
(6.29) \quad c_{0,n + 1,j,j'} = 0 \text{ if } (j, j') \neq (n + 1, 0), \text{ and similarly, } c_{n + 1,0,j,j'} = 0 \text{ if } (j, j') \neq (0, n + 1).
\]
Since \(\pi \pi^* \) commutes with \(SU_2(\mathbb{R}) \)-action and \(L(n^*; \mathbb{C}) \) is irreducible \(SU_2(\mathbb{C}) \)-module, \(\pi \pi^* \) is a scalar multiplication. We have by [H99, page 141]
\[
(\pi^* S^{n + 1 - i'} X^{n + 1 - i'} Y^{n'}, X^{j'} Y^{n + 1 - j'} Y^{n + 1 - j'}) = \delta_{i,j} \delta_{i',j'} (-1)^{i + i'} \left[\begin{pmatrix} n + 1 \\ i \end{pmatrix} \begin{pmatrix} n + 1 \\ j' \end{pmatrix} \right]^{-1}.
\]
Similar to this computation, \((S^n T^i, S^i T^{n - j}) = \delta_{i,j} (-1)^{i} \left(\begin{pmatrix} n \\ i \end{pmatrix} \right)^{-1} \).
Thus
\[
(\pi^* S^{n + 1 - i'} T^{n + 1 + i'} X_{i,i'} j,j' = (-1)^{i + i'} S^{n + 1 - i'} T^{n + 1 + i'}, \pi^* X^{j'} Y^{n + 1 - j'} Y^{n + 1 - j'}) = (-1)^{n + 1 - i'} S^{n + 1 - i'} T^{n + 1 + i'}.
\]
This shows
\[
(6.30) \quad (-1)^{k'} \delta_{i,i',j,k} \left(\begin{pmatrix} n \\ n + 1 + i - j' \end{pmatrix} \right)^{-1} = \left(\pi^* S^{n + 1 - i'} T^{n + 1 + i'} X_{i,i'} n + 1 - k' \right) Y^{n + 1 - k'} Y^{n + 1 - k'} = \sum_{j,j'} c_{i,i',j,j'} X_{j,j'} Y^{n + 1 - j} X^{j'} Y^{n + 1 - j'} X_{k,k'} Y^{n + 1 - k} X^{k'} Y^{n + 1 - k'} \left[\begin{pmatrix} n + 1 \\ j \end{pmatrix} \begin{pmatrix} n + 1 \\ j' \end{pmatrix} \right]^{-1} = \sum_{j,j'} c_{i,i',j,j'} (-1)^{j + j'} \left[\begin{pmatrix} n + 1 \\ j \end{pmatrix} \begin{pmatrix} n + 1 \\ j' \end{pmatrix} \right]^{-1}.
\]
Take \(a \in \mathbb{C}^\times \) with \(a \pi = 1 \) and put \(u_a = \text{diag}[a, \overline{a}] \in SU_2(\mathbb{R}) \). Taking \(k = 0 \) and \(k' = n + 1 \) in (6.30), we find, if \(i i' = 0 \)
\[
(-1)^{n + 1} \sum_{j,j'} c_{i,i',j,j'} (-1)^{j + j'} \left[\begin{pmatrix} n + 1 \\ j \end{pmatrix} \begin{pmatrix} n + 1 \\ j' \end{pmatrix} \right]^{-1},
\]
and by (6.29), \(c_{0,n + 1,n + 1,0} = 1 \) and \(c_{n + 1,0,n,n + 1} = 1 \). Therefore
\[
(6.31) \quad \pi^*(S^{n'}) = X^{n + 1} Y^{n + 1} \text{ and } \pi^*(T^{n'}) = Y^{n + 1} X^{n + 1}.
\]
Take \(h = \left(\begin{smallmatrix} a & b \\ b & a \end{smallmatrix} \right) \in SO_2(\mathbb{R}) \mathbb{R}^\times \). Then
\[
\pi^*(hP(S,T)) = \pi^*(P((S,T)^i h') = \pi^*(P)((X,Y)^i h'; (X', Y') \overline{h}'),
\]
and thus
\[
\pi^*((aS - bT)^{n'}) = \pi^*(hS^{n'}) = hX^{n + 1} Y^{n + 1} = (aX - bY)^{n + 1} (bX' + aY')^{n + 1}.
\]
Therefore
\[\sum_{i=0}^{n^*} (-1)^i \binom{n^*}{i} a^{n^*-i} b^i \pi^*(S^{n^*-iT^i}) \]
\[= \sum_{j=0}^{n+1} \sum_{j'=0}^{n+1} (-1)^j \binom{n+1}{j} \binom{n+1}{j'} a^{n^*-j-j'} b^{j+j'} X^{n+1-j} Y^j X^{j'} Y^{n+1-j'} . \]

From this we conclude
\[(6.32) \quad \pi^*(S^{n^*-iT^i}) = \sum_{j+j'=i} (-1)^j \binom{n+1}{j} \binom{n+1}{j'} X^{n+1-j} Y^j X^{j'} Y^{n+1-j'} . \]

We record this fact as

Lemma 6.8. We have the following explicit form of \(\pi^* : L(n^*; \mathbb{C}) \to L_E(n+1; \mathbb{C}) \):
\[(6.33) \quad \pi^*(S^{n^*-iT^i}) = \sum_{j+j'=i} (-1)^j \binom{n^*-i}{j} \binom{n^*-i}{n+1-j} X^{n+1-j} Y^j X_{j'} Y^{n+1-j'} . \]

Note that \(\{ (n^*)_j S^{n^*-iT^i} \} \) is an \(A \)-basis of the dual lattice \(L(n^*; A)^\vee \) of \(L(n; A) \) under \(\langle \cdot, \cdot \rangle \) for any integral domain \(A \) of characteristic 0 and the same for \(\{ (n^*)_j S^{n^*-iT^i} \} \) for \(L_E(n+1; A)^\vee \) under \(\langle \cdot, \cdot \rangle \). Thus by (6.32), \(\pi^* \) is integral with respect to the dual integral structure of \(L_E(n+1; A) \). Write
\[(6.34) \quad s^* := \pi^*(S^{n^*-iT^i}) \]
in the sense that \(\pi^* P(s) = P(s^*) \in L_E(n+1; \mathbb{C}) \) for \(P(s) \in L(n^*; \mathbb{C}) \).

6.9. Vanishing of \([\alpha; x]^{n^*}, f \) if \(D_{\alpha, \mathbb{R}} \cong \mathbb{H} \)

Write \(s = (S, T) \) for the variables of \(L(n^*; \mathbb{C}) \). Identifying \(D_{\mathbb{R}} = \text{GL}_2(\mathbb{C}) \), a quaternionic modular form \(f(h; s) : D_{\mathbb{R}} \to L(n^*; \mathbb{C}) \) \((k = n + 2 \) and \(n^* = 2n + 2 \) on \(\bar{T} \) of weight \(k_{\infty} + k_{\infty} \sigma \) satisfies
\[(6.35) \quad f(\gamma x u_{\infty}; s) = f(x; s^* u_{\infty}^{-1}) \quad \text{for} \quad u_{\infty} \in \bar{T} \cdot \text{SU}_2(\mathbb{R}), z \in E_{\bar{\mathbb{H}}} \quad \text{and} \gamma \in D_{\mathbb{R}}, \]
where \(u_{\infty}^{-1} = u_{\infty}^{-1} \) if \(\sigma = \sigma_1 \) and \(u_{\infty}^{-1} = u_{\infty}^{-1} \) if \(\sigma = \sigma_2 \). Here \(\text{SU}_2(\mathbb{R}) = \{ u \in \mathbb{H} \times |N(u)| = 1 \} \) is the stabilizer in \(\text{SL}_2(\mathbb{C}) \) of \(\varepsilon = -J \in \mathcal{H} \) and \(u \in \text{GL}_2(\mathbb{A}) \) acts on \(P(s) \in L(n^*; A) \) by \(P(u(s)) = P(s^* u) \). Define for \(f \) as above and \(j \in \text{SL}_2(\mathbb{C}) \),
\[(6.36) \quad f|_{\mathcal{H} j}(z; s^*) := f(j(z); s^* j^2) \quad \text{and} \quad f|_{\mathcal{G} j}(h; s^*) := f(jh; s^*),\]
where \(h^2 = h \) in Case II and \(h^2 = h' = h \) in Case ID. Then writing \(g_j = g_j(z) u \) for \(u \in \text{SU}_2(\mathbb{R}) \)
\[f|_{\mathcal{G} j}(g_j; s^* g_j^{-1}) = f(jg_j; s^* g_j^{-1}) = f(g_j(z); s^* (u g_j^{-1}(z)) = f(g_j(z); s^* (g_j^{-1}(z))) = f|_{\mathcal{H} j}(z; s^*). \]

Lemma 6.9. Let \(j \in \text{SL}_2(\mathbb{C}) \). Assume \(f(j^{-1} g_0; s^*) \neq 0 \) for some \(g_0 \in D_{\mathbb{R}}^1 \). Then the subspace of \(L_E(n+1; \mathbb{C}) \) spanned by \(\{ f(j^{-1} g_0; s^u) \}_{u \in \text{SU}_2(\mathbb{R})} \) over \(\mathbb{C} \) in \(L_E(n+1; \mathbb{C}) \) is equal to \(\pi^* L(n^*; \mathbb{C}) \) for \(\pi^* : L(n^*; \mathbb{C}) \to L_E(n+1; \mathbb{C}) \) as in §6.8. In particular,
\[[[1, x]^{n^*+1}, f|_{\mathcal{G} j^{-1}(g_j; s^*)] = 0 \quad \text{if} \quad D_{\mathbb{R}} \cong \mathbb{H} \quad \text{and} \quad [[J, x]^{n^*+1}, f|_{\mathcal{G} j^{-1}(g_j; s^*)] = 0 \quad \text{if} \quad D_{\mathbb{R}} \cong \mathbb{M}_2(\mathbb{R}). \]

Proof. By translation \(j^{-1} g \to g \), we may assume that \(j = 1 \). Write \(V \) for the subspace of \(L_E(n+1; \mathbb{C}) \) spanned by \(\{ f(g_0; s^u) \}_{u \in \text{SU}_2(\mathbb{R})} \). As a \(\text{SU}_2(\mathbb{R}) \)-module, \(\pi^* (L(n^*; \mathbb{C})) \) is irreducible. Since \(\{ f(g_0; s^u) \}_{u \in \text{SU}_2(\mathbb{R})} \subset \pi^* (L(n^*; \mathbb{C})) \) as \(f(g_0; s^u) = \pi^* (f(g_0; s)) \), by \(f(g; s^* \neq 0, 0 \neq V \subset \pi^* (L(n^*; \mathbb{C})) \) is a non-trivial subspace stable under the action of \(\text{SU}_2(\mathbb{R}) \). The irreducibility of \(\pi^* (L(n^*; \mathbb{C})) \) as an \(\text{SU}_2(\mathbb{R}) \)-module tells us that \(V = \pi^* (L(n^*; \mathbb{C})) \) as desired.

Suppose \(D_{\mathbb{R}} = \mathbb{H} \). Since \([1, x]^{n^*+1} = [h h^{-1}; x]^{n^*+1} \) for \(h \in \text{SU}_2(\mathbb{R}) = D_{\mathbb{R}}^1 \) if \(D_{\mathbb{R}} = \mathbb{H} \), \([1, x]^{n^*+1} \) is invariant under \(\text{SU}_2(\mathbb{R}) \) and is orthogonal to \(\pi^* (L(n^*; \mathbb{C})) \) under \(\langle \cdot, \cdot \rangle \).

Suppose \(D_{\mathbb{R}} = \mathbb{M}_2(\mathbb{R}) \). Since \([J, x]^{n^*+1} = [h J h^{-1}; x]^{n^*+1} \) for \(h \in \text{SU}_2(\mathbb{R}) \), \([J, x]^{n^*+1} \) is invariant under \(\text{SU}_2(\mathbb{R}) \) and is again orthogonal to \(\pi^* (L(n^*; \mathbb{C})) \) under \(\langle \cdot, \cdot \rangle \). \(\square \)
6.10. Theta differential form. We now interpret \(\theta(\phi) \) as a differential form. Let \(\Omega^p_{S/C} \) be the sheaf of analytic differential \(p \)-forms on \(S = \Gamma_{\mathcal{O}} \setminus \mathcal{H} \). Since \(S \) does not have complex structure, we use the symbol \(S \) instead of \(Sh_E \).

Proposition 6.10. We have a canonical monomorphism \(i_{\nu}: L^*_E(n+1; C) \hookrightarrow L^*_E(n; C) \otimes_C \Omega^p_{S/C} \) for \(\nu = 1, 2 \) as sheaves over \(S \).

Proof. We have an injection of \(SL_2(E) \)-modules \(L_E(n+1; C) \hookrightarrow L_E(n; C) \otimes L_E(1; C) \). Thus we need to embed \(L_E(1; C) \) into \(\Omega^p_{S/C} \). Though \(L_E(1; C) \) is an irreducible \(SL_2(C) \)-module, it is reducible over \(SU_2(R) \). Thus as \(SU_2(R) \)-module, we have \(L^*_E(1; C) \cong C \oplus L(2; C) \). Since \((X,Y)u'((X',Y')u^*) = (X,Y)u^*\epsilon(X',Y') \), on the subspace \(C(XX' + YY') \subset L^*_E(1; C), SU_2(R) \) acts trivially. Identifying \(L^*_E(1; C)/(C(XX' + YY')) \cong C(-XY') + C(XX' - YY') + CX'Y, \) since \((X,Y)(-b^*a^* \nu) = (aX - b^*Y, bX + a^*Y) \) and \((X',Y')(a^* b^* \nu) = (a^*X' - b^*Y', b^*X' + a^*Y'), \) the matrix representation of \((XY', XX' - YY', XY') = (-XY', XX' - YY', XY') \cdot u\) for \(u = (a^* b^* \nu) \) is given modulo \(C(XX' + YY') \) by

\[
(-XY', XX' - YY', XY') \cdot (a^* b^* \nu) = (-XY', XX' - YY', XY') \left(\begin{array}{c} \sigma^2 \nu \omega \rho \end{array} \right) = (-XY', XX' - YY', XY') \rho_2(u).
\]

On the other hand, let \(\varepsilon = -J = \left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right) \) in \(\mathcal{H} \). Recall the isomorphisms \(SO_{D_2}(R) = G^+_D(C)/\mathbb{R}^x \) and \(SO_{D_2}(R)/SO_{P}(R) = SL_2(C)/SU_2(R) \cong \mathcal{H} = \{ z = \left(\begin{smallmatrix} \gamma & \eta \\ \eta^* & \delta \end{smallmatrix} \right) \mid \gamma, \delta \in \mathbb{R}, \eta \in \mathbb{C}, \gamma \eta = g(z) \} \) and the standard automorphic factor given by \(j\left(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right), z \right) = \rho(c)z + \rho(d) \). We let \(G^+_D(R) \subset GL_2(C) \) act on \(\mathcal{H} \) by \(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) (z) = (\rho(a)z + \rho(b))(\rho(c)z + \rho(d))^{-1} \) and identifying \(SO_{D_2}(R) \) with \(G^+_D(R)/\mathbb{R}^x \), the orthogonal group acts transitively on \(\mathcal{H} \). The stabilizer of \(\varepsilon \) is \(SO_P(R) \) (congruent to \(SU_2(R) \) modulo center). For \(u = \left(\begin{smallmatrix} a & b \\ -b^* & -a^* \end{smallmatrix} \right) \in SU_2(R) \),

\[
^tj(u, \varepsilon) = \left(\begin{array}{c} \sigma^2 \nu \omega \rho \end{array} \right) = \left(\begin{array}{c} \sigma^2 a \nu \omega \rho \end{array} \right) = u^{-1} \in SU_2(R) \Leftrightarrow j(u, \varepsilon) = \underline{\varepsilon}.
\]

As in [H94, (2.4), (2.9b)], writing

\[
(6.37) \quad \omega_1 := (dx, -dy, -d\overline{x}) \quad \text{and} \quad \omega_2 := y^{-1}(dy \wedge dx, -2dx \wedge d\overline{x}, dy \wedge d\overline{x})
\]

as the vector valued differential forms, we have \(\left(u^*\omega_1 \right)_{\varepsilon} = \rho_2(\left(j(u, \varepsilon) \right)_{\varepsilon}) \left(\omega_2 \right)_{\varepsilon} \) for \(\nu = 1, 2 \), and

\[
\rho_2 \left(-a^* b^* \right) = \left[\begin{smallmatrix} \sigma^2 \nu \omega \rho \end{smallmatrix} \right] = \left[\begin{smallmatrix} -ab^* a^* b^* \sigma^2 \nu \omega \rho \end{smallmatrix} \right] = \left[\begin{smallmatrix} -ab^* a^* b^* \sigma^2 \nu \omega \rho \end{smallmatrix} \right].
\]

More generally, as \(j(g, \varepsilon) = y^{-1/2}, \) for \(\nu = 1, 2, \)

\[
(6.38) \quad u^* g_{\varepsilon}^* \omega_2 |_{\varepsilon} = \rho_2(\left(j(g, \varepsilon) \right)_{\varepsilon}) \left(\omega_2 \right)_{\varepsilon} = y^{-1} \omega_2 |_{\varepsilon} \Leftrightarrow u^* g_{\varepsilon}^* \omega_2 |_{\varepsilon} = \omega_2 |_{\varepsilon} \rho_2(\left(j(g, \varepsilon) \right)_{\varepsilon}) = y^{-1} \omega_2 |_{\varepsilon}.
\]

Thus replacing the basis \((-XY', XX' - YY', XY') \) of \(L_E(n; C) \otimes_C (X X' + YY') \) by \(y^{-1} \omega_2 |_{\varepsilon} \), we get a morphism \(i_{\nu}: L^*_E(n+1; C) \hookrightarrow L^*_E(n; C) \otimes_C \Omega^p_{S/C} \) for \(\nu = 1, 2 \). Writing the stalk at \(\varepsilon \) of \(\Omega^p_{S/C} \) as \(\Omega^p_{\mathcal{O}_\varepsilon} \), consider the morphism \(i_{\nu}: L^*_E(n+1; C) \hookrightarrow L^*_E(n; C) \otimes \Omega^p_{\mathcal{O}_\varepsilon} \) induced by the stalk at \(\varepsilon \). By the pull-back action of the stabilizer of \(\varepsilon, SU_2(R) \) acts on \(\Omega^p_{\mathcal{O}_\varepsilon} \). We have an isomorphism \(\Omega^p_{\mathcal{O}_\varepsilon} \cong L(2; C) \otimes_C \mathcal{O}_\varepsilon \) for the germ \(\mathcal{O}_\varepsilon \) of analytic functions around \(\varepsilon \) of \(\mathcal{H} \). By Clebsch-Gordan, we have decomposition into irreducible factors

(1) \(L_E(n+1; C) |_{SU_2(R)} = \bigoplus_{a=0}^{n+1} L(2j; C) \)

(2) \(L_E(n; C) |_{SU_2(R)} \otimes_C L(2; C) = \bigoplus_{a=0}^{n+2} L(2k; C) \otimes C L(2; C) = \bigoplus_{a=0}^{n+2} L(2k; C) \).

Since highest weight vectors of \(L(2j; C) \) in (1) survive in the tensor product \(L_E(n; C) |_{SU_2(R)} \otimes_C \bigoplus_{a=0}^{n+2} L(2k; C) \), \(i_{\nu} \) is an injection. By local constancy, the morphism \(i \) is a monomorphism of sheaves.

Corollary 6.11. We have an analytic global section

\[
\Theta(\phi)(\tau; z; x) := \Theta_{\nu}(\phi)(\tau; z; x) := i_{\nu} \Theta(\phi)(\tau; g; x)
\]

of \(L^*_E(n; C) \otimes_C \Omega^p_{S/C} \) by composing \(i_{\nu} \) with \(\Theta(\phi)(\tau; g; x) \) in Proposition 6.10.
Since $\pi^* : L(n^*; \mathbb{C}) \hookrightarrow L_E(n + 1; \mathbb{C})|_{SU_2(\mathbb{R})}$ is an embedding of $SU_2(\mathbb{R})$-modules, we have sheaf inclusion $\pi^* : L^* \hookrightarrow L^*_E(n + 1; \mathbb{C})$. In this sense, we consider $\pi^* \circ f$ for $f \in M_\kappa(\Gamma_\phi)$ and regard it as a harmonic global section of $L^*_E(n + 1; \mathbb{C})$ over $\mathcal{S} = \Gamma_\phi \backslash \mathcal{H}$. By the isomorphism $L^*_E(n + 1; \mathbb{C}) \cong \tilde{L}_E(n + 1; \mathbb{C})$, we may also regard f^* as a harmonic global section of $\tilde{L}_E(n + 1; \mathbb{C})$. Further composing i_ν, for $i_\nu : \tilde{L}_E(n + 1; \mathbb{C}) \hookrightarrow L^*_E(n; \mathbb{C}) \otimes_{\mathbb{C}} \Omega^\nu_S/\mathbb{C}$, we may regard

$$\omega_\nu(f) := i_{\nu,*}(\pi^* \circ f)$$

as a harmonic closed form with values in $L^*_E(n; \mathbb{C}) \otimes_{\mathbb{C}} \Omega^\nu_S/\mathbb{C}$ by (M1–3) [H94, Proposition 2.1] whose cohomology class in de Rham cohomology $H^\nu(S, L^*_E(n; \mathbb{C}))$ is the class of the cohomological form f as in (M1–3) in §6.1. We then define the 2-dimensional period of f over $\text{Sh}_\alpha \cong \Gamma_\alpha \backslash \mathcal{H}$ by

$$P_\alpha(f) := \int_{\text{Sh}_\alpha} (n!)^{-2} \nabla^\alpha \omega_2(f) = \int_{\text{Sh}_\alpha} \omega_2(f) \quad (\nabla = \frac{\partial^2}{\partial X \partial Y} - \frac{\partial^2}{\partial X \partial Y})$$

The second identity follows from the fact that 2-cycle period is nontrivial only for constant sheaves.

7. Definite D with imaginary E

In this section, we assume that D is definite and E is imaginary.

7.1. Siegel–Weil formula for definite D and imaginary E. Recall $\delta_+ = 1$ and that $\Delta_- < 0$ is the square-free part of Δ with $\delta_- = \sqrt{\Delta_-}$. We have the decomposition $D^e_+ = Z^e \oplus D^o_+$ so that $Z^\pm = \delta_\pm \mathbb{Q} \subset D^e_+$ with $L_Z = N \delta_\pm \mathbb{Z}$. We take $\phi_Z^{(\infty)} := \psi$ on $L^e_Z/L_Z = N^{-1/2} \mathbb{Z}/\mathbb{Z}$ for a Dirichlet character $\psi : \mathbb{Z}/\mathbb{Z} \rightarrow \mathbb{C}$. We take an Eichler order $R(D_0)$ in D_E for D_0 prime to θ. Then let $\phi_0^{(\infty)} \in \mathcal{S}(D_0, \text{Ad}(\infty))$ be as in (4.24) for the characteristic function $\phi_0^{|L}$ of $\delta_+ \mathcal{R}(D_0) \cap D_0, \text{Ad}(\infty)$. Again Remark 4.3 applies. Put

$$P_{l}(f) := \int_{\text{Sh}_\alpha} (n!)^{-2} \nabla^\alpha \omega_2(f) = \int_{\text{Sh}_\alpha} \omega_2(f) \quad (\nabla = \frac{\partial^2}{\partial X \partial Y} - \frac{\partial^2}{\partial X \partial Y})$$

for $P_D(x, y)$ as in (6.3). Note that Z is positive and D_0 is negative definite and

$$\begin{align*}
\mathcal{R}_Z(g_\tau)L_Z(g)(\mathcal{R}_\mathcal{S}(\tau)N(\mathcal{S}_\mathcal{S}(\tau))|\sqrt{-1})) &= \eta_1^{(1+2j)/4} \mathcal{R}_\mathcal{S}(\tau)N(\mathcal{S}_\mathcal{S}(\tau))|\sqrt{-1}) \quad (\mathcal{S}_\mathcal{S}(\tau) \in \mathbb{Z}^e) \\
\mathcal{R}_D_0(g_\tau)L_{D_0}(g)(|\mathcal{S}_\mathcal{S}(\tau)|^2N(\mathcal{S}_\mathcal{S}(\tau))|\mathcal{S}_\mathcal{S}(\tau)|\sqrt{-1})) &= \eta_1^{(1+2j)/4} |\mathcal{S}_\mathcal{S}(\tau)|^2N(\mathcal{S}_\mathcal{S}(\tau))|\mathcal{S}_\mathcal{S}(\tau)|\sqrt{-1}) \quad (\mathcal{S}_\mathcal{S}(\tau) \in \mathbb{Z}^e).
\end{align*}$$

Recall again $\theta(\phi_Z^{(\infty)})(\tau) = \sum_{\alpha \in Z}(\mathcal{W}(g_\tau)\phi_Z^{(\infty)})(\alpha)$.

By (6.1), we have $\mathcal{S}_\mathcal{S}(\tau) = \mathcal{S}_\mathcal{S}(\tau) + \mathcal{S}_\mathcal{S}(\tau) + |\mathcal{S}_\mathcal{S}(\tau)|$ for $\mathcal{S}_\mathcal{S}(\tau) \in \mathbb{Z}^e$ and $\mathcal{S}_\mathcal{S}(\tau) \in \mathbb{Z}^e$. Define

$$\begin{align*}
\phi_Z^{(\infty)}(\tau, \mathcal{S}_\mathcal{S}(\tau)) &= \mathcal{S}_\mathcal{S}(\tau)\mathcal{S}_\mathcal{S}(\tau)\mathcal{S}_\mathcal{S}(\tau)N(\mathcal{S}_\mathcal{S}(\tau))|\mathcal{S}_\mathcal{S}(\tau)| \\
\phi_D_0(\tau, \mathcal{S}_\mathcal{S}(\tau)) &= \phi_D_0(\tau, \mathcal{S}_\mathcal{S}(\tau)\mathcal{S}_\mathcal{S}(\tau)\mathcal{S}_\mathcal{S}(\tau)N(\mathcal{S}_\mathcal{S}(\tau))|\mathcal{S}_\mathcal{S}(\tau)|\mathcal{S}_\mathcal{S}(\tau)|\sqrt{-1}) \quad (\mathcal{S}_\mathcal{S}(\tau) \in \mathbb{Z}^e).
\end{align*}$$

We remark $\pi(XX' + YY') = 0$ for $\pi : L_E(n + 1; \mathbb{C}) \rightarrow L(n^*; \mathbb{C})$ in (6.26). Then we have

$$\eta_{l/2}\theta(\phi|_{O_X^L}) = \eta_{1+(n/2)}\theta(\phi) = \sum_{j=0}^{n+1} \binom{n+1}{j} \theta(\phi_j^{(\infty)})(\theta(\phi_{D_0}^{(\infty)}))^{n+1-j}.$$
Since \(J^*(YX' - XY') = XX' + YY' \), for \(\forall \) in Case ID by (5.7) and (5.8)

\[
\begin{align*}
(n+1)! - 2\nu(n+1)[y;x]^{n+1-j}[y;x]^j = \\
\begin{cases}
 n+2 = k & \text{if } j = 0, \\
 0 & \text{if } j > 0.
\end{cases}
\end{align*}
\]

Take \(F = \sum_{m=1}^{\infty} a_m e(-m\mathfrak{F}) \in S_k^\infty(M, \psi^{-1}\chi_{D_\infty}) \) for \(M \) as in (4.26). Since \((Z^\pm, Q^\pm)\) is positive definite producing holomorphic \(\theta(\phi_\infty^k) \), \(F \) has to be anti-holomorphic (while in case RD, \((Z^\pm, Q^\pm)\) is positive or negative according to the sign of \(Z^\pm \)). Since \([y;x]|_{\mathfrak{F}} = 0\), in the same manner as getting (5.14) from (4.30) and (4.28), we obtain, for \(\overline{B} := B(\mathbb{Q}) \setminus B(\mathbb{A})C_\infty / B(\mathbb{Z})C_\infty \),

\[
\begin{align*}
\sum_{j=0}^{n+1} \binom{n+1}{j} & \int_{\overline{B}} F(\tau) \eta^{k+1/2} \theta((n+1)! - 2\nu(n+1) \phi_j^Z)(g_\tau) r(g_\tau)(\phi_{n+1}^0)(0) d\mu_\theta \\
& = \int_{\overline{B}} F(\tau) \eta^{k+1/2} \theta((n+1)! - 2\nu(n+1) \phi_j^Z)(g_\tau) r(g_\tau)(\phi_{n+1}^0)(0) d\mu_\theta \\
& = \int_0^\infty \int_0^1 F(\tau) \theta((n+1)! - 2\nu(n+1) \phi_j^Z)(g_\tau) d\xi \eta^{k-(3/2)} d\eta \\
& = 2k \delta_k^{k-1} \int_0^\infty \sum_{m>0} \psi(m)m^{k-1} \exp(-4\pi |\Delta_\mathfrak{F}|m^2) \eta^{k-(3/2)} d\eta \\
& = 2k(4\pi)^{-k+1/2} \delta_k^{k-1} |\Delta_\mathfrak{F}|^{-k+1/2} \Gamma(k - \frac{1}{2}) \sum_{\sigma \in m \subseteq \mathbb{Z}} \psi(n) a_m m^{-k}.
\end{align*}
\]

Here \(\delta_k^{k-1} |\Delta_\mathfrak{F}|^{-k+1/2} = -\sqrt{-1} |\Delta_\mathfrak{F}|^{-k} \). Thus we get in the same manner as in Theorem 4.5.

Theorem 7.1. Suppose that \(E \) is imaginary and that \(D \) is definite. Let \(F \) be a primitive Hecke eigenform in \(S_k^\infty(C, \psi^{-1}\chi_{D_\infty}) \) for \(C \| M \) with \(M \) as in (4.26) and \(f = \theta^*(F) \) be the theta lift to \(D_{E_\mathfrak{F}}^\infty \).

\[
f(g) = \int_{\Gamma \setminus \mathbb{H}} \theta(\phi)(\tau; g) F(\tau) \eta^{k-2} d\xi d\eta.
\]

Choose \(\phi_\infty^{(\infty)} \) associated to Dirichlet character \(\psi \) of conductor \(C(\psi) \) and \(\phi_0^{(\infty)} \) to be the characteristic function of the Eichler order restricted to \(D_{0,A}^{(\infty)} \) as specified above. Let \(\phi \) be a Schwartz-Bruhat function of \(D_{\sigma,A}^\infty \) as in (7.1), and choose the measure \(d\mu_\theta \) on \(O_\delta(A) \) as in Theorem 4.1. Then if \(f(g) \neq 0 \), for the mass \(m \) as in (4.22) and \(E^\pm(1) \) as in Theorem 4.5,

\[
\zeta(2) \int_{Sh_\delta} f(h) d\mu_\theta = m E^{\pm}(1) \delta_k^{k-1} |\Delta_\mathfrak{F}|^{-k+1/2} 2k(4\pi)^{(1/2)-k} \Gamma(k - \frac{1}{2}) L(C, (\psi))(1, Ad(F) \otimes \chi_E)
\]

for the compatible system \(\rho_F \) attached to \(F \) and \(\tilde{\Gamma}_\delta := \{ u \in SO_\delta(A) | \phi(\infty) \circ u = \phi(\infty) \} \cong \tilde{\Gamma}(N)^\times / \tilde{\mathbb{Z}}^\times \).

The Shimura subvariety \(Sh_\delta \) is as in (4.21).

7.2. Theta descent. In this subsection, the choice of the Bruhat function \(\phi(\infty) \) is arbitrary. Recall

\[
\Gamma \supseteq \Gamma_\delta := \{ \gamma \in SO_{\mathfrak{F}}(Q) = G_{D_{E_\mathfrak{F}}}^+ / \mathbb{Z}_{G_{D_{E_\mathfrak{F}}}^+}(Q) | \phi^{(\infty)}(\gamma^{-1} x \gamma^*) = \phi^{(\infty)}(x) \} \text{ for all } x \in D_{\sigma,A}^{(\infty)}.
\]

Identifying \(D_{E_\mathfrak{F}}^\infty \) with \(GL_2(\mathbb{C}) \), from (6.35), a quaternionic modular form \(f(h; s) : D^\times \setminus D_{E_\mathfrak{F}}^\infty \rightarrow L(n^*; \mathbb{C}) \) (\(k = n + 2 \)) on \(\overline{F} \) of weight \(k = k_{\infty} \cappa \) satisfies

\[
f(\gamma zw u_\infty^\infty; s) = f(x; s; u_\infty^\infty) \quad \text{for} \quad u_\infty^\infty \in \tilde{\Gamma} \cdot SU_2(\mathbb{R}), z \in E^\times \text{ and } \gamma \in D_{E_\mathfrak{F}}^\infty.
\]

where \(t^\infty u_\infty^\infty = u_\infty^{-1} \) if \(\sigma = \sigma_1 \) and \(t^\infty u \) if \(\sigma = \sigma_2 \). Here \(SU_2(\mathbb{R}) = \{ u \in \mathbb{H}^\times | N(u) = 1 \} \) is the stabilizer in \(SL_2(\mathbb{C}) \) of \(\mathbb{E} = -J \in \mathcal{H} \) and \(u \in GL_2(A) \) acts on \(P(s) \in L(n^*; A) \) by \(P(u|s|) = P(su|u) \).

Recall the projection \(\pi : L(\mathfrak{F}^\times(n+1; \mathbb{C}) \rightarrow L(n^*; \mathbb{C}) \in (6.27) \) given by

\[
x = (X, Y; X', Y') \mapsto \overline{x} := (T, -S; S, T)
\]

of \(SU_2(\mathbb{R}) \)-modules unique up to scalar multiplication. By convention, we write \(\pi(\Phi(x)) = \Phi(\overline{x}) \).

Recall also, for \(u \in \mathbb{H}^\times = \text{Ker}(N : \mathbb{H}^\times \rightarrow \mathbb{R}^\times) \),

\[
u^{-1} [\overline{x}] D u^{-n} = u \cdot (\pi [\overline{x}] D) \quad \text{and} \quad h^{-1} [\overline{x}] D h = h \cdot (\pi [\overline{x}] D) \quad \text{for} \quad h \in SL_2(\mathbb{R}).
\]
Recall the adjoint $\pi^* : L(n^*; \mathbb{C}) \hookrightarrow L_E(n + 1; \mathbb{C})$ of π which is an embedding of $SU_2(\mathbb{R})$-modules. Write $\pi(f(g; s))$ as $f(g; s^*)$ (for s^* as in (6.34)). Thus $h \cdot \pi(f(g; s^*)) = f(g; s^* h)$ for $h \in GL_2(E)$.

Recall the pairings (\cdot, \cdot) and $\langle \cdot, \cdot \rangle$ defined in §6.6. Restricting f in (7.6) to $G^+_{D_{\alpha}}(\mathbb{A}) \subset D^+_\alpha$ and taking the measure $d\mu_h$ with $\int_{\tilde{G}_{SU_2(\mathbb{R})}} d\mu_h = 1$ and $d\mu_h|_{\mathcal{H}} = y^{-3}dy|dx \wedge d\tau$ on $SO_{D_\alpha}(\mathbb{Q}) \backslash SO_{D_\alpha}(\mathbb{A})$, we define the theta descent $\theta_*(f)\tau)$ by

$$\theta_*(f)\tau) := \int_{SO_{D_\alpha}(\mathbb{Q}) \backslash SO_{D_\alpha}(\mathbb{A})/SU_2(\mathbb{R})} (\theta(\phi)(\tau; h; x), f(h; s^*)) d\mu_h$$

for \bar{x} as in (6.27) and $\theta(\phi)(\tau; h; \bar{x})$ as in §6.4.

We now show that its Fourier coefficient for $e(N(\alpha)\tau)$ is given by the period over Sh_α:

$$\int_{Sh_\alpha} (\theta(\phi)(\tau; h; \bar{x}), f(h; s^*)) d\mu_h.$$

For $h \in G^+_{D_\alpha}(\mathbb{R})$ and $u \in \widehat{G}_\phi \cdot SU_2(\mathbb{R})$,

$$(\theta(\phi)(\tau; hu; x), f(hu; s^*)) = \langle \theta(\phi)(\tau; h; x), f(h; s^*) \rangle = (\theta(\phi)(\tau; h; x), f(h; s^*))$$

by (6.8) and (7.6). Thus

$$\theta_*(f)\tau) := \int_{SO_{D_\alpha}(\mathbb{Q}) \backslash SO_{D_\alpha}(\mathbb{A})/SU_2(\mathbb{R})} (\theta(\phi)(\tau; h; x), f(h; s^*)) d\mu_h,$$

where $d\mu_x = y^{-3}dy \wedge |dx \wedge d\tau|$. Recall that $h^1 = h^2 = t h$ in Case II and $h^2 = t h$ in Case ID. Even if we are working in Case ID in this section, many formulas here are valid in Case II under the action $h \mapsto h^1$; so, we use this notation h^2 to indicate the formula valid in the two cases. Then $h^2 u^*_\infty = u^*_\infty$ for $u_\infty \in SU_2(\mathbb{R}) \subset G^+_{D_{\alpha}}(\mathbb{R})$. By $f(hu_\infty; s^* h^2 u^*_\infty) = f(h; s^* h^2 u^*_\infty) = f(h; s^* h^2 u^*_\infty)$ for $u_\infty \in SU_2(\mathbb{R})$, we find that $h \mapsto f(h; s^* h^2 u^*_\infty)$ factors through $D^x \backslash D^x_\tilde{E}_\alpha$. Thus $f(z; s^*): = f(g(\tilde{g}; s^* g^2 z^{-2}))$ is a well defined function on \mathcal{H}. We have for $\gamma \in \tilde{G}_\phi$. writing $\gamma g z = g_{\gamma(z)} u$ with $u \in SU_2(\mathbb{R})$,

$$f(z; s^* \gamma^2) = f(g; s^* (\gamma g z)^{-2}) = f(\gamma g z; s^*(\gamma g z)^{-2})$$

$$= f(g; s^*(\gamma g z)^{-2}) = f(g_{\gamma(z)}; s^* g^2 \gamma^{-2}) = f(\gamma(z); s^*).$$

This formula also applies to $\theta(\tau; z; x) := \theta(\tau; g z; x g z^{-2})$ in place of $f(g; s^*)$:

$$\theta(\tau; z; x \gamma^2) = \theta(\tau; \gamma(z); x).$$

By (6.2): $[g z^{-1} \alpha g^2 z; x g z^{-2}] = [\alpha; x]$, the definition

$$\theta(\tau; z; x) = \eta^{1/2} \sum_{\alpha \in D^2} \phi(\infty)(\alpha)[g z^{-1} \alpha g^2 z; x]^{n+1} e(\pm N(\alpha)\xi + \frac{\eta P[g z^{-1} \alpha g^2 z]}{2} \sqrt{-1})$$

turns into

$$\theta(\tau; z; x) = \eta^{1/2} \sum_{\alpha \in D^2} \phi(\infty)(\alpha)[\alpha; x]^{n+1} e(\pm N(\alpha)\xi + \frac{\eta P[g z^{-1} \alpha g^2 z]}{2} \sqrt{-1}).$$
7.3. Vanishing of Fourier coefficients of $e(N(\alpha) \tau)$ when $D_{\alpha,R} \cong \mathbb{H}$. Since $G^+_r \subset L^D_{\mathbb{R}}$ and $D_{\mathbb{R}}$ satisfies the strong approximation theorem, we have $G^+_{D_{\alpha}}(K) = \bigcup_{\phi \in \mathcal{A}} G^+_{D_{\alpha}}(Q) a \hat{\Gamma}_{D_{\alpha}}(\mathbb{R})$ for a finite set $A_{\phi} = \mathcal{A}_{\phi,0}$ on which the reduced norm map induces an isomorphism $N : A_{\phi} \cong \hat{Z}/(N(\hat{\Gamma}) \cap Z^\times)$. Since $SO_{D_{\alpha}} = G^+_{D_{\alpha}}/Z_{D_{\alpha}}^\times$, we can choose a finite set $A = A_{\phi} \subset SO_{D_{\alpha}}(A(\hat{\Gamma}))$ such that $N : A_{\phi} \cong \hat{Z}^\times/(N(\hat{\Gamma}) \cap Z^\times)$ and

$$SO_{D_{\alpha}}(A(\hat{\Gamma})) = \bigcup_{\phi \in A} SO_{D_{\alpha}}(Q) a \hat{\Gamma}_{\phi}.$$

If ϕ is as in Theorem 7.1, $\hat{\Gamma}_{\phi} \supset \hat{\Gamma}(N_0)^\times$ and hence $A_{\phi} = \{1\}$. We thus assume $A = \{1\}$. Then we have for $k = n + 2$ and a fundamental domain F of Γ in \mathcal{H}. In the following computation, to treat Case ID and Case II uniformly, we put $\tau_D = \tau$ in Case ID, $\tau_I = \tau$ in Case II, $\eta_I = \eta$ in Case ID and $\eta_I = -\eta$. Thus $\tau_I = \tau_I$ or $\tau_I = \eta_I$ depending on cases. Using (6.17) in Case ID and (6.20) in Case II, we compute (recalling $h^I = h^I$ in Case II and $h^I = h^I$ in Case ID)

$$\theta_+(f)(\tau) \overset{(7.11)}{=} \overset{(6.17)}{=} \overset{(6.16)}{=} \overset{(7.9)}{=} \overset{(7.12)}{=} \overset{(6.9)}{=} \overset{(7.11)}{=} \sum_\alpha \phi(\alpha) \int_F \etr{\gamma^{-1} \alpha \gamma^\sigma : x}^{n+1} f(z; s^*) (\pm N(\alpha) \tau) \pm \frac{\gamma(\gamma \gamma^{-1})}{2y(\gamma \gamma^2)} d\mu_z,$$

where $d\mu_z = y^{-3} dy \wedge dx \wedge d\tau$.

If $D_{\alpha,R} = j^{-1}\mathbb{H} j$ (iff $\alpha = j^{-1} j^\sigma j^{-1}$ up to non-zero scalars) for $j \in SL_2(\mathbb{C})$, writing \pm for the equality up to non-zero scalars,

$$\etr{\alpha \gamma^{-1} \alpha \gamma^\sigma j^{-1} : x}^{n+1} f(z; s^*) = \etr{[1; j^{-1} j^\sigma j^{-1} : x]}^{n+1} f(z; s^*) = \etr{[1; j^{-1} j^\sigma j^{-1} : x]}^{n+1} f(z; s^*) = \etr{[1; j^{-1} j^\sigma j^{-1} : x]}^{n+1} f(z; s^*).$$

The constant is given by $\sqrt{-1}$ for $\epsilon = (1 \mp 1)/2$ for the parity of D_{α}. Then noting $|\Gamma_\alpha| < \infty$,

$$\int_{\Gamma_\alpha \setminus \mathcal{H}} \etr{\alpha \gamma^{-1} \alpha \gamma^\sigma j^{-1} : x}^{n+1} f(z; s^*) \pm \frac{\gamma(\gamma \gamma^{-1})}{2y(\gamma \gamma^2)} d\mu_z,$$

where $d\mu_z = y^{-3} dy \wedge dx \wedge d\tau$.

Proposition 7.2. Suppose $D_{\alpha,R} \cong \mathbb{H}$. Then in Cases ID and II, we have

$$\int_{\Gamma_\alpha \setminus \mathcal{H}} \etr{\alpha \gamma^{-1} \alpha \gamma^\sigma j^{-1} : x}^{n+1} f(z; s^*) \pm \frac{\gamma(\gamma \gamma^{-1})}{2y(\gamma \gamma^2)} d\mu_z = 0.$$
Proof. Under $D_{a, \mathbb{R}} \cong \mathbb{H}$, $\alpha \overset{\text{def}}{=} jxj^{-\gamma}$ for $j \in \text{SL}_2(\mathbb{C})$ and $x = 1$ if $D_\mathbb{R} \cong \mathbb{H}$ and $x = J$ if $D_\mathbb{R} \cong \text{M}_2(\mathbb{R})$. Here “$\overset{\text{def}}{=}”$ means up to a power of $\sqrt{-1}$. Then

\[[\alpha; \mathfrak{x}] \overset{\text{def}}{=} [jxj^{-\gamma}; \mathfrak{x}] = [x; xj^{-\gamma}], \]

and $([\alpha; \mathfrak{x}]^{n+1}, f(z; s^*)) \overset{\text{def}}{=} ([x; x]^{n+1}, f|xj^{-1}(z; s^*)) = 0$ by Lemma 6.9.

\[\square \]

7.4. Computation of Fourier coefficients of $\mathfrak{e}(\pm N(\alpha)T)$ when $D_{a, \mathbb{R}} \cong \text{M}_2(\mathbb{R})$. We now assume that D is definite and $D_{a, \mathbb{R}} \cong \text{M}_2(\mathbb{R})$.

We first interpret

\[\int_{\Gamma_* \setminus \mathbb{H}} ([\alpha; \mathfrak{x}]^{n+1}, f(z; s^*)) \mathfrak{e}(\pm N(\alpha)T) \pm \frac{[z; \alpha]^2 \eta \sqrt{-1}}{2y(z)^2} d\mu_\mathfrak{x}, \]

as an integral of differential form. In this case $|\Gamma_*| = \infty$ with finite volume $\Gamma_* d\mathfrak{x}$. By (7.12)

\[(7.14) \quad \theta_*(f)(\tau) = \eta^{1/2} \sum_{\alpha \in D_{n}^{+}/I_{\mathbb{R}}} \phi^{(\infty)}(\alpha) \int_{\Gamma_* \setminus \mathbb{H}} ([\alpha; \mathfrak{x}]^{n+1}, f(z; s^*)) \mathfrak{e}(\pm N(\alpha)T) \pm \frac{[z; \alpha]^2 \eta \sqrt{-1}}{2y(z)^2} d\mu_\mathfrak{x}, \]

where $d\mu_\mathfrak{x}$ is the C-values invariant measure given by the invariant form $y^{-3} dy \wedge dx \wedge d\tau$.

Let $S_{\mathfrak{S}} := \Gamma_* \setminus \mathbb{H}$. We consider $\Theta_2(\phi; \tau; \mathfrak{x}_\mathfrak{S}) \in H^0(S_{\mathfrak{S}}, L_{E}^{\mathfrak{S}}(n; \mathfrak{C}) \otimes \Omega_{S, \mathfrak{S}}^{1})$ as in Corollary 6.11 and $\omega_1 (f)(z; s^*) := i_1 (f(g_2; s)) \in H^0(S_{\mathfrak{S}}, L_{E}^{\mathfrak{S}}(n; \mathfrak{C}) \otimes \Omega_{S, \mathfrak{S}}^{1})$ for a cuspidal form f on $\Gamma = \Gamma_{\mathfrak{S}}$ as in (M1–3) in §6.1. Here $\mathcal{i}_\mathfrak{S} : L_{E}^{\mathfrak{S}}(n+1; \mathfrak{C}) \rightarrow L_{E}^{\mathfrak{S}}(n; \mathfrak{C}) \otimes \Omega_{S, \mathfrak{S}}^{1}$ is as in Proposition 6.10, and we write $i_0 : C \hookrightarrow O_{\mathfrak{S}}$ for the constant inclusion for the structure sheaf $O_{\mathfrak{S}}$ of the real 3-dimensional analytic manifold \mathfrak{S}. Consider the pairing $[\cdot; \cdot]_{n} = ([\cdot; \cdot] \otimes [\cdot; \cdot] : (L_{E}^{\mathfrak{S}}(n; \mathfrak{C}) \otimes \Omega_{S, \mathfrak{S}}^{2}) \otimes \mathfrak{C} (L_{E}^{\mathfrak{S}}(n; \mathfrak{C}) \otimes \Omega_{S, \mathfrak{S}}^{1}) \rightarrow O_{S, \mathfrak{S}}^{1}$ for the invariant pairing $(\cdot; \cdot) : L_{E}^{\mathfrak{S}}(n; \mathfrak{C}) \otimes \Omega_{S, \mathfrak{S}}^{1} \rightarrow \mathbb{C}$ given by $(n!)^{-2} \eta^{n} \otimes (n!)^{-2} \eta^{n}$ as in (43.9) and $\{\omega, \omega^\prime\} = \omega \wedge \omega^\prime$.

We have two sheaf pairings $(\cdot; \cdot)_{n+1}$ and $[\cdot; \cdot]_{n}$.

Lemma 7.3. The following diagram of sheaf pairing is commutative:

\[
\begin{array}{ccc}
L_{E}^{\mathfrak{S}}(n+1; \mathfrak{C}) \otimes \mathfrak{C} L_{E}^{\mathfrak{S}}(n+1; \mathfrak{C}) & \xrightarrow{i_{2} \otimes i_{1}} & (L_{E}^{\mathfrak{S}}(n; \mathfrak{C}) \otimes \Omega_{S, \mathfrak{S}}^{2}) \otimes \mathfrak{C} (L_{E}^{\mathfrak{S}}(n; \mathfrak{C}) \otimes \Omega_{S, \mathfrak{S}}^{1}) \\
\mathbb{C} & \xrightarrow{i} & O_{S,d}\mu_{\mathfrak{x}},
\end{array}
\]

where i is given by $i(u) = i_{0}(u) \cdot d\mu_\mathfrak{x}$.

Proof. The diagram (7.15) induces the diagram of stalks at \mathfrak{v}:

\[
\begin{array}{ccc}
L_{E}(n+1; \mathfrak{C}) \otimes \mathfrak{C} L_{E}(n+1; \mathfrak{C}) & \xrightarrow{i_{2} \otimes i_{1}} & (L_{E}(n; \mathfrak{C}) \otimes \Omega_{S, \mathfrak{S}}^{2}) \otimes \mathfrak{C} (L_{E}(n; \mathfrak{C}) \otimes \Omega_{S, \mathfrak{S}}^{1}) \\
\mathbb{C} & \xrightarrow{i} & O_{S,\mathfrak{v}}d\mu_{\mathfrak{v}},
\end{array}
\]

We prove first commutativity of (7.16): Since $SU_{2}(\mathbb{R}) \subset SL_{2}(\mathbb{C})$ fixes \mathfrak{v}, by the construction of $i_{\mathfrak{v}}$, the left hand side of the top row is a morphism of $SU_{2}(\mathbb{R})$-modules via the action of $SL_{2}(\mathbb{C})$ on \mathbb{H}. Regarding the sheaves in the top line of (7.15) as sheaves over \mathbb{H}, it is a right module over $SL_{2}(\mathbb{C})$ by the pullback action of the left action of $SL_{2}(\mathbb{C})$ on \mathbb{H}. Then $i_{2} \otimes i_{1}$ in (7.15) is also $SL_{2}(\mathbb{C})$-equivariant. Since the pairings $(\cdot; \cdot)_{n+1}$ and $[\cdot; \cdot]_{n}$ is $SL_{2}(\mathbb{C})$-invariant, we have $[i_{2}(x), i_{1}(y)]_{n}$ is fixed by $SL_{2}(\mathbb{C})$. This implies $[i_{2}(x), i_{1}(y)]_{n} = c_{n}([i(x, y)]_{n+1})$ with $i((x, y)) = i_{0}(([x, y])d\mu_\mathfrak{v}$ for a nonzero constant c_{n} and $i_{0}((x, y)) \in \mathbb{C}$.

We need to show that the constant c_{n} is independent of \mathfrak{v} and is equal to 1. The construction of $i_{\mathfrak{v}}$ is made in two steps:

\[
\begin{array}{c}
(1) \ i : L_{E}(n+1; \mathfrak{C}) \rightarrow L_{E}(n; \mathfrak{C}) \otimes \mathfrak{C} L_{E}(1; \mathfrak{C}), \\
(2) \ i_{\mathfrak{v}} : L_{E}(1; \mathfrak{C}) \rightarrow O_{\mathbb{H}/\mathfrak{C}}.
\end{array}
\]

The item (1) is the morphism of $SL_{2}(\mathbb{C})$-module. The item (2) at the stalk of \mathfrak{v} is given by $(-XY', XX' - YY', YY') \mapsto y^{-1}z_{\mathfrak{v}}$ with $(XX' + YY') \mapsto 0$. We have an invariant pairing $(\cdot; \cdot)$ on
$L_E(1; \mathbb{C}) \otimes L_E(1; \mathbb{C})$ given by $\nabla_{id} \otimes \nabla_{\sigma}$. Writing the left (resp. right) variables as $(X, Y; X', Y')$ (resp. $(S, T; S', T')$). We have

$$(XX', TT') = (YY', SS') = 1 \text{ and } (XY', TS') = (YX', ST') = -1$$

and all other combinations of monomials vanish for the pairing. Thus

$$(-XY', TS') = (YX', -ST') = 1 \text{ and } (XX' - YY', TT' - SS') = 2.$$

Recall $y^{-1}\omega_2 = y^{-2}(dy \wedge dx, -2dx \wedge d\tau, dy \wedge d\sigma)$ and $y^{-1}\omega_1 = y^{-1}(dx, -dy, -d\tau)$. As we have done in the proof of Proposition 6.10, we apply complex conjugation to ω_i, getting

$$y^{-1}\omega_2 = y^{-2}(dy \wedge dx, -2d\sigma \wedge d\tau, dy \wedge d\sigma) \text{ and } y^{-1}\omega_1 = y^{-1}(d\sigma, -dy, -d\tau).$$

Then $i_2(-XY') \wedge i_1(TS') = y^{-3}dy \wedge dx \wedge d\sigma$, $i_2(XX' - YY') \wedge i_1(TT' - SS') = 2y^{-3}dy \wedge dx \wedge d\sigma$ and $i_2(YX') \wedge i_1(-ST') = y^{-3}dy \wedge dx \wedge d\sigma$. Thus $I_2 \otimes I_1$ sends the pairing (\cdot, \cdot) to (\cdot, \cdot), and $(\cdot, \cdot) \oplus (\cdot, \cdot)$ is equivalent to $(\cdot, \cdot) \oplus (\cdot, \cdot)$ under $I_2 \otimes I_1$ at ε.

We now study how sends $(\cdot, \cdot)_{n+1}$ to $(\cdot, \cdot) \oplus (\cdot, \cdot)$. By Clebsch–Gordan [H94, (11.2b)], we have a decomposition of $SL_2(E)$-modules

$$L_E(n; E) \otimes L_E(1; \mathbb{C}) = L_E(n + 1; \mathbb{C}) \oplus L_E((n+1) \id + (n-1)\sigma; \mathbb{C}) \oplus L_E((n-1) \id + (n+1)\sigma; \mathbb{C}) \oplus L_E(n - 1; \mathbb{C}),$$

where $L_E(2l \id + 2k\sigma; \mathbb{C}) = L(2l; \mathbb{C}) \otimes L(2k; \mathbb{C})$ with $g \in GL_2(E)$ acting by $Sym \otimes 2g$ on the left factor and $Sym \otimes 2g$ on the right factor. The canonical projection of $L_E(n; E) \otimes L_E(1; \mathbb{C})$ to the complement of $L_E(n + 1; \mathbb{C})$ is given by $\nabla_{id} \otimes \nabla_{\sigma}$ and the projection to $L_E(n - 1; \mathbb{C})$ is given by $\pi : P(X, Y; X', Y'; S, T; S', T') \mapsto P(X, Y; X', Y'; X, Y; X', Y')$ writing the left variable as $(X, Y; X', Y')$ and the right variable as $(S, T; S', T')$. Thus the inclusion $L_E(n + 1; \mathbb{C}) \hookrightarrow L_E(n; E) \otimes L_E(1; \mathbb{C})$ is given by the adjoint $\pi^* \equiv \pi$ with respect to the invariant perfect pairings $(\cdot, \cdot) := (\cdot, \cdot)_{n+1}$ and $(\cdot, \cdot) := (\cdot, \cdot) \oplus (\cdot, \cdot)_{1}$. We compute $\langle \pi^*(P), \pi^*(Q) \rangle = (\pi \pi^*(P), Q)$. Then $\pi \circ \pi^*$ is the scalar multiplication by c_{α} on $L_E(n + 1; \mathbb{C})$ and $\pi^* \circ \pi$ is the scalar multiplication on $\pi^*(L_E(n + 1; \mathbb{C}))$. They have equal scalar value c_{α}. Take $X^n X'^n SS'$ and $Y^n Y'^n TT'$ $\in L_E(n; E) \otimes L_E(1; \mathbb{C})$ which are the highest and the lowest weight with respect to diagonal torus $T(A) = \{ \text{diag}(a, a^{-1}) | a \in A^\times \}$. Namely they are generators over $\mathbb{Q}[GL_2(E)]$ of $\pi(L_E(n + 1; \mathbb{C}))$. We have $\pi(X^n X'^n SS') = X_{n+1} X_{n+1}^+$ and $\pi(Y^n Y'^n TT') = Y_{n+1} Y_{n+1}^+$. Then $\pi(X^n X'^n SS'), \pi(Y^n Y'^n TT') = 1$, and hence $\pi \circ \pi = 1$. This shows that $c_{\alpha} = 1$, proving the commutativity of (7.16).

We finish the proof of Lemma 7.3. The product (\cdot, \cdot) is invariant under the center action while $(\cdot, \cdot)_{1}$ is not (i.e., $(y^{-1/2}, y^{-1/2})_{1} = y^{-1}(\cdot, \cdot)_{1}$). To adjust this, we need to multiply $y(z)$ to assure the commutativity of the sheaf pairing in (7.15) from the commutativity at ε. □

We get from (7.14) and Lemma 7.3 combined with Proposition 7.2

$$\eta^{-1/2} \delta_{\alpha}(f)(\tau) =$$

$$\sum_{\alpha \in D^+_\mathbb{R}} \phi^{(\infty)}(\alpha) \int_{\Gamma_\alpha \setminus \mathcal{H}} y(z)[i_{\nu, s}([\alpha; x]^{n+1}), i_{\delta - \nu, s}(f(z; s^*))] e(\pm N(\tau) \pm \left[\frac{[\alpha]^{2}\eta^{\sqrt{-1}}}{2y(z)^2}\right]).$$

Choose $j \in SL_2(\mathbb{C})$ as in Lemma 6.6 so that $D_{\alpha, \mathbb{R}} = j^{-1}M_2(\mathbb{R})j$, where $\alpha = j^{-1}J^+ \cdot j^{\sigma}$ with $J^+ = \sqrt{-1}J$ if $\alpha \in D^+_\mathbb{R}$ and $J^- = J$ if $\alpha \in D^-\mathbb{R}$.

Assuming $D_{\alpha, \mathbb{R}} \equiv M_2(\mathbb{R})$, we need to compute

$$J := \int_{\Gamma_\alpha \setminus \mathcal{H}} y(z)[i_{\nu, s}([\alpha; x]^{n+1}), i_{\delta - \nu, s}(f(z; s^*))] e(\pm \left[\frac{[\alpha]^{2}\eta^{\sqrt{-1}}}{2y(z)^2}\right]).$$
since
\[
\int_{\Gamma_{\alpha} \setminus \mathcal{H}} y(z)[i_{\nu,*}([x; x]^{n+1}), i_{3-\nu,*}(f(z;s^*))]e(\pm N(\alpha)\sqrt{-1}) = e(\pm N(\alpha)\sqrt{-1}) \int_{\Gamma_{\alpha} \setminus \mathcal{H}} y(z)[i_{\nu,*}([J^\pm ; x]^{n+1}), i_{3-\nu,*}(f|_{\mathcal{G}J^{-1}}(g; z; s^*))]e\left(\pm \frac{[z; J^\pm]^2\sqrt{-1}}{2y(z)^2}\right)
\]
\[
= I^\pm \cdot e(\pm N(\alpha)\sqrt{-1}).
\]

Here $f|_{\mathcal{G}J^{-1}}$ is as in (6.36). We also note
\[
(7.20)
\pm N(\alpha) = \pm N(j^{-1}J^\pm j^\sigma) < 0
\]
which is consistent with $\mp \text{Im}(\pm \sqrt{-1}) > 0$. By (6.1) in Case ID, we have $[J; x] = YX' - XY'$, so,
y(z)[i_{\nu,*}(J^\pm; x)] = y(z)[i_{\nu,*}((YX' - XY')^{n+1}), i_{3-\nu,*}(f|_{\mathcal{G}J^{-1}}(g; z; s^*))].

First suppose $n = 0$. Then writing $x = u + v\sqrt{-1}$, by Proposition 6.10
\[
(7.21)
i_{\nu,*}(x; YX' - XY')) = \begin{cases} y^{-1}(dx - dy) & \text{if } \nu = 1, \\
y^{-2}(dy \wedge dx + dy \wedge d\sigma) & \text{if } \nu = 2.
\end{cases}
\]
Since $L_E(0; \mathbb{C}) = \mathbb{C}$ and $L_E(1; \mathbb{C}) = \mathbb{C}S^2 + CST + CT^2 + CTT'$, the function $f^j(g; s) := f|_{\mathcal{G}J^{-1}}(g; s) = f(j^{-1}g; s)$, $j_{\Gamma^{-1}}| SL_2(\mathbb{C}) \to L(2; \mathbb{C}) = \mathbb{C}S + CST + CT^2$ has the form $f^j(g; s) = f_0^jS^2 + f_1^jST + f_2^jT^2$. By (6.33),
\[
(7.22)
-i_{\nu,*}(f^j(g; s^*)) = \begin{cases} f_0^jy^{-1}dx + f_1^jy^{-2}dy & \text{if } \nu = 1, \\
f_2^jy^{-2}(dy \wedge dx + 2f_1^jy^{-2}(dy \wedge dx) - f_2^jy^{-2}(dy \wedge dx) & \text{if } \nu = 2.
\end{cases}
\]
Since $dx \wedge dx = 0$ on \mathcal{H}, if $\nu = 2,$
\[
(7.23)
i_{2,*}(f^j(g; s^*))|_{\mathcal{H}} = -f_0^jy^{-2}(dy \wedge d\sigma) + 2f_1^jy^{-2}(dy \wedge dx) - f_2^jy^{-2}(dy \wedge dx) = j^\ast \omega_2(f).
\]
Identifying $\mathcal{H} = \mathcal{J} \times \mathbb{R}$ by $z \mapsto (u + y\sqrt{-1}, v)$, we get from (7.21),
\[
y(z)[i_{\nu,*}((YX' - XY'))] = -f_0^j + f_1^jy^{-2}dy \wedge dx + 2f_1^jy^{-2}(dy \wedge dx) - f_2^jy^{-2}(dy \wedge dx) = 2\sqrt{-1}(f_0^j + f_1^jy^{-2}dy \wedge dx \wedge dv = -2\sqrt{-1}j^\ast \omega_2(f)|_{\mathcal{H}} \wedge dv
\]
which is independent of $\nu = 1, 2$.
Write $\Gamma_{\alpha} := J\Gamma_{\alpha}J^{-1} \subset SL_2(\mathbb{R})$. Then $\Gamma_{\alpha}\setminus \mathcal{H} = \Gamma_{\alpha}\setminus \mathcal{J} \times \mathbb{R}$ by $z \mapsto (u + y\sqrt{-1}, v)$. This shows $SL_2(\mathbb{R})\setminus \mathcal{H} \cong \mathbb{R}$. By (6.16), we have
\[
\frac{[z; h^{-1}vh^{-1}h^{-1}]^2}{2y(z)^2} = \frac{|h(z); v|^2}{2y(h(z))^2},
\]
and for $h \in SL_2(\mathbb{R})$, $h^{-1}Jh^{-1}hJ = J$. Thus
\[
\frac{[z; h^{-1}Jh^{-1}]^2}{2y(z)^2} = \frac{|h(z); J|^2}{2y(h(z))^2}.
\]
This shows that the function $z \mapsto e\left(\frac{[z; J^\pm]^2\sqrt{-1}}{2y(z)^2}\right)$ factors through $SL_2(\mathbb{R})\setminus \mathcal{J}$.

Recall $p_+(z) = \frac{(1+\sqrt{-1})}{\sqrt{-1}y^2}$ and $[z; v] = \text{Tr}_{D(c)}(p_+(z)v^*)$ as in (6.15) for $\mathcal{D} = -1$. Thus $[z; J] = y(x - x) = -2\sqrt{-1}yv$, and $e(\pm \frac{[z; J^\pm]^2\sqrt{-1}}{2y(z)^2}) = e(2\nu^2\eta\sqrt{-1}).$ Thus we get
\[
I^\pm = c_{\pm} \int_{\mathbb{R}} e(2\nu^2\eta\sqrt{-1})d\nu \int_{\Gamma_{\alpha}\setminus \mathcal{H}} (f_0^j + f_1^jy^2)dy \wedge du,
\]
where \(c_+ = 2 \) and \(c_- = -2\sqrt{-1} \). Since \(z \mapsto \int_{\Gamma \setminus \text{SL}_2(\mathbb{R})} (f_0^2 + f_1^2) y^{-2} dy \wedge du \) is independent of \(z \) (as the integrand is a closed 2-form [H99, §3]), we have

\[
I^\pm = c_{\pm,n} \int_{\text{SL}_2(\mathbb{R}) \setminus \mathcal{H}} \exp(2\nu \sqrt{-1}) \, dv \cdot \int_{\Gamma \setminus \text{SL}_2(\mathbb{R})} (f_0^2 + f_1^2) y^{-2} dy \wedge du.
\]

For general \(n > 0 \), we need to rewrite \((\cdot, \cdot)_n \) in a different way. We decompose \(\mathcal{H} = \mathfrak{h} \times \mathbb{R} \) by \(z \mapsto (u + iy, v) \). Note

\[
L_E(n; \mathbb{C})|_{\text{SL}_2(\mathbb{R})} = L(n; \mathbb{C}) \otimes L(n; \mathbb{C}) = \bigoplus_{j=0}^{n} L(2j; \mathbb{C})
\]
as \(\text{SL}_2(\mathbb{C}) \)-modules. The projection to \(\mathbb{C} \) is given by \(n!^{-2} \nu^n \).

Lemma 7.4. The following diagram

\[
\begin{array}{ccc}
L_E(n; \mathbb{C}) \otimes_{\mathbb{C}} L_E(n; \mathbb{C}) & \longrightarrow & L_E(n; \mathbb{C}) \otimes_{\mathbb{C}} L_E(n; \mathbb{C}) \\
\downarrow_{n!^{-2} \nu^n \otimes n!^{-2} \nu^n} & & \downarrow_{n!^{-2} \nu^n \otimes n!^{-2} \nu^n} \\
\mathbb{C} & \longrightarrow & \mathbb{C}
\end{array}
\]
is commutative.

Proof. Regarding \(L_E(n; \mathbb{C}) \) as a \(\text{SL}_2(\mathbb{R}) \)-module, \(L_E(n; \mathbb{C}) \otimes_{\mathbb{C}} L_E(n; \mathbb{C}) \) is a \(\text{SL}_2(\mathbb{R}) \times \text{SL}_2(\mathbb{R}) \)-module by the left and right factor. The left vertical map is a non-zero morphism of \(\text{SL}_2(\mathbb{R}) \times \text{SL}_2(\mathbb{R}) \)-modules, and the right hand side is a non-zero morphism of \(\text{SL}_2(\mathbb{C}) \)-modules, where we identify \(\text{SL}_2(\mathbb{C}) = \text{SL}_2(\mathbb{C}) \times \text{SL}_2(\mathbb{C}) \). As \(\text{SL}_2(\mathbb{R}) \)-modules, we have \(L_E(n; \mathbb{C}) \cong \bigoplus_{k=0}^{2n} L(2k; \mathbb{C}) \) and as \(\text{SL}_2(\mathbb{C}) \)-modules, \(L_E(n; \mathbb{C}) \otimes_{\mathbb{C}} L_E(n; \mathbb{C}) \cong \bigoplus_{k=0}^{2n} \bigoplus_{l=0}^{2n} L_E(2k+2l; \mathbb{C}) \) by Clebsch–Gordan. Thus they have a unique constant quotient \(\mathbb{C} \). Thus we have \(n!^{-2} \nu^n \otimes n!^{-2} \nu^n = c_n n!^{-2} \nu^n \otimes n!^{-2} \nu^n \) for a non-zero constant \(c_n \). Since \(n!^{-2} \nu^n \otimes n!^{-2} \nu^n \) and \(n!^{-2} \nu^n \otimes n!^{-2} \nu^n \) have equal value 1 at \(X^n Y^n X'^n Y'^n S^n T^n S'^n T'^n \) by the formula (4.9), we find \(c_n = 1 \).

By (5.7),

\[
n!^{-2} \nu^n [J; x] = (n + 1).
\]

Similarly to (7.22), we write

\[
I_{2, \nu}(n!^{-2} \nu^n (f^j(g; s^*))) = -f_0^2 y^{-2}(dy \wedge dx) + 2f_1^2 y^{-2}(dx \wedge dx) - f_0^2 y^{-2}(dy \wedge dx) = (n!)^{-2} \nu^n \omega_2(f^j),
\]

where \(\nu \) is with respect to the factor \(L_E(n; \mathbb{C}) \) (acting trivially the factor \(L_E(1; \mathbb{C}) \)). The down-to-earth explicit form of \(n!^{-2} \nu^n (f^j(g; s^*)) \) can be found in [H99, page 141]. Then we get, for \(P_n(f) \) in (6.40),

\[
I^\pm = c_{\pm,n} \int_{\text{SL}_2(\mathbb{R}) \setminus \mathcal{H}} \exp(2\nu \sqrt{-1}) \, dv \cdot \int_{\Gamma \setminus \text{SL}_2(\mathbb{R})} (f_0^2 + f_1^2) y^{-2} dy \wedge du
\]

\[
= c_{\pm,n} \int_{\text{SL}_2(\mathbb{R}) \setminus \mathcal{H}} \exp(2\nu \sqrt{-1}) \, dv \cdot P_n(f),
\]

where \(c_{\pm,n} = 2\sqrt{-1}(n + 1) \) and \(c_{-,n} = -2\sqrt{-1}(n + 1) \). The power of \(\sqrt{-1} \) comes from

\[
[\sqrt{-1} J; x] = n + 1 = \sqrt{-1} n + 1 \]
as \(\sqrt{-1} J \in D_{\alpha J,R}^+ \), while \(J \in D_{\alpha J,R}^- \). As is well known [HMI, (2.5.5)], we have

\[
\int_{\text{SL}_2(\mathbb{R}) \setminus \mathcal{H}} \exp(-4\pi \nu y^2) dy = 2\eta^{-1/2}.
\]

Thus

\[
I^\pm = 2c_{\pm,n} \eta^{-1/2} \cdot P_n(f).
\]

Thus we conclude
Theorem 7.5. Suppose that \(f : \mathcal{H} \rightarrow L(n^*; \mathbb{C}) \) is a cusp form on \(\text{SO}_{D^*_e}(A) \) of weight \(k = n + 2 > 0 \) satisfying (M1–3) in § 6.1 for \(\Gamma = \Gamma_0 \) with an arbitrary \(\phi^{(\infty)} \). Then we have
\[
\theta_*(f) = 2c_{\pm,n} \sum_{\alpha \in D^*_e/\Gamma_0.D^*_e, \alpha \cong M_2(\mathbb{R})} \phi^{(\infty)}(\alpha)P_\alpha(f)e(\pm N(\alpha)v),
\]
where \(c_{+,n} = 2\sqrt{-1}(n + 1) \) and \(c_{-,n} = -2\sqrt{-1}(n + 1) \) and \(P_\alpha(f) \) as in (6.40).

8. Indefinite \(D \) with \(E \) imaginary

In this section, we assume that \(D \) is indefinite. We regard \(S = \text{SO}_{D^*_e}(Q) \langle \text{SO}_{D^*_e}(A) \rangle / \Gamma_0 \) as the automorphic manifold of \(G_{D^*_e} \) and \(D^*_e \) for the derived group \(D^*_e = \text{Ker}(N) \subseteq G_{D^*_e} \).

8.1. Analytic theta differential form. For each \(f(g; x) \in M_k(\Gamma) \), we pick \(g \in O^+_{D^*_e}(\mathbb{R}) \) with \(z = g(\varepsilon) \in \mathcal{H} \) and define as in [H94, §2.2]
\[
f_\infty(z; x) := f(g; x)(g, \varepsilon)^t.
\]
If \(h = gu \) with \(u \in SU_2(\mathbb{R}) \), then
\[
(8.1) \quad f_\infty(gu(z); x) = f(gu; x)(gu, \varepsilon)^t = f(g, xu_j(u, \varepsilon))^t j(g, \varepsilon)^t = f(g, x)(g, \varepsilon)^t.
\]
In the end of [H94, §2.2], there is a typographical error, and "\(f(z; j)_j(g, \varepsilon)^t \) should be \(f(z; j)_j(g, \varepsilon)^t \). Here the left action \(x \mapsto j(g, \varepsilon)^t x \) is replaced by the left action \(x \mapsto j(g, \varepsilon)^t \). So \(f_\infty(z; x) \) is well-defined independent of the choice of \(g \) with \(g(\varepsilon) = z \).

We compute \((n!)^{-2}\nabla^0(\tau; g; x) \) for \(g \in \text{SO}_{D^*_e}(\mathbb{R}) \), where \(\nabla = -\frac{\partial}{\partial X}\partial Y - \frac{\partial}{\partial Y}\partial X \). Note \([(n, b); x] = dYX + bXX' - cYY' - aXY', \) and for \(v = j_{12} + j \) with \(j_{12} = (0, 1) \) and \(j = (a, b) \), we have
\[
[v; x] = j_{12} + j; x = j(YX' - XY') - a(YX' + XY') + bXX' - cYY'.
\]
Note \([v; xg^{-1}] = g^{-1}vg; x \) for \(g \in \text{SO}_{D^*_e}(\mathbb{R}) \) and \(\nabla^n[v; x]_n = det(g)^n\nabla^n[v; x]^n \) [H94, page 498]. If \(D \) is a division algebra, we can choose always \((g, g) \in (D \otimes \mathbb{C})^\times = GL_2(\mathbb{C}) \times GL_2(\mathbb{C}) \) so that \(g^{-1}tg = \text{diag}[a, -a] \). Even if \(D \cong M_2(\mathbb{Q}), \nabla^n[v; x]^n \) is a polynomial in \(v \); so, for \(\tau \) in a Zariski open non-empty subset of \(D_0 \), we can find \(g \) so that \(g^{-1}tg = \text{diag}[a, -a] \). Thus, we may assume that \(v = j_{12} + \text{diag}[a, -a] \) to compute \(\nabla^n[v; x]^n \). Since \([\tau; x] = -a(YX' + XY') \), we have
\[
[v; x]^n = (3(YX' - XY') - a(YX' + XY'))^n = ((j - a)YX' - (3 + a)XY')^n = \sum_{j = 0}^{n} \binom{n}{j}(-1)^{(j)(3 + a)^{n-j}(3 + a)^{-j}(XY')^{n-j}(XY')^j}.
\]
By [H99, page 141], we have \((n!)^{-2}\nabla^n[(3)^{n-1}(3-a)]_n \) and \(\nabla^n[312 + j; x]_n = \sum_{j = 0}^{n} (j - a)^{n-j}(3 + a)^{j} \sum_{j = 0}^{n} \binom{n}{j}(j - a)^{n-j}(3 + a)^{j} \).

Since \((n!)^{-2}\nabla^n[(j^{n+1} + 0_j)^{n-1}(3-a)]_n \) depends only on \(j \) and \(\text{det}(\tau) = -a^2 \) (as \(\text{Tr}(\tau) = 0 \)), this implies
\[
(8.2) \quad (n!)^{-2}\nabla^n[312 + j; x]_n = \sum_{j = 0}^{\frac{(n-1)/2}{2}} (-1)^j(\frac{n+1}{2j+1})3^{n-2j}\text{det}(\tau)^{2j}.
\]
In view of Corollary 6.11, we need to compute
\[
i \circ [312 + j; x] = i([312; x] + [j; x]) = j(YX' - XY') - a(YX' + XY') + bXX' - cYY'.
\]
Since \(\text{Ker}(i) = C(XX' + YY') \), writing \(XX' = \frac{1}{2}((XX' + YY') + (XX' - YY')) \) and \(YY' = \frac{1}{2}((XX' + YY') - (XX' - YY')) \), we have from (6.38)

\[
(8.3) \quad i \circ [\bar{z}_{12} + \tau; x] = i((3 - a)YX' + (3 + a)(-XY') + \frac{b}{2}(XX' - YY') + \frac{c}{2}(XX' - YY'))
\]

\[
= \begin{cases}
(3 + a)y^{-1} dx - (3 - a)y^{-1} dx + \frac{b + \varepsilon}{2} y^{-1} dy
& \text{if } j = 1, \\
\{ (3 + a)dy \wedge dx + (3 - a)dy \wedge dx - (b + c)dx \wedge d\tau \} & \text{if } j = 2.
\end{cases}
\]

Since \(D_{\mathbb{R}}^{X} \rightarrow D_{\mathbb{E}_{b}}^{X} \) induces \(\mathfrak{g} \ni x + iy \mapsto \left(\begin{array}{c} z \\ \tau \end{array} \right) \in \mathcal{H} \) with \(x \in \mathbb{R} \), we find

\[
(8.4) \quad i \circ [\bar{z}_{12} + \tau; x]_{\mathfrak{g}} = \begin{cases}
2ay^{-1} dx + \frac{b + \varepsilon}{2} y^{-1} dy
& \text{if } j = 1, \\
2y^{-2} dy \wedge dx & \text{if } j = 2.
\end{cases}
\]

Recall (6.10)

\[
\theta(\tau; z; x) = \eta^{1/2} \sum_{\alpha \in D_{\mathbb{Z}}^{+}} \phi^{(0)}(\alpha)[\alpha; xg_{2}]^{n+1} e(\pm N(\alpha) \xi) + \frac{\eta P[g^{-1}g_{2}^{\gamma}]}{2} \sqrt{-1}).
\]

As before, we decompose \(D_{\mathbb{R}}^{X} = Z^{\pm} \oplus D_{0}^{\pm} \) so that \(Z^{\pm} = \sqrt{\Delta_{\pm}} \mathbb{Q} \subset D_{\mathbb{R}}^{\pm} \) with \(Q(x) = x^{2} \) and \(L_{Z} = N \sqrt{\Delta_{\pm}} \mathbb{Z} \). To compute the factorization of \(P[\bar{z}_{\mathfrak{g}} + \tau_{\mathfrak{g}}] \), we write \(v_{\mathfrak{g}} = \left(\begin{array}{c} a \\ b \\ c \end{array} \right) \) as in (3.3). Then \(\hat{\delta} = \frac{1}{h} \text{Tr}(x_{\mathfrak{g}}) \) and \(\bar{\tau} = \left(\begin{array}{c} 0 \\
 a & c \end{array} \right) \); so, \(v_{\mathfrak{g}} = \left(\begin{array}{c} a & c \\ b & d \end{array} \right) \) where \(\delta, a, b, c \in \mathbb{R} \). Thus \(P[v_{\mathfrak{g}}]/2 = \delta^{2} + a^{2} + b^{2} + c^{2} \) and \(N(v_{\mathfrak{g}}) = \delta^{2} + a^{2} - bc \). This shows \(P_{Z} = P_{|Z|} = |N|_{Z} \) and \(P = N \oplus P_{0} \) for \(P_{0} = P|D_{0} \) which is a positive majorant of \(\bar{s}_{\sqrt{1}} \). Thus we have a factorization

\[
e(\pm N(\alpha) \xi) + \frac{\eta P[g^{-1}g_{2}^{\gamma}]}{2} \sqrt{-1}).
\]

Suppose that \(\phi^{(0)}(\alpha) = \phi_{Z}^{(0)}(\alpha) \otimes \phi_{0}^{(0)}(\alpha) \) for \(\phi_{Z} \in S(Z_{\mathfrak{g}}(\mathfrak{g})) \) and \(\phi_{0} \in S(D_{0,\mathfrak{g}}(\mathfrak{g})) \). With \(\phi_{Z,\mathfrak{g}}(\hat{\delta}; \tau) = e(\pm \delta^{2} \xi + \eta \sqrt{-1}) \) and \(\phi_{0,\mathfrak{g}}(\tau; z) = e(\pm N(\xi) \xi + \frac{\eta P[g^{-1}g_{2}^{\gamma}]}{2} \sqrt{-1}) \). Define for \(g_{z} \in D_{\mathbb{R}}^{+} \) with \(g_{z}(\sqrt{-1}) = z \in \mathfrak{g} \subset \mathcal{H} \),

\[
\theta_{\hat{\delta}}(\phi_{Z}^{(0)})(\tau) = \sum_{\alpha \in D_{0}} \phi_{Z}^{(0)}(\alpha) \tau_{\mathfrak{g}} e(\pm N(\alpha) \xi) + \eta N(\alpha) \sqrt{-1})
\]

\[
\theta_{\hat{\delta}}(\phi_{0}^{(0)})(\tau; z) = \sum_{\alpha \in D_{0}} \phi_{0}^{(0)}(\alpha) \tau_{\mathfrak{g}} e(\pm N(\alpha) \xi) + \frac{\eta P_{0}[g^{-1}g_{2}^{\gamma}]}{2} \sqrt{-1}).
\]

Proposition 8.1. Let the assumption and notation be as above. Suppose that \(\nu = 2 \). Then for the image \(Sh_{\mathfrak{g}} \) of \((\Gamma_{\mathfrak{g}} \cap D^{\nu}) \) \(\mathfrak{g} \) in \(\Gamma_{\mathfrak{g}} \), writing \(z = x + iy \) and \(\tau = x - iy \) for the variable on \(Sh_{\mathfrak{g}} \),

\[
(n!)^{-2} \varphi^{\nu} \Theta(\phi)(\tau; z)|_{Sh_{\mathfrak{g}}} = 2\eta^{1/2} \sum_{j=0}^{[n(\tau - 1)/2]} \frac{\theta_{n-2j+1}(\phi_{Z}^{(0)})(\tau)\theta_{j}(\phi_{0}^{(0)})(\tau; z)}{2j+1} y^{-2} dy \wedge dx
\]

\[
= \sqrt{-1} \eta^{1/2} \sum_{j=0}^{[n(\tau - 1)/2]} \frac{\theta_{n-2j+1}(\phi_{Z}^{(0)})(\tau)\theta_{j}(\phi_{0}^{(0)})(\tau; z)}{2j+1} y^{-2} dz \wedge d\tau,
\]

which is an analytic 2-form on \(Sh_{\mathfrak{g}} \).

Here we have \(\theta_{n-2j+1} \) in place of \(\theta_{n-2j} \) because of (8.4).

To prove Proposition 8.1, we used the realization of the sheaf \(L_{E}(n; \mathbb{C}) \) (the quotient by \(SU_{2}(\mathbb{R}) \)-action). In [H94], we used \(L_{E}(n; \mathbb{C}) \) (the quotient by \(\Gamma_{\mathfrak{g}} \)-action). Of course the outcome is the same but the use of \(L_{E} \) is more complicated. Here is a brief outline of the use of \(L_{E}(n; \mathbb{C}) \) without the computation of its image under \((n!)^{-2} \varphi^{\nu} \). For \(\gamma \in \Gamma_{\mathfrak{g}} \), we have \(\theta(\phi)(\tau; \gamma; g; x) = \theta(\tau; g; xj(\gamma; \varepsilon)) \). Thus

\[
\theta_{\mathfrak{g}}(\gamma; x) = \theta(\tau; \gamma; g; xj(\gamma; \varepsilon)) = \theta(\tau; g; xj(\gamma; \varepsilon))
\]

\[
= \theta_{\mathfrak{g}}(z; xj(\gamma; \varepsilon)) = \rho_{\mathfrak{g}}(j(\gamma; z)) \theta_{\mathfrak{g}}(\tau; z; x).
\]
Here again the remark after (8.1) applies again and \(t j(\gamma, z) \) in [H94] is replaced by \(j(\gamma, z)' \).

Regard \(L_E(n; \mathbb{C}) = L(n; \mathbb{C}) = \sum_{j=0}^{\infty} CS^{n-j}T^j \) as a SU(2) module for the coordinate vector \(s^* = t(S^{n}, S^{n-1}T, \ldots, T^n) \), and define the matrix expression \(\rho_n^*(g) \) of symmetric \(n^* \)-power by

\[
\rho_n^*(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) s^* = t(aS + bT, cS + dT)^n.*
\]

Now following [H94, (2.8a–e)], we express \(\theta(\tau; g; x) = \theta(\tau; g) : O_D^+(\mathbb{R}) \rightarrow L(n; \mathbb{C}) \) as \(\theta_j : O_D^+(\mathbb{R}) \rightarrow L_E(n; \mathbb{C}) \) for \(j = 0, \ldots, n^* \) by

\[
\sum_j S^{n-j}T^j \theta_j(\tau; g; s; x) = \theta'(\tau; g) \cdot s_n^* \text{ via the coordinate } s_n^*.
\]

Take the polynomial column vector \(\Psi(x; a) \in \mathbb{Z}[X, Y, X', Y', A, B]^n^* \) as in [H94, (2.8a–b)] and put

\[
\theta(\tau, g; x; a) = \sum_{j=0}^{n^*} \theta(j)(\tau; g; x) A^{2-j} B^j = \theta'(\tau; g) \cdot \Psi(x; a).
\]

Then finally we define a differential form with values in \(L_E(n; \mathbb{C}) \) by

\[
\tilde{\Theta}(\tau, z; x) = y^{-1}(\theta(0)(\tau; g; x)dy \wedge dx - 2\theta(1)(\tau; g; x)dx \wedge d\tau + \theta(2)(\tau; g; x)dy \wedge d\tau)
\]

for \(g \in O_D^+(\mathbb{R}) \) with \(c(\varepsilon) = z \). Then we have [H94, Proposition 2.1]

Proposition 8.2. For \(\gamma \in \Gamma_g \), we have \(\gamma \tilde{\Theta}(\tau; g; x) := \Theta(\tau; \gamma(x); x) = \Theta(\tau; z; x) \).

The direct computation of \(\nabla^n \tilde{\Theta}(\tau; g; x) \) is more involved, and anyway \(\nabla^n \tilde{\Theta} = \nabla^n \Theta \) as they have values in the constant sheaf; so it follows from Proposition 8.1. We omit the details.

8.2. Siegel–Weil formula in the indefinite imaginary case.

We now assume that \(D \) is an indefinite quaternion algebra over \(\mathbb{Q} \). Recall the decomposition \(D^*_g = Z^* + D_0^* \) so that \(Z^* = \delta_{\pm} \mathbb{Q} \subset D_0^* \) with \(Q(x) = x^2 \) and \(L_Z = N \delta_{\pm} \mathbb{Z} \). We take \(\phi_Z^*(\psi) := \psi on L_Z^* / L_Z = N^{-1} \mathbb{Z} / N \mathbb{Z} \) for a Dirichlet character \(\psi : \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{C} \). We take an Eichler order \(R_0(N_0) \) in \(D_E \) for \(N_0 \) prime to \(\theta \). Then let \(\phi_0^*(\infty) \in S(D_0,A,\infty) \) be as in (4.24) for the characteristic function \(\phi_L^* \) of \(\tilde{L} := \tilde{R}_0(N_0) \cap D_0,A,\infty \).

Again Remark 4.3 applies. We put \(\phi(\infty) = \psi \phi_0^*(\infty) \) and

\[
\phi(v) := \phi(\infty)(v(\infty)) [v(x); x]^{n+1} e(\pm N(v(\infty)) z + \frac{P_1[v(\infty)]}{2} z \sqrt{-1})
\]

for \(P_1(x, y) \) as in (6.4).

Note

\[
r_Z(g_\tau) L_Z(g)(3_\infty^2 e(3_\infty^2 \sqrt{-1})) = \eta^{(1+2)j/4} J_0 e(\pm N(3_\infty) z) + N(3_\infty) \eta \sqrt{-1}
\]

and

\[
r_{D_0}(g_\tau) L_{D_0}(g)([x; x]^{j} e(N(x_\infty) \sqrt{-1})) = \eta^{(3+2j)/4} [x; x]^{j} e(\pm N(x_\infty) z) + \frac{P_0(g^{-1} x)}{2} \eta \sqrt{-1}
\]

for \(P_0 = P_1 |_{D_0} \). Recall again \(\Theta(\phi_\tau^Z)(\tau) = \sum_{\alpha \in \mathbb{Z}} (w(g_\tau) \phi_\tau^Z)(\alpha) \).

By Proposition 8.1, we have

\[
(n!)^{-2} \nabla^n \Theta(\phi)(\tau; z)|_{Sh^d} = 2\eta^{1/2} \sum_{j=0}^{(n-1)/2} (\tau j + 1)(\phi_\tau^Z)(\tau) \eta^{(n-2j+1)(\phi_\tau^Z)(\tau)}(\tau; z) y^{-2} dy \wedge dx,
\]

and therefore \(n!)^{-2} \nabla^n \Theta(\phi)(\tau; z)|_{Sh^d} \) is equal to

\[
2\eta^{1/2} \eta^{-(n/2)} \sum_{j=0}^{(n-1)/2} (\tau j + 1)(\phi_\tau^Z)(\tau) \theta_{n-2j+1}((\phi_\tau^Z)^{\infty})(\tau; z) y^{-2} dy \wedge dx.
\]
We now study
\[
\eta^{k/2} \int_{Sh_\delta} (n!)^{-2} v^n \Theta(\phi)(\tau; z)y^{-2} dy \wedge dx = \eta^{1+(n/2)} \int_{Sh_\delta} (n!)^{-2} v^n \Theta(\phi)(\tau; z)y^{-2} dy \wedge dx \\
= 2 \sum_{j=0}^{(n-1)/2} (-1)^j \left(\frac{n+1}{2j+1} \right) \int_{Sh_\delta} \eta^{1/2} \theta(\phi_{n-2j+1}^Z) \theta(\phi_{j}^D_{D_0}) d\mu_g \\
= 2m \sum_{j=0}^{(n-1)/2} (-1)^j \left(\frac{n+1}{2j+1} \right) \eta^{1/2} \theta(\phi_{n-2j+1}^Z) E(\phi_{j}^D_{D_0}),
\]
where \(m\) is as in (4.22) and for \(\Phi \in S(D_{0,\delta})\) and \(g \in Mp(\delta)\),
\[
E(\Phi) = \sum_{\gamma \in B(\mathbb{Q}) \setminus SL_2(\mathbb{Q})} |a(\gamma)|^{s-(1/2)} (w(\gamma \Phi)(0))|_{s=\frac{3}{2}}.
\]
Take \(F = \sum_{m=1}^{\infty} a_m e(-mr^2) \in S^\infty_k(M, \psi^{-1} \chi_{D_\infty})\) for \(M\) as in (4.26). In the same manner as getting (4.31) from (4.30) and (4.28), for \(\overline{B} := B(\mathbb{Q}) \setminus B(\delta)C_\infty / B(\mathbb{Z})c_\infty\),
\[
\sum_{j=0}^{(n-1)/2} (-1)^j \left(\frac{n+1}{2j+1} \right) \int_{\overline{B}} F(\tau) \eta^{1/2} \theta(\phi_{n+1}^Z)(\tau; g) \eta^{1/2} r(\tau) (\phi_{j}^D_{D_0})(0) d\mu_k
\]

As before \(\delta_{k-1} \Delta_{-1} \cdot \Gamma(k) = |\Delta_{-1}|^{-k+(1/2)} \Gamma(k - \frac{1}{2}) \sum_{0<m<\mathbb{Z}} \psi(n) a_{m^2} m^{-k}
\]

for the analytic differential form \(\Theta(\phi)\) as in Proposition 8.1. Then if \(\omega(F) \neq 0\), for the mass \(m\) as in (4.22) and \(E^\pm(1)\) as in Theorem 4.5,
\[
\zeta(2) \int_{Sh_\delta} (n!)^{-2} v^n \omega(F) = m E^\pm(1) \delta_{k-1} \Delta_{-1} \cdot \Gamma(k) \left(\frac{1}{2} \right) L(C_\psi(\psi))(1, \text{Ad}(F) \otimes \chi_E)\]

for \(Sh_\delta\) as in (4.21) with \(\Gamma_\delta \) identifying \(Sh_\delta = D^\times \setminus D^\times_\delta / \Gamma_\delta \otimes C_\infty(D^\times_\delta)\) with \(\Gamma_\delta \setminus H\).

8.3. Computation of Fourier coefficients of theta descent in Case II. We now assume that \(D\) is indefinite and \(D_{n,R} \cong M_2(\mathbb{R})\). Though the line of the argument is almost identical to the one in Case ID, we give some details as we need to make subtle modifications.

We first interpret the integral for the Schwartz function as in (6.20)
\[
\int_{\Gamma_\delta \setminus H} (|z; v|^{n+1}, f(z; s^*)) e(\pm N(v)(\tau) \mp \frac{|z; v|^{2} n \sqrt{-1}}{2 y(z)^2}) \in S(D_{\sigma,\delta}) d\mu_z
\]
as an integral of differential form. In this case $|\Gamma_\alpha| = \infty$ with finite volume $\Gamma_\alpha \mathfrak{H}$. By (7.12) in which we replace Schwartz function in (6.17) by the one in (6.20) in Case II

\begin{equation}
(8.11)
\theta_*(f)(\tau) = \eta^{1/2} \sum_{\alpha \in \mathcal{D}^\pm / \Gamma_\phi} \phi^{(\infty)}(\alpha) \int_{\Gamma_\alpha \mathfrak{H}} (|\alpha; x|^{n+1}, f(z; s^*)) e(\pm N(v) \tau + \frac{[z; v] \eta \sqrt{-1}}{2y(z)^2}) \in \mathcal{S}(\mathcal{D}^+_\alpha) d\mu_z,
\end{equation}

where $d\mu_z$ is the C-values invariant measure given by the invariant form $y^{-3} dy \wedge dx \wedge \overline{dx}$.

We get from (8.11) and Lemma 7.3 (also valid in Case II) combined with Proposition 7.2

\begin{equation}
(8.12)
\eta^{-1/2} \theta_*(f)(\tau) = \sum_{\alpha \in \mathcal{D}^\pm / \Gamma_\phi, \Gamma_\alpha \cong \mathbb{M}_2(\mathbb{R})} \phi^{(\infty)}(\alpha) \int_{\Gamma_\alpha \mathfrak{H}} y(z)|i_{\nu,*}[|\alpha; x|^{n+1}, i_{3-\nu,*}(f(z; s^*))|e(\pm N(v) \tau + \frac{[z; v] \eta \sqrt{-1}}{2y(z)^2}),
\end{equation}

Choose $j \in \text{SL}_2(\mathbb{C})$ as in Lemma 6.6 so that $\alpha = j^{-1} \beta^\pm j^{\sigma_1}$ with $\beta^+ = 1$ if $\alpha \in \mathcal{D}^+_\phi$ and $\beta^- = \sqrt{-1}$ if $\alpha \in \mathcal{D}^-_\phi$.

Assuming $\alpha \in \mathbb{M}_2(\mathbb{R})$, we need to compute

\begin{equation}
(8.13)
I^\pm := \int_{\Gamma_\alpha \mathfrak{H}} y(z)|i_{\nu,*}[|\alpha; x|^{n+1}, i_{3-\nu,*}(f(z; s^*))|e(\pm \frac{[z; v] \eta \sqrt{-1}}{2y(z)^2}).
\end{equation}

Similarly to (7.20), we have

\begin{equation}
(8.14)
\pm N(\alpha) = \pm N(j^{-1} \beta^\pm j^{\sigma_1}) > 0.
\end{equation}

By (6.1) in Case II, we have $[1; x] = XY' - XY'$; so,

\begin{equation}
y(z)|i_{\nu,*}[|1; x|^{n+1}, i_{3-\nu,*}(f|_{\mathcal{G}}^{-1}(g_{12}; s^*))| = y(z)|i_{\nu,*}((XY' - XY')^{n+1}), i_{3-\nu,*}(f|_{\mathcal{G}}^{-1}(g_{12}; s^*))|.
\end{equation}

Now by the same computation in §7.4 starting from (7.21) ending by (7.26), replacing J by 1, we reach the equation (7.26) which we repeat:

\begin{equation}
I_{2,*}(n!)^{-2} \eta^{n} \widetilde{r}(f^j(y; s'))) = -f_1^j y^{-2} (dy \wedge dx) + 2f_1^j y^{-2} (dx \wedge dx) - f_2^j y^{-2} (dy \wedge dx) = (n!)^{-2} \eta^{n} \omega_2(f^j).
\end{equation}

For $P_\alpha(f)$ (6.40), we get

\begin{equation}
I^\pm = \int_{\mathcal{SL}_2(\mathbb{R}) \setminus \mathfrak{H}} e(2v^2 \eta \sqrt{-1}) dv \cdot \int_{\Gamma_\alpha \mathcal{SL}_2(\mathbb{R})} (f_0^1 + f_1^2) y^{-2} dy \wedge du = c_{+,n} \int_{\mathcal{SL}_2(\mathbb{R}) \setminus \mathfrak{H}} e(2v^2 \eta \sqrt{-1}) dv \cdot P_\alpha(f),
\end{equation}

where $c_{+,n} = 2\sqrt{-1}(n+1)$ and $c_{-,n} = -2\sqrt{-1}(n+1)$. Thus

\begin{equation}
(8.15)
I^\pm = 2c_{+,n} \eta^{-1/2} \cdot P_\alpha(f).
\end{equation}

Thus we conclude

Theorem 8.4. Suppose that $f : \mathfrak{H} \rightarrow \mathcal{L}(n^*; \mathbb{C})$ is a cusp form on $\text{SO}_n(\mathbb{A})$ of weight $k = n + 2 > 0$ satisfying (M1–3) in §6.1 for $\Gamma = \Gamma_\phi$ with an arbitrary $\phi^{(\infty)}$. Then we have

\begin{equation}
\theta_*(f) = 2c_{+,n} \sum_{\alpha \in \mathcal{D}^\pm / \Gamma_\phi, \Gamma_\alpha \cong \mathbb{M}_2(\mathbb{R})} \phi^{(\infty)}(\alpha) P_\alpha(f)e(\pm N(\alpha) \tau),
\end{equation}

where $c_{+,n} = 2\sqrt{-1}(n+1)$ and $c_{-,n} = -2\sqrt{-1}(n+1)$ and $P_\alpha(f)$ as in (6.40).

REFERENCES

Books
ADJOINT L-VALUE AS A PERIOD INTEGRAL

Articles

E-mail address: hida@math.ucla.edu