* Adjoint L-value as period integrals

Haruzo Hida
Department of Mathematics, UCLA,
Los Angeles, CA 90095-1555, U.S.A.

Séminaire de géométrie arithmétique et motivique (Paris Nord),
May 28, 2021.

*The author is partially supported by the NSF grant: DMS 1464106.

Abstract: For a quaternion algebra D/\mathbb{Q} and a quadratic field $E = \mathbb{Q}[\sqrt{\Delta}]/\mathbb{Q}$, we compute as $L(1, \text{Ad}(\rho_F) \otimes (\Delta))$ the period of Doi-Naganuma lift of an elliptic Hecke eigen new form F (of conductor C) to the quaternionic Shimura variety associated to $D \otimes_{\mathbb{Q}} E$ over Shimura subvarieties associated to D. Here ρ_F is the compatible system of Galois representations associated to F.
§0. An idea of Waldspurger. For an elliptic cusp form F, an idea of Waldspurger of computing the period of a theta lift of F for a quadratic space $V = W \oplus W^\perp$ over an orthogonal Shimura subvariety $S_W \times S_{W^\perp} \subset S_V$ is two-folds:

(S) Split $\theta(\Phi)(\tau, h, h^\perp) = \theta(\phi)(\tau, h) \cdot \theta(\tau, \phi^\perp)(h^\perp)$ ($\tau = \xi + \eta \sqrt{-1} \in \mathfrak{H}$ with $\eta > 0$ and $h^? \in O_{W^?}(\mathbb{A})$) for a decomposition $\Phi = \phi \otimes \phi^\perp$ (ϕ and ϕ^\perp Schwartz–Bruhat functions on $W_\mathbb{A}$ and $W^\perp_\mathbb{A}$);

(R) For the theta lift $\Theta(F)(h) = \int_X F(\tau) \theta(\phi)(\tau, h) d\mu$ with an $SL(2)$-Shimura curve X, the period P over the Shimura subvariety $S \times S^\perp$ (S for $O(W)$ and S^\perp for $O(W^\perp)$) is given by:

$$\int_{S \times S^\perp} \int_X F(\tau) \theta(\phi)(\tau; h) d\mu dh \quad (d\mu = \eta^{-2} d\xi d\eta)$$

$$= \int_X F(\tau) \left(\int_{S^\perp} \theta(\phi^\perp)(\tau; h^\perp) dh^\perp \right) \cdot \left(\int_S \theta(\phi_0)(\tau; h_0) dh \right) d\mu.$$

Then invoke the Siegel–Weil formula to convert inner integrals into the Siegel-Weil Eisenstein series $E(\phi)$ and $E(\phi^\perp)$, reaching Rankin-Selberg integral

$$P = \int_X F(\tau) E(\phi^\perp) E(\phi_0) d\mu = L\text{-value}.$$
1. Choice of V: For a \mathbb{Q}-vector space V and a \mathbb{Q}-algebra A, write $V_A := V \otimes_{\mathbb{Q}} A$. Let $E := \mathbb{Q}[\sqrt{\Delta}]$ be a semi-simple quadratic extension of \mathbb{Q} with discriminant Δ. It can be $\mathbb{Q} \times \mathbb{Q}$ with $\Delta = 1$. Pick a quaternion algebra D over \mathbb{Q} and put $D_E := D \otimes_{\mathbb{Q}} E$. We let $1 \neq \sigma \in \text{Gal}(E/\mathbb{Q})$ act on D through the factor E. Then

$$V = D_{\sigma} := \{v \in D_E | v^\sigma = v^t\} \text{ for } v^t = \text{Tr}_{D_E/E}(v) - v.$$

The quadratic form is given by $Q(v) = vv^\sigma = N(v) \in \mathbb{Q}$. We have four cases of isomorphism classes of $(D_{\mathbb{R}}, E_{\mathbb{R}})$. For simplicity, we assume $E_{\mathbb{R}} = \mathbb{R} \times \mathbb{R}$; so, we have two cases Case I and Case H. The symbol “I” (resp. “H”) indicate D is indefinite (resp. definite). The decomposition we take is

$$V = Z \oplus D_0 \quad Z = \mathbb{Q} \text{ with quadratic form } Q_Z(a) = a^2,$$

and

$$D_0 := \{v_0 \in \sqrt{\Delta}D | \text{Tr}_{D/\mathbb{Q}}(v) = 0\} \text{ with } Q_0(v) = vv^\sigma = N(v).$$

Signature of D_0 is $(1,2)$ in Case I and $(3,0)$ in Case H, \mathcal{O}_{D_0} is almost D_{\times} and the same for $\mathcal{O}_{D_{\sigma}}$ and D_E^{\times}.
§2. Bruhat functions ϕ_Z and ϕ_0. On $Z = \mathbb{Q}$, for a Dirichlet character ψ modulo N, we regard ψ as a function supported on $\hat{\mathbb{Z}} \subset Z_\mathbb{A}(\infty) = \mathbb{A}(\infty)$. For $e(x) = \exp(2\pi \sqrt{-1}x)$, this ψ produces theta series $\sum_{n \in \mathbb{Z}} \psi(n)n^j e(n^2 \tau)$ on $\Gamma_0(4N^2)$.

On D_0, first we fix a maximal order R of D. Writing ∂^2 for the discriminant of the quadratic space (D, N) with respect to a \mathbb{Z}-basis of R. Take the Eichler order $R(N_0)$ of level N_0 (prime to ∂) and take the characteristic function ϕ_0 of $D_0, \mathbb{A} \cap \sqrt{\Delta} \hat{R}(N_0)$. Here for any lattice L, $\hat{L} = L \otimes_\mathbb{Z} \hat{\mathbb{Z}}$. This ϕ_0 produces theta series on $\Gamma_0(4\partial \Delta N_0)$ of character $(\frac{-\Delta}{\cdot})$.

The theta series for D_{σ} of $\psi \otimes \phi_0$ has level $M = [4N^2, 4\partial \Delta N_0]$. We choose M so that $C|M$ for the conductor C of F and we write always $v = a \oplus v_0$ for $a \in \mathbb{Z}$ and $v_0 \in D_0$.
§3. **Schwartz function on** $D_{\sigma,\mathbb{R}}$. The recipe is $\phi = (\phi_Z \otimes \phi_0) \Psi$ for $\Psi(v_\infty) = H(v_\infty)e(P[v_\infty]\sqrt{-1})$ for $\tau = \xi + \sqrt{-1}\eta \in \mathcal{H}$ and a harmonic polynomial H, where $P[v] = 2^{-1}P(v,v)$ for a positive majorant $P(v,v') = P_Z(a,a') + P_0(v_0,v'_0)$ of $s(v,v') = \text{Tr}_{D_E/E}(v^tv')$ and $H(v) = s(v,v_P)^v$ for a well chosen $v_P \in D_{\sigma,\mathbb{C}}$. Let $H_Z(a) = s(a,v_P)$ and $H_0(v_0) = s(v_0,v_P)$. By $H(a \oplus v_0) = (H_Z(a) + H_0(v_0))^v = \sum_{j=0}^\nu \binom{\nu}{j} H_Z(a)^j H_0(v_0)^{\nu-j}$,

$$\phi = \sum_{j=0}^\nu \binom{\nu}{j} \phi_Z^j \otimes \phi_0^{k-j} \text{ with } \phi_0^{k-j}(0) = 0 \text{ unless } j = k$$
on $D_{\sigma,\mathbb{A}}$, where $\phi_Z^j(a) = \phi_Z(a^{(\infty)}) H_Z(a_\infty)^j e(a_\infty^{2} \tau)$ and $\phi_0^j(v_0) = \phi_0(v_0^{(\infty)}) H_0(v_0)^j e(P[v_0]\sqrt{-1})$. All positive majorants form the symmetric space \mathcal{G} of O_{D_σ} and $\mathcal{G} = \{P \circ g | g \in O_{D_\sigma}(\mathbb{R})\}$. In Case H, $\mathcal{G} = \{s\} = \{P\}$. In Case I, $\mathcal{G} = \mathcal{H} \times \mathcal{H} = \{(z,w) \in \mathcal{H}\}$, as $O_{D_\sigma} = SO_{D_\sigma} \sqcup SO_{D_\sigma,\sigma}$ and by $E_{\mathbb{R}} = \mathbb{R} \times \mathbb{R}$

$$SO_{D_\sigma}(\mathbb{R}) = \{h = (h,h^\sigma) \in GL_2(E_{\mathbb{R}}) | \det(h)/\det(h^\sigma) = 1\}/\mathbb{R}^\times$$

and $h = (h,h^\sigma)$ acts on $D_{\sigma,\mathbb{R}} \cong M_2(\mathbb{R})$ by $x \mapsto h^{-1}xh^\sigma$.

§4. **Theta kernel.** Let $\text{Mp}(\mathbb{A}) \rightarrow \text{SL}_2(\mathbb{A})$ be the metaplectic cover constructed by Weil, and $\phi \mapsto r(g)\phi$ the Weil representation. Siegel–Weil theta series $\theta(g; h)$ is

$$\sum_{\alpha \in D_\sigma} (r(g)\phi)(h^{-1}\alpha h^\sigma) : \text{SL}_2(\mathbb{Q}) \setminus \text{Mp}(\mathbb{A}) \times \mathcal{O}_{D_\sigma}(\mathbb{Q}) \setminus \mathcal{O}_{D_\sigma}(\mathbb{A}) \rightarrow \mathbb{C}.$$

In Case I, choose $\phi = (\psi \otimes \phi_0)\Psi(v)$ and for $g_\tau = \eta^{-1/2} \begin{pmatrix} \eta & \xi \\ 0 & 1 \end{pmatrix}$ ($\tau = \xi + \eta\sqrt{-1} \in \mathfrak{h}$), we specialize g to g_τ and h to $P \circ (g_z, g_w)$ for $(\tau, z, w) \in \mathfrak{h} \times \mathfrak{h} \times \mathfrak{h}$. Then

$$\theta_k(\tau; z, w) := \theta(g_\tau; g_z, g_w) = \eta \sum_{\alpha \in D_\sigma} (\psi \otimes \phi_0)(\alpha)r(g_\tau)\Psi(g_z^{-1}\alpha g_w).$$

Set $\theta(F) := \int_{X_0(M)} F(-\tau)\Theta(\phi)(\tau; z, w)\eta^{k-2}d\xi d\eta$, and assume

$$\boxed{\theta(F) \neq 0}.$$

Then $\theta(F)$ is a weight (k, k) quaternionic modular form for $D_\mathbb{E}_E \sim \mathcal{O}_{D_\sigma}$ holomorphic in z and anti-holomorphic in w for $F \in S_k(\Gamma_0(M), \psi^{-1}(\Delta)).$
§5. **Theta differential form.** To compute the period on $S = \mathcal{O}_{D_0}(\mathbb{Q}) \backslash \mathcal{O}_{D_0}(\mathbb{A}) \subset S_E = D_E^\times \backslash D_{\sigma,\mathbb{A}}^\times$, we convert $\theta(\tau; z, w)$ into a sheaf valued differential 2–form. The sheaf corresponds to the D_{E}^\times-representation $L_{E}(n; A) = \sum_{0 \leq i, j \leq n} AX^{n-j}Y^j X^{m-i}Y^i$ on which $\gamma \in D_{E}^\times$ acts by $\gamma P(X, Y; X', Y') = P((X, Y)^t \gamma^t; (X', Y')^t \gamma \sigma^t)$. Then $L_{E}(n; A)$ has a canonical Clebsch-Gordan projection to $(n!)^{-2} \nabla^n : L_{E}(n; A)|_{\mathcal{O}_{D_0}} \to A$ for $\nabla := \frac{\partial^2}{\partial X \partial Y} - \frac{\partial^2}{\partial X' \partial Y'}$.

By putting $\Theta = \theta_k(\tau; z, w)(X - zY)^n(X' - wY')^n dz \wedge dw$ for $n = k - 2$, we get $L_{E}(n; \mathbb{C})$-valued invariant differential form. The period we like to compute is

$$\int_S \Theta(F) = \int_S \int_{X_0(M)} F(-\tau)n!^{-2} \nabla^n \Theta(\tau; z, z) \eta^{k-2} d\xi d\eta.$$

Note $n!^{-2} \nabla^n (X - zY)^n(X' - \bar{z}Y')^n = (\bar{z} - z)^n$, and we integrate therefore over S by a measure $d\mu$ given by $(z - \bar{z})^{-2} dz \wedge d\bar{z}$ over \mathcal{H} and $\int_{\hat{R}(N_0) \cdot SO_2(\mathbb{R})} d\mu = 1$. After lifting $\theta(\phi)$ to $\mathcal{O}_{D_0}(\mathbb{A})$, this factor disappears as $\theta(\phi)$ is weight $k + k = 2k$ in z.

§6. Siegel–Weil Eisenstein series. By Weil,
\[r(\text{diag}[a, a^{-1}])\phi_j^0 (v_0) = |a|_{\mathbb{A}}^{3/2} \phi_j^0 (av_0), \quad r\left(\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \right) \phi_j^0 (v_0) = e(uN(v_0))\phi_j^0 (v_0) \]

For the Borel subgroup \(B = \{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \} \subset \text{SL}_2 \), the function \(g \mapsto (r(g)\phi)(0) \) is left \(B(\mathbb{Q}) \) invariant. Siegel–Weil Eisenstein series is
\[
E(\phi_j^0)(g; s) = \sum_{\gamma \in B(\mathbb{Q})/\text{SL}_2(\mathbb{Q})} (r(\gamma g)\phi_j^0)(0)|a(\gamma g)|_A^s,
\]
where \(g = \text{diag}[a(g), a(g)^{-1}] \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} c \) for \(c \in \text{SL}_2(\mathbb{Z})\text{SO}_2(\mathbb{R}) \). Note
\[
E(\phi_j^{k-j})|_{B(\mathbb{A})} = 0 \text{ unless } k = j.
\]

For \(S = \text{O}_{D_0}(\mathbb{Q})\backslash \text{O}_{D_0}(\mathbb{A}) \), the Siegel–Weil formula by Kudla-Rallis/Sweet is
\[
E(\phi_0^{k-j})(g; 0) = \int_{S} \theta(\phi_0)(g, h)d\omega \quad \text{for the Tamagawa measure } d\omega.
\]

The ratio \(m = m(\hat{R}(N_0)) = d\mu/d\omega \) is the mass of Siegel–Shimura, which is a rational number times \(\zeta(2)/\pi \) in Case I and \(\zeta(2)/\pi^2 \) in Case H.
§7. Conclusion in Case I. We have

\[
\int_S \Theta(F)(h) d\mu(h) = \int_{\text{SL}_2(\mathbb{Q}) \backslash \text{SL}_2(\mathbb{A}) / \hat{\Gamma}_0(M) \text{SO}_2(\mathbb{R})} \tilde{F}(g) \sum_j \binom{k}{j} \theta(\phi_Z^j) E(\phi_0^{k-j}) d\mu(h) d\mu(g)
\]

\[
= \int_{\text{B}(\mathbb{Q}) \backslash \text{B}(\mathbb{A}) / (\text{B}(\hat{\mathbb{Z}}) \cap \text{SO}_2(\mathbb{R}))} \theta(\phi_Z^k) (r(g_\tau) \phi_0^0)(0) \eta^{-1} d\xi d\eta
\]

\[
= \int_0^\infty \int_0^1 \sum_{n \in \mathbb{Z}} \psi(n) n^k e(n^2 \tau) F(-\tau) d\xi \eta^{k-1} d\eta
\]

\[
= c_D (m\pi / \zeta(2))(2\pi)^{-k} \Gamma(k) L(1, \text{Ad}(F) \otimes (\Delta))
\]

for a simple constant \(0 \neq c_D \in \mathbb{Q}\) depending on \(D\).
§8. Conclusion in Case H. The choice of the Bruhat function ϕ is the same as in Case I. We regard Ψ as a polynomial having values in $L_E(n; \mathbb{C})$ as $H(v) \in L_E(n; \mathbb{C})$. Again in exactly the same way, for $\Theta(F) := (n!)^{-2} \nabla^n \int_{X_0(M)} \theta(\phi)(\tau; g) F(\tau) \eta^{k-2} d\xi d\eta$ and we conclude

$$\int_S \Theta(F) d\mu = c_D(m\pi^2/\zeta(2))(2\pi)^{-k} \Gamma(k) L(1, Ad(\rho_F) \otimes \left(\frac{\Delta}{\cdot}\right)).$$

Writing the point set $S = \{x\}_{x \in Cl_D(\hat{R}(N_0))}$,

$$m(\hat{R}(N_0)) = \sum_{x \in Cl_D} e_x^{-1} \div \zeta(2)$$

for $e_x = |\hat{R}(N_0) \cap O_{D_0}(\mathbb{Q})|$ and $P \div \sum_{x \in Cl_D(\hat{R}(N_0))} e_x^{-1} \Theta(F)(x)$.

Thus the period formula is an adjoint analogue of the mass formula of Siegel–Shimura. The determination of $m(\hat{R}(N_0))$ was finished by Shimura in 1999 for an arbitrary quadratic space over a totally real field (Siegel had an ambiguous factors even for D_0 over \mathbb{Q}).