* Big Galois representations

and p-adic L-functions

First lecture

Haruzo Hida
Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A.

June 172011
*A 105 minutes talk at Université de Paris Nord.
The author is partially supported by the NSF grant: DMS 0753991 and DMS 0854949 and by Clay Mathematics institute as a senior scholar.

We have Galois representations $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow$ $G L_{2}(\wedge)$ for $\wedge=\mathbb{Z}_{p}[[T]]$ associated to p-adic analytic families of Hecke eigen cusp forms.

Supposing that ρ does not have abelian image over $\operatorname{Gal}(\overline{\mathbb{Q}} / M)$ for any quadratic field M / \mathbb{Q} (non CM condition), we want to show that the image $\operatorname{Im}(\rho)$ is big !

Under some mild conditions, we prove that

- $\operatorname{Im}(\rho) \supset\left\{x \in S L_{2}(\wedge) \mid x \equiv 1 \bmod \mathfrak{c}\right\}=:$ $\Gamma(\mathfrak{c})$ for a Λ-ideal $\mathfrak{c} \neq 0$. Taking this \mathfrak{c} as large as possible, we call \mathfrak{c} the conductor of ρ.
- Taking the reflexive closure $\cap_{(\lambda) \supset \mathfrak{c}}(\lambda)$ which is a principal ideal (L), we want to determine (L). We ask:

Is L related to a p-adic L-function?

§1. Notation

To define the family \mathcal{F} we study, we introduce some notation. Fix

- An odd prime $p \geq 5$;
- a positive cube-free integer $N(p \nmid N)$;
- two field embeddings $\mathbb{C} \hookleftarrow \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}$.

Consider the space of cusp form

$$
S_{k+1, \psi}=S_{k+1}\left(\Gamma_{0}\left(N p^{r+1}\right), \psi\right) \quad(r \geq 0)
$$

of weight " $k+1$ " with Nebentypus ψ.
Let the rings

$$
\mathbb{Z}[\psi] \subset \mathbb{C} \text { and } \mathbb{Z}_{p}[\psi] \subset \overline{\mathbb{Q}}_{p}
$$

be generated by $\psi(n)(n=1,2, \ldots)$ over \mathbb{Z} and \mathbb{Z}_{p}.

The Hecke algebra over \mathbb{Z} is
$h=\mathbb{Z}[\psi][T(n) \mid n=1,2, \cdots] \subset \operatorname{End}\left(S_{k+1, \psi}\right)$.
Put $h_{k+1, \psi}=h \otimes_{\mathbb{Z}[\psi]} \mathbb{Z}_{p}[\psi]$.
Sometimes our $T(p)$ is written as $U(p)$ as the level is divisible by p.

§2. Big Hecke algebra

The ordinary part $h_{k+1, \psi}^{o r d} \subset h_{k+1, \psi}$ is the maximal ring direct summand on which $U(p)$ is invertible; so,

$$
h^{\text {ord }}=e \cdot h \text { for } e=\lim _{n \rightarrow \infty} U(p)^{n!}
$$

Let $\psi_{1}=\psi_{N} \times$ the tame p-part of ψ. Then, we have a unique 'big' Hecke algebra $\mathbf{h}=$ $\mathbf{h}_{\psi_{1}}$ such that

- \mathbf{h} is free of finite rank over $\mathbb{Z}_{p}[[T]]$ with $T(n) \in \mathbf{h}(n=1,2, \ldots ; T(p)=U(p))$
- Let $\gamma=1+p$. If $k \geq 1$ and $\varepsilon: \mathbb{Z}_{p}^{\times} \rightarrow \mu_{p} \infty$ is a character,
$\mathbf{h} /\left(1+T-\psi(\gamma) \varepsilon(\gamma) \gamma^{k}\right) \mathbf{h} \cong h_{k+1, \varepsilon \psi_{k}}^{o r d}$
for $\psi_{k}:=\psi_{1} \omega^{1-k}$, sending $T(n)$ to $T(n)$, where ω is the Teichmüller character.
§3. Galois representation

Each irreducible component

$\operatorname{Spec}(\mathbb{I}) \subset \operatorname{Spec}(h)$

with normalization $\operatorname{Spec}(\widetilde{\mathbb{I}})$ has a Galois representation

$$
\rho_{\mathbb{I}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G L_{2}(\widetilde{\mathbb{I}})
$$

with coefficients in \mathbb{I} (or its quotient field) such that

$$
\operatorname{Tr}\left(\rho_{\mathbb{I}}\left(F r o b_{l}\right)\right)=a(l)
$$

(for the image $a(l)$ in \mathbb{I} of $T(l)$) for almost all primes ℓ.

We regard $P \in \operatorname{Spec}(\mathbb{I})\left(\overline{\mathbb{Q}}_{p}\right)$ as an algebra homomorphism $P: \mathbb{I} \rightarrow \overline{\mathbb{Q}}_{p}$, and we put $\rho_{P}=P \circ \rho_{\mathbb{I}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G L_{2}\left(\overline{\mathbb{Q}}_{p}\right)$.

§4. Analytic family

A point P of $\operatorname{Spec}(\mathbb{I})\left(\overline{\mathbb{Q}}_{p}\right)$ is called

arithmetic

if $P\left(1+T-\varepsilon \psi_{k}(\gamma) \gamma^{k}\right)=0$ for $k \geq 1$ and $\varepsilon: \mathbb{Z}_{p}^{\times} \rightarrow \mu_{p^{\infty}}$.

If P is arithmetic, we have a Hecke eigenform $f_{P} \in S_{k+1}\left(\Gamma_{0}\left(N p^{r(P)}\right), \varepsilon \psi_{k}\right)$ such that

$$
f_{P} \mid T(n)=a_{P}(n) f_{P} \quad(n=1,2, \ldots)
$$

for $a_{P}(n):=P(a(n)) \in \overline{\mathbb{Q}}_{p}$.

We write $\varepsilon_{P}=\varepsilon$ and $k(P)=k$.

Thus \mathbb{I} gives rise to an analytic family

$$
\mathcal{F}_{\mathbb{I}}=\left\{f_{P} \mid \text { arithemtic } P \in \operatorname{Spec}(\mathbb{I})\right\} .
$$

§5. CM component and CM family

We call a Galois representation ρ CM if there exists an open subgroup $G \subset \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ such that the semi-simplification $\left(\left.\rho\right|_{G}\right)^{s s}$ has abelian image over G.

We call \mathbb{I} a $C M$ component if $\rho_{\mathbb{I}}$ is CM .

If \mathbb{I} is a CM component, it is known that for an imaginary quadratic field M in which p splits, there exists a Galois character Ψ : $\operatorname{Gal}(\overline{\mathbb{Q}} / M) \rightarrow \tilde{\mathbb{I}}^{\times}$such that $\rho_{\mathbb{I}} \cong \operatorname{Ind}_{M}^{\mathbb{Q}} \Psi$.

If $\rho_{P} \cong \operatorname{Ind}{ }_{M}^{\mathbb{Q}} \Psi_{P}$ for some arithmetic point P, \mathbb{I} is a CM component.

§6. As $D_{p}=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ representation.

Let $V(\mathbb{I})=\widetilde{\mathbb{I}}^{2}$ be the representation space of $\rho_{\mathbb{I}}$. We have the following exact sequence of D_{p}-modules coming from connectedétale sequence of Tate modules of modular jacobians:

$$
0 \rightarrow V^{\circ}(\mathbb{I}) \rightarrow V(\mathbb{I}) \rightarrow V(\mathbb{I})^{e t} \cong \widetilde{\mathbb{I}} \rightarrow 0
$$

under suitable assumptions; so, we have

$$
\begin{aligned}
& \operatorname{Tr}\left(\rho_{\mathbb{I}}\left(\text { Frob }_{l}\right)\right)=T(l) \quad(l \nmid N p), \\
& \rho_{\mathbb{I}}^{\mathrm{SS}}\left(\left[\gamma^{s}, \mathbb{Q}_{p}\right]\right) \sim\left(\begin{array}{cc}
(1+T)^{s} & 0 \\
0 & 1
\end{array}\right) \text { and } \\
& \rho_{\mathbb{I}}^{\mathrm{SS}}\left(\left[p, \mathbb{Q}_{p}\right]\right) \sim\left(\begin{array}{cc}
* & 0 \\
0 & a(p)
\end{array}\right),(\mathrm{Gal})
\end{aligned}
$$

where $\gamma^{s}=(1+p)^{s} \in \mathbb{Z}_{p}^{\times}$for $s \in \mathbb{Z}_{p}$ and $\left[x, \mathbb{Q}_{p}\right]$ is the local Artin symbol.

§7. Assumptions enforced.

Pick and fix a non CM component \mathbb{I} of prime-to- p level N. Write $\bar{\rho}=\rho_{\mathfrak{m}}=$ ($\rho_{\mathbb{I}}$ $\bmod \mathfrak{m}$) for the maximal ideal \mathfrak{m} of \mathbb{I}. and assume $p \geq 5$ and the following condition throughout
$\left.(\mathrm{R}) \bar{\rho}\right|_{D_{p}} \cong\left(\begin{array}{cc}\bar{\epsilon} & \frac{*}{\delta} \\ 0 & \frac{\delta}{\delta}\end{array}\right)$ with $\bar{\delta}$ unramified and $\bar{\epsilon} \neq$

Consider the following conditions:
(s) There exists $g \in D_{p}$ with $\rho_{\mathbb{I}}(g)$ having eigenvalues α, β in \mathbb{Z}_{p} such that $\alpha^{2} \not \equiv \beta^{2}$ $\bmod \mathfrak{m}_{\mathbb{I}}$;
(u) $\rho_{\mathbb{I}}\left(D_{p}\right)$ contains a non-trivial unipotent element $g \in G L_{2}(\mathbb{I})$;
(v) $\rho_{\mathbb{I}}\left(D_{p}\right)$ contains a unipotent element $g \in$ $G L_{2}(\mathbb{I})$ with $g \not \equiv 1 \bmod \mathfrak{m}_{\mathbb{I}}$.

§8. Existence of the level.

Our first goal is:

Theorem I. Suppose one of the two conditions (s) or (u). Then

1. There exist a representation ρ equivalent to $\rho_{\mathbb{I}}$ with values in $G L_{2}(\widetilde{\mathbb{I}})$ such that $G:=\operatorname{Im}(\rho) \cap S L_{2}(\wedge)$ contains $\Gamma_{\wedge}(\mathfrak{a})$.
2. If \mathfrak{c} is the \wedge-ideal maximal among \mathfrak{a} with $G \supset \Gamma(\mathfrak{a})$, the ideal $\mathfrak{c}_{P} \subset \wedge_{P}$ localized at a prime divisor P only depends on the isomorphism class [$\rho_{\mathbb{I}}$] as long as ρ_{P} is absolutely irreducible.
3. In particular, if $\bar{\rho}=\rho_{\mathfrak{m}}$ for the maximal ideal \mathfrak{m} of \mathbb{I} is absolutely irreducible, the reflexive closure (L) of \mathfrak{c} is independent of the choice of ρ with $G \supset \Gamma(\mathfrak{a}) \neq 1$.

\S 9. Lie algebra of a p-profinite group \mathcal{G}.

Set-up: • A : a semi-local p-profinite ring.

- Define $\Theta: S L_{2}(A) \rightarrow \mathfrak{s l}_{2}(A)$ and $C:$ $S L_{2}(A) \rightarrow Z(A)$ for the center $Z(A)$ of $M_{2}(A)$ by
$\Theta(x)=x-\frac{1}{2} \operatorname{Tr}(x) 1_{2}, \zeta(x)=\frac{1}{2}(\operatorname{Tr}(x)-2) 1_{2}$ for $1_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
- For a p-profinite subgroup $\mathcal{G} \subset S L_{2}(A)$, define L by the closed additive subgroup of $\mathfrak{s l}_{2}(A)$ generated by $\Theta(x)$ for all $x \in \mathcal{G}$.
- Put $C=\operatorname{Tr}(L \cdot L)$.
- Define $\mathcal{M}_{1}^{0}(\mathcal{G})=L$ and $\mathcal{M}^{0}(\mathcal{G})=[L, L]$.
- $[L, L] \subset L, C \cdot L \subset L$.
- L is a Lie \mathbb{Z}_{p}-subalgebra of $\mathfrak{s l}_{2}(A)$.
- Put $\mathcal{M}_{1}(\mathcal{G})=C \cdot 1_{2} \oplus \mathcal{M}_{1}^{0}(\mathcal{G})$ and

$$
\mathcal{M}(\mathcal{G})=\mathcal{M}_{2}(\mathcal{G})=C \cdot 1_{2} \oplus \mathcal{M}^{0}(\mathcal{G})
$$

which is a closed Lie \mathbb{Z}_{p}-subalgebra of $\mathfrak{g l}_{2}(A)$.

- Define $\mathcal{H}=\mathcal{H}_{2}$ for

$$
\mathcal{H}_{j}=S L_{2}(A) \cap\left(1+\mathcal{M}_{j}(\mathcal{G})\right)
$$

§10. A theorem of Pink

Theorem 1 (Pink). Let the notation be as above. Let $\mathcal{G} \subset S L_{2}(A)$ be a p-profinite subgroup. Then we have
(1) \mathcal{H}_{1} and \mathcal{H} are p-profinite subgroups of $S L_{2}(A)$;
(2) \mathcal{G} is a normal closed subgroup of \mathcal{H}_{1};
(3) $\mathcal{H}=\left(\mathcal{H}_{1}, \mathcal{H}_{1}\right)=(\mathcal{G}, \mathcal{G})$ (the topological commutator subgroup).

- $\mathcal{G} \mapsto \mathcal{M}_{j}(\mathcal{G})\left(\right.$ resp. $\mathcal{G} \mapsto \mathcal{M}_{j}^{0}(\mathcal{G})$) is a covariant functor from p-profinite subgroups of $S L_{2}(A)$ into closed Lie \mathbb{Z}_{p}-subalgebras of $\mathfrak{g l}_{2}(A)$ (resp. $\left.\mathfrak{s l}_{2}(A)\right)$.
- $\mathcal{M}_{j}(\mathcal{G})$ and $\mathcal{M}_{j}^{0}(\mathcal{G})$ are stable under the adjoint action $x \mapsto g x g^{-1}$ of the normalizer $N(\mathcal{G}) \subset S L_{2}(A)$.
- For an A-ideal \mathfrak{a} and for $\overline{\mathcal{G}}_{\mathfrak{a}}=(\mathcal{G} \bmod \mathfrak{a})=$ $\left(\mathcal{G} \cdot \Gamma_{A}(\mathfrak{a})\right) / \Gamma_{A}(\mathfrak{a}), \mathcal{M}_{j}^{0}\left(\overline{\mathcal{G}}_{\mathfrak{a}}\right) \subset \mathfrak{s l}_{2}(A / \mathfrak{a})$ is the image of $\mathcal{M}_{j}^{0}(\mathcal{G})$ under $x \mapsto(x \bmod \mathfrak{a})$.

§11. A proof of Theorem I, Step 1.

- We only give the proof under (R) and (s) and $\mathbb{I}=\wedge$.
- Write \mathcal{B} for the upper triangular Borel subgroup of $G L(2)$.
- Let $j=\lim _{n \rightarrow \infty} \rho_{\mathbb{I}}(g)^{p^{n}}$ for $g \in D_{p}$ in (s).
- By conjugating $\rho_{\mathbb{I}}$ by an element in $\mathcal{B}(\mathbb{I})$, we may assume
$j=\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{\prime}\end{array}\right)$ with $\zeta, \zeta^{\prime} \in \mu_{p-1}\left(\mathbb{Z}_{p}\right), \zeta^{2} \neq \zeta^{\prime 2}$ and
- $\mathcal{T}=\left\{\left(\begin{array}{cc}(1+T)^{s} & 0 \\ 0 & 1\end{array}\right)\right\} \subset \rho_{\mathbb{I}}\left(D_{p}\right)$.
- Let $G=\operatorname{Im}\left(\rho_{\mathbb{I}}\right) \cap \Gamma(\mathfrak{m})$.
- We have two eigenspaces $\mathfrak{u}=\mathcal{M}^{0}(G)[z]$ for $z=\zeta \zeta^{\prime-1}$ and $\mathfrak{u}_{t}=\mathcal{M}^{0}(G)\left[z^{-1}\right]$ of $\mathcal{M}^{0}(G)$ under the adjoint action $\operatorname{Ad}(j)$. These are upper and lower nilpotent subalgebras.
- By the adjoint action of $\mathcal{T}, \mathfrak{u}$ and \mathfrak{u}_{t} are \wedge-modules (or abelian Lie \wedge-algebras).
- If $\mathfrak{u} \neq 0$ and $\mathfrak{u}_{t} \neq 0$, then $\left[\mathfrak{u}, \mathfrak{u}_{t}\right] \neq 0$, $\left[\mathfrak{u},\left[\mathfrak{u}, \mathfrak{u}_{t}\right]\right] \neq 0$ and $\left[\mathfrak{u}_{t},\left[\mathfrak{u}, \mathfrak{u}_{t}\right]\right] \neq 0$ generate Lie Λ-subalgebra of $\mathfrak{s l}_{2}(\wedge)$ of rank 3 ; so, we are done, since $G \supset(G, G)=S L_{2}(\wedge) \cap$ $(1+\mathcal{M}(G))$.
§12. Non-triviality of \mathfrak{u} and \mathfrak{u}_{t}.
- Note that $\operatorname{det}\left(\rho_{\mathbb{I}}\left(\left[\gamma^{s}, \mathbb{Q}_{p}\right]\right)\right)=(1+T)^{s}$.
- $\mathbb{H}=\left\{x \in \operatorname{Im}\left(\rho_{\mathbb{I}}\right) \mid \operatorname{det}\left(\rho_{\mathbb{I}}\right)(x) \in \Gamma, x \equiv 1\right.$ $\bmod \mathfrak{m}\}$ is an open subgroup of $\operatorname{Im}\left(\rho_{\mathbb{I}}\right)$.
- Replacing G by $G \cap \mathbb{H}$, we have $\mathbb{H}=\mathcal{T} \ltimes G$.
- Pick $P \in \operatorname{Spec}(\Lambda)$. For any $X \subset G L_{2}(\wedge)$, writing \bar{X}_{P} for the image of X in $G L_{2}(\Lambda / P)$, we have $\overline{\mathbb{H}}_{P}=\overline{\mathcal{T}}_{P} \ltimes \bar{G}_{P}$; so, the reduction map $G \rightarrow \bar{G}_{P}$ is onto.
- Thus $\mathfrak{u}=\mathcal{M}^{0}(G)[z] \rightarrow \mathcal{M}^{0}\left(\bar{G}_{P}\right)[z]=: \overline{\mathfrak{u}}_{P}$ is onto by Pink's construction.
- Since \mathbb{I} is a non CM component, for an arithmetic P, f_{P} does not have complex multiplication.
- By Ribet and Momose, \bar{G}_{P} contains an open subgroup of $S L_{2}\left(\mathbb{Z}_{p}\right)$, and therefore $\overline{\mathfrak{u}} \neq 0$, which implies $\mathfrak{u} \neq 0$.
- Similarly, $\mathfrak{u}_{t} \neq 0$.
§13. Deciding the level; set-up.
We assume that the prime-to- p conductor of $\bar{\rho}$ is equal to N. We split our study following the shape of $\bar{\rho}$:

Case SL: $\operatorname{Im}(\bar{\rho}) \supset S L_{2}\left(\mathbb{F}_{p}\right)$.
Case A: $\operatorname{Im}(\bar{\rho})$: either a tetrahedral, octahedral or icosahedral type.
Case $\mathrm{D}: \bar{\rho}$ is induced from a quadratic extension M which is either real or p does not split in M (dihedral image).
Case CM: $\bar{\rho}$ is induced from an imaginary quadratic extension M in which p splits. Case R: $\bar{\rho}$ is reducible.

In Cases D and CM , we write $\bar{\rho}=\operatorname{Ind}_{M}^{\mathbb{Q}} \bar{\psi}$ and assume that $\bar{\psi}^{-}(\sigma)=\bar{\psi}\left(\sigma c \sigma^{-1} c^{-1}\right)$ (for $c \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ inducing a non-trivial automorphism of M) has order ≥ 3 ramified at p. In Case CM, let $L_{\bar{\psi}^{-}}^{-}$be the product of the anticyclotomic Katz p-adic L-function of branch character reducing to $\bar{\psi}^{-} \bmod \mathfrak{m}$.

In Case R, write $\bar{\rho}=\bar{\theta} \oplus \bar{\psi}$, and assume that θ ramified at p with $\overline{\theta \psi}^{-1}$ having order ≥ 3. Then no two cases overlaps.

§14. Theorem

Our second goal is:
Theorem II. Suppose (R) and one of the conditions (s) and (v). Take a non CM cuspidal component \mathbb{I} of prime-to-p cube-free level N and write ($L(\mathbb{I}$)) for the reflexive closure of the conductor of \mathbb{I}. Then
Case SL: Assume $p \geq 7$. Then $L(\mathbb{I})=1$.
Case A: $T|L(\mathbb{I})| T^{n}$ for an integer $n>0$.
Case D: $L(\mathbb{I}) \mid\left((1+T)^{p^{m}}-1\right)^{2}$ for $m \gg 0$.
Case CM: Assume $p \nmid \varphi(N)$. Then $L(\mathbb{I}) \mid\left(L_{\bar{\psi}^{-}}^{-}\right)^{2}$.
Case R: Suppose $p \nmid \varphi(N)$. Then $L(\mathbb{I})$ is a factor of the primitive Kubota-Leopoldt p-adic L-function whose branch character modulo p is $\bar{\psi}^{-1} \bar{\theta} \omega$.

Plainly, Cases CM and R in the theorem relate the level to p-adic L-functions. Out of the Galois representation of level L, one would be able to construct non-trivial Galois 1-cocycle with values in $\operatorname{Ad}(\rho \bmod L)$ not too much ramified; so, Cases A and D could be related to a certain p-adic L function (possibly not yet constructed) if the cocycle gives Selmer cocycle.
§15. $P \nmid L(\mathbb{I})$ if $\operatorname{Im}\left(\rho_{P}\right) \cap S L_{2}\left(\mathbb{Z}_{p}\right)$ open.

By the proof of the existence of level, we find $\overline{\mathfrak{u}} \neq 0$ and $\overline{\mathfrak{u}}_{t} \neq 0$. Let $\mathfrak{a}=\left\{a \in \Lambda \left\lvert\,\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right) \in \mathfrak{u}\right.\right\}, \mathfrak{b}=\left\{b \in \Lambda \left\lvert\,\left(\begin{array}{ll}0 & 0 \\ b & 0\end{array}\right) \in \mathfrak{u}_{t}\right.\right\}$.
Then it is easy to see $\mathfrak{c} \supset \mathfrak{a b}$. In particular, \mathfrak{c} is prime to P.

Thus in these two cases, we have $P \nmid L(\mathbb{I})$. In particular, in Case CM,

$$
P \mid L(\mathbb{I}) \Leftrightarrow \rho_{P} \cong \operatorname{Ind}_{M}^{\mathbb{Q}} \Psi_{P}
$$

for a Galois character Ψ_{P}. Thus we study congruence of $\rho_{\mathbb{I}}$ and $\operatorname{Ind}_{M}^{Q} \Phi$ for the universal character $\boldsymbol{\Phi}$ deforming $\bar{\psi}$ without extra ramification.

§16. CM components

We start a sketch of a proof in Case CM when N is the discriminant of M.

Let $\operatorname{Spec}(\mathbb{T})$ be the connected component of $\operatorname{Spec}(\mathrm{h})$ containing $\operatorname{Spec}(\mathbb{I})$, and write $\operatorname{Spec}\left(\mathbb{T}_{c m}\right)$ for the union of all CM component of $\operatorname{Spec}(\mathbb{T})$.

Let $C l_{M}\left(p^{\infty}\right)$ and $C l_{M}^{-}\left(p^{\infty}\right)$ for its maximal anti-cyclotomic quotient $C l_{M}^{-}\left(p^{\infty}\right)=$ $C l_{M}\left(p^{\infty}\right) / C l_{M}\left(p^{\infty}\right)^{1+c}$. Let Z be the maximal p-profinite quotient of $C l_{M}^{-}\left(p^{\infty}\right)$. Then by theta series, we have

$$
\mathbb{T}_{c m} \cong W[[Z]] \text { which is Gorenstein. }
$$

As is well known, by ramification of ψ^{-}at p, we have
\mathbb{T} is a Gorenstein ring flat over \wedge.
Write Υ for the maximal torsion-free quotient of Z.

§17. Congruence module.

Write $\operatorname{Spec}\left(X^{\perp}\right)$ for the complementary union of irreducible components of a union $\operatorname{Spec}(X)$ of irreducible components of $\operatorname{Spec}(\mathbb{T})$.

By the solution of anticyclotomic main conjecture, If \mathbb{J} is a CM irreducible component with $\rho_{\mathbb{J}} \cong \operatorname{Ind}{ }_{M}^{\mathbb{Q}} \Psi$, we have

$$
\begin{aligned}
& \operatorname{Spec}(\mathbb{J}) \cap \operatorname{Spec}\left(\mathbb{J}^{\perp}\right)=\operatorname{Spec}\left(\mathbb{J} \otimes_{\mathbb{T}} \mathbb{J}^{\perp}\right) \\
& \cong \operatorname{Spec}\left(W[[\Upsilon]] /\left(h \cdot L\left(\Psi^{-}\right)\right)\right),
\end{aligned}
$$

for the Ψ^{-}branch of the Katz measure and the class number h of M.

From the above formula, by Gorensteinness of \mathbb{T} and $\mathbb{T}_{c m}$, we can compute

$$
\begin{array}{r}
\operatorname{Spec}\left(\mathbb{T}_{c m}\right) \cap \operatorname{Spec}\left(\mathbb{T}_{c m}^{\perp}\right)=\operatorname{Spec}\left(\mathbb{T}_{c m} \otimes_{\mathbb{T}} \mathbb{T}_{c m}^{\perp}\right) \\
\cong \operatorname{Spec}\left(W[[Z]] /\left(L^{-}\left(\bar{\psi}^{-}\right)\right)\right)
\end{array}
$$

for the $\bar{\psi}^{-}$projection $L^{-}\left(\bar{\psi}^{-}\right)$of the anticyclotomic Katz measure.
§18. Last steps.

Recall our simplifying assumption $\mathbb{I} \cong \wedge$. Note $\operatorname{Spec}(\mathbb{I}) \subset \operatorname{Spec}\left(\mathbb{T}_{c m}^{\perp}\right)$. The annihilator \mathfrak{x} of $\operatorname{Spec}(\mathbb{I}) \cap \operatorname{Spec}\left(\mathbb{T}_{c m}\right)$ is the minimal ideal of \mathbb{I} such that

$$
\rho_{\mathbb{I}} \equiv \operatorname{Ind}_{M}^{\mathbb{Q}} \Phi \quad \bmod \mathfrak{x}
$$

for the universal character $\boldsymbol{\Phi}: \operatorname{Gal}(\overline{\mathbb{Q}} / M) \rightarrow$ $W[[Z]] \cong \mathbb{T}_{c m}$.

Thus we have $\mathbb{I} / \mathfrak{x}$ is a sujective image of $W[[Z]] /\left(L\left(\bar{\psi}^{-}\right)\right)$. This implies $\mathfrak{x} \supset\left(L_{\bar{\psi}^{-}}^{-}\right)$. Plainly $\mathfrak{x}=\mathfrak{a}$ for $\mathfrak{a} \cong \mathfrak{u}$ as Λ-modules.

§19. Conclusion.

We want to show $\mathfrak{x}^{2} \subset \mathfrak{c}$. Let $D=\operatorname{Im}(\bar{\rho})$ which is a dihedral group of order prime to p. We can lift D to $\widetilde{D} \subset \operatorname{Im}\left(\rho_{\mathbb{I}}\right)$ so that $j, J \in \widetilde{D} \cap \rho_{\mathbb{I}}\left(D_{p}\right)$ and

$$
J=\lim _{n \rightarrow \infty} \rho_{\mathbb{I}}(c)^{p^{n}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Thus \mathfrak{b} made of $\mathfrak{u}_{t}=J \mathfrak{u} J^{-1}$ is also equal to
\mathfrak{x}. Then $\mathfrak{c} \supset \mathfrak{a b}=\mathfrak{x}^{2}$.

§20. Case SL.

In this case, if $p \geq 7, S L_{2}\left(\mathbb{F}_{p}\right)$ cannot be lifted to $G L_{2}(A)$ for any characteristic 0 ring A. Thus if $P \nmid(p), \mathcal{M}^{0}\left(\bar{G}_{P}\right)$ is non-zero Lie \mathbb{Z}_{p}-algebra on which $\operatorname{Im}(\bar{\rho}) \supset S L_{2}\left(\mathbb{F}_{p}\right)$ acting by the irreducible adjoint representation; so, $\mathcal{M}^{0}\left(\bar{G}_{P}\right)$ contains an open subalgebra of a conjugate of $\mathfrak{s l}_{2}\left(\mathbb{Z}_{p}\right)$; so, $\operatorname{Im}\left(\rho_{P}\right)$ contains an open subgroup of $S L_{2}\left(\mathbb{Z}_{p}\right)$; so, $P \nmid L(\mathbb{I})$.

If $P \mid(p)$, we can take $\mathbb{H}=\left\{x \in \operatorname{Im}\left(\rho_{\mathbb{I}}\right) \mid(x \bmod \mathfrak{m})\right.$ is upper unipotent $\}$. The $\overline{\mathbb{H}}_{P}$ normalized by \mathcal{T} is infinite containing non-zero \wedge-modules $\overline{\mathfrak{u}}$ and $\overline{\mathfrak{u}}_{t}$; so, $\mathfrak{c} \supset \mathfrak{u} \mathfrak{u}_{t}$ is prime to P.

We conclude $L(\mathbb{I})=1$.

