* Big Galois representations and *p*-adic *L*-functions First lecture

Haruzo Hida Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A.

June 17 2011

*A 105 minutes talk at Université de Paris Nord. The author is partially supported by the NSF grant: DMS 0753991 and DMS 0854949 and by Clay Mathematics institute as a senior scholar. We have Galois representations ρ : Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow GL_2(\Lambda)$ for $\Lambda = \mathbb{Z}_p[[T]]$ associated to *p*-adic analytic families of Hecke eigen cusp forms.

Supposing that ρ does not have abelian image over $\operatorname{Gal}(\overline{\mathbb{Q}}/M)$ for any quadratic field M/\mathbb{Q} (non CM condition), we want to show that the image $\operatorname{Im}(\rho)$ is big!

Under some mild conditions, we prove that

- $\operatorname{Im}(\rho) \supset \{x \in SL_2(\Lambda) | x \equiv 1 \mod \mathfrak{c}\} =:$ $\Gamma(\mathfrak{c})$ for a Λ -ideal $\mathfrak{c} \neq 0$. Taking this \mathfrak{c} as large as possible, we call \mathfrak{c} the conductor of ρ .
- Taking the reflexive closure $\bigcap_{(\lambda)\supset \mathfrak{c}}(\lambda)$ which is a principal ideal (L), we want to determine (L). We ask:

Is *L* related to a *p*-adic *L*-function?

$\S1.$ Notation

To define the family ${\mathcal F}$ we study, we introduce some notation. Fix

- An odd prime $p \ge 5$;
- a positive cube-free integer N $(p \nmid N)$;
- two field embeddings $\mathbb{C} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$.

Consider the space of cusp form

$$S_{k+1,\psi} = S_{k+1}(\Gamma_0(Np^{r+1}),\psi) \quad (r \ge 0)$$

of weight "k + 1" with Nebentypus ψ .

Let the rings

 $\mathbb{Z}[\psi] \subset \mathbb{C}$ and $\mathbb{Z}_p[\psi] \subset \overline{\mathbb{Q}}_p$ be generated by $\psi(n)$ (n = 1, 2, ...) over \mathbb{Z} and \mathbb{Z}_p .

The Hecke algebra over \mathbb{Z} is

 $h = \mathbb{Z}[\psi][T(n)|n = 1, 2, \cdots] \subset \operatorname{End}(S_{k+1,\psi}).$ Put $h_{k+1,\psi} = h \otimes_{\mathbb{Z}[\psi]} \mathbb{Z}_p[\psi].$

Sometimes our T(p) is written as U(p) as the level is divisible by p.

§2. Big Hecke algebra

The ordinary part $h_{k+1,\psi}^{ord} \subset h_{k+1,\psi}$ is the **maximal ring direct summand** on which U(p) is invertible; so,

$$h^{ord} = e \cdot h$$
 for $e = \lim_{n \to \infty} U(p)^{n!}$.

Let $\psi_1 = \psi_N \times \text{the tame } p\text{-part of } \psi$. Then, we have a unique 'big' Hecke algebra $\mathbf{h} = \mathbf{h}_{\psi_1}$ such that

- h is free of finite rank over $\mathbb{Z}_p[[T]]$ with $T(n) \in h$ (n = 1, 2, ...; T(p) = U(p))
- Let $\gamma = 1 + p$. If $k \ge 1$ and $\varepsilon : \mathbb{Z}_p^{\times} \to \mu_{p^{\infty}}$ is a character,

$$\mathbf{h}/(1+T-\psi(\gamma)\varepsilon(\gamma)\gamma^k)\mathbf{h}\cong h_{k+1,\varepsilon\psi_k}^{ord}$$

for $\psi_k := \psi_1 \omega^{1-k}$, sending T(n) to T(n), where ω is the Teichmüller character.

\S **3.** Galois representation

Each irreducible component

 ${\tt Spec}({\Bbb I})\subset{\tt Spec}(h)$

with normalization Spec $(\tilde{\mathbb{I}})$ has a **Galois** representation

$$\rho_{\mathbb{I}}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\widetilde{\mathbb{I}})$$

with **coefficients** in I (or its quotient field) such that

$$\operatorname{Tr}(\rho_{\mathbb{I}}(Frob_l)) = a(l)$$

(for the image a(l) in \mathbb{I} of T(l)) for almost all primes ℓ .

We regard $P \in \operatorname{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)$ as an algebra homomorphism $P : \mathbb{I} \to \overline{\mathbb{Q}}_p$, and we put $\rho_P = P \circ \rho_{\mathbb{I}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\overline{\mathbb{Q}}_p).$

\S 4. Analytic family

A point P of $\operatorname{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)$ is called

arithmetic

if $P(1 + T - \varepsilon \psi_k(\gamma)\gamma^k) = 0$ for $k \ge 1$ and $\varepsilon : \mathbb{Z}_p^{\times} \to \mu_p^{\infty}$.

If P is arithmetic, we have a Hecke eigenform $f_P \in S_{k+1}(\Gamma_0(Np^{r(P)}), \varepsilon \psi_k)$ such that

$$f_P|T(n) = a_P(n)f_P \quad (n = 1, 2, ...)$$

for $a_P(n) := P(a(n)) \in \overline{\mathbb{Q}}_p$.

We write $\varepsilon_P = \varepsilon$ and k(P) = k.

Thus I gives rise to an analytic family

$$\mathcal{F}_{\mathbb{I}} = \{ f_P | \text{arithemtic } P \in \text{Spec}(\mathbb{I}) \}$$

$\S5.$ CM component and CM family

We call a Galois representation ρ **CM** if there exists an open subgroup $G \subset \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ such that the semi-simplification $(\rho|_G)^{ss}$ has abelian image over G.

We call \mathbb{I} a *CM component* if $\rho_{\mathbb{I}}$ is CM.

If I is a CM component, it is known that for an imaginary quadratic field M in which p splits, there exists a Galois character Ψ : $Gal(\overline{\mathbb{Q}}/M) \to \widetilde{\mathbb{I}}^{\times}$ such that $\rho_{\mathbb{I}} \cong Ind_{M}^{\mathbb{Q}} \Psi$.

If $\rho_P \cong \operatorname{Ind}_M^{\mathbb{Q}} \Psi_P$ for some arithmetic point P, \mathbb{I} is a CM component.

§6. As $D_p = \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ representation.

Let $V(\mathbb{I}) = \tilde{\mathbb{I}}^2$ be the representation space of $\rho_{\mathbb{I}}$. We have the following exact sequence of D_p -modules coming from connectedétale sequence of Tate modules of modular jacobians:

$$0 \to V^{\circ}(\mathbb{I}) \to V(\mathbb{I}) \to V(\mathbb{I})^{et} \cong \widetilde{\mathbb{I}} \to 0$$

under suitable assumptions; so, we have

$$\operatorname{Tr}(\rho_{\mathbb{I}}(Frob_{l})) = T(l) \quad (l \nmid Np),$$

$$\rho_{\mathbb{I}}^{\operatorname{ss}}([\gamma^{s}, \mathbb{Q}_{p}]) \sim \begin{pmatrix} (1+T)^{s} & 0 \\ 0 & 1 \end{pmatrix} \text{ and }$$

$$\rho_{\mathbb{I}}^{\operatorname{ss}}([p, \mathbb{Q}_{p}]) \sim \begin{pmatrix} * & 0 \\ 0 & a(p) \end{pmatrix}, \text{ (Gal)}$$

where $\gamma^s = (1 + p)^s \in \mathbb{Z}_p^{\times}$ for $s \in \mathbb{Z}_p$ and $[x, \mathbb{Q}_p]$ is the local Artin symbol.

$\S7.$ Assumptions enforced.

Pick and fix a non CM component \mathbb{I} of prime-to-p level N. Write $\overline{p} = \rho_{\mathfrak{m}} = (\rho_{\mathbb{I}} \mod \mathfrak{m})$ for the maximal ideal \mathfrak{m} of \mathbb{I} . and assume $p \ge 5$ and the following condition throughout

(R) $\overline{\rho}|_{D_p} \cong \begin{pmatrix} \overline{\epsilon} & * \\ 0 & \overline{\delta} \end{pmatrix}$ with $\overline{\delta}$ unramified and $\overline{\epsilon} \neq \overline{\delta}$.

Consider the following conditions:

(s) There exists $g \in D_p$ with $\rho_{\mathbb{I}}(g)$ having eigenvalues α, β in \mathbb{Z}_p such that $\alpha^2 \not\equiv \beta^2$ mod $\mathfrak{m}_{\mathbb{I}}$;

(u) $\rho_{\mathbb{I}}(D_p)$ contains a non-trivial unipotent element $g \in GL_2(\mathbb{I})$;

(v) $\rho_{\mathbb{I}}(D_p)$ contains a unipotent element $g \in GL_2(\mathbb{I})$ with $g \not\equiv 1 \mod \mathfrak{m}_{\mathbb{I}}$.

\S 8. Existence of the level.

Our first goal is:

Theorem I. Suppose one of the two conditions (s) or (u). Then

- 1. There exist a representation ρ equivalent to $\rho_{\mathbb{I}}$ with values in $GL_2(\widetilde{\mathbb{I}})$ such that $G := \operatorname{Im}(\rho) \cap SL_2(\Lambda)$ contains $\Gamma_{\Lambda}(\mathfrak{a})$.
- 2. If \mathfrak{c} is the Λ -ideal maximal among \mathfrak{a} with $G \supset \Gamma(\mathfrak{a})$, the ideal $\mathfrak{c}_P \subset \Lambda_P$ localized at a prime divisor P only depends on the isomorphism class $[\rho_{\mathbb{I}}]$ as long as ρ_P is absolutely irreducible.
- 3. In particular, if $\overline{\rho} = \rho_{\mathfrak{m}}$ for the maximal ideal \mathfrak{m} of \mathbb{I} is absolutely irreducible, the reflexive closure (L) of \mathfrak{c} is independent of the choice of ρ with $G \supset \Gamma(\mathfrak{a}) \neq 1$.

§9. Lie algebra of a *p*-profinite group G.

Set-up: • A: a semi-local p-profinite ring.

• Define Θ : $SL_2(A) \to \mathfrak{sl}_2(A)$ and C : $SL_2(A) \to Z(A)$ for the center Z(A) of $M_2(A)$ by

$$\Theta(x) = x - \frac{1}{2} \operatorname{Tr}(x) \mathbf{1}_2, \ \zeta(x) = \frac{1}{2} (\operatorname{Tr}(x) - 2) \mathbf{1}_2$$

for $\mathbf{1}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

• For a *p*-profinite subgroup $\mathcal{G} \subset SL_2(A)$, define *L* by the closed additive subgroup of $\mathfrak{sl}_2(A)$ generated by $\Theta(x)$ for all $x \in \mathcal{G}$.

• Put
$$C = \mathsf{Tr}(L \cdot L)$$
.

- Define $\mathcal{M}_1^0(\mathcal{G}) = L$ and $\mathcal{M}^0(\mathcal{G}) = [L, L]$.
- $[L, L] \subset L, C \cdot L \subset L.$
- L is a Lie \mathbb{Z}_p -subalgebra of $\mathfrak{sl}_2(A)$.
- Put $\mathcal{M}_1(\mathcal{G}) = C \cdot \mathbb{1}_2 \oplus \mathcal{M}_1^0(\mathcal{G})$ and

$$\mathcal{M}(\mathcal{G}) = \mathcal{M}_2(\mathcal{G}) = C \cdot \mathbf{1}_2 \oplus \mathcal{M}^0(\mathcal{G}),$$

which is a closed Lie \mathbb{Z}_p -subalgebra of $\mathfrak{gl}_2(A)$.

• Define $\mathcal{H} = \mathcal{H}_2$ for

$$\mathcal{H}_j = SL_2(A) \cap (1 + \mathcal{M}_j(\mathcal{G})).$$

$\S10.$ A theorem of Pink

Theorem 1 (Pink). Let the notation be as above. Let $\mathcal{G} \subset SL_2(A)$ be a *p*-profinite subgroup. Then we have

(1) \mathcal{H}_1 and \mathcal{H} are *p*-profinite subgroups of $SL_2(A)$;

(2) \mathcal{G} is a normal closed subgroup of \mathcal{H}_1 ;

(3) $\mathcal{H} = (\mathcal{H}_1, \mathcal{H}_1) = (\mathcal{G}, \mathcal{G})$ (the topological commutator subgroup).

• $\mathcal{G} \mapsto \mathcal{M}_j(\mathcal{G})$ (resp. $\mathcal{G} \mapsto \mathcal{M}_j^0(\mathcal{G})$) is a covariant functor from *p*-profinite subgroups of $SL_2(A)$ into closed Lie \mathbb{Z}_p -subalgebras of $\mathfrak{gl}_2(A)$ (resp. $\mathfrak{sl}_2(A)$).

• $\mathcal{M}_j(\mathcal{G})$ and $\mathcal{M}_j^0(\mathcal{G})$ are stable under the **adjoint** action $x \mapsto gxg^{-1}$ of the normalizer $N(\mathcal{G}) \subset SL_2(A)$.

• For an A-ideal \mathfrak{a} and for $\overline{\mathcal{G}}_{\mathfrak{a}} = (\mathcal{G} \mod \mathfrak{a}) = (\mathcal{G} \cdot \Gamma_A(\mathfrak{a})) / \Gamma_A(\mathfrak{a}), \ \mathcal{M}_j^0(\overline{\mathcal{G}}_{\mathfrak{a}}) \subset \mathfrak{sl}_2(A/\mathfrak{a}) \text{ is the image of } \mathcal{M}_j^0(\mathcal{G}) \text{ under } x \mapsto (x \mod \mathfrak{a}).$

$\S11$. A proof of Theorem I, Step 1.

• We only give the proof under (R) and (s) and $I = \Lambda$.

• Write \mathcal{B} for the upper triangular Borel subgroup of GL(2).

• Let $j = \lim_{n \to \infty} \rho_{\mathbb{I}}(g)^{p^n}$ for $g \in D_p$ in (s).

• By conjugating $\rho_{\mathbb{I}}$ by an element in $\mathcal{B}(\mathbb{I})$, we may assume

 $j = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta' \end{pmatrix}$ with $\zeta, \zeta' \in \mu_{p-1}(\mathbb{Z}_p), \ \zeta^2 \neq {\zeta'}^2$

and

•
$$\mathcal{T} = \left\{ \begin{pmatrix} (1+T)^s & 0 \\ 0 & 1 \end{pmatrix} \right\} \subset \rho_{\mathbb{I}}(D_p).$$

• Let $G = \operatorname{Im}(\rho_{\mathbb{I}}) \cap \Gamma(\mathfrak{m})$.

• We have two eigenspaces $\mathfrak{u} = \mathcal{M}^0(G)[z]$ for $z = \zeta \zeta'^{-1}$ and $\mathfrak{u}_t = \mathcal{M}^0(G)[z^{-1}]$ of $\mathcal{M}^0(G)$ under the adjoint action Ad(j). These are upper and lower nilpotent subalgebras.

• By the adjoint action of \mathcal{T} , \mathfrak{u} and \mathfrak{u}_t are Λ -modules (or abelian Lie Λ -algebras). • If $\mathfrak{u} \neq 0$ and $\mathfrak{u}_t \neq 0$, then $[\mathfrak{u}, \mathfrak{u}_t] \neq 0$, $[\mathfrak{u}, [\mathfrak{u}, \mathfrak{u}_t]] \neq 0$ and $[\mathfrak{u}_t, [\mathfrak{u}, \mathfrak{u}_t]] \neq 0$ generate Lie Λ -subalgebra of $\mathfrak{sl}_2(\Lambda)$ of rank 3; so, we are done, since $G \supset (G, G) = SL_2(\Lambda) \cap$ $(1 + \mathcal{M}(G)).$

§12. Non-triviality of \mathfrak{u} and \mathfrak{u}_t .

- Note that $det(\rho_{\mathbb{I}}([\gamma^s, \mathbb{Q}_p])) = (1+T)^s$.
- $\mathbb{H} = \{x \in \operatorname{Im}(\rho_{\mathbb{I}}) | \det(\rho_{\mathbb{I}})(x) \in \Gamma, x \equiv 1 \mod \mathfrak{m}\}$ is an open subgroup of $\operatorname{Im}(\rho_{\mathbb{I}})$.
- Replacing G by $G \cap \mathbb{H}$, we have $\mathbb{H} = \mathcal{T} \ltimes G$.

• Pick $P \in \text{Spec}(\Lambda)$. For any $X \subset GL_2(\Lambda)$, writing \overline{X}_P for the image of X in $GL_2(\Lambda/P)$, we have $\overline{\mathbb{H}}_P = \overline{T}_P \ltimes \overline{G}_P$; so, the reduction map $G \to \overline{G}_P$ is **onto**.

- Thus $\mathfrak{u} = \mathcal{M}^0(G)[z] \to \mathcal{M}^0(\overline{G}_P)[z] =: \overline{\mathfrak{u}}_P$ is **onto** by Pink's construction.
- Since I is a non CM component, for an **arithmetic** P, f_P does not have complex multiplication.

• By Ribet and Momose, \overline{G}_P contains an open subgroup of $SL_2(\mathbb{Z}_p)$, and therefore $\overline{\mathfrak{u}} \neq 0$, which implies $\mathfrak{u} \neq 0$.

• Similarly, $\mathfrak{u}_t \neq 0$.

\S **13.** Deciding the level; set-up.

We assume that the prime-to-p conductor of $\overline{\rho}$ is equal to N. We split our study following the shape of $\overline{\rho}$:

Case SL: $\operatorname{Im}(\overline{\rho}) \supset SL_2(\mathbb{F}_p)$.

Case A: $Im(\overline{\rho})$: either a tetrahedral, octahedral or icosahedral type.

Case D: \overline{p} is **induced** from a quadratic extension M which is either real or p does not split in M (dihedral image).

Case CM: $\overline{\rho}$ is **induced** from an imaginary quadratic extension M in which p splits. Case R: $\overline{\rho}$ is **reducible**.

In Cases D and CM, we write $\overline{p} = \operatorname{Ind}_{M}^{\mathbb{Q}} \overline{\psi}$ and assume that $\overline{\psi}^{-}(\sigma) = \overline{\psi}(\sigma c \sigma^{-1} c^{-1})$ (for $c \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ inducing a non-trivial automorphism of M) has order ≥ 3 ramified at p. In Case CM, let $L_{\overline{\psi}^{-}}^{-}$ be the product of the anticyclotomic Katz p-adic L-function of branch character reducing to $\overline{\psi}^{-}$ mod \mathfrak{m} .

In Case R, write $\overline{p} = \overline{\theta} \oplus \overline{\psi}$, and assume that θ ramified at p with $\overline{\theta}\overline{\psi}^{-1}$ having order ≥ 3 . Then **no two cases overlaps**.

\S **14.** Theorem

Our second goal is:

Theorem II. Suppose (R) and one of the conditions (s) and (v). Take a non CM cuspidal component I of prime-to-p cube-free level N and write (L(I)) for the reflexive closure of the conductor of I. Then Case SL: Assume $p \ge 7$. Then L(I) = 1. Case A: $T|L(I)|T^n$ for an integer n > 0. Case D: $L(I)|((1 + T)^{p^m} - 1)^2$ for $m \gg 0$. Case CM: Assume $p \nmid \varphi(N)$. Then $L(I)|(L_{\overline{\psi}}^-)^2$. Case R: Suppose $p \nmid \varphi(N)$. Then L(I) is a factor of the primitive Kubota-Leopoldt p-adic L-function whose branch character modulo p is $\overline{\psi}^{-1}\overline{\theta}\omega$.

Plainly, Cases CM and R in the theorem relate the level to p-adic L-functions. Out of the Galois representation of level L, one would be able to construct non-trivial Galois 1-cocycle with values in $Ad(\rho \mod L)$ not too much ramified; so, Cases A and D could be related to a certain p-adic L-function (possibly not yet constructed) if the cocycle gives Selmer cocycle.

§15. $P \nmid L(\mathbb{I})$ if $\operatorname{Im}(\rho_P) \cap SL_2(\mathbb{Z}_p)$ open.

By the proof of the existence of level, we find $\overline{\mathfrak{u}} \neq 0$ and $\overline{\mathfrak{u}}_t \neq 0$. Let

 $\mathfrak{a} = \{a \in \Lambda | \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \in \mathfrak{u}\}, \ \mathfrak{b} = \{b \in \Lambda | \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix} \in \mathfrak{u}_t\}.$ Then it is easy to see $\mathfrak{c} \supset \mathfrak{ab}$. In particular, \mathfrak{c} is prime to P.

Thus in these two cases, we have $P \nmid L(\mathbb{I})$. In particular, in Case CM,

$$P|L(\mathbb{I}) \Leftrightarrow \rho_P \cong \operatorname{Ind}_M^{\mathbb{Q}} \Psi_P$$

for a Galois character Ψ_P . Thus we study congruence of $\rho_{\mathbb{I}}$ and $\operatorname{Ind}_M^{\mathbb{Q}} \Phi$ for the universal character Φ deforming $\overline{\psi}$ without extra ramification.

$\S16.$ CM components

We start a sketch of a proof in Case CM when N is the discriminant of M.

Let Spec(\mathbb{T}) be the connected component of Spec(h) containing Spec(\mathbb{I}), and write Spec(\mathbb{T}_{cm}) for the union of all CM component of Spec(\mathbb{T}).

Let $Cl_M(p^{\infty})$ and $Cl_M^-(p^{\infty})$ for its maximal anti-cyclotomic quotient $Cl_M^-(p^{\infty}) = Cl_M(p^{\infty})/Cl_M(p^{\infty})^{1+c}$. Let Z be the **maximal** p-profinite quotient of $Cl_M^-(p^{\infty})$. Then by theta series, we have

 $\mathbb{T}_{cm} \cong W[[Z]]$ which is **Gorenstein**.

As is well known, by ramification of ψ^- at p, we have

 \mathbb{T} is a **Gorenstein ring** flat over Λ .

Write Υ for the maximal torsion-free quotient of Z.

\S **17.** Congruence module.

Write $\text{Spec}(X^{\perp})$ for the complementary union of irreducible components of a union Spec(X)of irreducible components of $\text{Spec}(\mathbb{T})$.

By the solution of anticyclotomic main conjecture, If $\mathbb J$ is a CM irreducible component with $\rho_{\mathbb J}\cong \operatorname{Ind}_M^{\mathbb Q} \Psi$, we have

$$Spec(\mathbb{J}) \cap Spec(\mathbb{J}^{\perp}) = Spec(\mathbb{J} \otimes_{\mathbb{T}} \mathbb{J}^{\perp})$$
$$\cong Spec(W[[\Upsilon]]/(h \cdot L(\Psi^{-}))),$$

for the Ψ^- branch of the Katz measure and the class number h of M.

From the above formula, by Gorensteinness of \mathbb{T} and \mathbb{T}_{cm} , we can compute

$$Spec(\mathbb{T}_{cm}) \cap Spec(\mathbb{T}_{cm}^{\perp}) = Spec(\mathbb{T}_{cm} \otimes_{\mathbb{T}} \mathbb{T}_{cm}^{\perp})$$
$$\cong Spec(W[[Z]]/(L^{-}(\overline{\psi}^{-})))$$

for the $\overline{\psi}^-$ projection $L^-(\overline{\psi}^-)$ of the anticyclotomic Katz measure.

\S **18.** Last steps.

Recall our simplifying assumption $\mathbb{I} \cong \Lambda$. Note Spec(\mathbb{I}) \subset Spec(\mathbb{T}_{cm}^{\perp}). The annihilator \mathfrak{x} of Spec(\mathbb{I}) \cap Spec(\mathbb{T}_{cm}) is the minimal ideal of \mathbb{I} such that

$$ho_{\mathbb{I}} \equiv \operatorname{Ind}_M^{\mathbb{Q}} \Phi \mod \mathfrak{x}$$

for the universal character Φ : Gal $(\overline{\mathbb{Q}}/M) \rightarrow W[[Z]] \cong \mathbb{T}_{cm}$.

Thus we have \mathbb{I}/\mathfrak{x} is a sujective image of $W[[Z]]/(L(\overline{\psi}^-))$. This implies $\mathfrak{x} \supset (L_{\overline{\psi}^-})$. Plainly $\mathfrak{x} = \mathfrak{a}$ for $\mathfrak{a} \cong \mathfrak{u}$ as Λ -modules.

\S **19.** Conclusion.

We want to show $\mathfrak{x}^2 \subset \mathfrak{c}$. Let $D = \operatorname{Im}(\overline{\rho})$ which is a dihedral group of order prime to p. We can lift D to $\widetilde{D} \subset \operatorname{Im}(\rho_{\mathbb{I}})$ so that $j, J \in \widetilde{D} \cap \rho_{\mathbb{I}}(D_p)$ and

$$J = \lim_{n \to \infty} \rho_{\mathbb{I}}(c)^{p^n} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Thus b made of $\mathfrak{u}_t = J\mathfrak{u}J^{-1}$ is also equal to \mathfrak{x} . Then $\mathfrak{c} \supset \mathfrak{ab} = \mathfrak{x}^2$.

§20. Case SL.

In this case, if $p \geq 7$, $SL_2(\mathbb{F}_p)$ cannot be lifted to $GL_2(A)$ for any characteristic 0 ring A. Thus if $P \nmid (p)$, $\mathcal{M}^0(\overline{G}_P)$ is non-zero Lie \mathbb{Z}_p -algebra on which $\operatorname{Im}(\overline{\rho}) \supset SL_2(\mathbb{F}_p)$ acting by the irreducible adjoint representation; so, $\mathcal{M}^0(\overline{G}_P)$ contains an open subalgebra of a conjugate of $\mathfrak{sl}_2(\mathbb{Z}_p)$; so, $\operatorname{Im}(\rho_P)$ contains an open subgroup of $SL_2(\mathbb{Z}_p)$; so, $P \nmid L(\mathbb{I})$.

If P|(p), we can take $\mathbb{H} = \{x \in \operatorname{Im}(\rho_{\mathbb{I}}) | (x \mod \mathfrak{m}) \text{ is upper unipotent} \}.$ The $\overline{\mathbb{H}}_P$ normalized by \mathcal{T} is infinite containing non-zero Λ -modules $\overline{\mathfrak{u}}$ and $\overline{\mathfrak{u}}_t$; so, $\mathfrak{c} \supset \mathfrak{uu}_t$ is prime to P.

We conclude $L(\mathbb{I}) = 1$.