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1. Lecture 1: Abelian components of the ‘big’ Hecke algebra

Fix a prime p ≥ 5, field embeddings C
i∞←↩ Q

ip
↪→ Qp and a positive integer N prime

to p. Consider the space of modular forms Mk+1(Γ0(Np
r+1), ψ) with (p - N, r ≥ 0)

(including Eisenstein series) and cusp forms Sk+1(Γ0(Np
r+1), ψ). Let the ring Z[ψ] ⊂

C and Zp[ψ] ⊂ Qp be generated by the values ψ over Z and Zp, respectively. The
Hecke algebra over Z[ψ] is H = Z[ψ][T (n)|n = 1, 2, · · · ] ⊂ End(Mk+1(Γ0(Np

r+1), ψ)).
We put Hk+1,ψ = Hk+1,ψ/W = H ⊗Z[ψ] W for a p-adic discrete valuation ring W ⊂ Qp

containing Zp[ψ]. Sometimes our T (p) is written as U(p) as the level is divisible by
p. The ordinary part Hk+1,ψ/W ⊂ Hk+1,ψ/W is the maximal ring direct summand
on which U(p) is invertible. Let ψ1 = ψN × the tame p-part of ψ. Then, we have a
unique ‘big’ Hecke algebra H = Hψ1/W such that

(1) H is free of finite rank over Λ := W [[T ]] equipped with T (n) ∈ H for all n,
(2) if k ≥ 1 and ε : Z×

p → µp∞ is a character,

H/(1 + T − ψ(γ)ε(γ)γk)H ∼= Hk+1,εψk
(γ = 1 + p) for ψk := ψ1ω

1−k,

sending T (n) to T (n), where ω is the Teichmüller character.

A (normaized) Hecke eigenform in Mk+1(Γ0(Np
r+1), ψ) has slope 0 if f |U(p) = a · f

with |a|p = 1. An important consequence of the above two facts is

(B) The number of slope 0 Hecke eigenform of level Npr+1, of weight k+1 and of
given character ψ modulo Npr+1 is bounded independent of k, r and ψ.

If f has slope 0, λ : H → Qp given by f |h = λ(h)f for h ∈ H factors through Hk+1,ψ

and f =
∑∞

n=0 a(n, f)qn = constant +
∑∞

n=1 λ(T (n))qn. Thus the number of slope
0 forms with Neben character ψ is less than or equal to rankW Hk+1,ψ = rankΛ Hψ1

independent of r and ε. The Hecke field of f is Q(f) = Q(λ(n)|n = 1, 2, . . . ).
The corresponding objects for cusp form is denoted by the corresponding lower case

characters; so, for example, h = Z[ψ][T (n)|n= 1, 2, · · · ] ⊂ End(Sk+1(Γ0(Np
r+1), ψ)),

hk+1,ψ/W = h ⊗Z[ψ] W , the ordinary part hk+1,ψ ⊂ hk+1,ψ and the big cuspidal Hecke
algebra h/W . Replacing modular forms by cusp forms (and upper case symbols by
lower case symbols), we can construct the “big” cupspidal Hecke algebra hψ1

and for
the algebra, the same assertions as (1) and (2) holds. We have a surjective Λ-algebra
homomorphism H � h sending T (n) to T (n).

Each point P ∈ Spec(H) has a 2-dimensional (semi-simple) Galois representa-
tion ρP (of Gal(Q/Q)) with coefficients in the residue field κ(P ) of P such that
Tr(ρI(Frobl)) = (T (l) mod P ) for almost all primes `. In particular, I carries a
Galois representation ρI with

Tr(ρI(Frobl)) = a(l) (for the image a(l) in I of T (l)).

If a prime divisor P of Spec(I) contains (1 + T − εψk(γ)γk) with k ≥ 1, regarding
it as an algebra homomorphism (P : I → Qp) ∈ Spec(I)(Qp), we therefore have a

Hecke eigenform fP ∈Mk+1(Γ0(Np
r(P )+1), εψk) with fP |T (n) = aP (n)fP for aP (n) =

P (a(n)) ∈ Qp for all n. Such a P is called arithmetic if k ≥ 1, and we write εP = ε,
r(P ) = r and k(P ) = k for such a P . Thus I gives rise to a slope 0 analytic family
of modular forms FI = {fP |arithemtic P ∈ Spec(I)(Qp)} and Galois representations

{ρP}P∈Spec(I)(Qp). For a ∈ I, we write aP ∈ Qp for P (a).

We call a Galois representation ρ abelian if there exists an open subgroup G ⊂
Gal(Q/Q) such that the semi-simplification (ρ|G)ss has abelian image over G. We
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call I an abelian component if ρI is abelian. A component I is called cuspidal if
Spec(I) ⊂ Spec(h), and if not, we call it Eisenstein component.

Hereafter assume I to be cuspidal. We have a p-adic L-function

Lp = Lp(Ad(ρI)) := Lp(1, Ad(ρI)) = Lp(1, ρ
sym⊗2
I ⊗ det(ρI)

−1) ∈ I

interpolating

Lp(P ) := P (Lp) = (Lp mod P ) =
L(1, Ad(ρP ))

period
for all arithemtic P .

Writing Spec(h) = Spec(I) ∪ Spec(X) for the complement X, we have (under a mild
assumption)

Spec(I) ∩ Spec(X) = Spec(I⊗h X) ∼= Spec(I/(Lp)) (a congruence criterion).

If we interpolate L-values including the cyclotomic variable, i.e, adding a variable
s interpolating L(s, Ad(ρP )) moving s, we need to multiply the L-value by the modi-
fying Euler p-factor. For this enlarged two variable adjoint L-function, the modifying
factor vanishes at s = 1; so, Lp(s, Ad(ρI)) has an exceptional zero at s = 1, and for an

L-invariant 0 6= Lan(Ad(ρI)) ∈ I[ 1
p
], we expect to have L′

p(1, Ad(ρI))
?
= Lan(Ad(ρI))Lp

(in the style of Mazur–Tate-Teitelbaum). Greenberg proposed a definition of a num-
ber L(Ad(ρP )) conjectured to be equal to Lan(Ad(ρP )) for arithmetic P . We can
interpolate Greenberg’s L-invariant L(Ad(ρP )) over arithemtic P to get a function
L(Ad(ρI)) 6= 0 in I[ 1

p
] so that L(Ad(ρI))(P ) = L(Ad(ρP )) for all arithmetic P .

1.1. Is characterizing abelian components important? Here is a list of such
characterizations (possibly conjectural)

• (Well known) A cuspidal I is abelian ⇔ there exist an imaginary quadratic
field M = Q[

√
−D] in which p splits into pp and a character Ψ = ΨI : GM =

Gal(Q/M) → I× of conductor cp∞ for an ideal c with ccDM |N such that
ρI = IndQ

M Ψ, where DM is the discriminant of M . Thus we call cuspidal

abelian component a CM component. This implies Lp = Lp(Ψ
−)L(0,

(
M/Q

)
),

where Ψ−(σ) = Ψ(cσc−1σ−1) for complex conjugation c, and Lp(Ψ
−) is the

anticyclotomic Katz p-adic L-function associated to Ψ−. This is a base of the
proof by Mazur/Tilouine of the anticyclotomic main conjecture.
• (Known) I is abelian ⇔ ρP is abelian for a single arithmetic prime P .
• (Almost true, 4th lecture) I abelian ⇔ ρI mod p is abelian. This is almost

equivalent to the vanishing of the Iwasawa µ-invariant for Lp(Ψ
−) (which is

known if c is made up of primes split over Q). We discuss about µ in the last
two lectures.
• (Known under a mild condition, 2nd lecture) Consider the composite of Hecke

fields Vr(I) ⊂ Q generated by aP (n) for all n and all arithmetic P with level
≤ Npr+1 for a fixed r ≥ 0. Then I is abelian ⇔ [Vr(I) : Q] <∞. This was a
question of L. Clozel asked to me in the early 1990s.
• (Horizontal theorem in the 1st lecture) Fix k ≥ 1 and consider the composite

of Hecke fields Hk(I) generated by aP(n) for all n and all arithmetic P with
weight k. Then I is abelian ⇔ [Hk(I) : Q(µp∞)] <∞.
• (Known, 3rd lecture) L(Ad(ρI)) is a constant function if and only if I is a CM

component. This is a corollary of Horizontal theorem.
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• (?) Lp(s, Ad(fP )) (for an arithmetic P ) has exceptional zero at s = 1 and
its L-invariant L(Ad(fP )). Is I abelian if and only if L(Ad(fP )) = logp(p/p)
for one arithmetic P up to algebraic numbers? Here taking a high power
(p/p)h = (α), logp(p/p) = 1

h
logp(α) for the Iwasawa logarithm logp.

All statements seem to have good arithmetic consequences, and I am convinced the
importance of giving as many characterizations of abelian components as possible.

1.2. Horizontal theorem. Here is what we prove in this first lecture:

Theorem 1.1. Pick an infinite set A of arithmetic points P with fixed weight k(P ) =
k ≥ 1. Write HA(I) ⊂ Hk(I) for the field generated over Q(µp∞) by {aP (p)}P∈A.
Then the field HA(I) is a finite extension of Q(µp∞) if and only if I is abelian.

We prepare a lemma:

Lemma 1.2. Let F be a slope 0 p-adic analytic family of Hecke eigenforms with
coefficients in I. Then we have

(1) Fix 0 ≤ r < ∞. Let K = Q. Then the degree [K(fP ) : K(aP (p))] for
arithmetic P with r(P ) ≤ r is bounded independently of P ,

(2) Let K = Q(µp∞) and fix k ≥ 1. Then the degree [K(fP ) : K(aP (p))] for
arithmetic P with k(P ) = k is bounded independently of P .

Proof. If σ ∈ Gal(Q/K[ψ1, ω]) fix aP (p), fσP is still ordinary Hecke eigenforms of the
same level and the same Neben character. The number of such forms is bounded by
rankZp[[T ]] h. Thus [K(fP ) : K(aP (p))] ≤ [K[ψ1, ω] : K] rankZp [[T ]] h. �

Hereafter we fix A and assume that [HA(I) : K] < ∞ for K := Q(µp∞). We try
to prove that I is abelian. Put K(fP ) = K[aP(n);n = 1, 2, . . . ] ⊂ Q. For a prime l
outside Np, let A(l) be a root of det(X − ρI(Frobl)) = 0. Then αl,P := AP(l) is a
root of X2 − aP (l)X + ψk(l)l

k(P ) = 0. If l = p, we put A(l) = a(l). Fix l. Extending
I, we assume that A(l) ∈ I. By the lemma, LP = K[αl,P ] has bounded degree over K
independent of l and P for all P ∈ A; so, l is tamely ramified in LP /K for l� 0.

1.3. Weil numbers. We start preparing for a proof of the theorem. For a prime l,
a Weil l-number α ∈ C of integer weight k ≥ 0 satisfies

(1) α is an algebraic integer; (2) |ασ| = lk/2 for all σ ∈ Gal(Q/Q).

If α is a Weil number, Q(α) is contained in a CM field. We call two nonzero algebraic
numbers a and b equivalent (written as a ∼ b) if a/b is a root of unity.

Lemma 1.3. Let K be a finite field extension of Q(µp∞). Then for a given prime l
and weight k ≥ 0, there are only finitely many Weil l-numbers of weight k in K up to
equivalence. If l = p and K = Q[µp∞], any Weil p-number of weight k is equivalent
to (p∗)k/2, where p∗ = (−1)(p−1)/2p if p is odd, and p∗ = 2 if p = 2.

Proof. If l 6= p, the prime l remains prime in Q[µp∞] over a finite subextension of
Q[µp∞]. Thus there are only finitely many primes L of Z[µp∞] above (l) Thus for a
Weil l-number α of weight k, for the normalized valuation vL of L with vL(l) = 1,
0 ≤ vL(α) ≤ k is bounded, and there are only finitely many possibilities of prime
factorization of (α). If (α) = (β) for two Weil l-numbers α, β, then α/β is a Weil
number of weight 0; so, α ∼ β by Kronecker’s theorem. If l = p, there is only one
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prime in Q[µp∞] above p; so, any Weil p-number of weight k is equivalent to (p∗)k/2,
since

√
p∗ ∈ Q[µp∞]. Thus the result follows from this if K = Q(µp∞).

For general finite extension K/Q[µp∞ ], still there are finitely many primes over l in
the integer ring of K; so, the same argument works. �

Here is a slight improvement of the above fact:

Proposition 1.4. Let Kd be the set of all finite extensions of Q[µp∞] of fixed degree

d inside Q whose ramification at l is tame. Then there are only finitely many Weil
l-numbers up to equivalence of a given weight in the set-theoretic union

⋃
L∈Kd

L in

Q.

The point of the proof is as follows. Writing K = Q[µp∞] and Kl = K ⊗A Ql,
by tameness, there are only finitely many isomorphism class of K ⊗A Ql-algebras
Ll = L⊗Q Ql for L ∈ Kd. Thus we only need to prove finiteness for Weil numbers of
given weight contained in a fixed isomorphism class of Ll. We look at the universal
composite Ll ⊗Kl

Ll which is a product of fields indexed by l-adic nonequivalent
normalized valuations v1, . . . , vn. Consider a tuple

V (α) = (v1(α⊗ 1), . . . , vn(α⊗ 1), v1(1⊗ α), . . . , vn(1⊗ α)).

If α ∼ β, we have V (α) = V (β). The tuple V (α) determines the prime factorization
of (α) in any possible composite K(α, β); so, if V (α) = V (β), (α) = (β) in K(α, β);
so, by Kronecker’s theorem, α ∼ β. Since there are only finitely many possibilities of
V (α), there are only finitely many classes.

It is not very difficult to prove

Lemma 1.5. The group of roots of unity in the composite L of L for L ∈ Kd in Q
contains µp∞(K) as a subgroup of finite index.

By this, we can replace the equivalent α ∼ β by finer one α ≈ β requiring α/β ∈
µp∞ , and still the finer equivalence classes in the union

⋃
L∈Kd

L of Weil l-numbers of
given weight is finite.

1.4. A key lemma in the entire lectures. We start with a rigidity lemma:

Lemma 1.6. Let Φ(T ) ∈W [[T ]]. If there is an infinite subset Ω ⊂ µp∞(K) such that
Φ(ζ − 1) ∈ µp∞(Qp) for all ζ ∈ Ω, then there exists ζ0 ∈ µp∞(W ) and s ∈ Zp such

that ζ−1
0 Φ(T ) = (1 + T )s =

∑∞
n=0

(
s
n

)
T n.

By the assumption, for s ∈ Z×
p sufficiently close to 1, ζ 7→ ζs is an automorphism of

W [[µp∞]] over W ; so, Φ(ζs − 1) = Φ(ζ)s ⇔ Φ(ts) = Φ(t)s (t = 1 + T ), and the power
series is the desired form by a lemma of Chai [C] Theorem 4.3 and [C1] Remark 6.6.1
(iv). Here is a sketch of an elementary proof supplied to me by Kiran Kedlaya.

Proof. Making variable change T 7→ ζ−1
1 (T + 1) − 1 for a ζ1 ∈ Ω (replacing W by its

finite extension if necessary), we may replace Ω by ζ−1
1 Ω 3 1; so, rewriting ζ−1

1 Ω as
Ω, we may assume that 1 ∈ Ω. Note t = 1⇔ T = 0.

Write the valuation of W as v (and use the same symbol v for an extension of v to
W [µp∞]). Normalize v so that v(p) = 1. We are trying to show that Φ(T ) = (1+T )sζ ′

for some s ∈ Zp and some p-power root of unity ζ ′. Anyway, we write Φ(0) = ζ ′ ∈
µp∞(Qp). Replacing Φ by ζ ′−1Φ (and extending the scalar to a finite extension of W
if necessary), we may assume that Φ(0) = 1.
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Suppose that Φ(T ) 6∈W (non-constant). Write Φ(T )− 1 =
∑∞

i=1 aiT
i. Since W is

a DVR, there is a least index j > 0 for which v(aj) is minimized. For ε sufficiently
small, if v(τ ) = ε, then v(Φ(τ )−1) = v(aj)+jε. In particular, for ζ a p-power root of
unity, taking τ = ζ−1, we have v(ζ−1) = p−m/(p−1) for some non-negative integer
m, so we have infinitely many relations of the form jp−m/(p−1)+v(aj) = p−n/(p−1).
Then, we have m → ∞ ⇒ n → ∞ (by continuity and non-constancy of τ 7→ Φ(τ ));
so, taking limits under m → ∞ yields v(aj) = 0. Also, j must be a power of p, say
j = ph, and for m large we have n = m− h.

Since v(aj) = 0, aj mod mW is in F×. For the moment, assume F = Fp. That
is, aj reduces to an integer b0 coprime to p in the residue field of W . We can thus
replace Φ(T ) by Φ1(T ) defined by Φ(T ) = Φ1(T ) × (1 + T )s for some s (namely
s = b0j = b0p

h0 for h0 := h) so as to increase the least index j for which v(aj) = 0.

Indeed, writing Φ(T ) =
∑j

n=0 anT
n + T j+1f(T ) with f(T ) ∈W [[T ]], we have

j∑

n=0

anT
n ≡ 1 + b0T

ph0 ≡ (1 + T p
h0

)b0 ≡ (1 + T )s mod (mW + (T j+1)).

we have Φ1(T ) ≡ 1 + T j+1f(T )(1 + T )−s ≡ 1 mod (mW + (T j+1)). Thus if we write
j1 for the j for this new Φ1, j1 > j, and j1 = ph1 with h1 > h0 and aj1 ≡ b1 mod mW

for b1 ∈ Z. Repeating this, for s =
∑∞

k=0 bkp
hk ∈ Zp, Φ(T )/(1+T )s−1 =

∑
n=1 anT

n

no longer has a least j with minimal v(aj); so, Φ(T )/(1 + T )s = 1, and we get
Φ(T ) = (1 + T )s.

Suppose now that F 6= Fp. We have the Frobenius automorphism φ fixing Zp[µp∞] ⊂
W [µp∞]. Letting φ acts on power series by (

∑
n anT

n)φ =
∑

n a
φ
nT

n, we find Φφ(tφ) =
Φ(t)φ. Since Φ(ζ−1) is a p-power root of unity for ζ in a infinite set Ω ⊂ µp∞ , we have

Φφ(ζ − 1) = Φφ(ζφ − 1) = Φ(ζ − 1)φ = Φ(ζ − 1). Since Ω ⊂ Ĝm is Zariski dense, we
find that Φφ = Φ, which shows Φ ∈W φ[[T ]] for the subring W φ fixed by φ. Note that
the residue field of W φ is Fp, and the earlier argument applies to Φ ∈W φ[[T ]]. �

Extending I to its integral closure, we assume that I is integrally closed. For a

prime l, we write H(l)
A (I) for the subfield generated by αl,P ∈ Q for all P ∈ A. We

simply write HA(I) = H(p)
A (I). Recall LP = Q[µp∞][αl,P ].

Proposition 1.7. Fix a rational prime l - N either l = p or tamely ramified in

LP /Q[µp∞] for all P ∈ A. Suppose [H(l)
A (I) : Q(µp∞)] < ∞. Then, for W = I ∩ Qp,

we have A(l) in W [[T ]][t1/p
n
]∩I (t = 1+T ) for some 0 ≤ n ∈ Z, and there exists a Weil

l-number α1 of weight 1 and a root of unity ζ0 such that AP (l) = αl,P = ζ0〈α1〉k(P )−1

for all arithmetic P ; in other words, A(l)(T ) = ζ0(1 + T )s for s =
logp(α1)

logp(γ)
.

Proof. We give a sketch of a proof assuming I = Λ = W [[T ]]. Let A = A(l). By
Lemma 1.4, we have only a finite number of Weil l-numbers of weight k in

⋃
P∈ALP

up to roots of unity, and hence AP for P ∈ A hits one of such Weil l-number α of
weight k infinitely many times, up to roots of unity.

After a variable change T 7→ Y = γ−k(1+T )−1, we have A(Y )|Y=0 = A(T )|T=γk−1.
Note that |α|p = 1. Let Ω1 = {εP (γ)|P ∈ A} which is an infinite set in µp∞(K). Let
Φ1(Y ) := α−1A(Y ) = A(γ−k(1 + T )− 1) ∈ W [[Y ]]. The subset Ω2 of Ω1 made up of
ζ ∈ Ω1 such that Φ1(ζ−1) is a root of unity is an infinite set. We thus find an infinite
subset Ω ⊂ Ω2 and a root of unity ζ1 such that {Φ1(ζ− 1)|ζ ∈ Ω} ⊂ ζ1µp∞(K). Then
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Φ = ζ−1
1 Φ1 satisfies the assumption of Lemma 1.6, and for a root of unity ζ, we have

A(Y ) = ζα(1 + Y )s1 for s1 ∈ Zp, and A(T ) = ζα(γ−k(1 + T ))s1. From this, it is not
difficult to determine s1 as stated in the proposition. �

1.5. Proof of the theorem. We start with a couple of preliminary results. Consider
the W -algebra endomorphism σs : (1+T ) 7→ (1+T )s =

∑∞
n=0

(
s
n

)
T n of a power series

ring Λ for s ∈ Zp.

Lemma 1.8. Let A be an integral domain over Λ. Assume that σ2 ∈ Aut(Λ/W )

extends to an endomorphism σ of A. Let ρ : Gal(Q/F ) → GL2(A) be a continuous
representation for a field F ⊂ Q, and put ρσ := σ ◦ ρ. If Tr(ρσ) = Tr(ρ2). Then ρ is
absolutely reducible over the quotient field Q of A.

Proof. Suppose that ρ is absolutely irreducible over Q, and try to get absurdity. We
have the identity Tr(ρσ) = Tr(ρ2) = Tr(ρsym⊗2) − det(ρ) for the symmetric second
tensor representation ρsym⊗2 of ρ. Over Q, by absolute irreducibility, we have the
identity of semi-simplification: (ρsym⊗2)ss ∼= ρσ ⊕ det(ρ). Tensoring det(ρ)−1, we
get Ad(ρ)ss ∼= (ρσ ⊗ det(ρ)−1) ⊕ 1. Since Ad(ρ) is self-dual, we have 1 ↪→ Ad(ρ) as
Gal(Q/F )-modules. In other words, we have a non-trivial element 0 6= φ ∈ EndA[H ](ρ)

for H = Gal(Q/F (ρI)) such that Tr(φ) = 0. Since ρ is absolutely irreducible, φ has
to be a scalar multiplication by z ∈ A× by Schur’s lemma; so, Tr(φ) = 2z 6= 0, a
contradiction (unless A has characteristic 2). �

Proof of Theorem 1.1. Let K := Q(µp∞) and LP = K(αl,P ) for a prime l.
We need to prove that [HA(I) : K] < ∞ ⇒ F has complex multiplication. Thus
suppose [HA(I) : K] < ∞. For each arithmetic P with k(P ) = k, by Lemma 1.2,
[K(fP ) : K(aP (p))] < d for a positive integer d independent of P . Thus [LP : K] <
2d[HA(I) : K] for each prime l. Therefore, any odd prime l > 2d[HA(I) : K] is at
most tamely ramified in LP /K. Take such an odd prime l > 2d[HA(I) : K] prime
to Np. Let ρ : Gal(Q/Q) → GL2(I) be the Galois representation associated to F .
Thus by Proposition 1.7, we have Tr(ρ(Frobl)) = ζ(1 + T )a + ζ ′(1 + T )a

′
for two

roots of unity ζ, ζ ′ and a, a′ ∈ Qp. Take an arithmetic Q ∈ Spec(I)(Qp). Note that

ζ(1 + T )a, ζ ′(1 + T )a
′

is at most in a quadratic extension of Q(fQ); so, it is easy
to see that the order of ζ, ζ ′ is bounded independently of l. Let mN = mN

I + (T )
and ρ = ρ mod mN for a sufficiently large N and F be the splitting field of ρ. We
have Tr(ρ(Frobl)) = ζf (1 + T )fa + ζ ′f (1 + T )fa

′
and ρ(Frobl) ≡ 1 mod mN (so

ζf ≡ 1 mod mN ) for a prime l|l of F of residual degree f . Since ζf ≡ 1 mod mN ,

by taking N large, we may assume that ζf = ζ ′f = 1. This shows Tr(σs(ρ(Frobl))) =
Tr(ρ(Frobl)

s) for all 0 6= s ∈ Zp. Thus by Chebotarev density theorem, we get

Tr(σs ◦ ρ) = Tr(ρs) over G = Gal(Q/F ). Then by the above lemma, ρss|G is abelian,
and hence I is abelian.

On the other hand, if F = FI has complex multiplication by an imaginary quadratic
extension M/Q in Q, we have a character λ : Gal(Q/M) → I unramified outside Np

such that α` is the value of λP (Frobl) = λ(Frobl) mod P for a prime l in M over
`. Here p is a prime factor of p in M . Let F be the residue field of I (note that
I is a local ring with maximal ideal m, because it is finite flat over Λ). Write W

for the ring of Witt vectors of F. Let (R, λ̃ : Gal(Q/M) → R×) be the universal
couple with the universal character unramified outside Np deforming (λ mod m)
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over W . Writing Cp for the p-primary part of the ray class group ClM(Np∞) modulo
Np∞ of M , by class field theory, R ∼= W [[Cp]]. By universality, we have a W -

algebra homomorphism ϕ : R → I such that ϕ ◦ λ̃ = λ. Thus I ↪→ W [[ΓM ]] for
the maximal torsion-free quotient ΓM , and ΓM contains Γ naturally. The Λ-algebra
structure of I is equal to that coming from the original inclusion Λ ↪→ I (after twist
by the k-th power of the p-adic cyclotomic character). Then for an arithmetic point
P with r(P ) ≤ r, λP = λ mod P has infinity type k − 1; that is, λP (α) = αk−1

for α ∈ M congruent to 1 modulo Npr+1. For the class number h of M , taking
a generator α of lh, we have λP (l) = α1/hζ for ζ ∈ µprh. Thus choosing a complete
representative set {aj}j=1,...,h of ideal classes of M , taking a generator αj of ahj , we find

that Q(α`,P )k(P )=k,` ⊂ Q(µp∞h)[α
1/h
j |j = 1, . . . , h] which is a finite extension of Q[µp∞]

containing Hk(I), which has finite degree over Q[µp∞]. This finishes the proof. �

Here is an obvious corollary of the above proof.

Corollary 1.9. Let K := Q[µp∞] and A ⊂ Spec(I)(Qp) be an infinite set of arithmetic
points P with fixed weight k(P ) = k ≥ 1. Unless F has complex multiplication

lim sup
P∈A

[K(a(p, fP )) : K] =∞.

Indeed, if lim supP [K(a(p, fP )) : K] < ∞, the index [LP : K] (P ∈ A) is bounded
for A ∈ I as in Proposition 1.7. Thus we can still apply the above proof and conclude
that F has complex multiplication.

2. Lecture 2: Vertical version

Let F = FI = {fP}P∈Spec(I)(Qp) be a cuspidal p-adic analytic family of p-ordinary

Hecke eigen cusp forms of slope 0. We have the following “vertical” conjecture:

Conjecture 2.1. Let A be an infinite set of arithmetic points with bounded level
r(P ) ≤ r for a fixed r ≥ 0. Let VA(I) be the field generated over Q by {αp,P}P∈A,
where P runs over all arithmetic points with Im(εP ) ⊂ µpr for a fixed r. Then the
field VA(I) is a finite extension of Q for a fixed r <∞ if and only if fP is a CM theta
series for an arithmetic P with k(P ) ≥ 1.

Pick a prime l different from p and write V (l)
A (I) for the field generated by {αl,P , βl,P}

for all P ∈ A, where P runs over all points in A. Then we might speculate that

(Vertical l-version): The field V (l)
A (I) is a finite extension of Q for a fixed r < ∞ if

and only if for an arithmetic P with k(P ) ≥ 1, either fP is a CM theta series or the
automorphic representation generated by fP is square-integrable at l.

We prove

Theorem 2.2 (Vertical theorem). Let r be a non-negative integer. For an infinite set
A of arithmetic points P with bounded level r(P ) ≤ r for an r ≥ 0, assume that VA(I)
is a finite extension of Q. If there exists an arithmetic point P0 ∈ A with k(P0) ≥ 1
such that

(1) α0 = aP0
(p) is a Weil number,

(2) Σα0
=

{
σ : Q(α0) ↪→ Q

∣∣|ip(ασ0)| = 1
}

is a CM type of Q(α0),
(3) VA(I) is generated by α0 over Q.

Then I has complex multiplication.
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2.1. Results towards the vertical conjecture. Let Ar be the set of all arithmetic
points of Spec(I)(Qp) with r(P ) ≤ r.
Proposition 2.3. Let F = {fP }P∈Spec(I)(Qp) be a p-adic analytic family of classical

p-ordinary Hecke eigenforms and A ⊂ Spec(I)(Qp) be an infinite set of arithmetic
points P with r(P ) ≤ r for a fixed r ≥ 0. Assume that for P0 ∈ A

(1) α0 = aP0
(p) is a Weil number,

(2) Σα0
=

{
σ : Q(α0) ↪→ Q

∣∣|ip(ασ0)| = 1
}

is a CM type of Q(α0),
(3) VA(I) = Q(α0) is generated by α0 over Q.

Then there exist a Weil p-number α of weight 1 with |ip(α)|p = 1 such that a(p, fP ) =
ζ〈α〉k(P ) for a root of unity ζ for all arithmetic P with k(P ) ≥ 1, where 〈α〉 =
expp(logp(ip(α))) for the Iwasawa logarithm logp.

Proof. First, in order to give a simple sketch of the proof, suppose first that M :=
VA(I) is an imaginary quadratic field. Take P ∈ A with k(P ) > 1. Then αp,P is a
Weil number of weight k(P ) > 1 with |αp,P |p = 1. Thus (p) has to split in M ; so,
(p) = pp in M . Thus Σαp,P

is made of single element ι = ip|M , and for each k, there
exists at most one Weil number αk ∈M of weight k (up to roots of unity in M) such

that |αk|p = 1. In M , (αk) = p
k for the prime ideal p of M corresponding to ip|M .

Fix such a k. Taking a k-th root α = k
√
αk, we have αl = αl up to roots of unity for

all l as (αl) = p
l.

Since A is an infinite set, there exists an infinite sequence in A
P1, P2, · · · , Pn, . . .

with increasing weight k(P1) < k(P2) < · · · such that

(aPj(p)) = p
k(Pj )

for all j > 0. Put

〈α〉 = exp(
1

k(P0)
logp(a(p, fP0

)) = exp(logp(α)).

Since (aPj(p)) = p
(k(Pj)), aPj (p)/〈α〉k(Pj ) is a Weil number of weight 0, that is, it

is an algebraic integer with all its conjugates having absolute value 1. Then by
Kronecker’s theorem, we find aPj (p) = ζPj 〈α〉k(Pj ) for a root of unity ζPj . Note that
〈α〉 is contained in a finite extension M ′/M . Since there are finitely many roots
of unity in M ′, we have only finitely many possibilities of ζPj . Therefore, replacing
{Pj}j by its subsequence, we find an infinite sequence P1, P2, · · · , Pn, · · · of increasing
weights such that aPj (p) = ζ〈α〉k(Pj ) for all j = 1, 2, . . . for a fixed root of unity ζ.
We have a power series Φα(X) ∈W [[X]] with coefficients in a discrete valuation ring
W finite flat over Zp such that Φα(γ

k − 1) = ζ〈α〉k for all integers k. Since F is an
ordinary family, there exists an element A ∈ I such that a(p, fP ) = (A mod P ) for
all height 1 prime P of I containing (1 +X − γk(P )). Thus we find A ≡ Φα mod Pj
for infinitely many distinct primes Pj; so, A = Φα, as desired.

We now treat the general case where M may not be an imaginary quadratic field.
Let K ⊂ Q be a number field with integer ring O. Consider O⊗ZK. Then O⊗ZK is
a product of fields σ(O)K ⊂ Q indexed by (some) embeddings σ : O ↪→ Q. Take the
base ring W containing O. Then I⊗Z K contains O ⊗Z K, and I⊗Z K decomposes
accordingly: I⊗ZK =

∏
σ Iσ. Regard I⊗ZK as a K-algebra from the right factor (and
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K is embedded in Qp by ip). Note I⊗ZK = I⊗Zp Zp⊗ZK = I⊗ZpKp for Kp = Zp⊗ZK.
For an arithmetic prime P , we have Z[fP ] := Z[aP (n)|n = 1, 2, . . . ] ⊂ I/P . Then
Z[fP ]⊗ZK ⊂ I/P⊗ZK asK is Z-flat. On the other hand, Z[fP ]⊗ZK = Q(fP )⊗ZK ∼=∏

τ :Q(fP )↪→Qp
ip(τ (Q(fP ))K). The composite σ(Q(fP ))K is taken in Qp by sending it

by ip inside Qp. For some τ (for example, complex conjugation τ = c), we may have
|ip(τ (aP (p)))|p < 1.

Let us give more details why this strange phenomenon: |ip(τ (aP (p)))|p < 1 could
occur. Suppose K/Q is a Galois extension with O ⊂ W . Then writing V = K ∩W
(the valutaion ring corresponding to ip : K ↪→ Qp), V ⊗Z V ⊂

∏
σ∈Gal(K/Q) σ(V )V .

Let eσ for the idempotent of σ(V )V . Writing DV ⊂ Gal(K/Q) for the decomposition
subgroup of V , unless σ ∈ DV (i.e., σ(V ) = V ), σ(V )V = K. Since V ⊂ hk(P )+1,ψP

,
we regard eσ ∈ hk(P )+1,ψP

⊗Z V . Since U(p) is invertible in hk(P )+1,ψP
, the image

of eσ(U(p) ⊗ 1) is invertible in K = σ(V )V , but that does not mean eσ(U(p) ⊗ 1)
is a p-adic unit. Define EP = limn→∞(U(p) ⊗ 1)n! under the p-adic topology TP of
hk(P )+1,ψP

⊗ZV inducing the natural topology on 1⊗V ⊂ hk(P )+1,ψP
⊗ZV . Then EP is

orthogonal to eσ if eσ(U(p)⊗1) is p-adically nilpotent under the p-adic topology TP of
hk(P )+1,ψP

⊗ZV . The idempotent eP = limn→∞ U(p)n! in hk(P )+1,ψP
(for ψP = ψk(P )εP )

is only defined over Q; so, e may not commute with some σ. In other words, we
could have eP ⊗ 1 6= EP , and EP =

∑
τ :|ip(τ (aP (p)))|p=1 eτ . We can embed h into∏

P hk(P )+1,ψP
⊂ ∏

P hk(P )+1,ψP
for an infinite set A of arithmetic points P of W [[T ]]

sending T (n) to diagonal T (n) in the product of right-hand-side. The tensor product
h ⊗Z K is embedded in

∏
P (hk(P )+1,ψP

⊗Z K). We write E =
∏

P EP , which is an
idempotent of

∏
P (hk(P )+1,ψP

⊗Z K) but may not be in (
∏

P hk(P )+1,ψP
) ⊗Z K. The

closure ĥ⊗Z K of h ⊗Z K inside
∏

P (hk(P )+1,ψP
⊗Z K) contains E, and E(ĥ⊗Z K)

is free of finite rank over W [[T ]][ 1
p
] (though ĥ ⊗Z K could be huge). Each irreducible

component of E(ĥ⊗Z K) gives rise to another p-adic analytic family of slope 0.
Pick an arithmetic point P , and write α = aP (p). Take an irreducible component

Spec(I◦σ) of Spec(Iσ) ∩ Spec(E(ĥ⊗Z K)). Let Pτ be a factor of P ⊗Z K ⊂ I⊗Z K =∏
σ Iσ corresponding to I◦σ. Regarding Pτ : I◦σ → Qp, we have Pτ (α) = τ (α) and

fPτ = f τP . Since Iσ ⊂ E(ĥ⊗Z K), we have |τ (α)|p = 1. The image aσ(p) of a(p)⊗ 1
in Iσ modulo Pτ gives the unit τ (aP (p)); so, aσ(p) is a unit in the integral closure of
W [[T ]] in Iσ.

Here is a more down-to-earth proof of the fact that I◦σ above gives rise to another
analytic family Fσ containing f τP . Start with another arithmetic (Q : I → Qp) ∈
Spec(I)(Qp), but regarding Q as a prime divisor of Spec(I), I/Q has a unique embed-

ding I/Q ⊂ Qp induced by Q : I→ Qp. Then I◦σ/Qτ ′ ⊂ I/P ⊗Z K for corresponding

Qτ ′ ∈ Spec(I◦σ)(Qp). Indeed, tensoring K to the exact sequence Ker(Q) ↪→ I �

Im(Q), we get another exact sequence: Ker(Q)⊗Z K ↪→ ∏
σ Iσ � Im(Q)⊗Z K, and

Im(Q)⊗Z K contains σ(K)K canonically and τ ′ coincides with σ on K ∩Q(fQ) and

induces τ ′ = Qτ ′|Q∩W : Q ∩W ↪→ Qp. Then we have fQτ′
= f τ

′

Q which is a classical
modular form. It is slope 0 with respect to ip (i.e., with respect to the product topol-
ogy

∏
P TP ) because of E · I◦σ = I◦σ. Thus Fσ is another slope 0 family. We rewrite
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σQ,σ for τ ′. Let πσ : I⊗ZK → I◦σ be the projection. We have a commutative diagram

I/Q
πσ−−−→ I◦p/Qτ ′x∪

x∪

K̂ −−−−−→
τ ′=σQ,σ

σ̂(K)K,

where K̂ is the closure of K in I/Q and σ̂(K)K is the closure of σ(K)K in I◦σ/Qτ .
Take K to be the maximal real subfield of M (not to have complex conjugation c

with |aP (p)c|p < 1). Take the starting P to be P0. Write simply Σ0 for Σα0
. Then

the set I of embeddings of K into Qp is in bijection to Σ0, and σP0,σ|M ∈ Σ0. By the

assumption (2), any prime p|p in K splits as p = PP in M and MP = Kp = MP; so,

M ⊂ K̂ non-canonically. Since α0 = aP0
(p) generates M and {K ↪→ σ(K)K

∣∣σ ∈ Σ0}
cover all conjugates of K inside Q, for any σ 6= σ′ in I we find σP0,σ(α0) 6= σP0,σ′(α0).
Thus we have at least |I | distinct families: {Fσ}σ∈I . In other words, the set ΣQ of
p-adic embeddings of M induced by {σQ,σ}σ∈I for Q ∈ A is a p-adic CM type of M .
Here a p-adic CM type is a CM type Σ = {σ : M ↪→ Qp} of M such that, writing Σp

for the set of p-adic places induced by σ ∈ Σ, Σp ∩ Σc
p = ∅ for complex conjugation c

on M .
Since there are only finitely many p-adic CM types of M , replacing A by an infinite

subset, we may assume that ΣP is identical to a p-adic CM type Σ for all P ∈ A.
This forces (aP (p)) =

∏
p∈Σc

p
pe(p)k(P ) for the absolute ramification index e(p) of p/(p).

As before we choose an infinite sequence in A
P1, P2, · · · , Pn, . . .

with increasing weight k(P1) < k(P2) < · · · such that

(aPj(p)) =
∏

p∈Σρ
p

pe(p)k(Pj)

for all j > 0. Then aPj(p)/〈α〉k(Pj ) is a Weil number of weight 0, that is, it is an al-
gebraic integer with all its conjugates having absolute value 1. Then by Kronecker’s
theorem, we find aPj(p) = ζPj 〈α〉k(Pj ) for a root of unity ζPj . Note that 〈α〉 is con-
tained in a finite extension K ′/K. Since there are finitely many roots of unity in
K ′, we have only finitely many possibilities of ζPj . Therefore, replacing {Pj}j by
its subsequence, we find an infinite sequence P1, P2, · · · , Pn, · · · of increasing weights
such that aPj(p) = ζ〈α〉k(Pj ) for all j = 1, 2, . . . for a fixed root of unity ζ. By the
same argument as before, we conclude A = Φα, as desired. �

2.2. Proof of the vertical theorem. Suppose that VA(I) is a finite extension and
the existence of an arithmetic point P0 as in the theorem. Therefore the assumption
(2) of Proposition 2.3 is met. By Proposition 2.3, we find a Weil number α of weight
1 and a power series Φα(X) ∈ W [[X]] such that a(p, fP ) = Φα(εP (γ)γk(P ) − 1) =
ζ(εP (γ))logp(α)/ logp(γ)〈α〉k(P ) for all arithmetic P , where ζ is a root of unity independent
of P ; in short, a(p) = Φα ∈W [[X]] ⊂ I. Then, for the entire set B of arithmetic points
P with k(P ) = 1, we find HB(I) ⊂ Q(µp∞(p−1))(ζ, α) which is a finite extension of
Q(µp∞). Then by the horizontal theorem, I has complex multiplication. The converse
is easy. This finishes the proof of Theorem 2.2.
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We could make the following conjecture which is a vertical version of Corollary 1.9:

Conjecture 2.4. Let A ⊂ Spec(I)(Qp) be an infinite set of arithmetic points P with
bounded level r(P ) ≤ r. Suppose that I does not have complex multiplication. Then
we have

lim sup
P∈A

[Q(a(p, fP)) : Q] =∞.

3. Lecture 3: Constancy of adjoint L-invariant

Consider a cuspidal slope 0 family of Hecke eigenforms F = {fP |P ∈ Spec(I)(Qp)}
indexed by points of Spec(I)(Qp) and its family of Galois representations {ρP}P .

For each p-decomposition subgroup D ⊂ Gal(Q/Q), we have ρP |D ∼=
( εP ∗

0 δP

)
with

unramified quotient character δP (e.g., [GME] Theorem 4.2.6). Here, for each P ∈
Spec(I), fP is a p-adic modular form of slope 0 of level Npr(P )+1 for a fixed prime to
p-level N (p - N). Consider the adjoint representation Ad(ρP ) realized in the trace
zero subspace in sl2(κ(P )) ⊂ M2(κ(P )) by conjugation action. Thus Ad(ρP )(Frobp)
has an eigenvalue 1; so, Lp(s, Ad(ρP )) has an exceptional zero of order 1 at s = 1.
For the L-invariant L(Ad(ρP )) defined by Greenberg [Gr] (see also [HMI] §1.5.2), his

conjecture Lan(Ad(ρP ))
?
= L(Ad(ρP )) is still an open question. Anyway we get a

function P 7→ L(Ad(ρP )) defined on the set of arithmetic points of Spec(I). This
function is interpolated analytically on Spec(I). We still write P 7→ L(Ad(ρP )) for
this analytic function (see [H04b]). Supposing almost known Conjecture 3.5, we prove
in this lecture

Theorem 3.1. The analytic function P 7→ L(Ad(ρP )) is constant if and only if the
family F has CM.

By this theorem, if F is a non CM family, P 7→ L(Ad(ρP )) is a non-constant func-
tion; so, except for finitely many Galois representations in the family, the conjecture
of Greenberg (see [Gr]) predicting the non-vanishing of L(Ad(V )) is true.

Conjecture 3.2. For a slope 0 parallel weight family (i.e., a cyclotomic family) of
Hilbert modular Galois representations {ρP }P∈Spec(I), P 7→ L(Ad(ρP )) is constant if
and only if the family F has CM.

The conjecture implies that for a non-CM component, P 7→ L(IndQ
F Ad(ρP )) is non-

constant; so, it vanishes only on a thin proper Zariski closed set in the component.

The Galois representation ρI restricted to the p-decomposition group D is reducible.
We write ρssI for its semi-simplification over D. Then ρI satisfies, for primes l - Np,

(Gal) Tr(ρI(Frobl)) = a(l), ρssI ([γs,Qp]) ∼
(

(1+T )−s 0
0 1

)
, ρssI ([p,Qp]) ∼

(
∗ 0
0 a(p)

)
,

where γs = (1 + p)s ∈ Z×
p for s ∈ Zp and [x,Qp] is the local Artin symbol.

Recall that the family has CM if one of the following four conditions is satisfied:

(1) there exists an arithmetic point P ∈ Spec(I) and a nontrivial Galois character
χ such that ρP ⊗ χ ∼= ρP ,

(2) for all arithmetic points P ∈ Spec(I) and a nontrivial Galois character χ, we
have ρP ⊗ χ ∼= ρP ,
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(3) there exists an arithmetic point P ∈ Spec(I) such that fP is a theta series of
a binary quadratic form,

(4) for all arithmetic points P ∈ Spec(I), fP is a theta series of a binary quadratic
form.

If F has CM, χ cuts out an imaginary quadratic field M , and ρI
∼= IndQ

M Ψ for a
character Ψ : Gal(Q/M) → I×. The decomposition (ρI|D)ss = ε⊕ δ can only happen
if p splits into pp in M so that Ψ ramifies at p and Ψc(σ) = Ψ(cσc−1) is unramified at
p. Then D is the decomposition grup of p, ε = Ψ and δ = Ψc. Write R for the integer
ring of M . At an arithmetic point, fP is the theta series of a Hecke character λP
whose p-adic avatar ΨP = P ◦Ψ has p-type ΨP ([x,Mp]) = ψ1εP (x)〈x〉−k(P ) (x ∈ R×

p )
identifying Rp with Zp, and Ψc

P ([p,Mp]) = Ψc
P ([p,Mp]) = a(p); so,

a(p) = ζ0(1 + T )logp(p)/ log(γ)

for a root of unity ζ0, where logp(p) = 1
h

logp(α) taking h such that p
h = (α) with

α ∈M .
Here is a version of Lemma 1.6 ([C] Theorem 4.3) I explained in the first lecture:

Lemma 3.3. Let Fp be an algebraic closure of Fp. If a power series Φ(T ) ∈ ObGm
=

Fp[[T ]] regarded as a function of t = 1 + T satisfies Φ(tz) = Φ(t)z for z in a open
subgroup of Z×

p , then Φ(t) = c · ts for s ∈ Zp with a constant c ∈ Fp.

3.1. Proof of Theorem 3.1. By (1.6) of [H04b], L(Ad(ρP )) is a constant multiple
of (

a(p)−1da(p)

dX

) ∣∣∣
X=0

,

where if P ∩ Λ = (X) for X = γ−kζ−1t− 1 for t = 1 + T . After proving the theorem
assuming this formula, we recall the proof of the formula. By variable change (as
T = logp(t) mod T 2), we get

(
a(p)−1da(p)

dX

) ∣∣∣
X=0

=

(
a(p)−1t

da(p)

dt

) ∣∣∣
t=ζγk

.

Thus the constancy of L(Ad(ρP )) implies the constancy of

a(p)−1(1 + T )
da(p)

dT
= a(p)−1t

da(p)

dt
= s ∈W.

Thus tda
dt

= s · a for a(t) = a(p)(t) for s ∈ W . In other words, putting b(x) =

logp ◦a(expp(x)) (for x = logp(t)), as dx = dt
t
, we get from the chain rule,

db

dx
=
da

dx

db

da
=
da

dx

d logp(a)

da
= s · a · 1

a
= s.

Thus b is a linear function of x with slope s:

logp(a) = sx+ c⇔ a = C expp(s · logp(t)) = Cts (C = expp(c)).

Then a(p) = Cts ∈ K[[T ]]∩I = W [[T ]] (ts = expp(s · logp(t))) for the quotient field K
of W , and ts ∈ W [[T ]]. Taking Φ(t) := ts mod mW in F[[T ]], we find Φ(tz) = Φ(t)z

for z ∈ Zp. Thus by Chai’s lemma above, we conclude s ∈ Zp. Write fζ = fP for
P = (X) (X = γ−kζ−1t − 1) with ζ ∈ µpr . The form fζ is a Hecke eigenform in
Sk(Γ1(Np

r+1)), and we have a(p, fζ) = Cγksζs. Take ζ = 1. Then a(p, f1) = Cγks is
a Weil number α of weight k. This shows that for any ζ ∈ µp∞ , a(p, fζ) = α up to
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p-power roots of unity. Thus the field generated by a(p, fζ) for all ζ ∈ µp∞ is a finite
extension of Q[µp∞]. Then by the horizontal theorem, we conclude that F is a CM
family.

Conversely, we suppose F is a CM family. Then we find a Galois character Ψ :
Gal(Q/M) → I× for an imaginary quadratic field M such that ρP = IndQ

M Ψ mod P
for all P ∈ Spec(I) and Ψ is unramified at a unique factor p|p in M . Then a(p) is the
value of the character Ψc(Frobp) at the Frobenius element Frobp at p. As already
explained, we have Ψc(Frobp) = tlogp(p)/ logp(γ) up to a root of unity. This shows the
constancy of L-invariant for the CM family. �

3.2. Recall of L-invariant. According to Mazur–Tate–Teitelbaum [MTT], the L–
invariant times the archimedean L-value give the leading term of the Taylor expansion
of a given p–adic motivic L–function at an exceptional zero. For an elliptic curve
E/Q with multiplicative or ordinary good reduction modulo p, its p–adic L–function
Lp(s, E) has the following evaluation formula at s = 1:

Lp(1, E) = (1− a−1
p )

L∞(1, E)

period
,

where L∞(s, E) is the archimedean L–function of E, and ap is the eigenvalue of the
arithmetic Frobenius element at p on the unramified quotient of the p–adic Tate
module T (E) of E. If E has split multiplicative reduction, ap = 1, Lp(s, E) has zero
at s = 1. This type of zero of a p–adic L–function resulted from the modification
Euler p–factor is called an exceptional zero, and it is believed that if the archimedean
L–values does not vanish, the order of the zero is the number e of such Euler p–factors;

so, in this case, e = 1. Then L′
p(1, E) = dLp(s,E)

ds
|s=1 is conjectured to be equal to the

archimedean value L∞(1,E)
period

times an error factor Lan(E), the so-called L–invariant:

L′
p(1, E) = Lan(E)

L∞(1, E)

period
.

The problem of L–invariants is to find an explicit formula (without recourse to p–adic

L–functions) for motivic p–adic Galois representations V . Writing E(Qp) = Q
×

p /q
Z

for the Tate period q ∈ pZp, the solution conjectured by [MTT] and proved by
Greenberg-Stevens [GS] is

Lan(E) =
logp(q)

ordp(q)
.

Since E is modular, L(s, E) = L(s, fE) for an elliptic Hecke eigenform fE of weight
2. In particular, a(p, fE) = ap = 1 and a(1, fE) = 1. We can lift fE to a unique
family FI so that fE is a specialization of F at an arithmetic P with k(P ) = 1. Then
one of the key ingredients of their proof is the following formula:

Lan(E) = −2 logp(γ)
da(p)

dX

∣∣∣
X=0

.

Here is an analogous formula in [H04b]:

Theorem 3.4. Let p be an odd prime, and assume Conjecture 3.5 in the following
section. Then we have

L(Ad(ρP )) = −2 logp(γ)aP (p)−1da(p)

dX

∣∣∣
X=0

.
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3.3. Galois deformation. A main ingredient of the proof of Theorem 3.4 is Galois
deformation theory. Since ρP is irreducible and Tr(ρI) ∈ I, via pseudo representation,

we arrange ρI to have values in IP . Let ÎP = lim←−n IP/P nIP . It is known that ÎP ∼=
κ(P )[[X]] (see [HMI] Proposition 3.78). The character det(ρI)

−1 det(ρ) has values in
the p-profinite group 1+mI for the maximal ideal mI of I, and hence we have its unique
square root ψ with values in 1+mI. Define a representation ρ : Gal(Q/Q)→ GL2(̂IP )
with det(ρ) = det(ρ) by (ρI ⊗ ψ)(σ) = ψ(σ)ρI(σ). Note that ρ ≡ ρI mod P . Fix a
decomposition subgroup Dp ⊂ Gal(Q/Q) at p. Normalize ρP so that ρP |Dp =

( εP ∗
0 δP

)

with unramified δP . Then εP 6= δP and εP is ramified.
Simply write κ := κ(P ). Let S be the set of places of Q made up of all prime factors

of Np and ∞. Consider the deformation functor into sets from the category of local
artinian κ-algebras with residue field κ whose value at a local artinian κ-algebra A
with maximal ideal mA is given by the set of isomorphism classes of 2-dimensional
continuous Galois representations ρA : Gal(Q/Q)→ GL2(A) unramified outside S:

(D1) (ρA mod mA) ∼= ρP ;
(D2) Writing ι : κ→ A for the structure homomorphism of κ-algebras, we have the

identity of the determinant characters:

ι ◦ det(ρ) = det(ρA);

(D3) We have an exact sequence ρA|Dp
∼=

( εA ∗
0 δA

)
with δA ≡ δP mod mA.

The condition (D3) is the near ordinarity, and we call the character δA of Dp the
nearly ordinary character of ρ. By the work started by Wiles/Taylor (and practically
ended by Kisin), we know (e.g., [HMI] Corollary 3.77 for most cases) the following
conjecture is true for almost all cases:

Conjecture 3.5. The above functor is pro-represented by the pair (̂IP ,ρ).

In the following sections, we start with a brief review of the definition by Greenberg
of the Selmer group and his L–invariant.

3.4. Selmer Groups. We describe the definition due to Greenberg of his Selmer
group associated to the adjoint square Galois representation. For simplicity, we as-
sume that S = {p,∞} (so, N = 1). One can find the definition in the general case
in [Gr] and in [HMI] §1.2.3. We may assume that κ has p-adic integer ring W . Let
QS be the maximal extension unramified outside S. All Galois cohomology groups
are continuous cohomology groups in [MFG] 4.3.3. Write GS = Gal(QS/Q) and Ip
for the inertia subgroup of the decomposition subgroup Dp ⊂ GS.

Write V for the space of ρP . Let GS act on Endκ(V ) by conjugation and put
Ad(V ) ⊂ Endκ(V ) (the trace 0 subspace of dimension 3). We have a filtration:

(ord) V ) F+V ) {0}
stable under the decomposition group Dp such that Dp acts on the quotient V/F+V
by δP . Then Ad(V ) has the following three step filtration stable under Dp:

(F) Ad(V ) ⊃ F−Ad(V ) ⊃ F+Ad(V ) ⊃ {0},
where

F−Ad(V ) = {φ ∈ Ad(V )|φ(F+V ) ⊂ F+V } (upper triangular),

F+Ad(V ) = {φ ∈ Ad(V )|φ(F+V ) = 0} (upper nilpotent).
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Note that Dp acts trivially on F−Ad(V )/F+Ad(V ); so, F−Ad(V )/F+Ad(V ) ∼= κ; so,
the p-adic L-function of Ad(V ) has an exceptional zero at s = 1. Put

Up(Ad(V )) = Ker(Res : H1(Dp, Ad(V ))→ H1(Ip,
Ad(V )

F+(Ad(V ))
)).

Then we define

(3.1) Sel(Ad(V )) = Ker(H1(GS, Ad(V ))→ H1(Dp, V )

Up(V )
).

Replacing Up(Ad(V )) by the bigger

U−
p (Ad(V )) = Ker(Res : H1(Dp, Ad(V ))→ H1(Ip,

Ad(V )

F−(Ad(V ))
))

for p|p, we can define a bigger “−” Selmer group Sel−(Ad(V )) ⊃ Sel(Ad(V )).
In the above definition, replacing GS by the stabilizer GS

∞ of the cyclotomic Zp-
extension Q∞/Q and V by A = V/L for a Galois stable lattice L, one can define
the Selmer group SelQ∞(A) whose characteristic power series Φ(T ) is supposed to be
the adjoint p-adic L-function Lp(s, Ad(ρP )) (the adjoint main conjecture). It is easy
to see Sel−(A) is sent (with possibly finite kernel) into SelQ∞(A) (as p-ramification
of cocycles giving Sel−(A) projected to F−A/F+A is absorbed by the wild ramifica-
tion of Q∞/Q). The image produces the exceptional zero of algebraic L-function
s 7→ Φ(γs − 1) =: Lalgp (s, Ad(ρP )) at s = 1. Greenberg’s philosophy is there-

fore that the L-invariant must be produced out of cocycles in Sel−(A). Assuming
L(Ad(ρP )) 6= 0, Lalgp (s, Ad(ρP )) has order 1 zero at s = 1 and L′

p(1, Ad(ρP )) =
L(Ad(ρP ))L(1, Ad(ρP ))/period up to units under mild conditions (see [Gr] Proposi-
tion 4, [H07b] Theorem 3.1 and [MFG] Theorem 5.20).

Taking the Tate-dual Ad(V )∗(1) = Homκ(Ad(V ), κ)(1) with single Tate twist, and
the filtration dual to (F), we define the dual Selmer group Sel(Ad(V )∗(1)).

Lemma 3.6. Assume Conjecture 3.5. We have dimSel−(Ad(V )) = 1 and

(V) Sel(Ad(V )) = Sel(Ad(V )∗(1)) = 0.

In the earlier article [H04b], the balanced Selmer group SelQ (see [Gr] (16) and
[HMI] §1.5.1) is used to prove this type of result. However by definition SelQ(Ad(V )) ⊃
SelQ(Ad(V )) and by duality SelQ(Ad(V )∗(1)) ⊂ SelQ(Ad(V )∗(1)). Then by Greenberg
(see [Gr] Proposition 2 or [HMI] Proposition 3.82), we have

dimSelQ(Ad(V )) = dim SelQ(Ad(V )∗(1)),

and therefore, to prove the vanishing of all such Selmer groups, we only need to show
SelQ(Ad(V )) = 0.

Proof. Here is a sketch of the proof. For any derivation ∂ : ÎP → κ, consider cρ :=
(∂ρ)ρ−1

P : GS → End(V ). Applying ∂ to ρ(σ)ρ(τ ) = ρ(στ ), we verify c∂ is cocycle.
Since det(ρ) is constant, cρ has values in Ad(V ). Since ρ|Dp is upper triangular, [cρ] ∈
Sel−(Ad(V )). By universality, any such cocycle is of the form c∂ . Thus the tangent

space TP ∼= κ of Spec(̂IP ) at P is isomorphic to Sel−(Ad(V )); so, dimκ Sel−(Ad(V )) =
1. Since the diagonal entry of c∂ is non-trivial, Sel(Ad(V )) is a proper subspace of of
Sel−(Ad(V )); so, it vanishes. By Greenberg, dimκ Sel(Ad(V )) = dimκ Sel(Ad(V )∗(1))
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(strictly speaking dimκ Sel(Ad(V )) = dimκ Sel(Ad(V )∗(1)) as remarked; see [HMI]
Lemma 1.84); so, the desired vanishing also follows for the dual. �

We have the Poitou-Tate exact sequence (e.g., [MFG] Theorem 4.50 (5)):

0→ Sel(Ad(V ))→ H1(GS , Ad(V ))→ H1(Dp, Ad(V ))

Up(Ad(V ))
→ Sel(Ad(V )∗(1))∗.

Thus by (V), we have

(I) H1(GS, Ad(V )) ∼= H1(Dp, Ad(V ))

Up(Ad(V ))
.

3.5. Greenberg’s L–invariant. Greenberg defined in [Gr] his invariant L(Ad(V ))
in the following way. Write F−H1(Dp, Ad(V )) for the image of H1(Dp, F

−Ad(V )) in

H1(Dp, Ad(V )). By the definition of Up(Ad(V )), the subspace F−H1(Dp,Ad(V ))
Up(Ad(V ))

inside

the right-hand side of (I) is isomorphic to Sel−(Ad(V )) ∼= κ. Namely, we have

Sel−(Ad(V ))
∼−−→

Res

F−H1(Dp, Ad(V ))

Up(Ad(V ))
⊂ H1(Dp, Ad(V ))

Uq(Ad(V ))
.

Then by projecting down to F−Ad(V )/F+Ad(V ) ∼= κ with trivial Dp-action, cocycles
in Sel−(Ad(V )) gives rise to a subspace L of

Hom(Dab
p , F

−Ad(V )/F+Ad(V )) = Hom(Dab
p , κ).

Note that

Hom(Dab
p , κ)

∼= κ× κ

canonically by φ 7→ (φ([u,Qp])
logp(u)

, φ([p,Qp])) for any u ∈ Z×
p of infinite order. Here [x,Qp]

is the local Artin symbol (suitably normalized).
If a cocycle c representing an element in Sel−(Ad(V )) is unramified, it gives rise to

an element in Sel(Ad(V )). By the vanishing (V) of Sel(Ad(V )), this implies c = 0;
so, the projection of L to the first factor κ (via φ 7→ φ([u,Qp])/ logp(u)) is surjective.
Thus this subspace L is a graph of a κ–linear map

L : κ→ κ,

which is given by the multiplication by an element L(Ad(V )) ∈ κ.

3.6. Proof of Theorem 3.4. Write ρ|Dp
∼= ( ε ∗

0 δ ) with nearly ordinary character δ.

We know that c∂ for ∂ = d
dX

gives a nontrivial element in Sel−(Ad(V )). The image

of c∂ in Hom(Dab
p , κ) is δ−1

P ∂δ|X=0. We know that δ−1
P δ([p,Qp]) = aP (p)−1a(p) and

δ−1
P δ([u,Qp]) = (ζγk)− logp(u)/2 logp(γ)tlogp(u)/2 logp(γ) by our construction. Then to get

the desired result is just a simple computation.
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4. Lecture 4: Image of Λ-adic Galois representations modulo p

We call a prime ideal P ⊂ I a prime divisor if Spec(I/P ) has codimension 1 in
Spec(I). Put Φ(N) = N2

∏
l|N (1− 1

l2
) for an integer N > 1 and its prime factors l.

Theorem 4.1. Take a non CM component I of cube-free prime-to-p level N , and let
P ∈ Spec(I) be a prime divisor above (p) ⊂ Zp[[T ]]. If p - Φ(N), the image of ρP
contains an open subgroup of SL2(Fp[[T ]]).

Recall, for primes l - Np,

(Gal) Tr(ρI(Frobl)) = a(l), ρssI ([γs,Qp]) ∼
(

(1+T )−s 0
0 1

)
, ρssI ([p,Qp]) ∼

(
∗ 0
0 a(p)

)
.

We have a unique decomposition I× = 〈I×〉 × µ(p), where µ(p) is a finite group of
order prime to p and 〈I×〉 is a p-profinite group. Write a 7→ 〈a〉 for the projection
to 〈I×〉. Since p ≥ 5, a ∈ 〈I×〉 has a unique square root

√
a ∈ 〈I×〉. We put

ρ′ = ρI ⊗
√
〈det(ρI)〉

−1
. Then det(ρ′) has finite image. Since Im(ρI) ∩ SL(2) =

Im(ρ′) ∩ SL(2), we may replace ρI by ρ′ to prove the theorem. Note here Im(ρ′)

contains
(

(1+T )−s/2 ∗

0 (1+T )s/2

)
for all s ∈ Zp by (Gal).

Here is an outline of the proof. For a prime divisor P above (p) ⊂ Zp[[T ]], let κ(P )
be an algebraic closure of κ(P ). The Zariski closure of the image Im(ρ′P ) ∩ SL(2) in
SL(2)/κ(P ) is an algebraic subgroup GP of SL(2)/κ(P ) defined over κ(P ). LetG◦

P be the
connected component of GP . Then G◦

P is either Borel subgroup, a torus or a unipotent

group. Since G◦
P (κ(P )) contains

(
(1+T )−s/2 ∗

0 (1+T )s/2

)
, G◦

P is not a unipotent group.

If G◦
P is a Borel subgrup or a torus, we prove that P has to be either an Eisenstein

ideal or the family has congruence modulo P with a CM component I′ having CM by
an imaginary quadratic field M . In the Eisenstein case, by a result of Mazur–Wiles
[MW] and Ohta [O1], P divides the Iwasawa power series of a Kubota-Leopoldt p-adic
L-function. This is impossible as the Kubota–Leopoldt p-adic L-function has trivial
µ-invariant [FeW]. In the CM case, P divides Lp(Ad(ρI′)) = h · Lp(Ψ−

I′ ) (congruence
criterion) for the class number h of M as remarked in Lecture 1, where Lp(Ψ

−
I′ ) is the

anticyclotomic p-adic Hecke L-function constructed by de Shalit, Yager and Katz (see
[K] and [H07b]). By [Fi] and [H10], the anticyclotomic p-adic Hecke L-function has
trivial µ-invariant (under p - Φ(N)); so, if p - h, this proves the theorem. If p|h, by
computation of the congruence power series, we prove that the congruence between
CM components exhausts the p-part of the congruence power series, and thereby, we
conclude that GP is SL(2), and (Gal) implies, by a result of Pink [P], that ρP to have
the open image property.

This type of results, asserting Im(ρP ) contains an open subgroup of SL2(Zp) for
non CM arithmetic primes P was proven by Ribet [R] long ago. If p|Φ(N), the
theorem could fail. We make the following conjecture in the Hilbert modular case
over a totally real field F with integer ring O:

Conjecture. Let FI be a non CM parallel weight Hilbert modular family (in [H88b])
of prime-to-p level N for a totally real field F . Suppose p ≥ 5, and let P be a prime
divisor of I over (p) ⊂ Zp[[T ]]. Then we have

(1) The mod P Galois representation ρP is irreducible over Gal(Q/F ).
(2) Suppose p - ΦF (N) = N(N)2

∏
l|N(1 − 1

N(l)2
) and that N is prime to p and

cube free. If either dimF F [µp] > 2 or the strict class number of F is odd, ρP
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contains a subgroup isomorphic to an open subgroup of SL2(Fp[[T ]]), where
det(ρI([γ

s
F ,Qp])) = (1 + T )s for a generator γF of γZp ∩NF/Q(O×

p ).

If dimF F [µp] = 2 and F has a CM quadratic extension unramified everywhere,
the µ-invariant of the anticyclotomic p-adic Hecke L-function could be positive [H10]
(M1–3); so, irreducibility is at most we could expect under such circumstance. The
above conjecture is almost equivalent to vanishing of the µ-invariant of Deligne–Ribet
p-adic L and of Katz p-adic L restricted to anticyclotomic parallel weight variable.

Here is a general fact from the theory of new/old forms:

Proposition 4.2. Let π = ⊗lπl be an irreducible cuspidal automorphic representation
of GL2(A) of weight k + 1 with central character ψ. Write C(π) for the conductor
of π. Fix a prime l, and write πl for its l-component. For a new vector f ∈ π,
write f |T (l) = a · f and defining α, β to be the two roots of X2 − aX + ψ(l)lk = 0
if πl is spherical. Then the following is the list of all Hecke eigenvectors in π whose
eigenvalues for T (q) with q 6= l coincide with those for f :

(1) If πl is spherical, in addition to f , we have fα, fβ , f0 such that fx|U(l) = x ·fx
(here fα = fβ if α = β), where the minimal level of fα, fβ , f0 are, respectively,
C(π)l, C(π)l and C(π)l2;

(2) If πl is Steinberg, we have fa = f, f0 under the same convention as above,
where the minimal level of fa, f0 are, respectively, C(π) and C(π)l;

(3) If πl is supercuspidal, f = f0.

The above vector fx is determined by x up to constant multiple.

In the spherical case (1), if f is a new form in π, fα(z) = f(z) − βf(lz). If
α = β, U(l) gives a nontrivial nilpotent. If f is of weight 2 and l3 - C(π), α 6= β
by Coleman–Edixhoven [CE]; so, U(l) on such π is semi-simple if l3 - C(π). For
simplicity, we assume that h is a reduced algebra (which is true if N is cube-free by
[CE]).

4.1. CM components. Let Spec(IMcm) be the union inside Spec(h) of all irreducible
components having CM by a fixed imaginary quadratic field M . Consider the ray
class group ClM(cpr) modulo cpr (of M) for c prime to p and put C = lim←−r ClM(cpr).

Let Mc/M be the ray class field with Gal(Mc/M) ∼= C . If Spec(I) ⊂ Spec(IcmM ), we

have a unique ideal c = c(I) prime to p such that ccDM |N and ρI
∼= IndQ

M Ψ for a
character Ψ : Gal(Mc/M) → I×. Since ccDM |N , each prime factor l of c divides N .
The ideal c(I) is determined in the following way:

(1) If (l) = ll and a(l) 6= 0, we have one of factors of l, say l such that a(l) = Ψ(l),
and in this case, c is prime to l and ordl(c) = ordl(N), where c =

∏
l l

ordl(c)

and N =
∏

l l
ordl(N).

(2) If (l) = ll and a(l) = 0, ordl(c) = ordl(c) = 1 and ordl(N) = 2.

(3) If l = (l) is inert and a(l) 6= 0, we have a(l) = ±
√

Ψ(l), ordl(c) = 0 but
1 ≤ ordl(N) ≤ 2.

(4) If l = (l) is inert and a(l) = 0, ordl(c) = 1 and ordl(N) = 2.
(5) If l2 = (l) and a(l) 6= 0, a(l) = Ψ(l), ordl(c) = 0 but 1 ≤ ordl(N) ≤ 2.
(6) If l2 = (l) and a(l) = 0, ordl(c) = 1 but ordl(N) = 2.

For any prime a prime to cp, we write [a] for the class lof a in C . If a is not prime to cp,
we put [a] = 0 in W [[C ]]. Let Cp be the Sylow p-part of C . Then C = C(p)×Cp with
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finite group C(p) of order prime to p. We write ∆ for the maximal finite subgroup of
Cp, and put ΓM := Cp/∆ ∼= Zp. Pick a CM irreducible component Spec(I) ⊂ Spec(h),
and let Spec(T) be the connected component of Spec(h) containing Spec(I). We
assume W = Qp ∩ I. We define Spec(Tcm) ⊂ Spec(T) by the union of all CM

components of Spec(T). Let Q be the quotient field of Zp[[T ]] and Q be an algebraic
closure of Q, and regard I as a subalgebra of Q by a fixed embedding over W [[T ]].

We list here easy consequences of explicit form of CM components: Let M and L
be distinct imaginary quadratic fields in which p splits.

Fact 1. If P ∈ Spec(IMcm) ∩ Spec(ILcm) is a prime divisor, P contains T ; so, it is prime
to (p).

Fact 2. Let I and I′ be two distinct CM components in Tcm, and write a(l) and a′(l) for
the image of T (l) in I and I′, respectively. If a(l) = σ(a′(l)) for σ ∈ Gal(Q/Q)
for almost all l, any prime divisor P ∈ Spec(I) ∩ Spec(I′) is prime to (p).

Fact 3. By the explicit form of theta series of M ,

h 3 T (l) 7→






[l] + [l] if (l) = ll with l 6= l,

[(l)] if (l) is a prime in M outside N or (l)|c,
±

√
[(l)] if (l)|N is a prime in M outside c,

[l] if (l) = l2 in M

gives a ring homomorphism h → W [[C ]] inducing Tcm,(p)
∼= W [[Cp]](p); so,

Tcm,P for any prime P over (p) is a local complete intersection, and for an
irreducible component Spec(I) ⊂ Spec(Tcm), IP ∼= W [[ΓM ]](p) which is regular.
See [H86c].

4.2. Irreducibility and Gorenstein-ness. We would like to prove

Theorem 4.3. If ρP is absolutely irreducible and ρP |Ip ∼= ( εP ∗
0 1 ) with εP 6= 1 for the

inertia group Ip ⊂ Gal(Q/Q) at p, then the localization TP is a Gorenstein ring.

To prove this, we apply Mazur’s argument proving Lemma 15.1 of [M]: irreducibility
⇒ Gorenstein-ness, that is,

HomW [[T ]]P (TP ,W [[T ]]P) ∼= TP

as TP modules.

We prepare some notation and a proposition. Let J1(Np
r) be the jacobian of

the modular curve X1(Np
r)/Q. We consider its Tate module TpJ1(Np

r) and its limit
lim←−r TpJ1(Np

r) via Albanese functoriality. The limit is a Galois module. The ordinary

part J of lim←−r TpJ1(Np
r) (that is the image of e = limn→∞ U(p)n! of the limit) still

carries the Galois action. By Diamond operators, (Z/NZ)×× µp−1 ⊂ (Z/NZ)× ×Z×
p

acts on J . We can take the maximal quotient L of J⊗Zp W on which (Z/NZ)××µp−1

acts by ψ2. The Galois module L is naturally an h[Gal(Q/Q)]-module.
Over the valuation ring Ar = Zp[µpr ]Ker(ψ2), we have a well defined multiplicative

component of the Barsotti-Tate group of J1(Np
r)[p∞]⊗ZpW (see [AME] Chapter 14).

Thus regarding the Poltryagin dual of L as the injective limit of the generic fiber of
these Barsotti–Tate groups over A∞, we have a connected-étale/ramified-unramified
exact sequence: Lmult/Zp

↪→ L/Zp � Let/Zp
. A seen in [H86b] Theorem 9.3 (when ψ2 6= 1)

and by Ohta [O] otherwise, we have
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Proposition 4.4. Lmult ∼= h, and Let ∼= HomW [[T ]](h,W [[T ]]) as h-modules.

Proof of Theorem 4.3. We follow the proof of [M] Lemma 15.1 and Corollary 15.2.
Take a prime P ∈ Spec(T) ⊂ Spec(h) as in the theorem and put V = LP /PLP
as Galois module. Then, by [O] Theorem (where actually the Galois module V ′ :=

V ⊗ det(ρP )−1 is studied), V mult := Lmult/PLmult (isomorphic to V ′Ip just as vector
spaces) is the eigen subspace of L on which the inertia group acts by the nontrivial
character εP . By the above lemma, V mult is 1 dimensional over κ(P ). If V is two
dimensional, we have dim(LetP /PL

et
P ) = 1, and hence by Nakayama’s lemma LetP

∼=
TP = hP . Since Let ∼= HomW [[T ]](h,W [[T ]]), this shows

TP = hP ∼= HomW [[T ]]P (hP ,W [[T ]]P) ∼= HomW [[T ]]P (TP ,W [[T ]]P)

as desired.
Let Φl(X) = det(X−ρI(Frobl)) ∈ I[X] for primes l outside Np. Since L is killed by

Φl(Frobl), by the irreducibility of ρI, V is killed by Φl(Frobl); so, irreducible subquo-
tients of V are all isomorphic to ρP . Thus the semi-simplification V ss is isomorphic to
ρmP for m > 0. The subspace V mult := LmultP /PLmultP ⊂ V is the unique 1-dimensional
subspace on which Ip acts by εP . Then Ip acts trivially on LetP /PL

et
P = V/V mult. Since

multiplicity of εP on V ss is m, we have m = 1 and hence dimLP/PLP = 2, which
finishes the proof. �

4.3. Congruence modules. Pick a prime divisor P in Spec(Tcm) over (p). Since
ΨI mod P restricted to Ip has infinite order and is unramified at p, ρP is absolutely
irreducible (so, TP is Gorenstein by Theorem 4.3). By Fact 1, we have TM

cm,P = Tcm,P ,
and Tcm,P is a local complete intersection (and hence Gorenstein). For the torsion-
free part ΓM := Cp/∆ of Cp, I = W [[ΓM ]]; so, I is a regular ring. We have therefore
the projection maps

TP � Tcm,P � IP

where all rings involved are Gorenstein rings.

Theorem 4.5. Suppose p - Φ(N) and that N is cube free. Let P ∈ Spec(Tcm) be a
prime divisor over (p) ⊂ Zp[[X]]. Then we have TP = Tcm,P .

We prepare some notation and two lemmas and a proposition for the proof of the

theorem. For simplicity, we write the sequence TP � Tcm,P � IP as R
θ−→ S

φ−→ A
and we put λ = φ ◦ θ : R → A. Since T is reduced, we have the following (unique)
decomposition

(1) Spec(R) = Spec(R′) ∪ Spec(S) with complementary component Spec(R′) of
Spec(S). Put C0(θ, S) := R′ ⊗R S; so, Spec(R′) ∩ Spec(S) = Spec(C0(θ, S)).

(2) Spec(S) = Spec(S ′) ∪ Spec(A) with complementary component Spec(R′) of
Spec(A). Put C0(φ,A) := S ′ ⊗S A; so, Spec(S ′) ∩ Spec(S) = Spec(C0(φ,A)).

(3) Spec(R) = Spec(R′′) ∪ Spec(A) with complementary component Spec(R′′).
Put C0(λ,A) := R′′ ⊗R A; so, Spec(R′′) ∩ Spec(A) = Spec(C0(λ,A)).

By Gorenstein-ness we have verified, we have

HomΛ(R,Λ) ∼= R, HomΛ(S,Λ) ∼= S and HomΛ(A,Λ) ∼= A as R-modules.

Under this circumstances, as proved in [H88a] Theorem 6.6, we have
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Lemma 4.6. We have the following exact sequence of R-modules:

0→ C0(φ;A)→ C0(λ;A)→ C0(θ;S)⊗S A→ 0.

Moreover we have C0(λ;A) = A/cλA for cλ ∈ A, C0(φ;A) = A/cφA for cφ ∈ A and
C0(θ;S) = S/cθS for cθ ∈ S (so, C0(θ;S)⊗S A = A/φ(cθ)A).

We have a morphism (Z/(c∩Z))× → ClM(c) sending ideal 0 < n ∈ Z to its class in
ClM(c), and we write h−(c) for the order of cokernel Cl−M(c) of this map. Now write
c for the prime to p conductor of ΨI.

Lemma 4.7. We have cφ = h−(c ∩ c) up to units in IP .

We have a natural inclusion Γ = 1 + pZp ↪→ R×
p → Cp, which gives rise to the

Λ-algebra structure Λ ↪→ W [[Cp]]. Since S is the p-localization of the group algebra
W [[Cp]], it is well known that cφ is the index of Γ in Cp (up to p-units; see for example,
[H86c] Lemma 1.9 and Lemma 1.11).

Let Ψ−
I (τ ) = ΨI(cτc

−1τ−1) for complex conjugation c be the anticyclotomic pro-
jection of ΨI and Lp(Ψ

−
I ) be the primitive anticyclotomic Katz p-adic L-function as

in [H06] and [H07b]. We regard Lp(Ψ
−
I ) ∈ I.

Proposition 4.8. If p - Φ(N), we have cλ = h−(c ∩ c)Lp(Ψ
−
I ) up to units in IP .

Proof. Write Spec(T) = Spec(I)∪ Spec(X) for the complementary component X. For
general P ∈ Spec(I), as long as TP is Gorenstein, we have Spec(IP ) ∩ Spec(XP ) =
Spec(IP /(Lp)). The L-function L(s, Ad(fP )) may not be a primitive L-function if I
is an old component. Thus writing Lp(s, Ad(ρP )) for the primitive L-function,

L(s, Ad(fP )) = E(s)L(s, Ad(fP )) = E(1)h(c ∩ c)L(1,Ψ−
P )

for a product E(s) of Euler-like factors over inert prime factors of N/cc. As

Φ−
P (Frob(l)) = ΦP (Frob(l))/ΦP (c · Frob(l)c−1) = 1

for inert l, E(1) is a constant independent of P . We compute E(1) = 2(1 + 1
l
) which

is a factor of Φ(N) in I. Thus if p - Φ(N), we get the desired result. �

Proof of Theorem 4.5. Note that the assertion of the theorem is equivalent to
the vanishing C0(θ;S) = 0, which is in turn, by Nakayama’s lemma, equivalent to
C0(θ;S) ⊗R A = 0. We study C0(θ;S) ⊗R A. By the above two lemmas and the
proposition, we find that φ(cθ) = cλ/cφ; so, φ(cθ) = Lp(Ψ

−
I ) up to units in A. Let pµ

(0 ≤ µ ∈ Q) be the exact power dividing Lp(Ψ
−
I ) in A. Then φ(cθ) = 1 (up to units

in A) ⇔ C0(θ;S) ⊗R A = 0⇔ µ = 0. The vanishing of µ is proven in [H10] and [Fi]
under p - Φ(N) and the theorem follows. �

4.4. Proof of the theorem. We first prove

Proposition 4.9. Suppose p - Φ(N) and that N is cube-free. If I is a non CM
component of the Hecke algebra h, for each prime divisor P ∈ Spec(I) over (p) =
pZp[[T ]], G◦

P is isomorphic to SL(2)/κ(P ).

Proof. Replace ρI by ρ′ := ρI ⊗
√
〈det(ρI)〉

−1
. Then det(ρ′) has finite image; so,

the Zariski closure GP of Im(ρ′), has connected component G◦
P in SL(2). The semi-

simplification of ρI|Ip has values in a split torus in GL2 containing a matrix with two
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distinct eigenvalues (which are 1 and (1+T )s for some s 6= 0). Thus the semisimplifi-
cation of ρ′|Ip has values in a split torus of SL2. We need to prove G◦

P = SL(2). Since
ρ′(Ip) is an infinite group by (Gal), dimGP > 0. There are only three possibilities:
either G◦

P is isomorphic to a split torus T , or is contained in the Borel subgroup

B, or G◦
P = SL(2). If G◦

P ⊂ T , we conclude that ρ′P = IndQ
M φ for an imaginary

quadratic field M and a Galois character φ : Gal(Q/M) → (I/P )×. We can lift by
class field theory φ to a character Ψ : Gal(Q/M) → W [[Cp]]

× with Im(Ψ) ⊃ Cp
without changing its ramification outside p. Then Spec(I) and Spec(IMcm) intersect at
P , which is impossible by Theorem 4.5. Thus we now assume that G◦

P ⊂ B and G◦
P

has nontrivial nilpotent radical. Since conjugation by ρ′(σ) has to preserve G◦
P and

its nilpotent radical, ρ′ has to be reducible; so, P is an Eisenstein prime of h. By [O1]
Theorem 2.4.10, under the assumption p - ϕ(N) for the Euler function ϕ(N), any
Eisenstein ideal is killed by a Kubota-Leopoldt p-adic L-function, which has trivial
µ-invariant by a theorem of Ferrero-Washington [FeW]. Thus ρ′ cannot be upper
triangular. The only remaining possibility is G◦

P = SL(2). �

We need the following result of Pink (Proposition 0.6 and Theorem 0.7 in [P]).

Theorem 4.10 (Pink). Write Ad : PSL(2) → End(sl(2)) for the adjoint representa-
tion. Let G be a compact subgroup Zariski dense in PSL2(F((x))) for a characteristic
p finite field F, and define E ⊂ F((x)) be a closed subfield generated by Tr(Ad(g)) for
all g ∈ G. If the Zariski closure of G is PSL(2), there exists an algebraic group H/E

such that H ×E F((x)) = PSL(2) and that G contains an open subgroup of H(E).

Proof of Theorem 4.1. Let ρ′P = ρ′ mod P for ρ′ in the proof of the above
proposition. We now apply Pink’s results to G given by Im(ρ′P ) ∩ SL(2) modulo
center. By the above proposition, the Zariski closure of Im(ρ′P ) ∩ SL(2) is the
full group SL(2) (so, the Zariski closure of G is PSL(2)). Since κ(P ) is a lo-
cal function field of characteristic p, the integral closure of Fp[[T ]] in κ(P ) is iso-
morphic to F[[x]] for a variable x ∈ κ(P ) with a finite field extension F/Fp; so,
κ(P ) = F((x)). Thus we may assume that the image G is contained in PSL2(F[[x]]).
Let Ad(ρ′P ) = Ad(ρP ) = Ad ◦ ρP be the adjoint representation of ρP on sl(2). By
(Gal), we have Tr(Ad(ρP )([γs,Qp])) = 1 + (1 + T )s + (1 + T )−s. Thus Fp((T )) is
the closed subfield in F((x)) generated by Tr(Ad(ρP )|Ip) over Fp in I/P , and we get
E ⊃ Fp((T )). Again by (Gal), the semi-simple part of ρ′P ([γs,Qp]) is conjugate to(

(1+T )−s/2 0

0 (1+T )s/2

)
. Therefore the Zariski closure of the semi-simplification of ρ′P |Ip

is a split torus T of SL(2)/F((T )). Thus its Zariski closure T in H/E is still split over
E, and the group H is split; so, H/E

∼= PSL(2)/E . This shows the Galois image
contains an open subgroup of SL2(E) for E ⊃ Fp((T )).

Remark 4.1. If Ψ−
I modulo mI is unramified at an inert prime l but Ψ−

I ramifies at l
(this happens when p|Φ(N)), the µ-invariant of L(Ψ−

I ) is positive as explained at the
end of [H10]. Therefore, we have a mod p congruence of the CM component of ΨI and
a non CM component. Thus for this non CM component, its Galois representation
does not have the open image property modulo p.
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5. Lecture 5: Vanishing of the µ-invariant of p-adic Katz L-functions

The last two lectures are an introductory discussion of problems concerning van-
ishing of the Iwasawa µ-invariant of p-adic L-functions. This type of results for
Kubota-Leopoldt p-adic L has found applications in divisibility problems of class
numbers (see [ICF] Chapter 7), in proofs of the main conjectures in Iwasawa’s theory
and in proving open image property of mod p Λ-adic modular Galois representations.
Recently, new methods of proving the vanishing emerged in the work of Vatsal, Fi-
nis and myself. See [V] for an overview. We describe a geometric method, which
was started by Sinnott in [S] and [S1] and has been generalized in [H04a], [H07b] and
[H10] via the theory of Shimura varieties. We rely on a general philosophical principle
(proposed by Chai, Oort and others): “A Hecke invariant subvariety of a Shimura va-
riety is a Shimura subvariety”. For any power series Φ(x1, . . . , xd) ∈ W [[x1, . . . , xd]],
define µ(Φ) ∈ Z by the exact power pµ(Φ) ‖ Φ(X) in W [[x1, . . . , xd]]. The W -valued
measure space on Zp can be identified with one variable power series ring W [[T ]] by
ϕ 7→ Φ(T ) =

∫
Zp

(1 + T )sdϕ(s) ∈W [[T ]].

Let p > 2 be a prime. Let M be a CM field of degree 2d in which p is unramified.
We assume to be able to split primes of M over p into a disjoint union Σp t Σc

p

for complex conjugation c on M . Then Katz associated to Σp and each finite order
branch character ψ of p-power conductor a p-adic L-function Lp = Lp(ψ). Recall fixed

embeddings C
i∞←↩ Q

ip
↪→ Qp. We have a CM type associated Σ = {σ : M ↪→ C} to Σp

(so, Homfield(M,C) = Σ t Σc). We may view the p-adic L-function as a power series
Lp(xσ, y)σ∈Σ ∈ W [[xσ, y]] of d + 1 variables for the p-adic big unramified complete

DVR W ⊂ Cp with algebraic closed residue field F = Fp. For each fractional ideal
a of M prime to p, its power ah becomes principal generated by α ∈ M×. Define

〈aσ〉 ∈ Q
×

p by expp(
1
h

logp(α
σ)) for the p-adic logarithm logp. Then

λ̂κ,k : a 7→ 〈a−kΣ−κ(1−c)〉 :=
∏

σ∈Σ

〈a−kσ−κσσ(1−c)〉

is the p-adic avatar of an arithmetic Hecke character λκ,k of conductor at most p with
infinity type

∑
σ∈Σ kσ+κσ(1− c)σ. For κ ≥ 0(⇔ κσ ≥ 0 ∀σ ∈ Σ) and k > 0, we have

Lp(λ̂κ,k)

ΩkΣ+2κ
p

:=
Lp(γ

κσ
σ − 1, γk − 1)

ΩkΣ+2κ
p

= ∗E(ψλκ,k)
πκL(0, ψλκ,k)

ΩkΣ+2κ
∞

for γσ = γ = 1 + p.

Here Ω? = (Ω?,σ)σ∈Σ is the p-adic/complex Néron period of CM abelian variety of
CM type Σ (with ordinary good reduction at p), ∗ is a simple constant with | ∗ |p = 1
including the Γ/ε-factor, and E(λ) =

∏
p∈Σp

(1− λ(pc))(1−N(p)−1λ(p)−1). Limiting
ourselves to the case of imaginary quadratic M , we describe a sketch of the proof of

Theorem 5.1. p - Lp(xσ, y) in W [[xσ, y]] (so µ(Lp(ψ)) = 0).

For a weight k > 0, we prove supζ∈µp∞
µ(Lp(ψ)(xσ, ζγ

k − 1)) = 0, which implies

µ(Lp(ψ)(xσ, y)) = 0. Since the proof is the same for any choice of F , for simplicity,
we assume

(1) F = Q; so, M is an imaginary quadratic field with integer ring O,
(2) M has class number prime to p with (p) = pp and Σp = {p},
(3) p ≥ 5, ψ = 1, any ring to have 1

6
and |O×| = 2.
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5.1. Eisenstein series. For any lattice L = Zw1 + Zw2 ⊂ C, we can think about

(2πi)k

(k − 1)!
Gk(L) =

1

2

∑

`∈L−{0}

1

`k
=

1

2
ζ(1− k) +

∞∑

n=1

(
∑

0<d|n

dk−1)qn (Eisenstein series),

which is a function of lattices satisfying Gk(αL) = α−kGk(L). The quotient C/L
gives rise to an elliptic curve X(L) ⊂ P2 by Weierstrass theory. Since ΩX(L)/C is
generated by du for the variable u of C and we can recover out of (X(L), du) the
lattice L as {

∫
γ
du|γ ∈ π1(E)}, we regard Gk as a function of the pairs (E, ω) of an

elliptic curve E with a generator ω of ΩE/C satisfying Gk(E, αω) = α−kGk(E, ω). For
a given base ring B/Z[ 1

6
], a modular form f defined over B of weight k and of level 1

can be interpreted as a functorial rule assigning a number in A to the isomorphism
class of a pair (E, ω)/A of an elliptic curve E over a B-algebra A and a differential
with H0(E,ΩE/A) = Aω such that

(1) f(E, ω) ×A,ρ A′) = ρ(f(E, ω)) for any B-algebra homomorphism ρ : A→ A′,
(2) f(E, aω) = a−kf(E, ω) for a ∈ A×,
(3) f is finite at cusps (the value at the Tate curve at each cusp lands in B[[q]]).

If a modular form f defined over C has q-expansion in B[[q]] at the infinity cusp, f is
actually defined over B (assuming B ⊂ C). Indeed, then f is an isobaric polynomial
Φ(g2, g3) in B[g2, g3], and if (E, ω) is defined over A by y2 = 4x3−g2(E, ω)x−g3(E, ω)
with ω = dx

y
, f(E, ω) = Φ(g2(E, ω), g3(E, ω)) ∈ A. We take B :=W = W ∩Q.

Removing p-coefficients, Gk(z) =
∑

n>0,p-n(
∑

0<d|n d
−1〈d〉k)qn gives rise to a p-adic

analytic family with ψ1 = ω−1. It is a part of the family {GP}P∈Spec(Λ) such that
a(n,GP ) =

∑
0<d|n εP (d)d−1〈d〉k if P = (1 + T − εP (γ)γk−1). Often we write this GP

as Gk,ζ for ζ = εP (γ) ∈ µp∞(Qp) and also εζ = εP . The form Gk,ζ is also an Eisenstein
series with possibly nontrivial Nebentypus. Since the mod p∞ class group C of M has
splitting C = Cl×O×

p /{±1} by our assumptions, we may regard εζ as a character ε̃ζ
of C projecting down C to O×

p = Z×
p (so, we have (1 + T ) = (1 + y)γ−1).

The CM curve X(a) is defined over W and has a differential ω(a) with ω(a) =
π∗ω(O) for a fixed ω(O), where π : X(a) → X(O) is an étale isogeny of degree

[R : a]. Fix a generator α ∈ π1(X(O)), and put Ω∞ =
∫
α
ω(O). We find

Gk,ζ(a)

Ωk
∞

=

Gk,ζ(Ω∞a) = Gk,ζ(X(a), ω(a)) ∈ W[ζ] and

Gk(a)

λ0,k(a)
=

1

2λ0,k(a)

∑

α∈a,(a)+(p)=O

〈α〉−k +
∑

α∈a

λ0,k(αa−1)N(αa−1)−s|s=0 + La−1(0, λ0,k)

Gk,ζ(a)

ε̃ζλ0,k(a)
+ La−1(0, ε̃ζλ0,k),

where “+” indicates that we need to multiply Euler-like factor E(?).
Applying the invariant differential operator (of Maass–Shimura)

δk =
1

2πi

(
k

2iy
+
∂

∂z

)
and δκk =

κ︷ ︸︸ ︷
δk+2κ−2 · · · δk,

we have, by Shimura,

δκkGk,ζ(a)

ε̃ζλκ,k(a)
+ La−1(0, ε̃ζλκ,k) (only dependent on the class of a).
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This can be seen as follows: For z0 = z0(a) with a = Zz0 +Z (and Im(z0) > 0), define
ρ = ρa : M → M2(Q) by ρ(α)

(
z0
1

)
=

(
z0
1

)
α. Then ρ(α)(z0) = z0. We take a local

parameter t around z0 so that ρ(α)(t) = α1−ct and t = 0 ↔ z = z0 (for example, if
z0 = i =

√
−1, t = z−i

z+i
). Then we find, regarding 〈a1−c〉 ∈ C×

δκk(Gk(〈a1−c〉t))|t=0

λ0,k(a)
=
〈a1−c〉κδκk(Gk(z0(a)))

λ0,k(a)
=
δκk(Gk(z0(a)))

λκ,k(a)
+ La−1(0, λκ,k).

There is a canonical p-adic Serre–Tate parameter τ around z0 (as a point of a modular
curve). Heuristically, logp(τ ) behaves like t: t = 0⇔ τ = 1 and τ ◦ ρ(α) = τα

1−c
. For

θ := τ d
dτ

, by Katz, with a specific p-adic period Ωp ∈W× of X(O) (we recall later),

Lp(λ̂κ,k)

Ωk+2κ
p

=
∑

a

θκ(Gk(τ 〈a1−c〉))|τ=1

λ0,k(a)
=

∑

a

δκk(Gk(Ω∞a))

λκ,k(a)
+
πκL(0, λκ,k)

Ωk+2κ
∞

for a running through ideal classes. Thus, we can compute the Taylor expansion of

E =
∑

a

Gk(τ 〈a
1−c〉)

λ0,k(a)
with respect to x′ = logp(τ ) by computing the derivative with

respect to θ. Since E is defined over W , out of this identification of the Taylor
expansion, we conclude that Lp(x, γ

k − 1) is almost the expansion with respect to
T = τ − 1 of E. Strictly speaking, first, the T -expansion is the expansion of the
measure given by E as a measure on Zp not on 1 + pZp. Second, we want to know
the non-vanishing of the T -expansion modulo p of the restriction of the measure on
Cl(p∞) to 1 + pOp

∼= Γ2. Thus we need to replace G := {Gk,ζ} by a family {G ′k,ζ,b}
of Eisenstein series of level p2. Since La−1(s, λ) (resp. G) can be further decomposed
into a sum of partial L-functions for a class modulo p (resp. a sum of Eisenstein series
of level p2), we have La−1(s, λ) =

∑
b≡a mod p,[b]∈ClM(p) Lb−1(s, λ), and

Eζ =
∑

b∈ClM(p)

G ′k,ζ,b(τ 〈b
1−c〉)

ε̃ζλ0,k(b)

gives rise to the exact power series Lp(T , γkζ − 1) as a measure on Zp.
Note that T is the local parameter around z0(O). Suppose the following fact (which

will be proven at the end of this lecture):

Theorem 5.2. For any non-zero non-constant mod p-modular form fb of weight k
indexed by ideal classes, {fb(τ

〈b1−c〉)}[b]∈ClM(p)/∼ are linearly independent over F in
F[[T ]], where {[b]} is a representative set of ray classes modulo p under the equiva-
lence: [b] ∼ [c]⇔ 〈b1−c〉 = α(c)1−c〈c1−c〉 for α(c) ∈M×.

Indeed, {τ 〈b1−c〉}b is algebraically independent in F[[T ]] over F, we can compute the
µ(Lp(x, ζγ

k − 1)) = µ(Lp(T , ζγk − 1)) by q-expansion of fζ,b =
∑

c∼bG ′k,ζ,b(τα(c)c−1

):

µ(Lp(x, γ
k − 1)) = min(ordp(fζ,b))b, where ordp(f) = minn(ordp(a(n, f))). This goes

as follows. Note that pµ(b) ‖ fζ,b(T ) ∈ W [[T ]] ⇔ pµ(b) ‖ fζ,b(q) ∈ W [[q]]. Thus
dividing Eζ by pµ for µ = minbµ(b), and applying Theorem 5.2 to p−µfζ,b, we find
µ(Lp(x, ζγ

k − 1)) = µ(Lp(T , ζγk − 1)) = µ, where Lp(T , ζγk − 1) is the T -expansion
of Eζ (or equivalently the T -expansion of the measure corresponding to Lp(x, y)). For

ζ ∈ µp∞(Qp), we prove supζ,k ordp(fζ,b) = 0, and p - Lp(x, y) follows as µ(Lp(x, y)) ≤
µ(Lp(x, ζγ

k − 1)). If b = ρ−1a for ρ ∈ (a/pa)× ∼= (O/pO)×, G ′k,ζ,b is “something like”
the sum over α ∈ a with α ≡ ρ mod p. Thus for a suitable prime l, the q-expansion
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coefficient a(l, fζ,b) is 1+ϕk,ζ(l)l
k−1 for a suitable character ϕk,ζ(l) + ζ logp(l)/ logp(γ) up

to p-adic units. Thus min(ordp(fζ,b))b ≤ minζ(ordp(a(l, fζ,b))) = 0.

5.2. Modular Curves as Shimura variety. To prove Theorem 5.2, we study sub-
variety of self product of modular curves stable under the diagonal “toric” action by
ρ(α). Write G = GL(2)/Z.

We study classification problem of elliptic curves E/A over a ring A/B for B =
Z[ 1

N
, µN ] (with specific primitive root ζ ∈ µN ), looking into the following moduli

functor of level Γ(N) and writing “[·]” for “{·}/ ∼=”,

EΓ(N),ζ(A) =
[
(E, φN : (Z/NZ)2 ∼= E[N ])/A

∣∣〈φN (1, 0), φN (0, 1)〉 = ζ
]
,

which is represented by geometrically irreducible curve Yζ(N). Here 〈·, ·〉 is the Weil
pairing. We know classically EΓ(N),ζ(C) ∼= Γ(N)\H = Yζ(N)(C). If we remove the
contribution upon ζ and consider the functor EΓ(N)(A) =

[
(E, φN )/A

]
defined on the

category of Z[ 1
N

]-algebras, we have EΓ(N) =
⊔
ζ EΓ(N),ζ, and this functor is represented

by a geometrically non-connected curve Y (N) =
⊔
ζ Yζ(N) defined over Z[ 1

N
] ifN ≥ 3.

We can let α ∈ G(Z/NZ) act on Y (N) by (E, φ) 7→ (E, φ ◦ α). Thus the group

G(Ẑ) = lim←−N G(Z/NZ) acts on the limit Y = lim←−N Y (N) (which is a pro-scheme

defined over Q), and SL2(Ẑ) preserves the connected component Yζ∞ = lim←−N YζN (N).

A remarkable fact Shimura found is that this action of G(Ẑ) can be extended to the
finite adele group G(A(∞)) = G(A)/G(R) (see [IAT] Chapter 6). An interpretation
by Deligne of this fact is equally remarkable (see [PAF] 4.2.1): To explain Deligne’s
idea, we consider the Tate module T (E) = lim←−N E[N ] for an elliptic curve E/A for a

Q-algebra A. Then T (E) ∼= Ẑ2 and V (E) = T (E)⊗Z Q ∼= (A(∞))2. Deligne realized
that Y represents the following functor defined over Q-algebras:

E(∞)(A) = {(E, η : (A(∞))2 ∼= V (E))/A}/isogenies.

Here A(∞) is the finite adele ring. Then g ∈ G(A) sends a point (E, η)/A ∈ E(∞)(A)

to (E, η ◦ g(∞))/A for the projection g(∞) of g to A(∞).

Take the quotient Y (p) = lim←−p-N Y (N) = Y/G(Zp). Put V (p)(E) = T (E)⊗bZ A(p∞),

and consider the prime-to–p level structure η(p) : (A(p∞))2 ∼= V (p)(E). Then Y (p) over
Z(p) represents the following functor defined over Z(p)-algebras:

E(p)(A) = {(E, η(p) : (A(p∞))2 ∼= V (p)(E))/A}/prime-to–p isogenies,

where an isogeny φ is prime to p if deg(φ) is prime to p. On Y (p) and its p-fiber Y
(p)
/F

over Spec(F), again g ∈ G(A) acts by η 7→ η ◦ g(p∞).
If we have a prime-to–p non-central endomorphism α : E → E, then E has

complex multiplication by M = Q[α], and we can write α ◦ η(p) = η(p) ◦ ρ(p)(α) for
ρ(p)(α) ∈ G(A(p∞)). Thus if z0 = (E, η) ∈ Y (p)(A) (A = W and F), we find that
ρ(p)(α)(z0) = z0, and

O×
(p)/Z

×
(p)

∼−→
ρ
{g ∈ Aut(Y (p))|g(z0) = z0}.

Pick the elliptic curve X := X(O)/W with CM by the integer ring O of M . Since

Σc
p = {p}, we have p = O ∩ mW and W/mW = Fp, and X[p∞] is étale constant

and X[p∞] ∼= µp∞ over W. We fix a level p-structure η◦p : µp∞ ∼= X[p∞] and ηetp :
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Qp/Zp
∼= X[p∞]. Then η◦p induces an isomorphism of formal groups: η̂◦p : Ĝm =

Spf(Ŵ [t, t−1]) ∼= X̂ ; so, we have ω(O) = Ωp · (η̂◦p,∗ dtt ) for Ωp ∈ W×. This is the
p-adic period. Write ηp = (η◦, ηetp ) : µp∞ × Qp/Zp

∼= X[p∞] × X[p∞], and define a

homomorphism ρp of O×
(p) into the diagonal torus of G(Zp) by α ◦ ηp = ηp ◦ ρp(α) for

α ∈ O(p). Thus η◦p ◦ ρp(α) = αηp identifying Op with Zp and ηetp ◦ ρp(α) = αcηetp .

Fix a base w1, w2 of Ô(p) ∼= T (p)(X) over Ẑ(p), and identify M
(p∞)
A with (A(p∞))2.

The choice induces prime-to–p level structure η(p) : (A(p∞))2 ∼= O⊗ZA(p∞) = V (p)(X).
We put η = ηp × η(p). Define ρ : O×

(p) → G(Zp × A(p∞)) by η ◦ ρ(α) = α ◦ η. Since

α ∈ O×
(p) induces an isogeny α : X → X sending αη(p) = η(p)ρ(p)(α), the point

z0(O) = (X(O), η) ∈ Y (p) = Y/GL2(Zp) is fixed by ρ(α). Pick a fractional ideal

a ⊂ M prime to p; so, a = (aÔ) ∩M for an idele a ∈ M×
A with ap = a∞ = 1. Then

we have z0(a) = (X(a), η(a)) = ρ(a)−1(z0(O)).

Consider the formal completion Ŷ = Ŷz/W of Y
(p)

/W along z = z0(a) ∈ Y (p)(F). Then

by the universality of Y (p), Ŷ satisfies

Ŷ (A) ∼= Ê(A) :=
{
E/A

∣∣E ⊗A F = X(a)/F
}
/ ∼=,

where A runs through p-profinite local W -algebras with A/mA = W/mW = F. By the

deformation theory of Serre–Tate, Ŷ ∼= Ĝm canonically. Indeed, first E/A ∈ Ê(A) is
determined by the extension E[p∞]◦ ↪→ E[p∞] � E[p∞]et of the Barsotti-Tate groups.
By Serre–Tate, such an extension over A is classified by

Ext(E[p∞]et, E[p∞]◦) ∼= Hom(Qp/Zp/A, µp∞/A) = lim←−
n

µpn(A) = Ĝm(A).

For this identification, we used η◦p : µp∞ ∼= X(a)[p∞] and its dual inverse ηetp : Qp/Zp
∼=

X(a)[p∞]. Since ap = 1, the above identification is independent of a and a. Since

ρ(α) fix z0(a), it acts on Ŷ . As already remarked ([H10] Proposition 3.4):

Lemma 5.3. Identifying Ŷ with Ĝm = Spf(lim←−nW [τ, τ−1]/(τ − 1)n), if α ∈M×, we

have ρ(α)(τ ) = τα
1−c

for complex conjugation c.

5.3. Hecke invariant subvarieties. We write Ia for the irreducible component of

Y
(p)
/F = Y (p) ×W F containing z0(a). Let a be a fractional ideal prime to p of M with

â = aÔ for a ∈ M×
A with ap = a∞ = 1. Then ρ(a) gives an isomorphism of I := IO

onto Ia sending z0(O) to z0(a). Thus we identify I = Ia for any a. Then for any
α, β ∈ O(p) ∩M×, we have a skew diagonal ∆α,β = Im(ρ(α) × ρ(β) : I → I ×F I) in
I ×F I for α, β ∈ O(p) ∩M×.

Theorem 5.4. Let H (

n︷ ︸︸ ︷
I ×F · · · ×F I (with n ≥ 1) be a proper closed irreducible

subscheme with a dominant projection to the product of the first n − 1 factor and to
the last factor. If z0(O)n ∈ H and H is stable under the diagonal action of a p-adic
open subgroup of O×

(p)/Z
×
(p), up to permutations of the first (n− 1) factors, we have

H =

n−2︷ ︸︸ ︷
I × · · · × I ×∆α,β.

This can be proven via Chai’s theory of Hecke invariant subvariety of Shimura
variety (see [H10] Corollaries 3.16 and 3.19). We recall the proof in the last lecture.
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5.4. Conclusion. First we prove Theorem 5.2: Let aj ∈ Z×
p (j = 1, 2, . . . , h). Regard

a = aj ∈ Aut(Ŷ ) = Autgp(Ĝm) given by τ 7→ τ a. Let z = z0(O) and Oz for
the stalk of z ∈ Y (p) mod p. Suppose that the algebra homomorphism: O⊗h

z :=
h︷ ︸︸ ︷

Oz ⊗F Oz ⊗ · · · ⊗F Oz → F[[T ]] = ObGm/F
given by f1(τ )⊗· · ·⊗fh(τ ) to

∏
j fj(τ

aj) has

a nontrivial kernel K. The schematic closure H of Spec(O⊗h
z /K) in Ih is stable under

the action of ρ(O×
(p)). Thus by Theorem 5.4, there exist i 6= j such that O×

p /Z
×
p 3

ai/aj ∈ (O×
(p) ∩M×)/Z×

(p). Let a1, . . . , ah be the representatives of ClM(p)/ ∼. Let

aj = 〈a1−c
j 〉. Then ai/aj 6∈ (O(p)∩M×)/Z×

(p) for all i 6= j. This proves Theorem 5.2. �

We have Lp(T , γkζ − 1) =
∑

j fζ,aj(τ
aj) for the sum of Eisenstein series fζ,aj of

weight k = p − 1 with q-expansion
∑∞

n=0 a(n, fζ,aj)q
n. Dividing fζ,aj by the Hasse

invariant h does not change q-expansion and the value of fζ,aj . Thus we have

µ(Lp(T , γkζ − 1))
Theorem 5.2

= max
n,j

(ordp(a(n, fζ,aj))

as T is a local parameter at z = z0(O) and q is a local parameter at the cusp ∞ of
the irreducible modular curve I . By computation, we can find a prime ` and index j
such that a(`, fζ,aj) = 1 + ζ logp(`)/ logp(γ)`k−1 independent of the choice of ζ. Thus

0 ≤ µ(Lp) ≤ sup
ζ
µ(Lp(T , ζγk − 1)) ≤ sup

ζ∈µp∞(Qp)

(ordp(1 + ζ logp(`)/ logp(γ)`k−1)) = 0

as the p-power order of the root of unity ζ logp(`)/ logp(γ) grows indefinitely. This conclude
the proof of the theorem. �

Scrutinizing a(n, fζ,aj) more, we can prove

Corollary 5.5. Suppose F = Q. Then the µ-invariant of the anticyclotomic Katz
p-adic L-function L−

p (x) = Lp(x, 0) also vanishes.

When F 6= Q, writing L−
p (xσ) = Lp(xσ, 0), µ(L−

p ) could be positive, though
µ(Lp(xσ, y)) = 0 always. This possibility only occur if [F : F [µp]] = 2 and M/F
is unramified everywhere at finite places (see (M1–M3) in [H10] for a precise set of
conditions for µ(L−

p ) > 0).

6. Lecture 6: Hecke invariant subvariety

In this last lecture, we provide a sketch of the proof of the specific case (we used) of
the conjecture asserting that “a Hecke invariant subvariety of modulo p Shimura vari-
ety is a Shimura subvariety.” We can prove this (conjectural) principle for the Hilbert
modular variety and its self-products, but in this lecture, we only deal with modular
curves and their self-products for notational simplicity. Any essential ingredients for
the proof of the general case show up in this simpler case. Write G = GL(2)/Z with
center Z ∼= Gm/Z. In this lecture, the word “variety” mean a reduced scheme of finite
type over F.

We recall the following lemma we mentioned already

Lemma 6.1. Identifying Ŷ with Ĝm = Spf(lim←−nW [τ, τ−1]/(τ − 1)n), if α ∈M×, we

have ρ(α)(τ ) = τα
1−c

for complex conjugation c.
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Note that if α ∈ M× is not prime to p, the action of ρ(α) is an endomorphism of
Y (p) not an automorphism. A proof of this can be found in [H10] as Proposition 3.4.

Then the action of ρ(α) on the Serre–Tate coordinate is given by τ 7→ τα
1−c

factoring
through G(A(p∞))/Z(Q), since Z(Q) acts trivially on the Shimura variety Y (p).

6.1. Hecke invariant subvarieties. We write I for the irreducible component of

Y
(p)
/F = Y (p)×W F containing z0 = z0(O); so, the formal completion along z0 is Ŷ = Î.

We want to give a sketch of a proof of the following two theorems ([H10] Corollaries
3.16 and 3.19):

Theorem 6.2. Suppose that H ( I×F I is a closed irreducible subvariety of codimen-
sion 1 containing (z0, z0) ∈ I ×F I stable under the action of a p-adic open subgroup

of O×
(p)/Z

×
(p)

1−c
↪→ Z×

p . Then either H = z0 × I or H = I × z0 or H = ∆α,β for

α, β ∈ O(p) ∩M×.

Theorem 6.3. Let H ⊂
n︷ ︸︸ ︷

I ×F · · · ×F I (n ≥ 2) containing zn0 be a closed irreducible
subvariety with a dominant projection to the product of the first n − 1 factor and to
the last factor. If H is of codimension 1 stable under the diagonal action of a p-adic

open subgroup of O×
(p)/Z

×
(p)

1−c
↪→ Z×

p , up to permutations of the first (n− 1) factors, we

have H =

n−2︷ ︸︸ ︷
I × · · · × I ×∆α,β.

6.2. Rigidity lemma and proofs. We start with general lemmas. Let T ⊂ O×
(p)/Z

×
(p)

be the open subgroup (under p-adic topology) fixing H by the diagonal action of

ρ(α) × · · · × ρ(α) (α ∈ T ). Then the formal completion Ĥ along zn0 is also stable

under T , since zn0 is fixed by T . By the Serre–Tate theory, Ĥ ⊂ În ∼= Ĝn
m/F.

As we have seen, if a power series Φ(T ) = Φ(τ ) (T = τ −1) satisfies Φ(τ z) = Φ(τ )z

for all z in an open subgroup of Z×
p , then Φ(τ ) = τ s for s ∈ Zp (Lemma 3.3). Note

Ĝm = Spf( ̂W [τ, τ−1]) = Spf(W [[T ]]).

The cocharacter group of Gn
m is isomorphic to Zn, which we write X∗(Gn

m). Then by

tautology, Gn
m = Gm ⊗Z X∗(Gn

m). Similarly in the formal setting, putting X∗(Ĝn
m) =

X(Gn
m)⊗Z Zp = Zn

p (the formal cocharacter group), we have Ĝn
m = Ĝm ⊗Zp X∗(Ĝn

m).
A slightly more general version of Chai’s rigidity lemma can be stated as follows (e.g.,
[H10] Lemma 3.7):

Lemma 6.4 (C.-L. Chai). If Z ⊂ Ĝn
m/F is a reduced equidimensional formal sub-

scheme of dimension r stable under the diagonal action of an open subgroup of
Autgp(Ĝm) = Z×

p , then

Z =
⋃

L

Ĝm ⊗Zp L ⊂ Ĝn
m/F,

where L runs over (finitely many) Zp-direct summand of X∗(Ĝn
m) of rank r.

The proof is given in [C] but is technical and long; so, we admit this lemma.

We apply this to the formal completion Ĥ along zn0 = (z0, z0, . . . , z0) ∈ In inside

În = Ĝn
m. Since H is stable under τ 7→ τα

1−c
for α ∈ O×

(p)/Z
×
(p)

1−c
↪→ Z×

p , by continuity,
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Ĥ is stable under the closure Z×
p of {α1−c|α ∈ O×

(p)}. SinceH is an excellent irreducible

scheme, Ĥ is reduced equidimensional of dimension n−1. Thus, by the above lemma,

(6.1) Ĥ =
⋃

L

Ĝm ⊗Zp L ⊂ Ĝn
m = În,

where L runs over (finitely many) Zp-direct summand of X∗(Î
n) of rank n − 1. Let

H → H be the normalization of H. Since H is irreducible, H is irreducible. By
(6.1), each point over zn0 of H is indexed by {L}, and for the point yL ∈ H over zn0
corresponding to L, ĤyL

is étale over Ĝm ⊗ L. Write In = I ′ × I ′′ for I ′ = In−1 and
I ′′ = I for the last component.

Lemma 6.5. The scheme H is finite flat over I ′ around zn−1
0 . In particular, each L

is of rank n − 1 and projects down to an open subgroup of X∗(Ĝn−1
m ) ∼= Zn−1

p . If one

of L surjects down onto X∗(Î
′) (Î ′ = Ĝn−1

m ), all of L surjects down onto X∗(Î
′), and

the projection H → I ′ is étale finite around zn−1
0 .

Proof. Since the projection of the first (n − 1)-factor I ′ = In−1 is dominant, at least

one of L, call it L0, projects down to an open Zp-submodule of X∗(Ĝn−1
m ). If there is

L with image in X∗(Î
′) of rank < n− 1, the non-flat locus Hnf ⊂ H of H → I ′ is a

nonempty proper closed subscheme of H. Since dim Ĝm ⊗ L = rankL = n − 1, Hnf

has dimension n − 1 equal dimH; so, H has to be reducible, a contradiction. Thus

H → I ′ is finite flat around zn−1
0 via faithfully flat descent from Ĥ/Î ′ to H/I ′.

If one of L, call it L0, surjects down to X∗(Î
′) and another L1 has image smaller

than X∗(Î
′), the ramified locus Hram of H → I ′ is nontrivial proper closed subscheme

of dimension n − 1, again a contradiction to the irreducibility of H; so, H → I ′ is

étale finite around zn−1
0 , again via faithfully flat descent from Ĥ/Î ′ to H/I ′. �

When n = 2, by applying a power of the p-power Frobenius or its dual to H (that
is, applying ρ(α) for α generating pO(p) or its dual ρ(α)), we may assume that at

least one L surjects down to X∗(Î
′); so, by the above lemma, all L surjects down to

X∗(Î
′). Thus we may assume that H → I ′ is étale finite around zm−1

0 . Now assume
n = 2. Then, over an open dense subscheme U ⊂ H containing all points above z2

0,
the two projections πL : U → I ′ = I and πR : U → I ′′ = I are étale finite.

We consider the universal elliptic curve (E,η)/I. We pull it back to H: (A, ηA) =

π∗
L(E,η) and (B, ηB) = π∗

R(E,η). For a point y ∈ H over z2
0, Ĥ := Ĥy = {(τ b, τ a)|t ∈

Î = Ĝm} ⊂ Î × Î. Since πj : H → I is étale finite around y, we may assume that

a, b ∈ Z×
p ; so, we may assume that b = 1. Let X = X(O). The map Î 3 τ 7→ τ a ∈ Î

is induced on τ ∈ Î = Homgp(X[p∞], X[p∞]) by regarding a as an endomorphism
of X[p∞]. Thus identifying X = X(O)/F with the fibers Ay = By of A and B at
y, we regard the unit a ∈ End(X[p∞]) as a Op-linear map a : Ay[p

∞] = X[p∞] →
X[p∞] = By[p

∞] inducing identity on X[p∞]. We note the following fact (see [H10]
Proposition 3.15):

Lemma 6.6 (C.-L. Chai). Further shrinking the open neighborhood U of y in H, we
may assume that the isomorphism a : Ay[p

∞] = X[p∞] → X[p∞] = By[p
∞] extends

to ã : A/U [p∞] → B/U [p∞]. This implies that Ĥu
∼= Ĝm by (τ, τea) ↔ τ at any point

u ∈ U(F).
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Here is a sketch of a proof of the above lemma. Since a can be approximated
p-adically by αn ∈ R(p) modulo pn, a can be extended to ρ(αn) : A[pn] bH → B[pn] bH.
Passing to a limit, we have an extension â : A[p∞] bH → B[p∞] bH. Write O for the

stalk of OH at y; so, Ĥ = Spf(Ô). Since â is determined by its restriction a to

Ay[p
∞], it is a unique extension of a. Since Ô ⊗O Ô is reduced (because of excellency

of O), the pull-backs of â by two projections Ĥ ×H Ĥ → Ĥ and three projections

Ĥ ×H Ĥ ×H Ĥ → Ĥ ×H Ĥ coincides; so, â satisfies the descent datum with respect
to Ô/O, getting desired U . �

Proof of Theorem 6.2. Since the two projections πj : H → I (j = L,R) are
dominant, we have End(A)⊗Q = End(B)⊗Q = Q. Let Y/H = A×H B. Thus there

are only two possibilities of EndQ(Y) = End(Y/H) ⊗ Q: Either EndQ(Y) = Q × Q

or EndQ(Y) = M2(Q). Suppose that EndQ(Y) = M2(Q). By semi-simplicity of the
category of abelian schemes, we have two commuting idempotent e? ∈ EndQ(Y) such
that eA(Y) = A and eB(Y) = B. Since EndQ(Y) = M2(Q), we can find an invertible

element β̃ in GL2(Z(p)) ⊂ M2(Q) such that β̃ ◦ eA = eB; so, β̃ : A→ B is an isogeny

with β̃ ◦ ηA = ηB , whose specialization to the fiber of A and B at y gives rise to an
endomorphism β ∈ End(X(O)) ⊗Q. Thus the isogeny β̃ is induced by ρ(β), and we
conclude ∆1,β = H.

We suppose EndQ(Y) = Q × Q and try to get a contradiction (in order to prove
that EndQ(Y) = M2(Q)). We pick a sufficiently small open compact subgroup K ⊂
G(A(p∞)) maximal at p so that the normalization HK of HK ⊂ YK ×YK is smooth at
the image of y. The variety YK is naturally defined over a finite extension Fq/Fp as the
solution of the moduli problem E(p)/K. The universal elliptic curve EK is therefore
defined over IK/Fq , andHK is a variety of finite type over Fq . Let η be the generic point
of HK/Fq , and write η for the geometric point over η and Fq(η)sep for the separable
algebraic closure Fq(η)sep of Fq(η) in Fq(η). Take an odd prime ` 6= p, and consider
the `–adic Tate module T`(Yη) for the generic fiber Yη of Y. We consider the image
of the Galois action Im(Gal(Fq(η)

sep/Fq(η))) in GLO`×O`
(T`(Yη)). Then by a result of

Zarhin ([DAV] Theorem V.4.7), the Zariski closure over Q of Im(Gal(Fq(η)sep/Fq(η)))
is a reductive subgroup G of GLQ`×Q`

(T`(Yη) ⊗ Q), and Im(Gal(Fq(η)sep/Fq(η))) is
an open subgroup of G(Q`). Moreover, by Zarhin’s theorem, the centralizer of G in
EndQ`×Q`

(T`(Yη)⊗Q) is End(Y) ⊗Q`. Since the reductive subgroups of GL(2) are
either tori or contain SL(2), the derived group G1(Q`) of G(Q`) has to be SL2(Q`×Q`).
By Chebotarev’s density, we can find a set of closed points u ∈ HK(F) with positive
density such that the Zariski closure in G of the subgroup generated by the Frobenius
element Frobu ∈ Im(Gal(Fq(η)sep/Fq(η))) at u with πj(u) = uj (uj ∈ IK(F)) is a
torus containing a maximal torus Tu = (Tu1

× Tu2
)∩ G1 of the derived group G1 of G.

In particular the centralizer of Tu in G1 is itself. Thus Yu is isogenous to a product
of two non-isogenous elliptic curves Y1 = Eu1

and Y2 = Eu2
defined over a finite field.

The endomorphism algebra Mj = EndQ(Yj) is an imaginary quadratic field of Q
generated over Q by the relative Frobenius map φj induced by Frobu, and M1 6= M2.

The relative Frobenius map Frobu acting on X∗(Îu1
) ∼= Zp has one eigenvalue: φ

(1−c)σ
1

for the CM type Σ1 = {σ} of Y1, which differ from the eigenvalues of φ2 ∈ End(Y2)

on X∗(Îu2
) ∼= Zp. Since we have proven that over the open dense subscheme U of

H, the formal completion of U at u ∈ U with u = (u1, u2) ∈ X ⊂ V 2 is canonically
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isomorphic to a formal subtorus Ẑ ⊂ Îu1
× Îu2

with co-character group X∗(Ẑ) ∼= Zp,
we may assume that our point u = (u1, u2) as above is in the (open dense) image

UK of U in HK . Projecting X∗(Ẑ) down to the left and the right factors IK , the

projection map X∗(Ẑ)→ X∗(Îuj ) is actually an injection commuting with the action

of Frobu. Thus Frobu has more than one distinct eigenvalues on X∗(Ẑ) of rank 1,
which is a contradiction. Thus we conclude that EndQ(Y) = M2(Q) for any choice
of small open compact subgroups K maximal at p.

As we have remarked at the beginning, Ĥy ⊂ Ĥz2
0
⊂ Î × Î is given by {τ, τβ1−c

)|t ∈
Ĝm} for nonzero β ∈ O(p). Suppose that y corresponds to L; so, Ĥy ⊂ Î × Î

coincides with Ĝm ⊗ L. On the other hand, we have the skew-diagonal ∆β = ∆1,β =

{(z, ρ(β)(z))|z ∈ I} ⊂ I × I . The formal completion ∆̂β along (z0, z0) therefore

coincides with Ĥy and ∆̂β = Ĝm ⊗ L ⊂ Ĥ(z0,z0) inside Î2. Thus ∆β ⊂ H. By the
irreducibility of H, we conclude H = ∆β. �

There are two ways of proving Theorem 6.3. One is an induction reducing things
to Theorem 6.2, and another is to prove that End(Y) ⊗ Q = M2(Q) × Qn−2 for
Y =

∏
j π

∗
jE for the projection πj of H to j-th component I (after a permutation of

the factors I).
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