ARITHMETIC INVARIANT AND SHIMURA VARIETIES

HARUZO HIDA

Contents

1. Lecture 1: Abelian components of the 'big' Hecke algebra	2
1.1. Is characterizing abelian components important?	3
1.2. Horizontal theorem	4
1.3. Weil numbers	4
1.4. A key lemma in the entire lectures	5
1.5. Proof of the theorem	7
2. Lecture 2: Vertical version	8
2.1. Results towards the vertical conjecture	9
2.2. Proof of the vertical theorem	11
3. Lecture 3: Constancy of adjoint \mathcal{L} -invariant	12
3.1. Proof of Theorem 3.1	13
3.2. Recall of \mathcal{L} -invariant	14
3.3. Galois deformation	15
3.4. Selmer Groups	15
3.5. Greenberg's \mathcal{L} -invariant	17
3.6. Proof of Theorem 3.4	17
4. Lecture 4: Image of Λ -adic Galois representations modulo p	18
4.1. CM components	19
4.2. Irreducibility and Gorenstein-ness	20
4.3. Congruence modules	21
4.4. Proof of the theorem	22
5. Lecture 5: Vanishing of the μ -invariant of p-adic Katz L-functions	24
5.1. Eisenstein series	25
5.2. Modular Curves as Shimura variety	27
5.3. Hecke invariant subvarieties	28
5.4. Conclusion	29
6. Lecture 6: Hecke invariant subvariety	29
6.1. Hecke invariant subvarieties	30
6.2. Rigidity lemma and proofs	30
References	33

Date: March 15, 2010.

Six lectures from 1/22/2010 to 2/5/2010 at Emile Borel Center in their Galois trimester. The author is partially supported by the NSF grant: DMS 0753991 and DMS 0854949.

1. Lecture 1: Abelian components of the 'big' Hecke Algebra

Fix a prime $p \geq 5$, field embeddings $\mathbb{C} \stackrel{i_{\infty}}{\longleftrightarrow} \overline{\mathbb{Q}} \stackrel{i_p}{\longleftrightarrow} \overline{\mathbb{Q}}_p$ and a positive integer N prime to p. Consider the space of modular forms $M_{k+1}(\Gamma_0(Np^{r+1}), \psi)$ with $(p \nmid N, r \geq 0)$ (including Eisenstein series) and cusp forms $S_{k+1}(\Gamma_0(Np^{r+1}), \psi)$. Let the ring $\mathbb{Z}[\psi] \subset \mathbb{C}$ and $\mathbb{Z}_p[\psi] \subset \overline{\mathbb{Q}}_p$ be generated by the values ψ over \mathbb{Z} and \mathbb{Z}_p , respectively. The Hecke algebra over $\mathbb{Z}[\psi]$ is $H = \mathbb{Z}[\psi][T(n)|n = 1, 2, \cdots] \subset \operatorname{End}(M_{k+1}(\Gamma_0(Np^{r+1}), \psi))$. We put $H_{k+1,\psi} = H_{k+1,\psi/W} = H \otimes_{\mathbb{Z}[\psi]} W$ for a p-adic discrete valuation ring $W \subset \overline{\mathbb{Q}}_p$ containing $\mathbb{Z}_p[\psi]$. Sometimes our T(p) is written as U(p) as the level is divisible by p. The ordinary part $\mathbf{H}_{k+1,\psi/W} \subset H_{k+1,\psi/W}$ is the maximal ring direct summand on which U(p) is invertible. Let $\psi_1 = \psi_N \times$ the tame p-part of ψ . Then, we have a unique 'big' Hecke algebra $\mathbf{H} = \mathbf{H}_{\psi_1/W}$ such that

- (1) **H** is free of finite rank over $\Lambda := W[[T]]$ equipped with $T(n) \in \mathbf{H}$ for all n,
- (2) if $k \ge 1$ and $\varepsilon : \mathbb{Z}_p^{\times} \to \mu_{p^{\infty}}$ is a character,

$$\mathbf{H}/(1+T-\psi(\gamma)\varepsilon(\gamma)\gamma^k)\mathbf{H}\cong\mathbf{H}_{k+1,\varepsilon\psi_k}\ (\gamma=1+p)\ \text{for}\ \psi_k:=\psi_1\omega^{1-k},$$

sending T(n) to T(n), where ω is the Teichmüller character.

A (normaized) Hecke eigenform in $M_{k+1}(\Gamma_0(Np^{r+1}), \psi)$ has slope 0 if $f|U(p) = a \cdot f$ with $|a|_p = 1$. An important consequence of the above two facts is

(B) The number of slope 0 Hecke eigenform of level Np^{r+1} , of weight k+1 and of given character ψ modulo Np^{r+1} is bounded independent of k, r and ψ .

If f has slope 0, $\lambda : H \to \overline{\mathbb{Q}}_p$ given by $f|h = \lambda(h)f$ for $h \in H$ factors through $H_{k+1,\psi}$ and $f = \sum_{n=0}^{\infty} a(n, f)q^n = \text{constant} + \sum_{n=1}^{\infty} \lambda(T(n))q^n$. Thus the number of slope 0 forms with Neben character ψ is less than or equal to $\operatorname{rank}_W H_{k+1,\psi} = \operatorname{rank}_{\Lambda} \mathbf{H}_{\psi_1}$ independent of r and ε . The Hecke field of f is $\mathbb{Q}(f) = \mathbb{Q}(\lambda(n)|n = 1, 2, ...)$.

The corresponding objects for cusp form is denoted by the corresponding lower case characters; so, for example, $h = \mathbb{Z}[\psi][T(n)|n = 1, 2, \cdots] \subset \operatorname{End}(S_{k+1}(\Gamma_0(Np^{r+1}), \psi)),$ $h_{k+1,\psi/W} = h \otimes_{\mathbb{Z}[\psi]} W$, the ordinary part $\mathbf{h}_{k+1,\psi} \subset h_{k+1,\psi}$ and the big cuspidal Hecke algebra $\mathbf{h}_{/W}$. Replacing modular forms by cusp forms (and upper case symbols by lower case symbols), we can construct the "big" cupspidal Hecke algebra \mathbf{h}_{ψ_1} and for the algebra, the same assertions as (1) and (2) holds. We have a surjective Λ -algebra homomorphism $\mathbf{H} \twoheadrightarrow \mathbf{h}$ sending T(n) to T(n).

Each point $P \in \text{Spec}(\mathbf{H})$ has a 2-dimensional (semi-simple) Galois representation ρ_P (of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$) with coefficients in the residue field $\kappa(P)$ of P such that $\text{Tr}(\rho_{\mathbb{I}}(Frob_l)) = (T(l) \mod P)$ for almost all primes ℓ . In particular, \mathbb{I} carries a Galois representation $\rho_{\mathbb{I}}$ with

 $\operatorname{Tr}(\rho_{\mathbb{I}}(Frob_l)) = a(l)$ (for the image a(l) in \mathbb{I} of T(l)).

If a prime divisor P of $\operatorname{Spec}(\mathbb{I})$ contains $(1 + T - \varepsilon \psi_k(\gamma)\gamma^k)$ with $k \ge 1$, regarding it as an algebra homomorphism $(P : \mathbb{I} \to \overline{\mathbb{Q}}_p) \in \operatorname{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)$, we therefore have a Hecke eigenform $f_P \in M_{k+1}(\Gamma_0(Np^{r(P)+1}), \varepsilon \psi_k)$ with $f_P|T(n) = a_P(n)f_P$ for $a_P(n) =$ $P(a(n)) \in \overline{\mathbb{Q}}_p$ for all n. Such a P is called *arithmetic* if $k \ge 1$, and we write $\varepsilon_P = \varepsilon$, r(P) = r and k(P) = k for such a P. Thus \mathbb{I} gives rise to a slope 0 analytic family of modular forms $\mathcal{F}_{\mathbb{I}} = \{f_P | \text{arithemtic } P \in \operatorname{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)\}$ and Galois representations $\{\rho_P\}_{P \in \operatorname{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)}$. For $a \in \mathbb{I}$, we write $a_P \in \overline{\mathbb{Q}}_p$ for P(a).

We call a Galois representation ρ abelian if there exists an open subgroup $G \subset \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ such that the semi-simplification $(\rho|_G)^{ss}$ has abelian image over G. We

call I an *abelian component* if $\rho_{\mathbb{I}}$ is abelian. A component I is called *cuspidal* if $\operatorname{Spec}(\mathbb{I}) \subset \operatorname{Spec}(\mathbf{h})$, and if not, we call it *Eisenstein* component.

Hereafter assume \mathbb{I} to be cuspidal. We have a *p*-adic *L*-function

$$L_p = L_p(Ad(\rho_{\mathbb{I}})) := L_p(1, Ad(\rho_{\mathbb{I}})) = L_p(1, \rho_{\mathbb{I}}^{sym\otimes 2} \otimes \det(\rho_{\mathbb{I}})^{-1}) \in \mathbb{I}$$

interpolating

$$L_p(P) := P(L_p) = (L_p \mod P) = \frac{L(1, Ad(\rho_P))}{\text{period}}$$
 for all arithemtic P.

Writing $\text{Spec}(\mathbf{h}) = \text{Spec}(\mathbb{I}) \cup \text{Spec}(\mathbb{X})$ for the complement \mathbb{X} , we have (under a mild assumption)

 $\operatorname{Spec}(\mathbb{I}) \cap \operatorname{Spec}(\mathbb{X}) = \operatorname{Spec}(\mathbb{I} \otimes_{\mathbf{h}} \mathbb{X}) \cong \operatorname{Spec}(\mathbb{I}/(L_p))$ (a congruence criterion).

If we interpolate *L*-values including the cyclotomic variable, i.e, adding a variable *s* interpolating $L(s, Ad(\rho_P))$ moving *s*, we need to multiply the *L*-value by the modifying Euler *p*-factor. For this enlarged two variable adjoint *L*-function, the modifying factor vanishes at s = 1; so, $L_p(s, Ad(\rho_{\mathbb{I}}))$ has an exceptional zero at s = 1, and for an \mathcal{L} -invariant $0 \neq \mathcal{L}^{an}(Ad(\rho_{\mathbb{I}})) \in \mathbb{I}[\frac{1}{p}]$, we expect to have $L'_p(1, Ad(\rho_{\mathbb{I}})) \stackrel{?}{=} \mathcal{L}^{an}(Ad(\rho_{\mathbb{I}}))L_p$ (in the style of Mazur–Tate-Teitelbaum). Greenberg proposed a definition of a number $\mathcal{L}(Ad(\rho_P))$ conjectured to be equal to $\mathcal{L}^{an}(Ad(\rho_P))$ for arithmetic *P*. We can interpolate Greenberg's \mathcal{L} -invariant $\mathcal{L}(Ad(\rho_P))$ over arithemtic *P* to get a function $\mathcal{L}(Ad(\rho_{\mathbb{I}})) \neq 0$ in $\mathbb{I}[\frac{1}{p}]$ so that $\mathcal{L}(Ad(\rho_{\mathbb{I}}))(P) = \mathcal{L}(Ad(\rho_P))$ for all arithmetic *P*.

1.1. Is characterizing abelian components important? Here is a list of such characterizations (possibly conjectural)

- (Well known) A cuspidal I is abelian \Leftrightarrow there exist an imaginary quadratic field $M = \mathbb{Q}[\sqrt{-D}]$ in which p splits into $p\overline{p}$ and a character $\Psi = \Psi_{\mathbb{I}} : G_M =$ $\operatorname{Gal}(\overline{\mathbb{Q}}/M) \to \mathbb{I}^{\times}$ of conductor \mathfrak{cp}^{∞} for an ideal \mathfrak{c} with $\mathfrak{cc}D_M|N$ such that $\rho_{\mathbb{I}} = \operatorname{Ind}_M^{\mathbb{Q}} \Psi$, where D_M is the discriminant of M. Thus we call cuspidal abelian component a *CM component*. This implies $L_p = L_p(\Psi^-)L(0, \left(\frac{M/\mathbb{Q}}{p}\right))$, where $\Psi^-(\sigma) = \Psi(c\sigma c^{-1}\sigma^{-1})$ for complex conjugation c, and $L_p(\Psi^-)$ is the *anticyclotomic* Katz p-adic L-function associated to Ψ^- . This is a base of the proof by Mazur/Tilouine of the anticyclotomic main conjecture.
- (Known) I is abelian $\Leftrightarrow \rho_P$ is abelian for a single arithmetic prime P.
- (Almost true, 4th lecture) I abelian $\Leftrightarrow \rho_{\mathbb{I}} \mod p$ is abelian. This is almost equivalent to the vanishing of the Iwasawa μ -invariant for $L_p(\Psi^-)$ (which is known if \mathfrak{c} is made up of primes split over \mathbb{Q}). We discuss about μ in the last two lectures.
- (Known under a mild condition, 2nd lecture) Consider the composite of Hecke fields $\mathcal{V}_r(\mathbb{I}) \subset \overline{\mathbb{Q}}$ generated by $a_P(n)$ for all n and all arithmetic P with level $\leq Np^{r+1}$ for a fixed $r \geq 0$. Then \mathbb{I} is abelian $\Leftrightarrow [\mathcal{V}_r(\mathbb{I}) : \mathbb{Q}] < \infty$. This was a question of L. Clozel asked to me in the early 1990s.
- (Horizontal theorem in the 1st lecture) Fix $k \geq 1$ and consider the composite of Hecke fields $\mathcal{H}_k(\mathbb{I})$ generated by $a_P(n)$ for all n and all arithmetic P with weight k. Then \mathbb{I} is abelian $\Leftrightarrow [\mathcal{H}_k(\mathbb{I}) : \mathbb{Q}(\mu_{p^{\infty}})] < \infty$.
- (Known, 3rd lecture) $\mathcal{L}(Ad(\rho_{\mathbb{I}}))$ is a constant function if and only if \mathbb{I} is a CM component. This is a corollary of Horizontal theorem.

• (?) $L_p(s, Ad(f_P))$ (for an arithmetic P) has exceptional zero at s = 1 and its \mathcal{L} -invariant $\mathcal{L}(Ad(f_P))$. Is \mathbb{I} abelian if and only if $\mathcal{L}(Ad(f_P)) = \log_p(\mathfrak{p}/\overline{\mathfrak{p}})$ for one arithmetic P up to algebraic numbers? Here taking a high power $(\mathfrak{p}/\overline{\mathfrak{p}})^h = (\alpha), \log_p(\mathfrak{p}/\overline{\mathfrak{p}}) = \frac{1}{h} \log_p(\alpha)$ for the Iwasawa logarithm \log_p .

All statements seem to have good arithmetic consequences, and I am convinced the importance of giving as many characterizations of abelian components as possible.

1.2. Horizontal theorem. Here is what we prove in this first lecture:

Theorem 1.1. Pick an infinite set \mathcal{A} of arithmetic points P with fixed weight $k(P) = k \geq 1$. Write $\mathcal{H}_{\mathcal{A}}(\mathbb{I}) \subset \mathcal{H}_k(\mathbb{I})$ for the field generated over $\mathbb{Q}(\mu_{p^{\infty}})$ by $\{a_P(p)\}_{P \in \mathcal{A}}$. Then the field $\mathcal{H}_{\mathcal{A}}(\mathbb{I})$ is a finite extension of $\mathbb{Q}(\mu_{p^{\infty}})$ if and only if \mathbb{I} is abelian.

We prepare a lemma:

Lemma 1.2. Let \mathcal{F} be a slope 0 p-adic analytic family of Hecke eigenforms with coefficients in \mathbb{I} . Then we have

- (1) Fix $0 \leq r < \infty$. Let $K = \mathbb{Q}$. Then the degree $[K(f_P) : K(a_P(p))]$ for arithmetic P with $r(P) \leq r$ is bounded independently of P,
- (2) Let $K = \mathbb{Q}(\mu_{p^{\infty}})$ and fix $k \geq 1$. Then the degree $[K(f_P) : K(a_P(p))]$ for arithmetic P with k(P) = k is bounded independently of P.

Proof. If $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/K[\psi_1, \omega])$ fix $a_P(p)$, f_P^{σ} is still ordinary Hecke eigenforms of the same level and the same Neben character. The number of such forms is bounded by $\operatorname{rank}_{\mathbb{Z}_p[[T]]} \mathbf{h}$. Thus $[K(f_P) : K(a_P(p))] \leq [K[\psi_1, \omega] : K] \operatorname{rank}_{\mathbb{Z}_p[[T]]} \mathbf{h}$. \Box

Hereafter we fix \mathcal{A} and assume that $[\mathcal{H}_{\mathcal{A}}(\mathbb{I}) : K] < \infty$ for $K := \mathbb{Q}(\mu_{p^{\infty}})$. We try to prove that \mathbb{I} is abelian. Put $K(f_P) = K[a_P(n); n = 1, 2, ...] \subset \overline{\mathbb{Q}}$. For a prime loutside Np, let A(l) be a root of $\det(X - \rho_{\mathbb{I}}(Frob_l)) = 0$. Then $\alpha_{l,P} := A_P(l)$ is a root of $X^2 - a_P(l)X + \psi_k(l)l^{k(P)} = 0$. If l = p, we put A(l) = a(l). Fix l. Extending \mathbb{I} , we assume that $A(l) \in \mathbb{I}$. By the lemma, $L_P = K[\alpha_{l,P}]$ has bounded degree over Kindependent of l and P for all $P \in \mathcal{A}$; so, l is tamely ramified in L_P/K for $l \gg 0$.

1.3. Weil numbers. We start preparing for a proof of the theorem. For a prime l, a Weil l-number $\alpha \in \mathbb{C}$ of integer weight $k \geq 0$ satisfies

(1) α is an algebraic integer; (2) $|\alpha^{\sigma}| = l^{k/2}$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

If α is a Weil number, $\mathbb{Q}(\alpha)$ is contained in a CM field. We call two nonzero algebraic numbers a and b equivalent (written as $a \sim b$) if a/b is a root of unity.

Lemma 1.3. Let K be a finite field extension of $\mathbb{Q}(\mu_{p^{\infty}})$. Then for a given prime l and weight $k \geq 0$, there are only finitely many Weil l-numbers of weight k in K up to equivalence. If l = p and $K = \mathbb{Q}[\mu_{p^{\infty}}]$, any Weil p-number of weight k is equivalent to $(p^*)^{k/2}$, where $p^* = (-1)^{(p-1)/2}p$ if p is odd, and $p^* = 2$ if p = 2.

Proof. If $l \neq p$, the prime l remains prime in $\mathbb{Q}[\mu_{p^{\infty}}]$ over a finite subextension of $\mathbb{Q}[\mu_{p^{\infty}}]$. Thus there are only finitely many primes \mathfrak{L} of $\mathbb{Z}[\mu_{p^{\infty}}]$ above (l) Thus for a Weil l-number α of weight k, for the normalized valuation $v_{\mathfrak{L}}$ of \mathfrak{L} with $v_{\mathfrak{L}}(l) = 1$, $0 \leq v_{\mathfrak{L}}(\alpha) \leq k$ is bounded, and there are only finitely many possibilities of prime factorization of (α). If (α) = (β) for two Weil l-numbers α, β , then α/β is a Weil number of weight 0; so, $\alpha \sim \beta$ by Kronecker's theorem. If l = p, there is only one

prime in $\mathbb{Q}[\mu_{p^{\infty}}]$ above p; so, any Weil p-number of weight k is equivalent to $(p^*)^{k/2}$, since $\sqrt{p^*} \in \mathbb{Q}[\mu_{p^{\infty}}]$. Thus the result follows from this if $K = \mathbb{Q}(\mu_{p^{\infty}})$.

For general finite extension $K/\mathbb{Q}[\mu_{p^{\infty}}]$, still there are finitely many primes over l in the integer ring of K; so, the same argument works.

Here is a slight improvement of the above fact:

Proposition 1.4. Let \mathcal{K}_d be the set of all finite extensions of $\mathbb{Q}[\mu_{p^{\infty}}]$ of fixed degree d inside $\overline{\mathbb{Q}}$ whose ramification at l is tame. Then there are only finitely many Weil l-numbers up to equivalence of a given weight in the set-theoretic union $\bigcup_{L \in \mathcal{K}_d} L$ in $\overline{\mathbb{Q}}$.

The point of the proof is as follows. Writing $K = \mathbb{Q}[\mu_{p^{\infty}}]$ and $K_l = K \otimes_{\mathbb{A}} \mathbb{Q}_l$, by tameness, there are only finitely many isomorphism class of $K \otimes_{\mathbb{A}} \mathbb{Q}_l$ -algebras $L_l = L \otimes_{\mathbb{Q}} \mathbb{Q}_l$ for $L \in \mathcal{K}_d$. Thus we only need to prove finiteness for Weil numbers of given weight contained in a fixed isomorphism class of L_l . We look at the universal composite $L_l \otimes_{K_l} L_l$ which is a product of fields indexed by *l*-adic nonequivalent normalized valuations v_1, \ldots, v_n . Consider a tuple

$$V(\alpha) = (v_1(\alpha \otimes 1), \dots, v_n(\alpha \otimes 1), v_1(1 \otimes \alpha), \dots, v_n(1 \otimes \alpha)).$$

If $\alpha \sim \beta$, we have $V(\alpha) = V(\beta)$. The tuple $V(\alpha)$ determines the prime factorization of (α) in any possible composite $K(\alpha, \beta)$; so, if $V(\alpha) = V(\beta)$, $(\alpha) = (\beta)$ in $K(\alpha, \beta)$; so, by Kronecker's theorem, $\alpha \sim \beta$. Since there are only finitely many possibilities of $V(\alpha)$, there are only finitely many classes.

It is not very difficult to prove

Lemma 1.5. The group of roots of unity in the composite \mathbf{L} of L for $L \in \mathcal{K}_d$ in $\overline{\mathbb{Q}}$ contains $\mu_{p^{\infty}}(K)$ as a subgroup of finite index.

By this, we can replace the equivalent $\alpha \sim \beta$ by finer one $\alpha \approx \beta$ requiring $\alpha/\beta \in \mu_{p^{\infty}}$, and still the finer equivalence classes in the union $\bigcup_{L \in \mathcal{K}_d} L$ of Weil *l*-numbers of given weight is finite.

1.4. A key lemma in the entire lectures. We start with a rigidity lemma:

Lemma 1.6. Let $\Phi(T) \in W[[T]]$. If there is an infinite subset $\Omega \subset \mu_{p^{\infty}}(\overline{K})$ such that $\Phi(\zeta - 1) \in \mu_{p^{\infty}}(\overline{\mathbb{Q}}_p)$ for all $\zeta \in \Omega$, then there exists $\zeta_0 \in \mu_{p^{\infty}}(W)$ and $s \in \mathbb{Z}_p$ such that $\zeta_0^{-1}\Phi(T) = (1+T)^s = \sum_{n=0}^{\infty} {s \choose n} T^n$.

By the assumption, for $s \in \mathbb{Z}_p^{\times}$ sufficiently close to 1, $\zeta \mapsto \zeta^s$ is an automorphism of $W[[\mu_{p^{\infty}}]]$ over W; so, $\Phi(\zeta^s - 1) = \Phi(\zeta)^s \Leftrightarrow \Phi(t^s) = \Phi(t)^s$ (t = 1 + T), and the power series is the desired form by a lemma of Chai [C] Theorem 4.3 and [C1] Remark 6.6.1 (iv). Here is a sketch of an elementary proof supplied to me by Kiran Kedlaya.

Proof. Making variable change $T \mapsto \zeta_1^{-1}(T+1) - 1$ for a $\zeta_1 \in \Omega$ (replacing W by its finite extension if necessary), we may replace Ω by $\zeta_1^{-1}\Omega \ni 1$; so, rewriting $\zeta_1^{-1}\Omega$ as Ω , we may assume that $1 \in \Omega$. Note $t = 1 \Leftrightarrow T = 0$.

Write the valuation of W as v (and use the same symbol v for an extension of v to $W[\mu_{p^{\infty}}]$). Normalize v so that v(p) = 1. We are trying to show that $\Phi(T) = (1+T)^s \zeta'$ for some $s \in \mathbb{Z}_p$ and some p-power root of unity ζ' . Anyway, we write $\Phi(0) = \zeta' \in \mu_{p^{\infty}}(\overline{\mathbb{Q}}_p)$. Replacing Φ by $\zeta'^{-1}\Phi$ (and extending the scalar to a finite extension of W if necessary), we may assume that $\Phi(0) = 1$.

6

Suppose that $\Phi(T) \notin W$ (non-constant). Write $\Phi(T) - 1 = \sum_{i=1}^{\infty} a_i T^i$. Since W is a DVR, there is a least index j > 0 for which $v(a_j)$ is minimized. For ϵ sufficiently small, if $v(\tau) = \epsilon$, then $v(\Phi(\tau) - 1) = v(a_j) + j\epsilon$. In particular, for ζ a *p*-power root of unity, taking $\tau = \zeta - 1$, we have $v(\zeta - 1) = p^{-m}/(p-1)$ for some non-negative integer *m*, so we have infinitely many relations of the form $jp^{-m}/(p-1) + v(a_j) = p^{-n}/(p-1)$. Then, we have $m \to \infty \Rightarrow n \to \infty$ (by continuity and non-constancy of $\tau \mapsto \Phi(\tau)$); so, taking limits under $m \to \infty$ yields $v(a_j) = 0$. Also, *j* must be a power of *p*, say $j = p^h$, and for *m* large we have n = m - h.

Since $v(a_j) = 0$, $a_j \mod \mathfrak{m}_W$ is in \mathbb{F}^{\times} . For the moment, assume $\mathbb{F} = \mathbb{F}_p$. That is, a_j reduces to an integer b_0 coprime to p in the residue field of W. We can thus replace $\Phi(T)$ by $\Phi_1(T)$ defined by $\Phi(T) = \Phi_1(T) \times (1+T)^s$ for some s (namely $s = b_0 j = b_0 p^{h_0}$ for $h_0 := h$) so as to increase the least index j for which $v(a_j) = 0$. Indeed, writing $\Phi(T) = \sum_{n=0}^j a_n T^n + T^{j+1} f(T)$ with $f(T) \in W[[T]]$, we have

$$\sum_{n=0}^{j} a_n T^n \equiv 1 + b_0 T^{p^{h_0}} \equiv (1 + T^{p^{h_0}})^{b_0} \equiv (1 + T)^s \mod (\mathfrak{m}_W + (T^{j+1})).$$

we have $\Phi_1(T) \equiv 1 + T^{j+1}f(T)(1+T)^{-s} \equiv 1 \mod (\mathfrak{m}_W + (T^{j+1}))$. Thus if we write j_1 for the j for this new $\Phi_1, j_1 > j$, and $j_1 = p^{h_1}$ with $h_1 > h_0$ and $a_{j_1} \equiv b_1 \mod \mathfrak{m}_W$ for $b_1 \in \mathbb{Z}$. Repeating this, for $s = \sum_{k=0}^{\infty} b_k p^{h_k} \in \mathbb{Z}_p, \Phi(T)/(1+T)^s - 1 = \sum_{n=1}^{\infty} a_n T^n$ no longer has a least j with minimal $v(a_j)$; so, $\Phi(T)/(1+T)^s = 1$, and we get $\Phi(T) = (1+T)^s$.

Suppose now that $\mathbb{F} \neq \mathbb{F}_p$. We have the Frobenius automorphism ϕ fixing $\mathbb{Z}_p[\mu_{p^{\infty}}] \subset W[\mu_{p^{\infty}}]$. Letting ϕ acts on power series by $(\sum_n a_n T^n)^{\phi} = \sum_n a_n^{\phi} T^n$, we find $\Phi^{\phi}(t^{\phi}) = \Phi(t)^{\phi}$. Since $\Phi(\zeta - 1)$ is a *p*-power root of unity for ζ in a infinite set $\Omega \subset \mu_{p^{\infty}}$, we have $\Phi^{\phi}(\zeta - 1) = \Phi^{\phi}(\zeta^{\phi} - 1) = \Phi(\zeta - 1)^{\phi} = \Phi(\zeta - 1)$. Since $\Omega \subset \widehat{\mathbb{G}}_m$ is Zariski dense, we find that $\Phi^{\phi} = \Phi$, which shows $\Phi \in W^{\phi}[[T]]$ for the subring W^{ϕ} fixed by ϕ . Note that the residue field of W^{ϕ} is \mathbb{F}_p , and the earlier argument applies to $\Phi \in W^{\phi}[[T]]$. \Box

Extending I to its integral closure, we assume that I is integrally closed. For a prime l, we write $\mathcal{H}^{(l)}_{\mathcal{A}}(\mathbb{I})$ for the subfield generated by $\alpha_{l,P} \in \overline{\mathbb{Q}}$ for all $P \in \mathcal{A}$. We simply write $\mathcal{H}_{\mathcal{A}}(\mathbb{I}) = \mathcal{H}^{(p)}_{\mathcal{A}}(\mathbb{I})$. Recall $L_P = \mathbb{Q}[\mu_{p^{\infty}}][\alpha_{l,P}]$.

Proposition 1.7. Fix a rational prime $l \nmid N$ either l = p or tamely ramified in $L_P/\mathbb{Q}[\mu_{p^{\infty}}]$ for all $P \in \mathcal{A}$. Suppose $[\mathcal{H}^{(l)}_{\mathcal{A}}(\mathbb{I}) : \mathbb{Q}(\mu_{p^{\infty}})] < \infty$. Then, for $W = \mathbb{I} \cap \overline{\mathbb{Q}}_p$, we have A(l) in $W[[T]][t^{1/p^n}] \cap \mathbb{I}$ (t = 1+T) for some $0 \leq n \in \mathbb{Z}$, and there exists a Weil l-number α_1 of weight 1 and a root of unity ζ_0 such that $A_P(l) = \alpha_{l,P} = \zeta_0 \langle \alpha_1 \rangle^{k(P)-1}$ for all arithmetic P; in other words, $A(l)(T) = \zeta_0(1+T)^s$ for $s = \frac{\log_p(\alpha_1)}{\log_n(\gamma)}$.

Proof. We give a sketch of a proof assuming $\mathbb{I} = \Lambda = W[[T]]$. Let A = A(l). By Lemma 1.4, we have only a finite number of Weil *l*-numbers of weight k in $\bigcup_{P \in \mathcal{A}} L_P$ up to roots of unity, and hence A_P for $P \in \mathcal{A}$ hits one of such Weil *l*-number α of weight k infinitely many times, up to roots of unity.

After a variable change $T \mapsto Y = \gamma^{-k}(1+T) - 1$, we have $A(Y)|_{Y=0} = A(T)|_{T=\gamma^{k-1}}$. Note that $|\alpha|_p = 1$. Let $\Omega_1 = \{\varepsilon_P(\gamma)|P \in \mathcal{A}\}$ which is an infinite set in $\mu_{p^{\infty}}(K)$. Let $\Phi_1(Y) := \alpha^{-1}A(Y) = A(\gamma^{-k}(1+T) - 1) \in W[[Y]]$. The subset Ω_2 of Ω_1 made up of $\zeta \in \Omega_1$ such that $\Phi_1(\zeta - 1)$ is a root of unity is an infinite set. We thus find an infinite subset $\Omega \subset \Omega_2$ and a root of unity ζ_1 such that $\{\Phi_1(\zeta - 1)|\zeta \in \Omega\} \subset \zeta_1 \mu_{p^{\infty}}(K)$. Then $\Phi = \zeta_1^{-1} \Phi_1$ satisfies the assumption of Lemma 1.6, and for a root of unity ζ , we have $A(Y) = \zeta \alpha (1+Y)^{s_1}$ for $s_1 \in \mathbb{Z}_p$, and $A(T) = \zeta \alpha (\gamma^{-k}(1+T))^{s_1}$. From this, it is not difficult to determine s_1 as stated in the proposition.

1.5. **Proof of the theorem.** We start with a couple of preliminary results. Consider the *W*-algebra endomorphism $\sigma_s : (1+T) \mapsto (1+T)^s = \sum_{n=0}^{\infty} {s \choose n} T^n$ of a power series ring Λ for $s \in \mathbb{Z}_p$.

Lemma 1.8. Let A be an integral domain over Λ . Assume that $\sigma_2 \in \operatorname{Aut}(\Lambda_{/W})$ extends to an endomorphism σ of A. Let $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to GL_2(A)$ be a continuous representation for a field $F \subset \overline{\mathbb{Q}}$, and put $\rho^{\sigma} := \sigma \circ \rho$. If $\operatorname{Tr}(\rho^{\sigma}) = \operatorname{Tr}(\rho^2)$. Then ρ is absolutely reducible over the quotient field Q of A.

Proof. Suppose that ρ is absolutely irreducible over Q, and try to get absurdity. We have the identity $\operatorname{Tr}(\rho^{\sigma}) = \operatorname{Tr}(\rho^2) = \operatorname{Tr}(\rho^{sym\otimes 2}) - \det(\rho)$ for the symmetric second tensor representation $\rho^{sym\otimes 2}$ of ρ . Over Q, by absolute irreducibility, we have the identity of semi-simplification: $(\rho^{sym\otimes 2})^{ss} \cong \rho^{\sigma} \oplus \det(\rho)$. Tensoring $\det(\rho)^{-1}$, we get $Ad(\rho)^{ss} \cong (\rho^{\sigma} \otimes \det(\rho)^{-1}) \oplus \mathbf{1}$. Since $Ad(\rho)$ is self-dual, we have $\mathbf{1} \hookrightarrow Ad(\rho)$ as $\operatorname{Gal}(\overline{\mathbb{Q}}/F)$ -modules. In other words, we have a non-trivial element $0 \neq \phi \in \operatorname{End}_{A[H]}(\rho)$ for $H = \operatorname{Gal}(\overline{\mathbb{Q}}/F(\rho^{I}))$ such that $\operatorname{Tr}(\phi) = 0$. Since ρ is absolutely irreducible, ϕ has to be a scalar multiplication by $z \in A^{\times}$ by Schur's lemma; so, $\operatorname{Tr}(\phi) = 2z \neq 0$, a contradiction (unless A has characteristic 2).

Proof of Theorem 1.1. Let $K := \mathbb{Q}(\mu_{p^{\infty}})$ and $L_P = K(\alpha_{l,P})$ for a prime l. We need to prove that $[\mathcal{H}_{\mathcal{A}}(\mathbb{I}) : K] < \infty \Rightarrow \mathcal{F}$ has complex multiplication. Thus suppose $[\mathcal{H}_{\mathcal{A}}(\mathbb{I}) : K] < \infty$. For each arithmetic P with k(P) = k, by Lemma 1.2, $[K(f_P): K(a_P(p))] < d$ for a positive integer d independent of P. Thus $[L_P: K] < d$ $2d[\mathcal{H}_{\mathcal{A}}(\mathbb{I}):K]$ for each prime l. Therefore, any odd prime $l > 2d[\mathcal{H}_{\mathcal{A}}(\mathbb{I}):K]$ is at most tamely ramified in L_P/K . Take such an odd prime $l > 2d[\mathcal{H}_A(\mathbb{I}) : K]$ prime to Np. Let $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{I})$ be the Galois representation associated to \mathcal{F} . Thus by Proposition 1.7, we have $\text{Tr}(\rho(Frob_l)) = \zeta(1+T)^a + \zeta'(1+T)^{a'}$ for two roots of unity ζ, ζ' and $a, a' \in \mathbb{Q}_p$. Take an arithmetic $Q \in \operatorname{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)$. Note that $\zeta(1+T)^a, \zeta'(1+T)^{a'}$ is at most in a quadratic extension of $\mathbb{Q}(f_Q)$; so, it is easy to see that the order of ζ, ζ' is bounded independently of l. Let $\mathfrak{m}_N = \mathfrak{m}_{\mathbb{T}}^N + (T)$ and $\overline{\rho} = \rho \mod \mathfrak{m}_N$ for a sufficiently large N and F be the splitting field of $\overline{\rho}$. We have $\operatorname{Tr}(\rho(Frob_{\mathfrak{l}})) = \zeta^{f}(1+T)^{fa} + \zeta'^{f}(1+T)^{fa'}$ and $\rho(Frob_{\mathfrak{l}}) \equiv 1 \mod \mathfrak{m}_{N}$ (so $\zeta^f \equiv 1 \mod \mathfrak{m}_N$ for a prime $\mathfrak{l}|l$ of F of residual degree f. Since $\zeta^f \equiv 1 \mod \mathfrak{m}_N$, by taking N large, we may assume that $\zeta^f = \zeta'^f = 1$. This shows $\operatorname{Tr}(\sigma_s(\rho(Frob_1))) =$ $\operatorname{Tr}(\rho(Frob_{\mathfrak{l}})^s)$ for all $0 \neq s \in \mathbb{Z}_p$. Thus by Chebotarev density theorem, we get $\operatorname{Tr}(\sigma_s \circ \rho) = \operatorname{Tr}(\rho^s)$ over $G = \operatorname{Gal}(\overline{\mathbb{Q}}/F)$. Then by the above lemma, $\rho^{ss}|_G$ is abelian, and hence \mathbb{I} is abelian.

On the other hand, if $\mathcal{F} = \mathcal{F}_{\mathbb{I}}$ has complex multiplication by an imaginary quadratic extension M/\mathbb{Q} in $\overline{\mathbb{Q}}$, we have a character $\lambda : \operatorname{Gal}(\overline{\mathbb{Q}}/M) \to \mathbb{I}$ unramified outside $N\mathfrak{p}$ such that α_{ℓ} is the value of $\lambda_P(Frob_{\mathfrak{l}}) = \lambda(Frob_{\mathfrak{l}}) \mod P$ for a prime \mathfrak{l} in M over ℓ . Here \mathfrak{p} is a prime factor of p in M. Let \mathbb{F} be the residue field of \mathbb{I} (note that \mathbb{I} is a local ring with maximal ideal \mathfrak{m} , because it is finite flat over Λ). Write Wfor the ring of Witt vectors of \mathbb{F} . Let $(R, \lambda : \operatorname{Gal}(\overline{\mathbb{Q}}/M) \to R^{\times})$ be the universal couple with the universal character unramified outside $N\mathfrak{p}$ deforming $(\lambda \mod \mathfrak{m})$ over W. Writing C_p for the *p*-primary part of the ray class group $Cl_M(N\mathfrak{p}^{\infty})$ modulo $N\mathfrak{p}^{\infty}$ of M, by class field theory, $R \cong W[[C_p]]$. By universality, we have a W-algebra homomorphism $\varphi : R \to \mathbb{I}$ such that $\varphi \circ \tilde{\lambda} = \lambda$. Thus $\mathbb{I} \hookrightarrow W[[\Gamma_M]]$ for the maximal torsion-free quotient Γ_M , and Γ_M contains Γ naturally. The Λ -algebra structure of \mathbb{I} is equal to that coming from the original inclusion $\Lambda \hookrightarrow \mathbb{I}$ (after twist by the *k*-th power of the *p*-adic cyclotomic character). Then for an arithmetic point P with $r(P) \leq r$, $\lambda_P = \lambda \mod P$ has infinity type k - 1; that is, $\lambda_P(\alpha) = \alpha^{k-1}$ for $\alpha \in M$ congruent to 1 modulo Np^{r+1} . For the class number h of M, taking a generator α of \mathfrak{l}^h , we have $\lambda_P(\mathfrak{l}) = \alpha^{1/h} \zeta$ for $\zeta \in \mu_{prh}$. Thus choosing a complete representative set $\{\mathfrak{a}_j\}_{j=1,\dots,h}$ of ideal classes of M, taking a generator α_j of \mathfrak{a}_j^h , we find that $\mathbb{Q}(\alpha_{\ell,P})_{k(P)=k,\ell} \subset \mathbb{Q}(\mu_{p\infty h})[\alpha_j^{1/h}|_j = 1,\dots,h]$ which is a finite extension of $\mathbb{Q}[\mu_{p\infty}]$ containing $\mathcal{H}_k(\mathbb{I})$, which has finite degree over $\mathbb{Q}[\mu_{p\infty}]$. This finishes the proof. \Box

Here is an obvious corollary of the above proof.

Corollary 1.9. Let $K := \mathbb{Q}[\mu_{p^{\infty}}]$ and $\mathcal{A} \subset \operatorname{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)$ be an infinite set of arithmetic points P with fixed weight $k(P) = k \geq 1$. Unless \mathcal{F} has complex multiplication

$$\limsup_{P \in \mathcal{A}} [K(a(p, f_P)) : K] = \infty.$$

Indeed, if $\limsup_{P} [K(a(p, f_P)) : K] < \infty$, the index $[L_P : K]$ $(P \in \mathcal{A})$ is bounded for $A \in \mathbb{I}$ as in Proposition 1.7. Thus we can still apply the above proof and conclude that \mathcal{F} has complex multiplication.

2. Lecture 2: Vertical Version

Let $\mathcal{F} = \mathcal{F}_{\mathbb{I}} = \{f_P\}_{P \in \text{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)}$ be a cuspidal *p*-adic analytic family of *p*-ordinary Hecke eigen cusp forms of slope 0. We have the following "vertical" conjecture:

Conjecture 2.1. Let \mathcal{A} be an infinite set of arithmetic points with bounded level $r(P) \leq r$ for a fixed $r \geq 0$. Let $\mathcal{V}_{\mathcal{A}}(\mathbb{I})$ be the field generated over \mathbb{Q} by $\{\alpha_{p,P}\}_{P \in \mathcal{A}}$, where P runs over all arithmetic points with $\operatorname{Im}(\varepsilon_P) \subset \mu_{p^r}$ for a fixed r. Then the field $\mathcal{V}_{\mathcal{A}}(\mathbb{I})$ is a finite extension of \mathbb{Q} for a fixed $r < \infty$ if and only if f_P is a CM theta series for an arithmetic P with $k(P) \geq 1$.

Pick a prime l different from p and write $\mathcal{V}_{\mathcal{A}}^{(l)}(\mathbb{I})$ for the field generated by $\{\alpha_{l,P}, \beta_{l,P}\}$ for all $P \in \mathcal{A}$, where P runs over all points in \mathcal{A} . Then we might speculate that (Vertical *l*-version): The field $\mathcal{V}_{\mathcal{A}}^{(l)}(\mathbb{I})$ is a finite extension of \mathbb{Q} for a fixed $r < \infty$ if

(Vertical *l*-version): The field $\mathcal{V}_{\mathcal{A}}^{(l)}(\mathbb{I})$ is a finite extension of \mathbb{Q} for a fixed $r < \infty$ if and only if for an arithmetic P with $k(P) \geq 1$, either f_P is a CM theta series or the automorphic representation generated by f_P is square-integrable at l.

We prove

Theorem 2.2 (Vertical theorem). Let r be a non-negative integer. For an infinite set \mathcal{A} of arithmetic points P with bounded level $r(P) \leq r$ for an $r \geq 0$, assume that $\mathcal{V}_{\mathcal{A}}(\mathbb{I})$ is a finite extension of \mathbb{Q} . If there exists an arithmetic point $P_0 \in \mathcal{A}$ with $k(P_0) \geq 1$ such that

- (1) $\alpha_0 = a_{P_0}(p)$ is a Weil number,
- (2) $\Sigma_{\alpha_0} = \{ \sigma : \mathbb{Q}(\alpha_0) \hookrightarrow \overline{\mathbb{Q}} | |i_p(\alpha_0^{\sigma})| = 1 \}$ is a CM type of $\mathbb{Q}(\alpha_0)$,
- (3) $\mathcal{V}_{\mathcal{A}}(\mathbb{I})$ is generated by α_0 over \mathbb{Q} .

Then \mathbb{I} has complex multiplication.

2.1. Results towards the vertical conjecture. Let \mathcal{A}_r be the set of all arithmetic points of $\operatorname{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)$ with $r(P) \leq r$.

Proposition 2.3. Let $\mathcal{F} = \{f_P\}_{P \in \text{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)}$ be a p-adic analytic family of classical p-ordinary Hecke eigenforms and $\mathcal{A} \subset \text{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)$ be an infinite set of arithmetic points P with $r(P) \leq r$ for a fixed $r \geq 0$. Assume that for $P_0 \in \mathcal{A}$

- (1) $\alpha_0 = a_{P_0}(p)$ is a Weil number,
- (2) $\Sigma_{\alpha_0} = \{ \sigma : \mathbb{Q}(\alpha_0) \hookrightarrow \overline{\mathbb{Q}} | |i_p(\alpha_0^{\sigma})| = 1 \}$ is a CM type of $\mathbb{Q}(\alpha_0)$,
- (3) $\mathcal{V}_{\mathcal{A}}(\mathbb{I}) = \mathbb{Q}(\alpha_0)$ is generated by α_0 over \mathbb{Q} .

Then there exist a Weil p-number α of weight 1 with $|i_p(\alpha)|_p = 1$ such that $a(p, f_P) = \zeta \langle \alpha \rangle^{k(P)}$ for a root of unity ζ for all arithmetic P with $k(P) \geq 1$, where $\langle \alpha \rangle = \exp_p(\log_p(i_p(\alpha)))$ for the Iwasawa logarithm \log_p .

Proof. First, in order to give a simple sketch of the proof, suppose first that $M := \mathcal{V}_{\mathcal{A}}(\mathbb{I})$ is an imaginary quadratic field. Take $P \in \mathcal{A}$ with k(P) > 1. Then $\alpha_{p,P}$ is a Weil number of weight k(P) > 1 with $|\alpha_{p,P}|_p = 1$. Thus (p) has to split in M; so, $(p) = \mathfrak{p}\overline{\mathfrak{p}}$ in M. Thus $\Sigma_{\alpha_{p,P}}$ is made of single element $\iota = i_p|_M$, and for each k, there exists at most one Weil number $\alpha_k \in M$ of weight k (up to roots of unity in M) such that $|\alpha_k|_p = 1$. In M, $(\alpha_k) = \overline{\mathfrak{p}}^k$ for the prime ideal \mathfrak{p} of M corresponding to $i_p|_M$. Fix such a k. Taking a k-th root $\alpha = \sqrt[k]{\alpha_k}$, we have $\alpha_l = \alpha^l$ up to roots of unity for all l as $(\alpha_l) = \overline{\mathfrak{p}}^l$.

Since \mathcal{A} is an infinite set, there exists an infinite sequence in \mathcal{A}

 $P_1, P_2, \cdots, P_n, \ldots$

with increasing weight $k(P_1) < k(P_2) < \cdots$ such that

$$(a_{P_j}(p)) = \overline{\mathfrak{p}}^{k(P_j)}$$

for all j > 0. Put

$$\langle \alpha \rangle = \exp(\frac{1}{k(P_0)}\log_p(a(p, f_{P_0}))) = \exp(\log_p(\alpha)).$$

Since $(a_{P_j}(p)) = \overline{\mathbf{p}}^{(k(P_j))}$, $a_{P_j}(p)/\langle \alpha \rangle^{k(P_j)}$ is a Weil number of weight 0, that is, it is an algebraic integer with all its conjugates having absolute value 1. Then by Kronecker's theorem, we find $a_{P_j}(p) = \zeta_{P_j} \langle \alpha \rangle^{k(P_j)}$ for a root of unity ζ_{P_j} . Note that $\langle \alpha \rangle$ is contained in a finite extension M'/M. Since there are finitely many roots of unity in M', we have only finitely many possibilities of ζ_{P_j} . Therefore, replacing $\{P_j\}_j$ by its subsequence, we find an infinite sequence $P_1, P_2, \cdots, P_n, \cdots$ of increasing weights such that $a_{P_j}(p) = \zeta \langle \alpha \rangle^{k(P_j)}$ for all $j = 1, 2, \ldots$ for a fixed root of unity ζ . We have a power series $\Phi_{\alpha}(X) \in W[[X]]$ with coefficients in a discrete valuation ring W finite flat over \mathbb{Z}_p such that $\Phi_{\alpha}(\gamma^k - 1) = \zeta \langle \alpha \rangle^k$ for all integers k. Since \mathcal{F} is an ordinary family, there exists an element $A \in \mathbb{I}$ such that $a(p, f_P) = (A \mod P)$ for all height 1 prime P of \mathbb{I} containing $(1 + X - \gamma^{k(P)})$. Thus we find $A \equiv \Phi_{\alpha} \mod P_j$ for infinitely many distinct primes P_i ; so, $A = \Phi_{\alpha}$, as desired.

We now treat the general case where M may not be an imaginary quadratic field. Let $K \subset \overline{\mathbb{Q}}$ be a number field with integer ring O. Consider $O \otimes_{\mathbb{Z}} K$. Then $O \otimes_{\mathbb{Z}} K$ is a product of fields $\sigma(O)K \subset \overline{\mathbb{Q}}$ indexed by (some) embeddings $\sigma : O \hookrightarrow \overline{\mathbb{Q}}$. Take the base ring W containing O. Then $\mathbb{I} \otimes_{\mathbb{Z}} K$ contains $O \otimes_{\mathbb{Z}} K$, and $\mathbb{I} \otimes_{\mathbb{Z}} K$ decomposes accordingly: $\mathbb{I} \otimes_{\mathbb{Z}} K = \prod_{\sigma} \mathbb{I}_{\sigma}$. Regard $\mathbb{I} \otimes_{\mathbb{Z}} K$ as a K-algebra from the right factor (and K is embedded in $\overline{\mathbb{Q}}_p$ by i_p). Note $\mathbb{I} \otimes_{\mathbb{Z}} K = \mathbb{I} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p \otimes_{\mathbb{Z}} K = \mathbb{I} \otimes_{\mathbb{Z}_p} K_p$ for $K_p = \mathbb{Z}_p \otimes_{\mathbb{Z}} K$. For an arithmetic prime P, we have $\mathbb{Z}[f_P] := \mathbb{Z}[a_P(n)|n = 1, 2, ...] \subset \mathbb{I}/P$. Then $\mathbb{Z}[f_P] \otimes_{\mathbb{Z}} K \subset \mathbb{I}/P \otimes_{\mathbb{Z}} K$ as K is \mathbb{Z} -flat. On the other hand, $\mathbb{Z}[f_P] \otimes_{\mathbb{Z}} K = \mathbb{Q}(f_P) \otimes_{\mathbb{Z}} K \cong$ $\prod_{\tau:\mathbb{Q}(f_P) \hookrightarrow \overline{\mathbb{Q}}_p} i_p(\tau(\mathbb{Q}(f_P))K)$. The composite $\sigma(\mathbb{Q}(f_P))K$ is taken in $\overline{\mathbb{Q}}_p$ by sending it by i_p inside $\overline{\mathbb{Q}}_p$. For some τ (for example, complex conjugation $\tau = c$), we may have $|i_p(\tau(a_P(p)))|_p < 1$.

Let us give more details why this strange phenomenon: $|i_p(\tau(a_P(p)))|_p < 1$ could occur. Suppose K/\mathbb{Q} is a Galois extension with $O \subset W$. Then writing $V = K \cap W$ (the valutation ring corresponding to $i_p: K \hookrightarrow \overline{\mathbb{Q}}_p$), $V \otimes_{\mathbb{Z}} V \subset \prod_{\sigma \in \operatorname{Gal}(K/\mathbb{Q})} \sigma(V)V$. Let e_{σ} for the idempotent of $\sigma(V)V$. Writing $D_V \subset \operatorname{Gal}(K/\mathbb{Q})$ for the decomposition subgroup of V, unless $\sigma \in D_V$ (i.e., $\sigma(V) = V$), $\sigma(V)V = K$. Since $V \subset \mathbf{h}_{k(P)+1,\psi_P}$, we regard $e_{\sigma} \in \mathbf{h}_{k(P)+1,\psi_P} \otimes_{\mathbb{Z}} V$. Since U(p) is invertible in $\mathbf{h}_{k(P)+1,\psi_P}$, the image of $e_{\sigma}(U(p) \otimes 1)$ is invertible in $K = \sigma(V)V$, but that does not mean $e_{\sigma}(U(p) \otimes 1)$ is a p-adic unit. Define $E_P = \lim_{n\to\infty} (U(p) \otimes 1)^{n!}$ under the p-adic topology \mathcal{T}_P of $\mathbf{h}_{k(P)+1,\psi_P} \otimes_{\mathbb{Z}} V$ inducing the natural topology on $1 \otimes V \subset \mathbf{h}_{k(P)+1,\psi_P} \otimes_{\mathbb{Z}} V$. Then E_P is orthogonal to e_{σ} if $e_{\sigma}(U(p) \otimes 1)$ is p-adically nilpotent under the p-adic topology \mathcal{T}_{P} of $\mathbf{h}_{k(P)+1,\psi_P} \otimes_{\mathbb{Z}} V$. The idempotent $e_P = \lim_{n \to \infty} U(p)^{n!}$ in $h_{k(P)+1,\psi_P}$ (for $\psi_P = \psi_{k(P)} \varepsilon_P$) is only defined over $\overline{\mathbb{Q}}$; so, e may not commute with some σ . In other words, we could have $e_P \otimes 1 \neq E_P$, and $E_P = \sum_{\tau:|i_p(\tau(a_P(p)))|_p=1} e_{\tau}$. We can embed **h** into $\prod_{P} \mathbf{h}_{k(P)+1,\psi_{P}} \subset \prod_{P} h_{k(P)+1,\psi_{P}} \text{ for an infinite set } \mathcal{A} \text{ of arithmetic points } P \text{ of } W[[T]]$ sending T(n) to diagonal T(n) in the product of right-hand-side. The tensor product $\mathbf{h} \otimes_{\mathbb{Z}} K$ is embedded in $\prod_{P} (h_{k(P)+1,\psi_{P}} \otimes_{\mathbb{Z}} K)$. We write $E = \prod_{P} E_{P}$, which is an idempotent of $\prod_{P}(h_{k(P)+1,\psi_{P}}\otimes_{\mathbb{Z}} K)$ but may not be in $(\prod_{P}h_{k(P)+1,\psi_{P}})\otimes_{\mathbb{Z}} K$. The closure $\mathbf{h} \otimes_{\mathbb{Z}} \widetilde{K}$ of $\mathbf{h} \otimes_{\mathbb{Z}} K$ inside $\prod_{P} (h_{k(P)+1,\psi_{P}} \otimes_{\mathbb{Z}} K)$ contains E, and $E(\mathbf{h} \otimes_{\mathbb{Z}} \widetilde{K})$ is free of finite rank over $W[[T]][\frac{1}{p}]$ (though $\mathbf{h} \otimes_{\mathbb{Z}} K$ could be huge). Each irreducible component of $E(\mathbf{h} \otimes_{\mathbb{Z}} K)$ gives rise to another *p*-adic analytic family of slope 0.

Pick an arithmetic point P, and write $\alpha = a_P(p)$. Take an irreducible component $\operatorname{Spec}(\mathbb{I}_{\sigma}^{\circ})$ of $\operatorname{Spec}(\mathbb{I}_{\sigma}) \cap \operatorname{Spec}(E(\widehat{\mathbf{h}} \otimes_{\mathbb{Z}} K))$. Let P_{τ} be a factor of $P \otimes_{\mathbb{Z}} K \subset \mathbb{I} \otimes_{\mathbb{Z}} K = \prod_{\sigma} \mathbb{I}_{\sigma}$ corresponding to $\mathbb{I}_{\sigma}^{\circ}$. Regarding $P_{\tau} : \mathbb{I}_{\sigma}^{\circ} \to \overline{\mathbb{Q}}_p$, we have $P_{\tau}(\alpha) = \tau(\alpha)$ and $f_{P_{\tau}} = f_P^{\tau}$. Since $\mathbb{I}_{\sigma} \subset E(\widehat{\mathbf{h}} \otimes_{\mathbb{Z}} K)$, we have $|\tau(\alpha)|_p = 1$. The image $a_{\sigma}(p)$ of $a(p) \otimes 1$ in \mathbb{I}_{σ} modulo P_{τ} gives the unit $\tau(a_P(p))$; so, $a_{\sigma}(p)$ is a unit in the integral closure of W[[T]] in \mathbb{I}_{σ} .

Here is a more down-to-earth proof of the fact that $\mathbb{I}_{\sigma}^{\circ}$ above gives rise to another analytic family \mathcal{F}_{σ} containing f_{P}^{τ} . Start with another arithmetic $(Q : \mathbb{I} \to \overline{\mathbb{Q}}_{p}) \in$ $\operatorname{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_{p})$, but regarding Q as a prime divisor of $\operatorname{Spec}(\mathbb{I})$, \mathbb{I}/Q has a unique embedding $\mathbb{I}/Q \subset \overline{\mathbb{Q}}_{p}$ induced by $Q : \mathbb{I} \to \overline{\mathbb{Q}}_{p}$. Then $\mathbb{I}_{\sigma}^{\circ}/Q_{\tau'} \subset \mathbb{I}/P \otimes_{\mathbb{Z}} K$ for corresponding $Q_{\tau'} \in \operatorname{Spec}(\mathbb{I}_{\sigma}^{\circ})(\overline{\mathbb{Q}}_{p})$. Indeed, tensoring K to the exact sequence $\operatorname{Ker}(Q) \hookrightarrow \mathbb{I} \twoheadrightarrow$ $\operatorname{Im}(Q)$, we get another exact sequence: $\operatorname{Ker}(Q) \otimes_{\mathbb{Z}} K \hookrightarrow \prod_{\sigma} \mathbb{I}_{\sigma} \twoheadrightarrow \operatorname{Im}(Q) \otimes_{\mathbb{Z}} K$, and $\operatorname{Im}(Q) \otimes_{\mathbb{Z}} K$ contains $\sigma(K)K$ canonically and τ' coincides with σ on $K \cap \mathbb{Q}(f_{Q})$ and induces $\tau' = Q_{\tau'}|_{\overline{\mathbb{Q}}\cap W} : \overline{\mathbb{Q}} \cap W \hookrightarrow \overline{\mathbb{Q}}_{p}$. Then we have $f_{Q_{\tau'}} = f_{Q}^{\tau'}$ which is a classical modular form. It is slope 0 with respect to i_{p} (i.e., with respect to the product topology $\prod_{P} \mathcal{T}_{P}$) because of $E \cdot \mathbb{I}_{\sigma}^{\circ} = \mathbb{I}_{\sigma}^{\circ}$. Thus \mathcal{F}_{σ} is another slope 0 family. We rewrite $\sigma_{Q,\sigma}$ for τ' . Let $\pi_{\sigma} : \mathbb{I} \otimes_{\mathbb{Z}} K \to \mathbb{I}_{\sigma}^{\circ}$ be the projection. We have a commutative diagram

where \widehat{K} is the closure of K in \mathbb{I}/Q and $\sigma(K)K$ is the closure of $\sigma(K)K$ in $\mathbb{I}_{\sigma}^{\circ}/Q_{\tau}$.

Take K to be the maximal real subfield of M (not to have complex conjugation c with $|a_P(p)^c|_p < 1$). Take the starting P to be P_0 . Write simply Σ_0 for Σ_{α_0} . Then the set I of embeddings of K into $\overline{\mathbb{Q}}_p$ is in bijection to Σ_0 , and $\sigma_{P_0,\sigma}|_M \in \Sigma_0$. By the assumption (2), any prime $\mathfrak{p}|p$ in K splits as $\mathfrak{p} = \mathfrak{P}\mathfrak{P}\mathfrak{P}$ in M and $M_{\mathfrak{P}} = K_{\mathfrak{p}} = M_{\mathfrak{P}}\mathfrak{P}$; so, $M \subset \widehat{K}$ non-canonically. Since $\alpha_0 = a_{P_0}(p)$ generates M and $\{K \hookrightarrow \sigma(K)K | \sigma \in \Sigma_0\}$ cover all conjugates of K inside $\overline{\mathbb{Q}}$, for any $\sigma \neq \sigma'$ in I we find $\sigma_{P_0,\sigma}(\alpha_0) \neq \sigma_{P_0,\sigma'}(\alpha_0)$. Thus we have at least |I| distinct families: $\{\mathcal{F}_\sigma\}_{\sigma\in I}$. In other words, the set Σ_Q of p-adic embeddings of M induced by $\{\sigma_{Q,\sigma}\}_{\sigma\in I}$ for $Q \in \mathcal{A}$ is a p-adic CM type of M. Here a p-adic CM type is a CM type $\Sigma = \{\sigma : M \hookrightarrow \overline{\mathbb{Q}}_p\}$ of M such that, writing Σ_p for the set of p-adic places induced by $\sigma \in \Sigma$, $\Sigma_p \cap \Sigma_p^c = \emptyset$ for complex conjugation c on M.

Since there are only finitely many *p*-adic CM types of M, replacing \mathcal{A} by an infinite subset, we may assume that Σ_P is identical to a *p*-adic CM type Σ for all $P \in \mathcal{A}$. This forces $(a_P(p)) = \prod_{\mathfrak{p} \in \Sigma_P^c} \mathfrak{p}^{e(\mathfrak{p})k(P)}$ for the absolute ramification index $e(\mathfrak{p})$ of $\mathfrak{p}/(p)$.

As before we choose an infinite sequence in \mathcal{A}

 $P_1, P_2, \cdots, P_n, \ldots$

with increasing weight $k(P_1) < k(P_2) < \cdots$ such that

$$(a_{P_j}(p)) = \prod_{\mathfrak{p} \in \Sigma_p^{\rho}} \mathfrak{p}^{e(\mathfrak{p})k(P_j)}$$

for all j > 0. Then $a_{P_j}(p)/\langle \alpha \rangle^{k(P_j)}$ is a Weil number of weight 0, that is, it is an algebraic integer with all its conjugates having absolute value 1. Then by Kronecker's theorem, we find $a_{P_j}(p) = \zeta_{P_j} \langle \alpha \rangle^{k(P_j)}$ for a root of unity ζ_{P_j} . Note that $\langle \alpha \rangle$ is contained in a finite extension K'/K. Since there are finitely many roots of unity in K', we have only finitely many possibilities of ζ_{P_j} . Therefore, replacing $\{P_j\}_j$ by its subsequence, we find an infinite sequence $P_1, P_2, \cdots, P_n, \cdots$ of increasing weights such that $a_{P_j}(p) = \zeta \langle \alpha \rangle^{k(P_j)}$ for all $j = 1, 2, \ldots$ for a fixed root of unity ζ . By the same argument as before, we conclude $A = \Phi_{\alpha}$, as desired.

2.2. **Proof of the vertical theorem.** Suppose that $\mathcal{V}_{\mathcal{A}}(\mathbb{I})$ is a finite extension and the existence of an arithmetic point P_0 as in the theorem. Therefore the assumption (2) of Proposition 2.3 is met. By Proposition 2.3, we find a Weil number α of weight 1 and a power series $\Phi_{\alpha}(X) \in W[[X]]$ such that $a(p, f_P) = \Phi_{\alpha}(\varepsilon_P(\gamma)\gamma^{k(P)} - 1) =$ $\zeta(\varepsilon_P(\gamma))^{\log_p(\alpha)/\log_p(\gamma)}\langle \alpha \rangle^{k(P)}$ for all arithmetic P, where ζ is a root of unity independent of P; in short, $a(p) = \Phi_{\alpha} \in W[[X]] \subset \mathbb{I}$. Then, for the entire set \mathcal{B} of arithmetic points P with k(P) = 1, we find $\mathcal{H}_{\mathcal{B}}(\mathbb{I}) \subset \mathbb{Q}(\mu_{p^{\infty}(p-1)})(\zeta, \alpha)$ which is a finite extension of $\mathbb{Q}(\mu_{p^{\infty}})$. Then by the horizontal theorem, \mathbb{I} has complex multiplication. The converse is easy. This finishes the proof of Theorem 2.2. We could make the following conjecture which is a vertical version of Corollary 1.9:

Conjecture 2.4. Let $\mathcal{A} \subset \operatorname{Spec}(\mathbb{I})(\mathbb{Q}_p)$ be an infinite set of arithmetic points P with bounded level $r(P) \leq r$. Suppose that \mathbb{I} does not have complex multiplication. Then we have

$$\limsup_{P \in \mathcal{A}} [\mathbb{Q}(a(p, f_P)) : \mathbb{Q}] = \infty.$$

3. Lecture 3: Constancy of adjoint \mathcal{L} -invariant

Consider a cuspidal slope 0 family of Hecke eigenforms $\mathcal{F} = \{f_P | P \in \operatorname{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)\}$ indexed by points of $\operatorname{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)$ and its family of Galois representations $\{\rho_P\}_P$. For each *p*-decomposition subgroup $D \subset \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, we have $\rho_P|_D \cong \begin{pmatrix} \epsilon_P & *\\ 0 & \delta_P \end{pmatrix}$ with unramified quotient character δ_P (e.g., [GME] Theorem 4.2.6). Here, for each $P \in$ $\operatorname{Spec}(\mathbb{I}), f_P$ is a *p*-adic modular form of slope 0 of level $Np^{r(P)+1}$ for a fixed prime to *p*-level N ($p \nmid N$). Consider the adjoint representation $Ad(\rho_P)$ realized in the trace zero subspace in $\mathfrak{sl}_2(\kappa(P)) \subset M_2(\kappa(P))$ by conjugation action. Thus $Ad(\rho_P)(Frob_p)$ has an eigenvalue 1; so, $L_p(s, Ad(\rho_P))$ has an exceptional zero of order 1 at s = 1. For the \mathcal{L} -invariant $\mathcal{L}(Ad(\rho_P)) \stackrel{?}{=} \mathcal{L}(Ad(\rho_P))$ is still an open question. Anyway we get a function $P \mapsto \mathcal{L}(Ad(\rho_P))$ defined on the set of arithmetic points of $\operatorname{Spec}(\mathbb{I})$. This function is interpolated analytically on $\operatorname{Spec}(\mathbb{I})$. We still write $P \mapsto \mathcal{L}(Ad(\rho_P))$ for this analytic function (see [H04b]). Supposing almost known Conjecture 3.5, we prove in this lecture

Theorem 3.1. The analytic function $P \mapsto \mathcal{L}(Ad(\rho_P))$ is constant if and only if the family \mathcal{F} has CM.

By this theorem, if \mathcal{F} is a non CM family, $P \mapsto \mathcal{L}(Ad(\rho_P))$ is a non-constant function; so, except for finitely many Galois representations in the family, the conjecture of Greenberg (see [Gr]) predicting the non-vanishing of $\mathcal{L}(Ad(V))$ is true.

Conjecture 3.2. For a slope 0 parallel weight family (i.e., a cyclotomic family) of Hilbert modular Galois representations $\{\rho_P\}_{P \in \text{Spec}(\mathbb{I})}, P \mapsto \mathcal{L}(Ad(\rho_P))$ is constant if and only if the family \mathcal{F} has CM.

The conjecture implies that for a non-CM component, $P \mapsto \mathcal{L}(\operatorname{Ind}_F^{\mathbb{Q}} Ad(\rho_P))$ is nonconstant; so, it vanishes only on a thin proper Zariski closed set in the component.

The Galois representation $\rho_{\mathbb{I}}$ restricted to the *p*-decomposition group *D* is reducible. We write $\rho_{\mathbb{I}}^{ss}$ for its semi-simplification over *D*. Then $\rho_{\mathbb{I}}$ satisfies, for primes $l \nmid Np$,

(Gal)
$$\operatorname{Tr}(\rho_{\mathbb{I}}(Frob_l)) = a(l), \quad \rho_{\mathbb{I}}^{ss}([\gamma^s, \mathbb{Q}_p]) \sim \begin{pmatrix} (1+T)^{-s} & 0 \\ 0 & 1 \end{pmatrix}, \quad \rho_{\mathbb{I}}^{ss}([p, \mathbb{Q}_p]) \sim \begin{pmatrix} * & 0 \\ 0 & a(p) \end{pmatrix},$$

where $\gamma^s = (1+p)^s \in \mathbb{Z}_p^{\times}$ for $s \in \mathbb{Z}_p$ and $[x, \mathbb{Q}_p]$ is the local Artin symbol.

Recall that the family has CM if one of the following four conditions is satisfied:

- (1) there exists an arithmetic point $P \in \text{Spec}(\mathbb{I})$ and a nontrivial Galois character χ such that $\rho_P \otimes \chi \cong \rho_P$,
- (2) for all arithmetic points $P \in \text{Spec}(\mathbb{I})$ and a nontrivial Galois character χ , we have $\rho_P \otimes \chi \cong \rho_P$,

- (3) there exists an arithmetic point $P \in \text{Spec}(\mathbb{I})$ such that f_P is a theta series of a binary quadratic form,
- (4) for all arithmetic points $P \in \text{Spec}(\mathbb{I})$, f_P is a theta series of a binary quadratic form.

If \mathcal{F} has CM, χ cuts out an imaginary quadratic field M, and $\rho_{\mathbb{I}} \cong \operatorname{Ind}_{M}^{\mathbb{Q}} \Psi$ for a character $\Psi : \operatorname{Gal}(\overline{\mathbb{Q}}/M) \to \mathbb{I}^{\times}$. The decomposition $(\rho_{\mathbb{I}}|_{D})^{ss} = \epsilon \oplus \delta$ can only happen if p splits into $\mathfrak{p}\overline{\mathfrak{p}}$ in M so that Ψ ramifies at \mathfrak{p} and $\Psi^{c}(\sigma) = \Psi(c\sigma c^{-1})$ is unramified at \mathfrak{p} . Then D is the decomposition grup of \mathfrak{p} , $\epsilon = \Psi$ and $\delta = \Psi^{c}$. Write R for the integer ring of M. At an arithmetic point, f_{P} is the theta series of a Hecke character λ_{P} whose p-adic avatar $\Psi_{P} = P \circ \Psi$ has p-type $\Psi_{P}([x, M_{\mathfrak{p}}]) = \psi_{1}\varepsilon_{P}(x)\langle x \rangle^{-k(P)}$ $(x \in R_{\mathfrak{p}}^{\times})$ identifying $R_{\mathfrak{p}}$ with \mathbb{Z}_{p} , and $\Psi_{P}^{c}([\mathfrak{p}, M_{\mathfrak{p}}]) = \Psi_{P}^{c}([p, M_{\mathfrak{p}}]) = a(p)$; so,

$$a(p) = \zeta_0 (1+T)^{\log_p(\overline{\mathfrak{p}})/\log(\gamma)}$$

for a root of unity ζ_0 , where $\log_p(\overline{\mathfrak{p}}) = \frac{1}{h} \log_p(\alpha)$ taking h such that $\overline{\mathfrak{p}}^h = (\alpha)$ with $\alpha \in M$.

Here is a version of Lemma 1.6 ([C] Theorem 4.3) I explained in the first lecture:

Lemma 3.3. Let $\overline{\mathbb{F}}_p$ be an algebraic closure of \mathbb{F}_p . If a power series $\Phi(T) \in \mathcal{O}_{\widehat{\mathbb{G}}_m} = \overline{\mathbb{F}}_p[[T]]$ regarded as a function of t = 1 + T satisfies $\Phi(t^z) = \Phi(t)^z$ for z in a open subgroup of \mathbb{Z}_p^{\times} , then $\Phi(t) = c \cdot t^s$ for $s \in \mathbb{Z}_p$ with a constant $c \in \overline{\mathbb{F}}_p$.

3.1. **Proof of Theorem 3.1.** By (1.6) of [H04b], $\mathcal{L}(Ad(\rho_P))$ is a constant multiple of

$$\left(a(p)^{-1}\frac{da(p)}{dX}\right)\Big|_{X=0},$$

where if $P \cap \Lambda = (X)$ for $X = \gamma^{-k} \zeta^{-1} t - 1$ for t = 1 + T. After proving the theorem assuming this formula, we recall the proof of the formula. By variable change (as $T = \log_p(t) \mod T^2$), we get

$$\left(a(p)^{-1}\frac{da(p)}{dX}\right)\Big|_{X=0} = \left(a(p)^{-1}t\frac{da(p)}{dt}\right)\Big|_{t=\zeta\gamma^{k}}$$

Thus the constancy of $\mathcal{L}(Ad(\rho_P))$ implies the constancy of

$$a(p)^{-1}(1+T)\frac{da(p)}{dT} = a(p)^{-1}t\frac{da(p)}{dt} = s \in W$$

Thus $t\frac{da}{dt} = s \cdot a$ for a(t) = a(p)(t) for $s \in W$. In other words, putting $b(x) = \log_p \circ a(\exp_p(x))$ (for $x = \log_p(t)$), as $dx = \frac{dt}{t}$, we get from the chain rule,

$$\frac{db}{dx} = \frac{da}{dx}\frac{db}{da} = \frac{da}{dx}\frac{d\log_p(a)}{da} = s \cdot a \cdot \frac{1}{a} = s.$$

Thus b is a linear function of x with slope s:

$$\log_p(a) = sx + c \Leftrightarrow a = C \exp_p(s \cdot \log_p(t)) = Ct^s \quad (C = \exp_p(c)).$$

Then $a(p) = Ct^s \in K[[T]] \cap \mathbb{I} = W[[T]]$ $(t^s = \exp_p(s \cdot \log_p(t)))$ for the quotient field Kof W, and $t^s \in W[[T]]$. Taking $\Phi(t) := t^s \mod \mathfrak{m}_W$ in $\mathbb{F}[[T]]$, we find $\Phi(t^z) = \Phi(t)^z$ for $z \in \mathbb{Z}_p$. Thus by Chai's lemma above, we conclude $s \in \mathbb{Z}_p$. Write $f_{\zeta} = f_P$ for P = (X) $(X = \gamma^{-k}\zeta^{-1}t - 1)$ with $\zeta \in \mu_{p^r}$. The form f_{ζ} is a Hecke eigenform in $S_k(\Gamma_1(Np^{r+1}))$, and we have $a(p, f_{\zeta}) = C\gamma^{ks}\zeta^s$. Take $\zeta = 1$. Then $a(p, f_1) = C\gamma^{ks}$ is a Weil number α of weight k. This shows that for any $\zeta \in \mu_{p^{\infty}}$, $a(p, f_{\zeta}) = \alpha$ up to *p*-power roots of unity. Thus the field generated by $a(p, f_{\zeta})$ for all $\zeta \in \mu_{p^{\infty}}$ is a finite extension of $\mathbb{Q}[\mu_{p^{\infty}}]$. Then by the horizontal theorem, we conclude that \mathcal{F} is a CM family.

Conversely, we suppose \mathcal{F} is a CM family. Then we find a Galois character Ψ : $\operatorname{Gal}(\overline{\mathbb{Q}}/M) \to \mathbb{I}^{\times}$ for an imaginary quadratic field M such that $\rho_P = \operatorname{Ind}_M^{\mathbb{Q}} \Psi \mod P$ for all $P \in \operatorname{Spec}(\mathbb{I})$ and Ψ is unramified at a unique factor $\mathfrak{p}|p$ in M. Then a(p) is the value of the character $\Psi^c(Frob_{\mathfrak{p}})$ at the Frobenius element $Frob_{\mathfrak{p}}$ at \mathfrak{p} . As already explained, we have $\Psi^c(Frob_{\mathfrak{p}}) = t^{\log_p(\overline{\mathfrak{p}})/\log_p(\gamma)}$ up to a root of unity. This shows the constancy of \mathcal{L} -invariant for the CM family. \Box

3.2. Recall of \mathcal{L} -invariant. According to Mazur–Tate–Teitelbaum [MTT], the \mathcal{L} invariant times the archimedean L-value give the leading term of the Taylor expansion
of a given p-adic motivic L-function at an exceptional zero. For an elliptic curve $E_{\mathbb{Z}}$ with multiplicative or ordinary good reduction modulo p, its p-adic L-function $L_p(s, E)$ has the following evaluation formula at s = 1:

$$L_p(1, E) = (1 - a_p^{-1}) \frac{L_{\infty}(1, E)}{\text{period}},$$

where $L_{\infty}(s, E)$ is the archimedean L-function of E, and a_p is the eigenvalue of the arithmetic Frobenius element at p on the unramified quotient of the p-adic Tate module T(E) of E. If E has *split* multiplicative reduction, $a_p = 1$, $L_p(s, E)$ has zero at s = 1. This type of zero of a p-adic L-function resulted from the modification Euler p-factor is called an *exceptional zero*, and it is believed that if the archimedean L-values does not vanish, the order of the zero is the number e of such Euler p-factors; so, in this case, e = 1. Then $L'_p(1, E) = \frac{dL_p(s, E)}{ds}|_{s=1}$ is conjectured to be equal to the archimedean value $\frac{L_{\infty}(1, E)}{period}$ times an error factor $\mathcal{L}^{an}(E)$, the so-called \mathcal{L} -invariant:

$$L'_p(1,E) = \mathcal{L}^{an}(E) \frac{L_{\infty}(1,E)}{\text{period}}$$

The problem of \mathcal{L} -invariants is to find an explicit formula (without recourse to p-adic L-functions) for motivic p-adic Galois representations V. Writing $E(\overline{\mathbb{Q}}_p) = \overline{\mathbb{Q}}_p^{\times}/q^{\mathbb{Z}}$ for the Tate period $q \in p\mathbb{Z}_p$, the solution conjectured by [MTT] and proved by Greenberg-Stevens [GS] is

$$\mathcal{L}^{an}(E) = \frac{\log_p(q)}{\operatorname{ord}_p(q)}.$$

Since E is modular, $L(s, E) = L(s, f_E)$ for an elliptic Hecke eigenform f_E of weight 2. In particular, $a(p, f_E) = a_p = 1$ and $a(1, f_E) = 1$. We can lift f_E to a unique family $\mathcal{F}_{\mathbb{I}}$ so that f_E is a specialization of \mathcal{F} at an arithmetic P with k(P) = 1. Then one of the key ingredients of their proof is the following formula:

$$\mathcal{L}^{an}(E) = -2\log_p(\gamma) \frac{da(p)}{dX}\Big|_{X=0}$$

Here is an analogous formula in [H04b]:

Theorem 3.4. Let p be an odd prime, and assume Conjecture 3.5 in the following section. Then we have

$$\mathcal{L}(Ad(\rho_P)) = -2\log_p(\gamma)a_P(p)^{-1}\frac{da(p)}{dX}\Big|_{X=0}$$

3.3. Galois deformation. A main ingredient of the proof of Theorem 3.4 is Galois deformation theory. Since ρ_P is irreducible and $\operatorname{Tr}(\rho_{\mathbb{I}}) \in \mathbb{I}$, via pseudo representation, we arrange $\rho_{\mathbb{I}}$ to have values in \mathbb{I}_P . Let $\widehat{\mathbb{I}}_P = \varprojlim_n \mathbb{I}_P / P^n \mathbb{I}_P$. It is known that $\widehat{\mathbb{I}}_P \cong \kappa(P)[[X]]$ (see [HMI] Proposition 3.78). The character $\det(\rho_{\mathbb{I}})^{-1} \det(\rho)$ has values in the *p*-profinite group $1+\mathfrak{m}_{\mathbb{I}}$ for the maximal ideal $\mathfrak{m}_{\mathbb{I}}$ of \mathbb{I} , and hence we have its unique square root ψ with values in $1+\mathfrak{m}_{\mathbb{I}}$. Define a representation $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\widehat{\mathbb{I}}_P)$ with $\det(\rho) = \det(\rho)$ by $(\rho_{\mathbb{I}} \otimes \psi)(\sigma) = \psi(\sigma)\rho_{\mathbb{I}}(\sigma)$. Note that $\rho \equiv \rho_{\mathbb{I}} \mod P$. Fix a decomposition subgroup $D_p \subset \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ at *p*. Normalize ρ_P so that $\rho_P|_{D_p} = \begin{pmatrix} \epsilon_P & * \\ 0 & \delta_P \end{pmatrix}$ with unramified δ_P . Then $\epsilon_P \neq \delta_P$ and ϵ_P is ramified.

Simply write $\kappa := \kappa(P)$. Let S be the set of places of \mathbb{Q} made up of all prime factors of Np and ∞ . Consider the deformation functor into sets from the category of local artinian κ -algebras with residue field κ whose value at a local artinian κ -algebra A with maximal ideal \mathfrak{m}_A is given by the set of isomorphism classes of 2-dimensional continuous Galois representations $\rho_A : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(A)$ unramified outside S:

- (D1) $(\rho_A \mod \mathfrak{m}_A) \cong \rho_P;$
- (D2) Writing $\iota : \kappa \to A$ for the structure homomorphism of κ -algebras, we have the identity of the determinant characters:

$$\iota \circ \det(\rho) = \det(\rho_A)$$

(D3) We have an exact sequence $\rho_A|_{D_p} \cong \begin{pmatrix} \epsilon_A & * \\ 0 & \delta_A \end{pmatrix}$ with $\delta_A \equiv \delta_P \mod \mathfrak{m}_A$.

The condition (D3) is the near ordinarity, and we call the character δ_A of D_p the *nearly ordinary character* of ρ . By the work started by Wiles/Taylor (and practically ended by Kisin), we know (e.g., [HMI] Corollary 3.77 for most cases) the following conjecture is true for almost all cases:

Conjecture 3.5. The above functor is pro-represented by the pair (\mathbb{I}_P, ρ) .

In the following sections, we start with a brief review of the definition by Greenberg of the Selmer group and his \mathcal{L} -invariant.

3.4. Selmer Groups. We describe the definition due to Greenberg of his Selmer group associated to the adjoint square Galois representation. For simplicity, we assume that $S = \{p, \infty\}$ (so, N = 1). One can find the definition in the general case in [Gr] and in [HMI] §1.2.3. We may assume that κ has *p*-adic integer ring W. Let \mathbb{Q}^S be the maximal extension unramified outside S. All Galois cohomology groups are continuous cohomology groups in [MFG] 4.3.3. Write $\mathfrak{G}^S = \operatorname{Gal}(\mathbb{Q}^S/\mathbb{Q})$ and I_p for the inertia subgroup of the decomposition subgroup $D_p \subset \mathfrak{G}^S$.

Write V for the space of ρ_P . Let \mathfrak{G}^S act on $\operatorname{End}_{\kappa}(V)$ by conjugation and put $Ad(V) \subset \operatorname{End}_{\kappa}(V)$ (the trace 0 subspace of dimension 3). We have a filtration:

(ord)
$$V \supsetneq F^+ V \supsetneq \{0\}$$

stable under the decomposition group D_p such that D_p acts on the quotient V/F^+V by δ_P . Then Ad(V) has the following three step filtration stable under D_p :

(F)
$$Ad(V) \supset F^{-}Ad(V) \supset F^{+}Ad(V) \supset \{0\},\$$

where

$$F^{-}Ad(V) = \{\phi \in Ad(V) | \phi(F^{+}V) \subset F^{+}V\} \text{ (upper triangular),}$$

$$F^{+}Ad(V) = \{\phi \in Ad(V) | \phi(F^{+}V) = 0\} \text{ (upper nilpotent).}$$

Note that D_p acts trivially on $F^-Ad(V)/F^+Ad(V)$; so, $F^-Ad(V)/F^+Ad(V) \cong \kappa$; so, the *p*-adic *L*-function of Ad(V) has an exceptional zero at s = 1. Put

$$U_p(Ad(V)) = \operatorname{Ker}(\operatorname{Res} : H^1(D_p, Ad(V)) \to H^1(I_p, \frac{Ad(V)}{F^+(Ad(V))})).$$

Then we define

(3.1)
$$\operatorname{Sel}(Ad(V)) = \operatorname{Ker}(H^1(\mathfrak{G}^S, Ad(V)) \to \frac{H^1(D_p, V)}{U_p(V)}).$$

Replacing $U_p(Ad(V))$ by the bigger

$$U_p^-(Ad(V)) = \operatorname{Ker}(\operatorname{Res} : H^1(D_p, Ad(V)) \to H^1(I_p, \frac{Ad(V)}{F^-(Ad(V))}))$$

for $\mathfrak{p}|p$, we can define a bigger "-" Selmer group $\operatorname{Sel}^{-}(Ad(V)) \supset \operatorname{Sel}(Ad(V))$.

In the above definition, replacing \mathfrak{G}^{S} by the stabilizer $\mathfrak{G}_{\infty}^{S'}$ of the cyclotomic \mathbb{Z}_{p} extension $\mathbb{Q}_{\infty}/\mathbb{Q}$ and V by A = V/L for a Galois stable lattice L, one can define
the Selmer group $\operatorname{Sel}_{\mathbb{Q}_{\infty}}(A)$ whose characteristic power series $\Phi(T)$ is supposed to be
the adjoint p-adic L-function $L_{p}(s, Ad(\rho_{P}))$ (the adjoint main conjecture). It is easy
to see $\operatorname{Sel}^{-}(A)$ is sent (with possibly finite kernel) into $\operatorname{Sel}_{\mathbb{Q}_{\infty}}(A)$ (as p-ramification
of cocycles giving $\operatorname{Sel}^{-}(A)$ projected to $F^{-}A/F^{+}A$ is absorbed by the wild ramification of $\mathbb{Q}_{\infty}/\mathbb{Q}$). The image produces the exceptional zero of algebraic L-function $s \mapsto \Phi(\gamma^{s} - 1) =: L_{p}^{alg}(s, Ad(\rho_{P}))$ at s = 1. Greenberg's philosophy is therefore that the \mathcal{L} -invariant must be produced out of cocycles in $\operatorname{Sel}^{-}(A)$. Assuming $\mathcal{L}(Ad(\rho_{P})) \neq 0, L_{p}^{alg}(s, Ad(\rho_{P}))$ has order 1 zero at s = 1 and $L'_{p}(1, Ad(\rho_{P})) =$ $\mathcal{L}(Ad(\rho_{P}))L(1, Ad(\rho_{P}))/\operatorname{period}$ up to units under mild conditions (see [Gr] Proposition 4, [H07b] Theorem 3.1 and [MFG] Theorem 5.20).

Taking the Tate-dual $Ad(V)^*(1) = \operatorname{Hom}_{\kappa}(Ad(V), \kappa)(1)$ with single Tate twist, and the filtration dual to (F), we define the dual Selmer group $\operatorname{Sel}(Ad(V)^*(1))$.

Lemma 3.6. Assume Conjecture 3.5. We have dim $Sel^{-}(Ad(V)) = 1$ and

(V)
$$\operatorname{Sel}(Ad(V)) = \operatorname{Sel}(Ad(V)^*(1)) = 0.$$

In the earlier article [H04b], the balanced Selmer group $\overline{\operatorname{Sel}}_{\mathbb{Q}}$ (see [Gr] (16) and [HMI] §1.5.1) is used to prove this type of result. However by definition $\operatorname{Sel}_{\mathbb{Q}}(Ad(V)) \supset$ $\overline{\operatorname{Sel}}_{\mathbb{Q}}(Ad(V))$ and by duality $\operatorname{Sel}_{\mathbb{Q}}(Ad(V)^*(1)) \subset \overline{\operatorname{Sel}}_{\mathbb{Q}}(Ad(V)^*(1))$. Then by Greenberg (see [Gr] Proposition 2 or [HMI] Proposition 3.82), we have

$$\dim \overline{\operatorname{Sel}}_{\mathbb{Q}}(Ad(V)) = \dim \overline{\operatorname{Sel}}_{\mathbb{Q}}(Ad(V)^*(1)),$$

and therefore, to prove the vanishing of all such Selmer groups, we only need to show $\operatorname{Sel}_{\mathbb{Q}}(Ad(V)) = 0.$

Proof. Here is a sketch of the proof. For any derivation $\partial : \widehat{\mathbb{I}}_P \to \kappa$, consider $c_{\rho} := (\partial \rho)\rho_P^{-1} : \mathfrak{G}^S \to \operatorname{End}(V)$. Applying ∂ to $\rho(\sigma)\rho(\tau) = \rho(\sigma\tau)$, we verify c_{∂} is cocycle. Since det (ρ) is constant, c_{ρ} has values in Ad(V). Since $\rho|_{D_p}$ is upper triangular, $[c_{\rho}] \in$ Sel⁻(Ad(V)). By universality, any such cocycle is of the form c_{∂} . Thus the tangent space $\mathcal{T}_P \cong \kappa$ of Spec $(\widehat{\mathbb{I}}_P)$ at P is isomorphic to Sel⁻(Ad(V)); so, dim_{κ} Sel⁻(Ad(V)) =1. Since the diagonal entry of c_{∂} is non-trivial, Sel(Ad(V)) is a proper subspace of of Sel⁻(Ad(V)); so, it vanishes. By Greenberg, dim_{κ} Sel $(Ad(V)) = \dim_{\kappa} \operatorname{Sel}(Ad(V)^*(1))$ (strictly speaking $\dim_{\kappa} \overline{\operatorname{Sel}}(Ad(V)) = \dim_{\kappa} \overline{\operatorname{Sel}}(Ad(V)^*(1))$ as remarked; see [HMI] Lemma 1.84); so, the desired vanishing also follows for the dual.

We have the Poitou-Tate exact sequence (e.g., [MFG] Theorem 4.50 (5)):

$$0 \to \operatorname{Sel}(Ad(V)) \to H^1(\mathfrak{G}^S, Ad(V)) \to \frac{H^1(D_p, Ad(V))}{U_p(Ad(V))} \to \operatorname{Sel}(Ad(V)^*(1))^*$$

Thus by (V), we have

(I)
$$H^{1}(\mathfrak{G}^{S}, Ad(V)) \cong \frac{H^{1}(D_{p}, Ad(V))}{U_{p}(Ad(V))}$$

3.5. Greenberg's \mathcal{L} -invariant. Greenberg defined in [Gr] his invariant $\mathcal{L}(Ad(V))$ in the following way. Write $F^-H^1(D_p, Ad(V))$ for the image of $H^1(D_p, F^-Ad(V))$ in $H^1(D_p, Ad(V))$. By the definition of $U_p(Ad(V))$, the subspace $\frac{F^-H^1(D_p, Ad(V))}{U_p(Ad(V))}$ inside the right-hand side of (I) is isomorphic to Sel⁻ $(Ad(V)) \cong \kappa$. Namely, we have

$$\operatorname{Sel}^{-}(Ad(V)) \xrightarrow[\operatorname{Res}]{} \frac{F^{-}H^{1}(D_{p}, Ad(V))}{U_{p}(Ad(V))} \subset \frac{H^{1}(D_{p}, Ad(V))}{U_{q}(Ad(V))}$$

Then by projecting down to $F^-Ad(V)/F^+Ad(V) \cong \kappa$ with trivial D_p -action, cocycles in Sel⁻(Ad(V)) gives rise to a subspace L of

$$\operatorname{Hom}(D_p^{ab}, F^-Ad(V)/F^+Ad(V)) = \operatorname{Hom}(D_p^{ab}, \kappa).$$

Note that

$$\operatorname{Hom}(D_p^{ab},\kappa) \cong \kappa \times \kappa$$

canonically by $\phi \mapsto (\frac{\phi([u,\mathbb{Q}_p])}{\log_p(u)}, \phi([p,\mathbb{Q}_p]))$ for any $u \in \mathbb{Z}_p^{\times}$ of infinite order. Here $[x,\mathbb{Q}_p]$ is the local Artin symbol (suitably normalized).

If a cocycle c representing an element in Sel⁻(Ad(V)) is unramified, it gives rise to an element in Sel(Ad(V)). By the vanishing (V) of Sel(Ad(V)), this implies c = 0; so, the projection of L to the first factor κ (via $\phi \mapsto \phi([u, \mathbb{Q}_p])/\log_p(u)$) is surjective. Thus this subspace L is a graph of a κ -linear map

$$\mathcal{L}:\kappa\to\kappa$$

which is given by the multiplication by an element $\mathcal{L}(Ad(V)) \in \kappa$.

3.6. **Proof of Theorem 3.4.** Write $\rho|_{D_p} \cong \begin{pmatrix} \epsilon & * \\ 0 & \delta \end{pmatrix}$ with nearly ordinary character δ . We know that c_{∂} for $\partial = \frac{d}{dX}$ gives a nontrivial element in Sel⁻(Ad(V)). The image of c_{∂} in Hom (D_p^{ab}, κ) is $\delta_P^{-1} \partial \delta|_{X=0}$. We know that $\delta_P^{-1} \delta([p, \mathbb{Q}_p]) = a_P(p)^{-1}a(p)$ and $\delta_P^{-1} \delta([u, \mathbb{Q}_p]) = (\zeta \gamma^k)^{-\log_p(u)/2\log_p(\gamma)} t^{\log_p(u)/2\log_p(\gamma)}$ by our construction. Then to get the desired result is just a simple computation.

4. Lecture 4: Image of Λ -adic Galois representations modulo p

We call a prime ideal $P \subset \mathbb{I}$ a prime divisor if $\operatorname{Spec}(\mathbb{I}/P)$ has codimension 1 in $\operatorname{Spec}(\mathbb{I})$. Put $\Phi(N) = N^2 \prod_{l \mid N} (1 - \frac{1}{l^2})$ for an integer N > 1 and its prime factors l.

Theorem 4.1. Take a non CM component \mathbb{I} of cube-free prime-to-p level N, and let $P \in \text{Spec}(\mathbb{I})$ be a prime divisor above $(p) \subset \mathbb{Z}_p[[T]]$. If $p \nmid \Phi(N)$, the image of ρ_P contains an open subgroup of $SL_2(\mathbb{F}_p[[T]])$.

Recall, for primes $l \nmid Np$,

(Gal) $\operatorname{Tr}(\rho_{\mathbb{I}}(Frob_l)) = a(l), \quad \rho_{\mathbb{I}}^{ss}([\gamma^s, \mathbb{Q}_p]) \sim \begin{pmatrix} (1+T)^{-s} & 0\\ 0 & 1 \end{pmatrix}, \quad \rho_{\mathbb{I}}^{ss}([p, \mathbb{Q}_p]) \sim \begin{pmatrix} * & 0\\ 0 & a(p) \end{pmatrix}.$

We have a unique decomposition $\mathbb{I}^{\times} = \langle \mathbb{I}^{\times} \rangle \times \mu^{(p)}$, where $\mu^{(p)}$ is a finite group of order prime to p and $\langle \mathbb{I}^{\times} \rangle$ is a p-profinite group. Write $a \mapsto \langle a \rangle$ for the projection to $\langle \mathbb{I}^{\times} \rangle$. Since $p \geq 5$, $a \in \langle \mathbb{I}^{\times} \rangle$ has a unique square root $\sqrt{a} \in \langle \mathbb{I}^{\times} \rangle$. We put $\rho' = \rho_{\mathbb{I}} \otimes \sqrt{\langle \det(\rho_{\mathbb{I}}) \rangle}^{-1}$. Then $\det(\rho')$ has finite image. Since $\operatorname{Im}(\rho_{\mathbb{I}}) \cap SL(2) = \operatorname{Im}(\rho') \cap SL(2)$, we may replace $\rho_{\mathbb{I}}$ by ρ' to prove the theorem. Note here $\operatorname{Im}(\rho')$ contains $\binom{(1+T)^{-s/2}}{0}$ for all $s \in \mathbb{Z}_p$ by (Gal).

Here is an outline of the proof. For a prime divisor P above $(p) \subset \mathbb{Z}_p[[T]]$, let $\overline{\kappa}(P)$ be an algebraic closure of $\kappa(P)$. The Zariski closure of the image $\operatorname{Im}(\rho'_P) \cap SL(2)$ in $SL(2)_{\overline{\kappa}(P)}$ is an algebraic subgroup G_P of $SL(2)_{\overline{\kappa}(P)}$ defined over $\kappa(P)$. Let G_P° be the connected component of G_P . Then G_P° is either Borel subgroup, a torus or a unipotent group. Since $G_P^{\circ}(\kappa(P))$ contains $\begin{pmatrix} (1+T)^{-s/2} & *\\ 0 & (1+T)^{s/2} \end{pmatrix}$, G_P° is not a unipotent group. If G_P° is a Borel subgrup or a torus, we prove that P has to be either an Eisenstein ideal or the family has congruence modulo P with a CM component I' having CM by an imaginary quadratic field M. In the Eisenstein case, by a result of Mazur–Wiles [MW] and Ohta [O1], P divides the Iwasawa power series of a Kubota-Leopoldt p-adic L-function. This is impossible as the Kubota–Leopoldt p-adic L-function has trivial μ -invariant [FeW]. In the CM case, P divides $L_p(Ad(\rho_{\mathbb{I}})) = h \cdot L_p(\Psi_{\mathbb{I}})$ (congruence criterion) for the class number h of M as remarked in Lecture 1, where $L_p(\Psi_{\mathbb{I}'})$ is the anticyclotomic *p*-adic Hecke *L*-function constructed by de Shalit, Yager and Katz (see [K] and [H07b]). By [Fi] and [H10], the anticyclotomic *p*-adic Hecke *L*-function has trivial μ -invariant (under $p \nmid \Phi(N)$); so, if $p \nmid h$, this proves the theorem. If p|h, by computation of the congruence power series, we prove that the congruence between CM components exhausts the *p*-part of the congruence power series, and thereby, we conclude that G_P is SL(2), and (Gal) implies, by a result of Pink [P], that ρ_P to have the open image property.

This type of results, asserting $\text{Im}(\rho_P)$ contains an open subgroup of $SL_2(\mathbb{Z}_p)$ for non CM arithmetic primes P was proven by Ribet [R] long ago. If $p|\Phi(N)$, the theorem could fail. We make the following conjecture in the Hilbert modular case over a totally real field F with integer ring O:

Conjecture. Let $\mathcal{F}_{\mathbb{I}}$ be a non CM parallel weight Hilbert modular family (in [H88b]) of prime-to-p level \mathfrak{N} for a totally real field F. Suppose $p \geq 5$, and let P be a prime divisor of \mathbb{I} over $(p) \subset \mathbb{Z}_p[[T]]$. Then we have

- (1) The mod P Galois representation ρ_P is irreducible over $\operatorname{Gal}(\overline{\mathbb{Q}}/F)$.
- (2) Suppose $p \nmid \Phi_F(\mathfrak{N}) = N(\mathfrak{N})^2 \prod_{\mathfrak{l}|\mathfrak{N}} (1 \frac{1}{N(\mathfrak{l})^2})$ and that \mathfrak{N} is prime to p and cube free. If either dim_F $F[\mu_p] > 2$ or the strict class number of F is odd, ρ_P

contains a subgroup isomorphic to an open subgroup of $SL_2(\mathbb{F}_p[[T]])$, where $\det(\rho_{\mathbb{I}}([\gamma_F^s, \mathbb{Q}_p])) = (1+T)^s$ for a generator γ_F of $\gamma^{\mathbb{Z}_p} \cap N_{F/\mathbb{Q}}(O_p^{\times})$.

If $\dim_F F[\mu_p] = 2$ and F has a CM quadratic extension unramified everywhere, the μ -invariant of the anticyclotomic p-adic Hecke L-function could be positive [H10] (M1–3); so, irreducibility is at most we could expect under such circumstance. The above conjecture is almost equivalent to vanishing of the μ -invariant of Deligne–Ribet p-adic L and of Katz p-adic L restricted to anticyclotomic parallel weight variable.

Here is a general fact from the theory of new/old forms:

Proposition 4.2. Let $\pi = \bigotimes_l \pi_l$ be an irreducible cuspidal automorphic representation of $GL_2(\mathbb{A})$ of weight k + 1 with central character ψ . Write $C(\pi)$ for the conductor of π . Fix a prime l, and write π_l for its l-component. For a new vector $f \in \pi$, write $f|T(l) = a \cdot f$ and defining α, β to be the two roots of $X^2 - aX + \psi(l)l^k = 0$ if π_l is spherical. Then the following is the list of all Hecke eigenvectors in π whose eigenvalues for T(q) with $q \neq l$ coincide with those for f:

- (1) If π_l is spherical, in addition to f, we have $f_{\alpha}, f_{\beta}, f_0$ such that $f_x|U(l) = x \cdot f_x$ (here $f_{\alpha} = f_{\beta}$ if $\alpha = \beta$), where the minimal level of $f_{\alpha}, f_{\beta}, f_0$ are, respectively, $C(\pi)l, C(\pi)l$ and $C(\pi)l^2$;
- (2) If π_l is Steinberg, we have $f_a = f, f_0$ under the same convention as above, where the minimal level of f_a, f_0 are, respectively, $C(\pi)$ and $C(\pi)l$;
- (3) If π_l is supercuspidal, $f = f_0$.

The above vector f_x is determined by x up to constant multiple.

In the spherical case (1), if f is a new form in π , $f_{\alpha}(z) = f(z) - \beta f(lz)$. If $\alpha = \beta$, U(l) gives a nontrivial nilpotent. If f is of weight 2 and $l^3 \nmid C(\pi)$, $\alpha \neq \beta$ by Coleman–Edixhoven [CE]; so, U(l) on such π is semi-simple if $l^3 \nmid C(\pi)$. For simplicity, we assume that **h** is a reduced algebra (which is true if N is cube-free by [CE]).

4.1. **CM components.** Let $\operatorname{Spec}(\mathbb{I}_{cm}^M)$ be the union inside $\operatorname{Spec}(\mathbf{h})$ of all irreducible components having CM by a fixed imaginary quadratic field M. Consider the ray class group $Cl_M(\mathfrak{cp}^r)$ modulo \mathfrak{cp}^r (of M) for \mathfrak{c} prime to p and put $C = \lim_{r} Cl_M(\mathfrak{cp}^r)$. Let $M_{\mathfrak{c}}/M$ be the ray class field with $\operatorname{Gal}(M_{\mathfrak{c}}/M) \cong C$. If $\operatorname{Spec}(\mathbb{I}) \subset \operatorname{Spec}(\mathbb{I}_M^c)$, we have a unique ideal $\mathfrak{c} = \mathfrak{c}(\mathbb{I})$ prime to p such that $\mathfrak{cc}D_M|N$ and $\rho_{\mathbb{I}} \cong \operatorname{Ind}_M^{\mathbb{Q}} \Psi$ for a character $\Psi : \operatorname{Gal}(M_{\mathfrak{c}}/M) \to \mathbb{I}^{\times}$. Since $\mathfrak{cc}D_M|N$, each prime factor \mathfrak{l} of \mathfrak{c} divides N. The ideal $\mathfrak{c}(\mathbb{I})$ is determined in the following way:

- (1) If $(l) = \mathfrak{l}\overline{\mathfrak{l}}$ and $a(l) \neq 0$, we have one of factors of l, say $\overline{\mathfrak{l}}$ such that $a(l) = \Psi(\overline{\mathfrak{l}})$, and in this case, \mathfrak{c} is prime to $\overline{\mathfrak{l}}$ and $\operatorname{ord}_{\mathfrak{l}}(\mathfrak{c}) = \operatorname{ord}_{l}(N)$, where $\mathfrak{c} = \prod_{\mathfrak{l}} \mathfrak{l}^{\operatorname{ord}_{\mathfrak{l}}(\mathfrak{c})}$ and $N = \prod_{l} l^{\operatorname{ord}_{l}(N)}$.
- (2) If $(l) = \mathfrak{l} \overline{\mathfrak{l}}$ and a(l) = 0, $\operatorname{ord}_{\mathfrak{l}}(\mathfrak{c}) = \operatorname{ord}_{\overline{\mathfrak{l}}}(\mathfrak{c}) = 1$ and $\operatorname{ord}_{l}(N) = 2$.
- (3) If $\mathfrak{l} = (l)$ is inert and $a(l) \neq 0$, we have $a(l) = \pm \sqrt{\Psi(l)}$, $\operatorname{ord}_{\mathfrak{l}}(\mathfrak{c}) = 0$ but $1 \leq \operatorname{ord}_{l}(N) \leq 2$.
- (4) If $\mathfrak{l} = (l)$ is inert and a(l) = 0, $\operatorname{ord}_l(\mathfrak{c}) = 1$ and $\operatorname{ord}_l(N) = 2$.
- (5) If $\mathfrak{l}^2 = (l)$ and $a(l) \neq 0$, $a(l) = \Psi(\mathfrak{l})$, $\operatorname{ord}_{\mathfrak{l}}(\mathfrak{c}) = 0$ but $1 \leq \operatorname{ord}_{l}(N) \leq 2$.
- (6) If $\mathfrak{l}^2 = (l)$ and a(l) = 0, $\operatorname{ord}_{\mathfrak{l}}(\mathfrak{c}) = 1$ but $\operatorname{ord}_{l}(N) = 2$.

For any prime \mathfrak{a} prime to \mathfrak{cp} , we write $[\mathfrak{a}]$ for the class lof \mathfrak{a} in C. If \mathfrak{a} is not prime to \mathfrak{cp} , we put $[\mathfrak{a}] = 0$ in W[[C]]. Let C_p be the Sylow *p*-part of C. Then $C = C^{(p)} \times C_p$ with

finite group $C^{(p)}$ of order prime to p. We write Δ for the maximal finite subgroup of C_p , and put $\Gamma_M := C_p/\Delta \cong \mathbb{Z}_p$. Pick a CM irreducible component $\operatorname{Spec}(\mathbb{I}) \subset \operatorname{Spec}(\mathbf{h})$, and let $\operatorname{Spec}(\mathbb{T})$ be the connected component of $\operatorname{Spec}(\mathbf{h})$ containing $\operatorname{Spec}(\mathbb{I})$. We assume $W = \overline{\mathbb{Q}}_p \cap \mathbb{I}$. We define $\operatorname{Spec}(\mathbb{T}_{cm}) \subset \operatorname{Spec}(\mathbb{T})$ by the union of all CM components of $\operatorname{Spec}(\mathbb{T})$. Let Q be the quotient field of $\mathbb{Z}_p[[T]]$ and \overline{Q} be an algebraic closure of Q, and regard \mathbb{I} as a subalgebra of \overline{Q} by a fixed embedding over W[[T]].

We list here easy consequences of explicit form of CM components: Let M and L be distinct imaginary quadratic fields in which p splits.

- Fact 1. If $P \in \text{Spec}(\mathbb{I}_{cm}^M) \cap \text{Spec}(\mathbb{I}_{cm}^L)$ is a prime divisor, P contains T; so, it is prime to (p).
- Fact 2. Let \mathbb{I} and \mathbb{I}' be two distinct CM components in \mathbb{T}_{cm} , and write a(l) and a'(l) for the image of T(l) in \mathbb{I} and \mathbb{I}' , respectively. If $a(l) = \sigma(a'(l))$ for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ for almost all l, any prime divisor $P \in \operatorname{Spec}(\mathbb{I}) \cap \operatorname{Spec}(\mathbb{I}')$ is prime to (p).
- Fact 3. By the explicit form of theta series of M,

$$\mathbf{h} \ni T(l) \mapsto \begin{cases} [\mathfrak{l}] + [\overline{\mathfrak{l}}] & \text{if } (l) = \mathfrak{l}\overline{\mathfrak{l}} \text{ with } \mathfrak{l} \neq \overline{\mathfrak{l}}, \\ [(l)] & \text{if } (l) \text{ is a prime in } M \text{ outside } N \text{ or } (l)|\mathfrak{c}, \\ \pm \sqrt{[(l)]} & \text{if } (l)|N \text{ is a prime in } M \text{ outside } \mathfrak{c}, \\ [\mathfrak{l}] & \text{if } (l) = \mathfrak{l}^2 \text{ in } M \end{cases}$$

gives a ring homomorphism $\mathbf{h} \to W[[C]]$ inducing $\mathbb{T}_{cm,(p)} \cong W[[C_p]]_{(p)}$; so, $\mathbb{T}_{cm,P}$ for any prime P over (p) is a local complete intersection, and for an irreducible component $\operatorname{Spec}(\mathbb{I}) \subset \operatorname{Spec}(\mathbb{T}_{cm}), \mathbb{I}_P \cong W[[\Gamma_M]]_{(p)}$ which is regular. See [H86c].

4.2. Irreducibility and Gorenstein-ness. We would like to prove

Theorem 4.3. If ρ_P is absolutely irreducible and $\rho_P|_{I_p} \cong \begin{pmatrix} \epsilon_P & * \\ 0 & 1 \end{pmatrix}$ with $\epsilon_P \neq 1$ for the inertia group $I_p \subset \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ at p, then the localization \mathbb{T}_P is a Gorenstein ring.

To prove this, we apply Mazur's argument proving Lemma 15.1 of [M]: irreducibility \Rightarrow Gorenstein-ness, that is,

$$\operatorname{Hom}_{W[[T]]_P}(\mathbb{T}_P, W[[T]]_P) \cong \mathbb{T}_P$$

as \mathbb{T}_P modules.

We prepare some notation and a proposition. Let $J_1(Np^r)$ be the jacobian of the modular curve $X_1(Np^r)_{/\mathbb{Q}}$. We consider its Tate module $T_pJ_1(Np^r)$ and its limit $\lim_{t \to r} T_pJ_1(Np^r)$ via Albanese functoriality. The limit is a Galois module. The ordinary part J of $\lim_{t \to r} T_pJ_1(Np^r)$ (that is the image of $e = \lim_{n\to\infty} U(p)^{n!}$ of the limit) still carries the Galois action. By Diamond operators, $(\mathbb{Z}/N\mathbb{Z})^{\times} \times \mu_{p-1} \subset (\mathbb{Z}/N\mathbb{Z})^{\times} \times \mathbb{Z}_p^{\times}$ acts on J. We can take the maximal quotient L of $J \otimes_{\mathbb{Z}_p} W$ on which $(\mathbb{Z}/N\mathbb{Z})^{\times} \times \mu_{p-1}$ acts by ψ_2 . The Galois module L is naturally an $\mathbf{h}[\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})]$ -module.

Over the valuation ring $A_r = \mathbb{Z}_p[\mu_{p^r}]^{\operatorname{Ker}(\psi_2)}$, we have a well defined multiplicative component of the Barsotti-Tate group of $J_1(Np^r)[p^{\infty}] \otimes_{\mathbb{Z}_p} W$ (see [AME] Chapter 14). Thus regarding the Poltryagin dual of L as the injective limit of the generic fiber of these Barsotti–Tate groups over A_{∞} , we have a connected-étale/ramified-unramified exact sequence: $L_{/\mathbb{Z}_p}^{mult} \hookrightarrow L_{/\mathbb{Z}_p} \twoheadrightarrow L_{/\mathbb{Z}_p}^{et}$. A seen in [H86b] Theorem 9.3 (when $\psi_2 \neq 1$) and by Ohta [O] otherwise, we have

Proposition 4.4. $L^{mult} \cong \mathbf{h}$, and $L^{et} \cong \operatorname{Hom}_{W[[T]]}(\mathbf{h}, W[[T]])$ as \mathbf{h} -modules.

Proof of Theorem 4.3. We follow the proof of [M] Lemma 15.1 and Corollary 15.2. Take a prime $P \in \text{Spec}(\mathbb{T}) \subset \text{Spec}(\mathbf{h})$ as in the theorem and put $V = L_P/PL_P$ as Galois module. Then, by [O] Theorem (where actually the Galois module $V' := V \otimes \det(\rho_P)^{-1}$ is studied), $V^{mult} := L^{mult}/PL^{mult}$ (isomorphic to V'^{I_P} just as vector spaces) is the eigen subspace of L on which the inertia group acts by the nontrivial character ϵ_P . By the above lemma, V^{mult} is 1 dimensional over $\kappa(P)$. If V is two dimensional, we have $\dim(L_P^{et}/PL_P^{et}) = 1$, and hence by Nakayama's lemma $L_P^{et} \cong$ $\mathbb{T}_P = \mathbf{h}_P$. Since $L^{et} \cong \text{Hom}_{W[[T]]}(\mathbf{h}, W[[T]])$, this shows

$$\mathbb{T}_P = \mathbf{h}_P \cong \operatorname{Hom}_{W[[T]]_P}(\mathbf{h}_P, W[[T]]_P) \cong \operatorname{Hom}_{W[[T]]_P}(\mathbb{T}_P, W[[T]]_P)$$

as desired.

Let $\Phi_l(X) = \det(X - \rho_{\mathbb{I}}(Frob_l)) \in \mathbb{I}[X]$ for primes l outside Np. Since L is killed by $\Phi_l(Frob_l)$, by the irreducibility of $\rho_{\mathbb{I}}$, V is killed by $\Phi_l(Frob_l)$; so, irreducible subquotients of V are all isomorphic to ρ_P . Thus the semi-simplification V^{ss} is isomorphic to ρ_P^m for m > 0. The subspace $V^{mult} := L_P^{mult}/PL_P^{mult} \subset V$ is the unique 1-dimensional subspace on which I_p acts by ϵ_P . Then I_p acts trivially on $L_P^{et}/PL_P^{et} = V/V^{mult}$. Since multiplicity of ϵ_P on V^{ss} is m, we have m = 1 and hence dim $L_P/PL_P = 2$, which finishes the proof.

4.3. Congruence modules. Pick a prime divisor P in $\text{Spec}(\mathbb{T}_{cm})$ over (p). Since $\Psi_{\mathbb{I}} \mod P$ restricted to $I_{\mathfrak{p}}$ has infinite order and is unramified at $\overline{\mathfrak{p}}$, ρ_P is absolutely irreducible (so, \mathbb{T}_P is Gorenstein by Theorem 4.3). By Fact 1, we have $\mathbb{T}_{cm,P}^M = \mathbb{T}_{cm,P}$, and $\mathbb{T}_{cm,P}$ is a local complete intersection (and hence Gorenstein). For the torsion-free part $\Gamma_M := C_p/\Delta$ of C_p , $\mathbb{I} = W[[\Gamma_M]]$; so, \mathbb{I} is a regular ring. We have therefore the projection maps

$$\mathbb{T}_P \twoheadrightarrow \mathbb{T}_{cm,P} \twoheadrightarrow \mathbb{I}_P$$

where all rings involved are Gorenstein rings.

Theorem 4.5. Suppose $p \nmid \Phi(N)$ and that N is cube free. Let $P \in \text{Spec}(\mathbb{T}_{cm})$ be a prime divisor over $(p) \subset \mathbb{Z}_p[[X]]$. Then we have $\mathbb{T}_P = \mathbb{T}_{cm,P}$.

We prepare some notation and two lemmas and a proposition for the proof of the theorem. For simplicity, we write the sequence $\mathbb{T}_P \twoheadrightarrow \mathbb{T}_{cm,P} \twoheadrightarrow \mathbb{I}_P$ as $R \xrightarrow{\theta} S \xrightarrow{\phi} A$ and we put $\lambda = \phi \circ \theta : R \to A$. Since \mathbb{T} is reduced, we have the following (unique) decomposition

- (1) $\operatorname{Spec}(R) = \operatorname{Spec}(R') \cup \operatorname{Spec}(S)$ with complementary component $\operatorname{Spec}(R')$ of $\operatorname{Spec}(S)$. Put $C_0(\theta, S) := R' \otimes_R S$; so, $\operatorname{Spec}(R') \cap \operatorname{Spec}(S) = \operatorname{Spec}(C_0(\theta, S))$.
- (2) $\operatorname{Spec}(S) = \operatorname{Spec}(S') \cup \operatorname{Spec}(A)$ with complementary component $\operatorname{Spec}(R')$ of $\operatorname{Spec}(A)$. Put $C_0(\phi, A) := S' \otimes_S A$; so, $\operatorname{Spec}(S') \cap \operatorname{Spec}(S) = \operatorname{Spec}(C_0(\phi, A))$.
- (3) $\operatorname{Spec}(R) = \operatorname{Spec}(R'') \cup \operatorname{Spec}(A)$ with complementary component $\operatorname{Spec}(R'')$. Put $C_0(\lambda, A) := R'' \otimes_R A$; so, $\operatorname{Spec}(R'') \cap \operatorname{Spec}(A) = \operatorname{Spec}(C_0(\lambda, A))$.

By Gorenstein-ness we have verified, we have

 $\operatorname{Hom}_{\Lambda}(R,\Lambda) \cong R$, $\operatorname{Hom}_{\Lambda}(S,\Lambda) \cong S$ and $\operatorname{Hom}_{\Lambda}(A,\Lambda) \cong A$ as *R*-modules.

Under this circumstances, as proved in [H88a] Theorem 6.6, we have

Lemma 4.6. We have the following exact sequence of R-modules:

$$0 \to C_0(\phi; A) \to C_0(\lambda; A) \to C_0(\theta; S) \otimes_S A \to 0.$$

Moreover we have $C_0(\lambda; A) = A/c_{\lambda}A$ for $c_{\lambda} \in A$, $C_0(\phi; A) = A/c_{\phi}A$ for $c_{\phi} \in A$ and $C_0(\theta; S) = S/c_{\theta}S$ for $c_{\theta} \in S$ (so, $C_0(\theta; S) \otimes_S A = A/\phi(c_{\theta})A$).

We have a morphism $(\mathbb{Z}/(\mathfrak{c}\cap\mathbb{Z}))^{\times} \to Cl_M(\mathfrak{c})$ sending ideal $0 < n \in \mathbb{Z}$ to its class in $Cl_M(\mathfrak{c})$, and we write $h^-(\mathfrak{c})$ for the order of cokernel $Cl_M^-(\mathfrak{c})$ of this map. Now write \mathfrak{c} for the prime to p conductor of $\Psi_{\mathbb{I}}$.

Lemma 4.7. We have $c_{\phi} = h^{-}(\mathfrak{c} \cap \overline{\mathfrak{c}})$ up to units in \mathbb{I}_{P} .

We have a natural inclusion $\Gamma = 1 + p\mathbb{Z}_p \hookrightarrow R_p^{\times} \to C_p$, which gives rise to the Λ -algebra structure $\Lambda \hookrightarrow W[[C_p]]$. Since S is the p-localization of the group algebra $W[[C_p]]$, it is well known that c_{ϕ} is the index of Γ in C_p (up to p-units; see for example, [H86c] Lemma 1.9 and Lemma 1.11).

Let $\Psi_{\mathbb{I}}^{-}(\tau) = \Psi_{\mathbb{I}}(c\tau c^{-1}\tau^{-1})$ for complex conjugation c be the anticyclotomic projection of $\Psi_{\mathbb{I}}$ and $L_p(\Psi_{\mathbb{I}}^{-})$ be the primitive anticyclotomic Katz p-adic L-function as in [H06] and [H07b]. We regard $L_p(\Psi_{\mathbb{I}}^{-}) \in \mathbb{I}$.

Proposition 4.8. If $p \nmid \Phi(N)$, we have $c_{\lambda} = h^{-}(\mathfrak{c} \cap \overline{\mathfrak{c}})L_{p}(\Psi_{\mathbb{T}}^{-})$ up to units in \mathbb{I}_{P} .

Proof. Write $\operatorname{Spec}(\mathbb{T}) = \operatorname{Spec}(\mathbb{I}) \cup \operatorname{Spec}(\mathbb{X})$ for the complementary component \mathbb{X} . For general $P \in \operatorname{Spec}(\mathbb{I})$, as long as \mathbb{T}_P is Gorenstein, we have $\operatorname{Spec}(\mathbb{I}_P) \cap \operatorname{Spec}(\mathbb{X}_P) =$ $\operatorname{Spec}(\mathbb{I}_P/(L_p))$. The *L*-function $L(s, Ad(f_P))$ may not be a primitive *L*-function if \mathbb{I} is an old component. Thus writing $L_p(s, Ad(\rho_P))$ for the primitive *L*-function,

$$L(s, Ad(f_P)) = E(s)L(s, Ad(f_P)) = E(1)h(\mathfrak{c} \cap \overline{\mathfrak{c}})L(1, \Psi_P)$$

for a product E(s) of Euler-like factors over inert prime factors of $N/c\overline{c}$. As

$$\Phi_P^-(Frob_{(l)}) = \Phi_P(Frob_{(l)})/\Phi_P(c \cdot Frob_{(l)}c^{-1}) = 1$$

for inert l, E(1) is a constant independent of P. We compute $E(1) = 2(1 + \frac{1}{l})$ which is a factor of $\Phi(N)$ in \mathbb{I} . Thus if $p \nmid \Phi(N)$, we get the desired result. \Box

Proof of Theorem 4.5. Note that the assertion of the theorem is equivalent to the vanishing $C_0(\theta; S) = 0$, which is in turn, by Nakayama's lemma, equivalent to $C_0(\theta; S) \otimes_R A = 0$. We study $C_0(\theta; S) \otimes_R A$. By the above two lemmas and the proposition, we find that $\phi(c_{\theta}) = c_{\lambda}/c_{\phi}$; so, $\phi(c_{\theta}) = L_p(\Psi_{\mathbb{I}}^-)$ up to units in A. Let p^{μ} $(0 \leq \mu \in \mathbb{Q})$ be the exact power dividing $L_p(\Psi_{\mathbb{I}}^-)$ in A. Then $\phi(c_{\theta}) = 1$ (up to units in A) $\Leftrightarrow C_0(\theta; S) \otimes_R A = 0 \Leftrightarrow \mu = 0$. The vanishing of μ is proven in [H10] and [Fi] under $p \nmid \Phi(N)$ and the theorem follows. \Box

4.4. **Proof of the theorem.** We first prove

Proposition 4.9. Suppose $p \nmid \Phi(N)$ and that N is cube-free. If \mathbb{I} is a non CM component of the Hecke algebra \mathbf{h} , for each prime divisor $P \in \text{Spec}(\mathbb{I})$ over $(p) = p\mathbb{Z}_p[[T]], G_P^\circ$ is isomorphic to $SL(2)_{\overline{\kappa}(P)}$.

Proof. Replace $\rho_{\mathbb{I}}$ by $\rho' := \rho_{\mathbb{I}} \otimes \sqrt{\langle \det(\rho_{\mathbb{I}}) \rangle}^{-1}$. Then $\det(\rho')$ has finite image; so, the Zariski closure G_P of $\operatorname{Im}(\rho')$, has connected component G_P° in SL(2). The semi-simplification of $\rho_{\mathbb{I}}|_{I_p}$ has values in a split torus in GL_2 containing a matrix with two

23

distinct eigenvalues (which are 1 and $(1+T)^s$ for some $s \neq 0$). Thus the semisimplification of $\rho'|_{I_p}$ has values in a split torus of SL_2 . We need to prove $G_P^\circ = SL(2)$. Since $\rho'(I_p)$ is an infinite group by (Gal), dim $G_P > 0$. There are only three possibilities: either G_P° is isomorphic to a split torus \mathcal{T} , or is contained in the Borel subgroup \mathcal{B} , or $G_P^{\circ} = SL(2)$. If $G_P^{\circ} \subset \mathcal{T}$, we conclude that $\rho'_P = \operatorname{Ind}_M^{\mathbb{Q}} \phi$ for an imaginary quadratic field M and a Galois character $\phi : \operatorname{Gal}(\overline{\mathbb{Q}}/M) \to (\mathbb{I}/P)^{\times}$. We can lift by class field theory ϕ to a character Ψ : $\operatorname{Gal}(\overline{\mathbb{Q}}/M) \to W[[C_p]]^{\times}$ with $\operatorname{Im}(\Psi) \supset C_p$ without changing its ramification outside p. Then $\text{Spec}(\mathbb{I})$ and $\text{Spec}(\mathbb{I}_{cm}^M)$ intersect at P, which is impossible by Theorem 4.5. Thus we now assume that $G_P^\circ \subset \mathcal{B}$ and G_P° has nontrivial nilpotent radical. Since conjugation by $\rho'(\sigma)$ has to preserve G_P° and its nilpotent radical, ρ' has to be reducible; so, P is an Eisenstein prime of **h**. By [O1] Theorem 2.4.10, under the assumption $p \nmid \varphi(N)$ for the Euler function $\varphi(N)$, any Eisenstein ideal is killed by a Kubota-Leopoldt *p*-adic *L*-function, which has trivial μ -invariant by a theorem of Ferrero-Washington [FeW]. Thus ρ' cannot be upper triangular. The only remaining possibility is $G_P^\circ = SL(2)$.

We need the following result of Pink (Proposition 0.6 and Theorem 0.7 in [P]).

Theorem 4.10 (Pink). Write $Ad : PSL(2) \to End(\mathfrak{sl}(2))$ for the adjoint representation. Let \mathcal{G} be a compact subgroup Zariski dense in $PSL_2(\mathbb{F}((x)))$ for a characteristic p finite field \mathbb{F} , and define $E \subset \mathbb{F}((x))$ be a closed subfield generated by Tr(Ad(g)) for all $g \in \mathcal{G}$. If the Zariski closure of \mathcal{G} is PSL(2), there exists an algebraic group $H_{/E}$ such that $H \times_E \mathbb{F}((x)) = PSL(2)$ and that \mathcal{G} contains an open subgroup of H(E).

Proof of Theorem 4.1. Let $\rho'_P = \rho' \mod P$ for ρ' in the proof of the above proposition. We now apply Pink's results to \mathcal{G} given by $\operatorname{Im}(\rho'_P) \cap SL(2)$ modulo center. By the above proposition, the Zariski closure of $\operatorname{Im}(\rho'_P) \cap SL(2)$ is the full group SL(2) (so, the Zariski closure of \mathcal{G} is PSL(2)). Since $\kappa(P)$ is a local function field of characteristic p, the integral closure of $\mathbb{F}_p[[T]]$ in $\kappa(P)$ is isomorphic to $\mathbb{F}[[x]]$ for a variable $x \in \kappa(P)$ with a finite field extension \mathbb{F}/\mathbb{F}_p ; so, $\kappa(P) = \mathbb{F}((x))$. Thus we may assume that the image \mathcal{G} is contained in $PSL_2(\mathbb{F}[[x]])$. Let $Ad(\rho'_P) = Ad(\rho_P) = Ad \circ \rho_P$ be the adjoint representation of ρ_P on $\mathfrak{sl}(2)$. By (Gal), we have $Tr(Ad(\rho_P)([\gamma^s, \mathbb{Q}_p])) = 1 + (1+T)^s + (1+T)^{-s}$. Thus $\mathbb{F}_p((T))$ is the closed subfield in $\mathbb{F}((x))$ generated by $\operatorname{Tr}(Ad(\rho_P)|_{I_p})$ over \mathbb{F}_p in \mathbb{I}/P , and we get $E \supset \mathbb{F}_p((T))$. Again by (Gal), the semi-simple part of $\rho'_P([\gamma^s, \mathbb{Q}_p])$ is conjugate to $\binom{(1+T)^{-s/2} \ 0}{(1+T)^{s/2}}$. Therefore the Zariski closure of the semi-simplification of $\rho'_P|_{I_p}$ is a split torus \mathcal{T} of $SL(2)_{/\mathbb{F}((T))}$. Thus its Zariski closure $\overline{\mathcal{T}}$ in $H_{/E}$ is still split over E, and the group H is split; so, $H_{/E} \cong PSL(2)_{/E}$. This shows the Galois image contains an open subgroup of $SL_2(E)$ for $E \supset \mathbb{F}_p((T))$.

Remark 4.1. If $\Psi_{\mathbb{I}}^-$ modulo $\mathfrak{m}_{\mathbb{I}}$ is unramified at an inert prime l but $\Psi_{\mathbb{I}}^-$ ramifies at l (this happens when $p|\Phi(N)$), the μ -invariant of $L(\Psi_{\mathbb{I}}^-)$ is positive as explained at the end of [H10]. Therefore, we have a mod p congruence of the CM component of $\Psi_{\mathbb{I}}$ and a non CM component. Thus for this non CM component, its Galois representation does not have the open image property modulo p.

5. Lecture 5: Vanishing of the μ -invariant of p-adic Katz L-functions

The last two lectures are an introductory discussion of problems concerning vanishing of the Iwasawa μ -invariant of p-adic L-functions. This type of results for Kubota-Leopoldt p-adic L has found applications in divisibility problems of class numbers (see [ICF] Chapter 7), in proofs of the main conjectures in Iwasawa's theory and in proving open image property of mod p Λ -adic modular Galois representations. Recently, new methods of proving the vanishing emerged in the work of Vatsal, Finis and myself. See [V] for an overview. We describe a geometric method, which was started by Sinnott in [S] and [S1] and has been generalized in [H04a], [H07b] and [H10] via the theory of Shimura varieties. We rely on a general philosophical principle (proposed by Chai, Oort and others): "A Hecke invariant subvariety of a Shimura variety is a Shimura subvariety". For any power series $\Phi(x_1, \ldots, x_d) \in W[[x_1, \ldots, x_d]]$, define $\mu(\Phi) \in \mathbb{Z}$ by the exact power $p^{\mu(\Phi)} \parallel \Phi(X)$ in $W[[x_1, \ldots, x_d]]$. The W-valued measure space on \mathbb{Z}_p can be identified with one variable power series ring $W[[\mathcal{T}]]$ by $\varphi \mapsto \Phi(\mathcal{T}) = \int_{\mathbb{Z}_n} (1 + \mathcal{T})^s d\varphi(s) \in W[[\mathcal{T}]].$

Let p > 2 be a prime. Let M be a CM field of degree 2d in which p is unramified. We assume to be able to split primes of M over p into a disjoint union $\Sigma_p \sqcup \Sigma_p^c$ for complex conjugation c on M. Then Katz associated to Σ_p and each finite order branch character ψ of p-power conductor a p-adic L-function $L_p = L_p(\psi)$. Recall fixed embeddings $\mathbb{C} \stackrel{i_{\infty}}{\longleftrightarrow} \overline{\mathbb{Q}} \stackrel{i_p}{\longrightarrow} \overline{\mathbb{Q}}_p$. We have a CM type associated $\Sigma = \{\sigma : M \hookrightarrow \mathbb{C}\}$ to Σ_p (so, $\operatorname{Hom}_{\operatorname{field}}(M, \mathbb{C}) = \Sigma \sqcup \Sigma^c$). We may view the p-adic L-function as a power series $L_p(x_{\sigma}, y)_{\sigma \in \Sigma} \in W[[x_{\sigma}, y]]$ of d + 1 variables for the p-adic big unramified complete DVR $W \subset \mathbb{C}_p$ with algebraic closed residue field $\mathbb{F} = \overline{\mathbb{F}}_p$. For each fractional ideal \mathfrak{a} of M prime to p, its power \mathfrak{a}^h becomes principal generated by $\alpha \in M^{\times}$. Define $\langle \mathfrak{a}^{\sigma} \rangle \in \overline{\mathbb{Q}}_p^{\times}$ by $\exp_p(\frac{1}{h} \log_p(\alpha^{\sigma}))$ for the p-adic logarithm \log_p . Then

$$\widehat{\lambda}_{\kappa,k}:\mathfrak{a}\mapsto\langle\mathfrak{a}^{-k\Sigma-\kappa(1-c)}\rangle:=\prod_{\sigma\in\Sigma}\langle\mathfrak{a}^{-k\sigma-\kappa_{\sigma}\sigma(1-c)}\rangle$$

is the *p*-adic avatar of an arithmetic Hecke character $\lambda_{\kappa,k}$ of conductor at most *p* with infinity type $\sum_{\sigma \in \Sigma} k\sigma + \kappa_{\sigma}(1-c)\sigma$. For $\kappa \ge 0 (\Leftrightarrow \kappa_{\sigma} \ge 0 \ \forall \sigma \in \Sigma)$ and k > 0, we have

$$\frac{L_p(\widehat{\lambda}_{\kappa,k})}{\Omega_p^{k\Sigma+2\kappa}} := \frac{L_p(\gamma_{\sigma}^{\kappa_{\sigma}} - 1, \gamma^k - 1)}{\Omega_p^{k\Sigma+2\kappa}} = *E(\psi\lambda_{\kappa,k})\frac{\pi^{\kappa}L(0, \psi\lambda_{\kappa,k})}{\Omega_{\infty}^{k\Sigma+2\kappa}} \quad \text{for } \gamma_{\sigma} = \gamma = 1 + p.$$

Here $\Omega_{?} = (\Omega_{?,\sigma})_{\sigma \in \Sigma}$ is the *p*-adic/complex Néron period of CM abelian variety of CM type Σ (with ordinary good reduction at *p*), * is a simple constant with $|*|_p = 1$ including the Γ/ϵ -factor, and $E(\lambda) = \prod_{\mathfrak{p} \in \Sigma_p} (1 - \lambda(\mathfrak{p}^c))(1 - N(\mathfrak{p})^{-1}\lambda(\mathfrak{p})^{-1})$. Limiting ourselves to the case of imaginary quadratic *M*, we describe a sketch of the proof of

Theorem 5.1. $p \nmid L_p(x_\sigma, y)$ in $W[[x_\sigma, y]]$ (so $\mu(L_p(\psi)) = 0$).

For a weight k > 0, we prove $\sup_{\zeta \in \mu_{p^{\infty}}} \mu(L_p(\psi)(x_{\sigma}, \zeta \gamma^k - 1)) = 0$, which implies $\mu(L_p(\psi)(x_{\sigma}, y)) = 0$. Since the proof is the same for any choice of F, for simplicity, we assume

- (1) $F = \mathbb{Q}$; so, M is an imaginary quadratic field with integer ring O,
- (2) *M* has class number prime to *p* with $(p) = \mathfrak{p}\overline{\mathfrak{p}}$ and $\Sigma_p = {\mathfrak{p}},$
- (3) $p \ge 5$, $\psi = 1$, any ring to have $\frac{1}{6}$ and $|O^{\times}| = 2$.

5.1. Eisenstein series. For any lattice $L = \mathbb{Z}w_1 + \mathbb{Z}w_2 \subset \mathbb{C}$, we can think about

$$\frac{(2\pi i)^k}{(k-1)!}G_k(L) = \frac{1}{2}\sum_{\ell\in L-\{0\}}\frac{1}{\ell^k} = \frac{1}{2}\zeta(1-k) + \sum_{n=1}^{\infty}(\sum_{0< d|n}d^{k-1})q^n \quad \text{(Eisenstein series)},$$

which is a function of lattices satisfying $G_k(\alpha L) = \alpha^{-k}G_k(L)$. The quotient \mathbb{C}/L gives rise to an elliptic curve $X(L) \subset \mathbf{P}^2$ by Weierstrass theory. Since $\Omega_{X(L)/\mathbb{C}}$ is generated by du for the variable u of \mathbb{C} and we can recover out of (X(L), du) the lattice L as $\{\int_{\gamma} du | \gamma \in \pi_1(E)\}$, we regard G_k as a function of the pairs (E, ω) of an elliptic curve E with a generator ω of $\Omega_{E/\mathbb{C}}$ satisfying $G_k(E, \alpha \omega) = \alpha^{-k}G_k(E, \omega)$. For a given base ring $B_{/\mathbb{Z}[\frac{1}{6}]}$, a modular form f defined over B of weight k and of level 1 can be interpreted as a functorial rule assigning a number in A to the isomorphism class of a pair $(E, \omega)_{/A}$ of an elliptic curve E over a B-algebra A and a differential with $H^0(E, \Omega_{E/A}) = A\omega$ such that

(1) $f(E,\omega) \times_{A,\rho} A' = \rho(f(E,\omega))$ for any *B*-algebra homomorphism $\rho : A \to A'$, (2) $f(E,a\omega) = a^{-k} f(E,\omega)$ for $a \in A^{\times}$,

(3) f is finite at cusps (the value at the Tate curve at each cusp lands in B[[q]]).

If a modular form f defined over \mathbb{C} has q-expansion in B[[q]] at the infinity cusp, f is actually defined over B (assuming $B \subset \mathbb{C}$). Indeed, then f is an isobaric polynomial $\Phi(g_2, g_3)$ in $B[g_2, g_3]$, and if (E, ω) is defined over A by $y^2 = 4x^3 - g_2(E, \omega)x - g_3(E, \omega)$ with $\omega = \frac{dx}{y}$, $f(E, \omega) = \Phi(g_2(E, \omega), g_3(E, \omega)) \in A$. We take $B := \mathcal{W} = W \cap \overline{\mathbb{Q}}$.

Removing *p*-coefficients, $\mathcal{G}_k(z) = \sum_{n>0, p \nmid n} (\sum_{0 < d \mid n} d^{-1} \langle d \rangle^k) q^n$ gives rise to a *p*-adic analytic family with $\psi_1 = \omega^{-1}$. It is a part of the family $\{\mathcal{G}_P\}_{P \in \operatorname{Spec}(\Lambda)}$ such that $a(n, \mathcal{G}_P) = \sum_{0 < d \mid n} \epsilon_P(d) d^{-1} \langle d \rangle^k$ if $P = (1 + T - \epsilon_P(\gamma) \gamma^{k-1})$. Often we write this \mathcal{G}_P as $\mathcal{G}_{k,\zeta}$ for $\zeta = \varepsilon_P(\gamma) \in \mu_{p^{\infty}}(\overline{\mathbb{Q}}_p)$ and also $\varepsilon_{\zeta} = \varepsilon_P$. The form $\mathcal{G}_{k,\zeta}$ is also an Eisenstein series with possibly nontrivial Nebentypus. Since the mod \mathfrak{p}^{∞} class group C of M has splitting $C = Cl \times O_{\mathfrak{p}}^{\times} / \{\pm 1\}$ by our assumptions, we may regard ε_{ζ} as a character $\widetilde{\varepsilon}_{\zeta}$ of C projecting down C to $O_{\mathfrak{p}}^{\times} = \mathbb{Z}_p^{\times}$ (so, we have $(1 + T) = (1 + y)\gamma^{-1}$).

The CM curve $X(\mathfrak{a})$ is defined over \mathcal{W} and has a differential $\omega(\mathfrak{a})$ with $\omega(\mathfrak{a}) = \pi^* \omega(O)$ for a fixed $\omega(O)$, where $\pi : X(\mathfrak{a}) \to X(O)$ is an étale isogeny of degree $[R:\mathfrak{a}]$. Fix a generator $\alpha \in \pi_1(X(O))$, and put $\Omega_{\infty} = \int_{\alpha} \omega(O)$. We find $\frac{\mathcal{G}_{k,\zeta}(\mathfrak{a})}{\Omega_{\infty}^k} = \mathcal{G}_{k,\zeta}(\Omega_{\infty}\mathfrak{a}) = \mathcal{G}_{k,\zeta}(X(\mathfrak{a}),\omega(\mathfrak{a})) \in \mathcal{W}[\zeta]$ and

$$\frac{\mathcal{G}_{k}(\mathfrak{a})}{\lambda_{0,k}(\mathfrak{a})} = \frac{1}{2\lambda_{0,k}(\mathfrak{a})} \sum_{\alpha \in \mathfrak{a}, (a)+(p)=O} \langle \alpha \rangle^{-k} \doteq \sum_{\alpha \in \mathfrak{a}} \lambda_{0,k} (\alpha \mathfrak{a}^{-1}) N(\alpha \mathfrak{a}^{-1})^{-s}|_{s=0} \doteq L_{\mathfrak{a}^{-1}}(0, \lambda_{0,k})$$
$$\frac{\mathcal{G}_{k,\zeta}(\mathfrak{a})}{\widetilde{\varepsilon}_{\zeta}\lambda_{0,k}(\mathfrak{a})} \doteq L_{\mathfrak{a}^{-1}}(0, \widetilde{\varepsilon}_{\zeta}\lambda_{0,k}),$$

where " \rightleftharpoons " indicates that we need to multiply Euler-like factor E(?).

Applying the invariant differential operator (of Maass–Shimura)

$$\delta_k = \frac{1}{2\pi i} \left(\frac{k}{2iy} + \frac{\partial}{\partial z} \right) \text{ and } \delta_k^{\kappa} = \overbrace{\delta_{k+2\kappa-2} \cdots \delta_k}^{\kappa}$$

κ

we have, by Shimura,

$$\frac{\delta_k^{\kappa} \mathcal{G}_{k,\zeta}(\mathfrak{a})}{\widetilde{\varepsilon}_{\zeta} \lambda_{\kappa,k}(\mathfrak{a})} \doteq L_{\mathfrak{a}^{-1}}(0, \widetilde{\varepsilon}_{\zeta} \lambda_{\kappa,k}) \quad (only \ dependent \ on \ the \ class \ of \ \mathfrak{a})$$

This can be seen as follows: For $z_0 = z_0(\mathfrak{a})$ with $\mathfrak{a} = \mathbb{Z} z_0 + \mathbb{Z}$ (and $\operatorname{Im}(z_0) > 0$), define $\rho = \rho_{\mathfrak{a}} : M \to M_2(\mathbb{Q})$ by $\rho(\alpha) {z_0 \choose 1} = {z_0 \choose 1} \alpha$. Then $\rho(\alpha)(z_0) = z_0$. We take a local parameter t around z_0 so that $\rho(\alpha)(t) = \alpha^{1-c}t$ and $t = 0 \leftrightarrow z = z_0$ (for example, if $z_0 = i = \sqrt{-1}, t = \frac{z-i}{z+i}$). Then we find, regarding $\langle \mathfrak{a}^{1-c} \rangle \in \mathbb{C}^{\times}$

$$\frac{\delta_k^{\kappa}(\mathcal{G}_k(\langle \mathfrak{a}^{1-c} \rangle t))|_{t=0}}{\lambda_{0,k}(\mathfrak{a})} = \frac{\langle \mathfrak{a}^{1-c} \rangle^{\kappa} \delta_k^{\kappa}(\mathcal{G}_k(z_0(\mathfrak{a})))}{\lambda_{0,k}(\mathfrak{a})} = \frac{\delta_k^{\kappa}(\mathcal{G}_k(z_0(\mathfrak{a})))}{\lambda_{\kappa,k}(\mathfrak{a})} \doteq L_{\mathfrak{a}^{-1}}(0,\lambda_{\kappa,k}).$$

There is a canonical *p*-adic Serre–Tate parameter τ around z_0 (as a point of a modular curve). Heuristically, $\log_p(\tau)$ behaves like t: $t = 0 \Leftrightarrow \tau = 1$ and $\tau \circ \rho(\alpha) = \tau^{\alpha^{1-c}}$. For $\theta := \tau \frac{d}{d\tau}$, by Katz, with a specific *p*-adic period $\Omega_p \in W^{\times}$ of X(O) (we recall later),

$$\frac{L_p(\widehat{\lambda}_{\kappa,k})}{\Omega_p^{k+2\kappa}} = \sum_{\mathfrak{a}} \frac{\theta^{\kappa}(\mathcal{G}_k(\tau^{\langle \mathfrak{a}^{1-c} \rangle}))|_{\tau=1}}{\lambda_{0,k}(\mathfrak{a})} = \sum_{\mathfrak{a}} \frac{\delta_k^{\kappa}(\mathcal{G}_k(\Omega_\infty \mathfrak{a}))}{\lambda_{\kappa,k}(\mathfrak{a})} \doteq \frac{\pi^{\kappa}L(0,\lambda_{\kappa,k})}{\Omega_\infty^{k+2\kappa}}$$

for a running through ideal classes. Thus, we can compute the Taylor expansion of $E = \sum_{\mathfrak{a}} \frac{\mathcal{G}_k(\tau^{\langle \mathfrak{a}^{1-c} \rangle})}{\lambda_{0,k}(\mathfrak{a})}$ with respect to $x' = \log_p(\tau)$ by computing the derivative with respect to θ . Since E is defined over W, out of this identification of the Taylor expansion, we conclude that $L_p(x, \gamma^k - 1)$ is almost the expansion with respect to $\mathcal{T} = \tau - 1$ of E. Strictly speaking, first, the \mathcal{T} -expansion is the expansion of the measure given by E as a measure on \mathbb{Z}_p not on $1 + p\mathbb{Z}_p$. Second, we want to know the non-vanishing of the \mathcal{T} -expansion modulo p of the restriction of the measure on $Cl(p^{\infty})$ to $1 + pO_p \cong \Gamma^2$. Thus we need to replace $\mathcal{G} := \{\mathcal{G}_{k,\zeta}\}$ by a family $\{\mathcal{G}'_{k,\zeta,\mathfrak{b}}\}$ of Eisenstein series of level p^2 . Since $L_{\mathfrak{a}^{-1}}(s,\lambda)$ (resp. \mathcal{G}) can be further decomposed into a sum of partial L-functions for a class modulo p (resp. a sum of Eisenstein series of level p^2), we have $L_{\mathfrak{a}^{-1}}(s,\lambda) = \sum_{\mathfrak{b} \equiv \mathfrak{a} \mod p, [\mathfrak{b}] \in Cl_M(p)} L_{\mathfrak{b}^{-1}}(s,\lambda)$, and

$$E_{\zeta} = \sum_{\mathfrak{b} \in Cl_M(p)} \frac{\mathcal{G}'_{k,\zeta,\mathfrak{b}}(\tau^{\langle \mathfrak{b}^{1-c} \rangle})}{\widetilde{\varepsilon}_{\zeta} \lambda_{0,k}(\mathfrak{b})}$$

gives rise to the exact power series $L_p(\mathcal{T}, \gamma^k \zeta - 1)$ as a measure on \mathbb{Z}_p .

Note that \mathcal{T} is the local parameter around $z_0(O)$. Suppose the following fact (which will be proven at the end of this lecture):

Theorem 5.2. For any non-zero non-constant mod p-modular form $f_{\mathfrak{b}}$ of weight k indexed by ideal classes, $\{f_{\mathfrak{b}}(\tau^{\langle \mathfrak{b}^{1-c} \rangle})\}_{[\mathfrak{b}] \in Cl_M(p)/\sim}$ are linearly independent over \mathbb{F} in $\mathbb{F}[[\mathcal{T}]]$, where $\{[\mathfrak{b}]\}$ is a representative set of ray classes modulo p under the equivalence: $[\mathfrak{b}] \sim [\mathfrak{c}] \Leftrightarrow \langle \mathfrak{b}^{1-c} \rangle = \alpha(\mathfrak{c})^{1-c} \langle \mathfrak{c}^{1-c} \rangle$ for $\alpha(\mathfrak{c}) \in M^{\times}$.

Indeed, $\{\tau^{\langle \mathfrak{b}^{1-c}\rangle}\}_{\mathfrak{b}}$ is algebraically independent in $\mathbb{F}[[\mathcal{T}]]$ over \mathbb{F} , we can compute the $\mu(L_p(x,\zeta\gamma^k-1)) = \mu(L_p(\mathcal{T},\zeta\gamma^k-1))$ by q-expansion of $f_{\zeta,\mathfrak{b}} = \sum_{\mathfrak{c}\sim\mathfrak{b}} \mathcal{G}'_{k,\zeta,\mathfrak{b}}(\tau^{\alpha(\mathfrak{c})^{c-1}})$: $\mu(L_p(x,\gamma^k-1)) = \min(\operatorname{ord}_p(f_{\zeta,\mathfrak{b}}))_{\mathfrak{b}}$, where $\operatorname{ord}_p(f) = \min_n(\operatorname{ord}_p(a(n,f)))$. This goes as follows. Note that $p^{\mu(\mathfrak{b})} \parallel f_{\zeta,\mathfrak{b}}(\mathcal{T}) \in W[[\mathcal{T}]] \Leftrightarrow p^{\mu(\mathfrak{b})} \parallel f_{\zeta,\mathfrak{b}}(q) \in W[[q]]$. Thus dividing E_{ζ} by p^{μ} for $\mu = \min_{\mathfrak{b}} \mu(\mathfrak{b})$, and applying Theorem 5.2 to $p^{-\mu}f_{\zeta,\mathfrak{b}}$, we find $\mu(L_p(x,\zeta\gamma^k-1)) = \mu(L_p(\mathcal{T},\zeta\gamma^k-1)) = \mu$, where $L_p(\mathcal{T},\zeta\gamma^k-1)$ is the \mathcal{T} -expansion of E_{ζ} (or equivalently the \mathcal{T} -expansion of the measure corresponding to $L_p(x,y)$). For $\zeta \in \mu_{p^{\infty}}(\overline{\mathbb{Q}}_p)$, we prove $\sup_{\zeta,k} \operatorname{ord}_p(f_{\zeta,\mathfrak{b}}) = 0$, and $p \nmid L_p(x,y)$ follows as $\mu(L_p(x,y)) \leq \mu(L_p(x,\zeta\gamma^k-1))$. If $\mathfrak{b} = \rho^{-1}\mathfrak{a}$ for $\rho \in (\mathfrak{a}/p\mathfrak{a})^{\times} \cong (O/pO)^{\times}$, $\mathcal{G}'_{k,\zeta,\mathfrak{b}}$ is "something like" the sum over $\alpha \in \mathfrak{a}$ with $\alpha \equiv \rho \mod p$. Thus for a suitable prime l, the q-expansion coefficient $a(l, f_{\zeta, \mathfrak{b}})$ is $1 + \varphi_{k, \zeta}(l)l^{k-1}$ for a suitable character $\varphi_{k, \zeta}(l) \doteq \zeta^{\log_p(l)/\log_p(\gamma)}$ up to *p*-adic units. Thus $\min(\operatorname{ord}_p(f_{\zeta, \mathfrak{b}}))_{\mathfrak{b}} \leq \min_{\zeta}(\operatorname{ord}_p(a(l, f_{\zeta, \mathfrak{b}}))) = 0.$

5.2. Modular Curves as Shimura variety. To prove Theorem 5.2, we study subvariety of self product of modular curves stable under the diagonal "toric" action by $\rho(\alpha)$. Write $G = GL(2)_{\mathbb{Z}}$.

We study classification problem of elliptic curves $E_{/A}$ over a ring $A_{/B}$ for $B = \mathbb{Z}[\frac{1}{N}, \mu_N]$ (with specific primitive root $\zeta \in \mu_N$), looking into the following moduli functor of level $\Gamma(N)$ and writing "[·]" for "{·}/ \cong ",

$$\mathcal{E}_{\Gamma(N),\zeta}(A) = \left[(E, \phi_N : (\mathbb{Z}/N\mathbb{Z})^2 \cong E[N])_{/A} \middle| \langle \phi_N(1,0), \phi_N(0,1) \rangle = \zeta \right],$$

which is represented by geometrically irreducible curve $Y_{\zeta}(N)$. Here $\langle \cdot, \cdot \rangle$ is the Weil pairing. We know classically $\mathcal{E}_{\Gamma(N),\zeta}(\mathbb{C}) \cong \Gamma(N) \setminus \mathfrak{H} = Y_{\zeta}(N)(\mathbb{C})$. If we remove the contribution upon ζ and consider the functor $\mathcal{E}_{\Gamma(N)}(A) = [(E, \phi_N)_{/A}]$ defined on the category of $\mathbb{Z}[\frac{1}{N}]$ -algebras, we have $\mathcal{E}_{\Gamma(N)} = \bigsqcup_{\zeta} \mathcal{E}_{\Gamma(N),\zeta}$, and this functor is represented by a geometrically non-connected curve $Y(N) = \bigsqcup_{\zeta} \mathcal{K}_{\zeta}(N)$ defined over $\mathbb{Z}[\frac{1}{N}]$ if $N \geq 3$.

We can let $\alpha \in G(\mathbb{Z}/N\mathbb{Z})$ act on Y(N) by $(E, \phi) \mapsto (E, \phi \circ \alpha)$. Thus the group $G(\widehat{\mathbb{Z}}) = \varprojlim_N G(\mathbb{Z}/N\mathbb{Z})$ acts on the limit $Y = \varprojlim_N Y(N)$ (which is a pro-scheme defined over \mathbb{Q}), and $SL_2(\widehat{\mathbb{Z}})$ preserves the connected component $Y_{\zeta_{\infty}} = \varprojlim_N Y_{\zeta_N}(N)$.

A remarkable fact Shimura found is that this action of $G(\widehat{\mathbb{Z}})$ can be extended to the finite adele group $G(\mathbb{A}^{(\infty)}) = G(\mathbb{A})/G(\mathbb{R})$ (see [IAT] Chapter 6). An interpretation by Deligne of this fact is equally remarkable (see [PAF] 4.2.1): To explain Deligne's idea, we consider the Tate module $T(E) = \varprojlim_N E[N]$ for an elliptic curve $E_{/A}$ for a \mathbb{Q} -algebra A. Then $T(E) \cong \widehat{\mathbb{Z}}^2$ and $V(E) = T(E) \otimes_{\mathbb{Z}} \mathbb{Q} \cong (\mathbb{A}^{(\infty)})^2$. Deligne realized that Y represents the following functor defined over \mathbb{Q} -algebras:

$$\mathcal{E}^{(\infty)}(A) = \{ (E, \eta : (\mathbb{A}^{(\infty)})^2 \cong V(E))_{/A} \} / \text{isogenies.}$$

Here $\mathbb{A}^{(\infty)}$ is the finite adele ring. Then $g \in G(\mathbb{A})$ sends a point $(E, \eta)_{/A} \in \mathcal{E}^{(\infty)}(A)$ to $(E, \eta \circ g^{(\infty)})_{/A}$ for the projection $g^{(\infty)}$ of g to $\mathbb{A}^{(\infty)}$.

Take the quotient $Y^{(p)} = \lim_{p \nmid N} Y(N) = Y/G(\mathbb{Z}_p)$. Put $V^{(p)}(E) = T(E) \otimes_{\widehat{\mathbb{Z}}} \mathbb{A}^{(p\infty)}$, and consider the prime-to-*p* level structure $\eta^{(p)} : (\mathbb{A}^{(p\infty)})^2 \cong V^{(p)}(E)$. Then $Y^{(p)}$ over $\mathbb{Z}_{(p)}$ represents the following functor defined over $\mathbb{Z}_{(p)}$ -algebras:

$$\mathcal{E}^{(p)}(A) = \{ (E, \eta^{(p)} : (\mathbb{A}^{(p\infty)})^2 \cong V^{(p)}(E))_{/A} \} / \text{prime-to-}p \text{ isogenies},$$

where an isogeny ϕ is prime to p if deg (ϕ) is prime to p. On $Y^{(p)}$ and its p-fiber $Y^{(p)}_{/\mathbb{F}}$ over Spec (\mathbb{F}) , again $g \in G(\mathbb{A})$ acts by $\eta \mapsto \eta \circ g^{(p\infty)}$.

If we have a prime-to-p non-central endomorphism $\alpha : E \to E$, then E has complex multiplication by $M = \mathbb{Q}[\alpha]$, and we can write $\alpha \circ \eta^{(p)} = \eta^{(p)} \circ \rho^{(p)}(\alpha)$ for $\rho^{(p)}(\alpha) \in G(\mathbb{A}^{(p\infty)})$. Thus if $z_0 = (E, \eta) \in Y^{(p)}(A)$ $(A = \mathcal{W} \text{ and } \mathbb{F})$, we find that $\rho^{(p)}(\alpha)(z_0) = z_0$, and

$$O_{(p)}^{\times}/\mathbb{Z}_{(p)}^{\times} \xrightarrow[\rho]{} \{g \in \operatorname{Aut}(Y^{(p)}) | g(z_0) = z_0\}.$$

Pick the elliptic curve $X := X(O)_{/\mathcal{W}}$ with CM by the integer ring O of M. Since $\Sigma_p^c = \{\overline{\mathfrak{p}}\}$, we have $\mathfrak{p} = O \cap \mathfrak{m}_{\mathcal{W}}$ and $\mathcal{W}/\mathfrak{m}_{\mathcal{W}} = \overline{\mathbb{F}}_p$, and $X[\overline{\mathfrak{p}}^{\infty}]$ is étale constant and $X[\mathfrak{p}^{\infty}] \cong \mu_{p^{\infty}}$ over \mathcal{W} . We fix a level *p*-structure $\eta_p^\circ : \mu_{p^{\infty}} \cong X[\mathfrak{p}^{\infty}]$ and η_p^{et} :

 $\mathbb{Q}_p/\mathbb{Z}_p \cong X[\overline{\mathfrak{p}}^{\infty}]. \text{ Then } \eta_p^{\circ} \text{ induces an isomorphism of formal groups: } \widehat{\eta}_p^{\circ} : \widehat{\mathbb{G}}_m = Spf(\widehat{W[t,t^{-1}]}) \cong \widehat{X}; \text{ so, we have } \omega(O) = \Omega_p \cdot (\widehat{\eta}_{p,*}^{\circ} \frac{dt}{t}) \text{ for } \Omega_p \in W^{\times}. \text{ This is the } p\text{-adic period. Write } \eta_p = (\eta^{\circ}, \eta_p^{et}) : \mu_{p^{\infty}} \times \mathbb{Q}_p/\mathbb{Z}_p \cong X[\mathfrak{p}^{\infty}] \times X[\overline{\mathfrak{p}}^{\infty}], \text{ and define a homomorphism } \rho_p \text{ of } O_{(p)}^{\times} \text{ into the diagonal torus of } G(\mathbb{Z}_p) \text{ by } \alpha \circ \eta_p = \eta_p \circ \rho_p(\alpha) \text{ for } \alpha \in O_{(p)}. \text{ Thus } \eta_p^{\circ} \circ \rho_p(\alpha) = \alpha \eta_p \text{ identifying } O_{\mathfrak{p}} \text{ with } \mathbb{Z}_p \text{ and } \eta_p^{et} \circ \rho_p(\alpha) = \alpha^c \eta_p^{et}.$

Fix a base w_1, w_2 of $\widehat{O}^{(p)} \cong T^{(p)}(X)$ over $\widehat{\mathbb{Z}}^{(p)}$, and identify $M^{(p\infty)}_{\mathbb{A}}$ with $(\mathbb{A}^{(p\infty)})^2$. The choice induces prime-to-*p* level structure $\eta^{(p)} : (\mathbb{A}^{(p\infty)})^2 \cong O \otimes_{\mathbb{Z}} \mathbb{A}^{(p\infty)} = V^{(p)}(X)$. We put $\eta = \eta_p \times \eta^{(p)}$. Define $\rho : O^{\times}_{(p)} \to G(\mathbb{Z}_p \times \mathbb{A}^{(p\infty)})$ by $\eta \circ \rho(\alpha) = \alpha \circ \eta$. Since $\alpha \in O^{\times}_{(p)}$ induces an isogeny $\alpha : X \to X$ sending $\alpha \eta^{(p)} = \eta^{(p)} \rho^{(p)}(\alpha)$, the point $z_0(O) = (X(O), \eta) \in Y^{(p)} = Y/GL_2(\mathbb{Z}_p)$ is fixed by $\rho(\alpha)$. Pick a fractional ideal $\mathfrak{a} \subset M$ prime to p; so, $\mathfrak{a} = (a\widehat{O}) \cap M$ for an idele $a \in M^{\times}_{\mathbb{A}}$ with $a_p = a_{\infty} = 1$. Then we have $z_0(\mathfrak{a}) = (X(\mathfrak{a}), \eta(\mathfrak{a})) = \rho(a)^{-1}(z_0(O))$.

Consider the formal completion $\hat{Y} = \hat{Y}_{z/W}$ of $Y_{/W}^{(p)}$ along $z = z_0(\mathfrak{a}) \in Y^{(p)}(\mathbb{F})$. Then by the universality of $Y^{(p)}$, \hat{Y} satisfies

$$\widehat{Y}(A) \cong \widehat{\mathcal{E}}(A) := \left\{ E_{/A} \middle| E \otimes_A \mathbb{F} = X(\mathfrak{a})_{/\mathbb{F}} \right\} / \cong$$

where A runs through p-profinite local W-algebras with $A/\mathfrak{m}_A = W/\mathfrak{m}_W = \mathbb{F}$. By the deformation theory of Serre–Tate, $\widehat{Y} \cong \widehat{\mathbb{G}}_m$ canonically. Indeed, first $E_{/A} \in \widehat{\mathcal{E}}(A)$ is determined by the extension $E[p^{\infty}]^{\circ} \hookrightarrow E[p^{\infty}] \twoheadrightarrow E[p^{\infty}]^{et}$ of the Barsotti-Tate groups. By Serre–Tate, such an extension over A is classified by

$$\operatorname{Ext}(E[p^{\infty}]^{et}, E[p^{\infty}]^{\circ}) \cong \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_{p/A}, \mu_{p^{\infty}/A}) = \varprojlim_n \mu_{p^n}(A) = \widehat{\mathbb{G}}_m(A).$$

For this identification, we used $\eta_p^{\circ} : \mu_{p^{\infty}} \cong X(\mathfrak{a})[\mathfrak{p}^{\infty}]$ and its dual inverse $\eta_p^{et} : \mathbb{Q}_p/\mathbb{Z}_p \cong X(\mathfrak{a})[\overline{\mathfrak{p}}^{\infty}]$. Since $a_p = 1$, the above identification is independent of a and \mathfrak{a} . Since $\rho(\alpha)$ fix $z_0(\mathfrak{a})$, it acts on \widehat{Y} . As already remarked ([H10] Proposition 3.4):

Lemma 5.3. Identifying \widehat{Y} with $\widehat{\mathbb{G}}_m = \operatorname{Spf}(\varprojlim_n W[\tau, \tau^{-1}]/(\tau - 1)^n)$, if $\alpha \in M^{\times}$, we have $\rho(\alpha)(\tau) = \tau^{\alpha^{1-c}}$ for complex conjugation c.

5.3. Hecke invariant subvarieties. We write $I_{\mathfrak{a}}$ for the irreducible component of $Y_{/\mathbb{F}}^{(p)} = Y^{(p)} \times_{\mathcal{W}} \mathbb{F}$ containing $z_0(\mathfrak{a})$. Let \mathfrak{a} be a fractional ideal prime to p of M with $\widehat{\mathfrak{a}} = a\widehat{O}$ for $a \in M_{\mathbb{A}}^{\times}$ with $a_p = a_{\infty} = 1$. Then $\rho(a)$ gives an isomorphism of $I := I_O$ onto $I_{\mathfrak{a}}$ sending $z_0(O)$ to $z_0(\mathfrak{a})$. Thus we identify $I = I_{\mathfrak{a}}$ for any \mathfrak{a} . Then for any $\alpha, \beta \in O_{(p)} \cap M^{\times}$, we have a skew diagonal $\Delta_{\alpha,\beta} = \operatorname{Im}(\rho(\alpha) \times \rho(\beta) : I \to I \times_{\mathbb{F}} I)$ in $I \times_{\mathbb{F}} I$ for $\alpha, \beta \in O_{(p)} \cap M^{\times}$.

Theorem 5.4. Let $H \subsetneq I \times_{\mathbb{F}} \cdots \times_{\mathbb{F}} I$ (with $n \ge 1$) be a proper closed irreducible subscheme with a dominant projection to the product of the first n-1 factor and to the last factor. If $z_0(O)^n \in H$ and H is stable under the diagonal action of a p-adic open subgroup of $O_{(p)}^{\times}/\mathbb{Z}_{(p)}^{\times}$, up to permutations of the first (n-1) factors, we have

$$H = \overbrace{I \times \cdots \times I}^{n-2} \times \Delta_{\alpha,\beta}$$

This can be proven via Chai's theory of Hecke invariant subvariety of Shimura variety (see [H10] Corollaries 3.16 and 3.19). We recall the proof in the last lecture.

5.4. Conclusion. First we prove Theorem 5.2: Let $a_j \in \mathbb{Z}_p^{\times}$ (j = 1, 2, ..., h). Regard $a = a_j \in \operatorname{Aut}(\widehat{Y}) = \operatorname{Aut}_{gp}(\widehat{\mathbb{G}}_m)$ given by $\tau \mapsto \tau^a$. Let $z = z_0(O)$ and \mathcal{O}_z for the stalk of $z \in Y^{(p)} \mod p$. Suppose that the algebra homomorphism: $\mathcal{O}_z^{\otimes h} :=$ $\overbrace{\mathcal{O}_z \otimes_{\mathbb{F}} \mathcal{O}_z \otimes \cdots \otimes_{\mathbb{F}} \mathcal{O}_z}^h \to \mathbb{F}[[\mathcal{T}]] = \mathcal{O}_{\widehat{\mathbb{G}}_m/\mathbb{F}}$ given by $f_1(\tau) \otimes \cdots \otimes f_h(\tau)$ to $\prod_j f_j(\tau^{a_j})$ has a nontrivial kernel $\widehat{\mathfrak{K}}$. The schematic closure H of $\operatorname{Spec}(\mathcal{O}_z^{\otimes h}/\widehat{\mathfrak{K}})$ in I^h is stable under the action of $\rho(\mathcal{O}_{(p)}^{\times})$. Thus by Theorem 5.4, there exist $i \neq j$ such that $\mathcal{O}_p^{\times}/\mathbb{Z}_p^{\times} \ni$ $a_i/a_j \in (\mathcal{O}_{(p)}^{\times} \cap M^{\times})/\mathbb{Z}_{(p)}^{\times}$. Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_h$ be the representatives of $Cl_M(p)/\sim$. Let $a_j = \langle \mathfrak{a}_i^{1-c} \rangle$. Then $a_i/a_j \notin (\mathcal{O}_{(p)} \cap M^{\times})/\mathbb{Z}_{(p)}^{\times}$ for all $i \neq j$. This proves Theorem 5.2. \Box

We have $L_p(\mathcal{T}, \gamma^k \zeta - 1) = \sum_j f_{\zeta, \mathfrak{a}_j}(\tau^{a_j})$ for the sum of Eisenstein series $f_{\zeta, \mathfrak{a}_j}$ of weight k = p - 1 with q-expansion $\sum_{n=0}^{\infty} a(n, f_{\zeta, \mathfrak{a}_j})q^n$. Dividing $f_{\zeta, \mathfrak{a}_j}$ by the Hasse invariant h does not change q-expansion and the value of $f_{\zeta, \mathfrak{a}_j}$. Thus we have

$$\mu(L_p(\mathcal{T}, \gamma^k \zeta - 1)) \stackrel{\text{Theorem 5.2}}{=} \max_{n, j} (\operatorname{ord}_p(a(n, f_{\zeta, \mathfrak{a}_j})))$$

as \mathcal{T} is a local parameter at $z = z_0(O)$ and q is a local parameter at the cusp ∞ of the irreducible modular curve I. By computation, we can find a prime ℓ and index jsuch that $a(\ell, f_{\zeta, \mathfrak{a}_j}) = 1 + \zeta^{\log_p(\ell)/\log_p(\gamma)}\ell^{k-1}$ independent of the choice of ζ . Thus

$$0 \le \mu(L_p) \le \sup_{\zeta} \mu(L_p(\mathcal{T}, \zeta \gamma^k - 1)) \le \sup_{\zeta \in \mu_{p^{\infty}}(\overline{\mathbb{Q}}_p)} (\operatorname{ord}_p(1 + \zeta^{\log_p(\ell)/\log_p(\gamma)}\ell^{k-1})) = 0$$

as the *p*-power order of the root of unity $\zeta^{\log_p(\ell)/\log_p(\gamma)}$ grows indefinitely. This conclude the proof of the theorem.

Scrutinizing $a(n, f_{\zeta, \mathfrak{a}_i})$ more, we can prove

Corollary 5.5. Suppose $F = \mathbb{Q}$. Then the μ -invariant of the anticyclotomic Katz *p*-adic L-function $L_p^-(x) = L_p(x, 0)$ also vanishes.

When $F \neq \mathbb{Q}$, writing $L_p^-(x_{\sigma}) = L_p(x_{\sigma}, 0)$, $\mu(L_p^-)$ could be positive, though $\mu(L_p(x_{\sigma}, y)) = 0$ always. This possibility only occur if $[F : F[\mu_p]] = 2$ and M/F is unramified everywhere at finite places (see (M1–M3) in [H10] for a precise set of conditions for $\mu(L_p^-) > 0$).

6. Lecture 6: Hecke invariant subvariety

In this last lecture, we provide a sketch of the proof of the specific case (we used) of the conjecture asserting that "a Hecke invariant subvariety of modulo p Shimura variety is a Shimura subvariety." We can prove this (conjectural) principle for the Hilbert modular variety and its self-products, but in this lecture, we only deal with modular curves and their self-products for notational simplicity. Any essential ingredients for the proof of the general case show up in this simpler case. Write $G = GL(2)_{\mathbb{Z}}$ with center $Z \cong \mathbb{G}_{m/\mathbb{Z}}$. In this lecture, the word "variety" mean a reduced scheme of finite type over \mathbb{F} .

We recall the following lemma we mentioned already

Lemma 6.1. Identifying \widehat{Y} with $\widehat{\mathbb{G}}_m = \operatorname{Spf}(\varprojlim_n W[\tau, \tau^{-1}]/(\tau - 1)^n)$, if $\alpha \in M^{\times}$, we have $\rho(\alpha)(\tau) = \tau^{\alpha^{1-c}}$ for complex conjugation c.

Note that if $\alpha \in M^{\times}$ is not prime to p, the action of $\rho(\alpha)$ is an endomorphism of $Y^{(p)}$ not an automorphism. A proof of this can be found in [H10] as Proposition 3.4. Then the action of $\rho(\alpha)$ on the Serre–Tate coordinate is given by $\tau \mapsto \tau^{\alpha^{1-c}}$ factoring through $G(\mathbb{A}^{(p\infty)})/Z(\mathbb{Q})$, since $Z(\mathbb{Q})$ acts trivially on the Shimura variety $Y^{(p)}$.

6.1. Hecke invariant subvarieties. We write I for the irreducible component of $Y_{/\mathbb{F}}^{(p)} = Y^{(p)} \times_{\mathcal{W}} \mathbb{F}$ containing $z_0 = z_0(O)$; so, the formal completion along z_0 is $\widehat{Y} = \widehat{I}$.

We want to give a sketch of a proof of the following two theorems ([H10] Corollaries 3.16 and 3.19):

Theorem 6.2. Suppose that $H \subsetneq I \times_{\mathbb{F}} I$ is a closed irreducible subvariety of codimension 1 containing $(z_0, z_0) \in I \times_{\mathbb{F}} I$ stable under the action of a p-adic open subgroup of $O_{(p)}^{\times}/\mathbb{Z}_{(p)}^{\times} \xrightarrow{1-c} \mathbb{Z}_p^{\times}$. Then either $H = z_0 \times I$ or $H = I \times z_0$ or $H = \Delta_{\alpha,\beta}$ for $\alpha, \beta \in O_{(p)} \cap M^{\times}$.

Theorem 6.3. Let $H \subset I \times_{\mathbb{F}} \cdots \times_{\mathbb{F}} I$ $(n \geq 2)$ containing z_0^n be a closed irreducible subvariety with a dominant projection to the product of the first n-1 factor and to the last factor. If H is of codimension 1 stable under the diagonal action of a p-adic open subgroup of $O_{(p)}^{\times}/\mathbb{Z}_{(p)}^{\times} \xrightarrow{1-c} \mathbb{Z}_p^{\times}$, up to permutations of the first (n-1) factors, we

have
$$H = \overbrace{I \times \cdots \times I}^{\bullet} \times \Delta_{\alpha,\beta}$$
.

6.2. Rigidity lemma and proofs. We start with general lemmas. Let $T \subset O_{(p)}^{\times}/\mathbb{Z}_{(p)}^{\times}$ be the open subgroup (under *p*-adic topology) fixing *H* by the diagonal action of $\rho(\alpha) \times \cdots \times \rho(\alpha)$ ($\alpha \in T$). Then the formal completion \widehat{H} along z_0^n is also stable under *T*, since z_0^n is fixed by *T*. By the Serre–Tate theory, $\widehat{H} \subset \widehat{I}^n \cong \widehat{\mathbb{G}}_{m/\mathbb{F}}^n$.

As we have seen, if a power series $\Phi(\mathcal{T}) = \Phi(\tau)$ $(\mathcal{T} = \tau - 1)$ satisfies $\Phi(\tau^z) = \Phi(\tau)^z$ for all z in an open subgroup of \mathbb{Z}_p^{\times} , then $\Phi(\tau) = \tau^s$ for $s \in \mathbb{Z}_p$ (Lemma 3.3). Note

$$\widehat{\mathbb{G}}_m = \operatorname{Spf}(W[\tau, \tau^{-1}]) = \operatorname{Spf}(W[[\mathcal{T}]]).$$

The cocharacter group of \mathbb{G}_m^n is isomorphic to \mathbb{Z}^n , which we write $X_*(\mathbb{G}_m^n)$. Then by tautology, $\mathbb{G}_m^n = \mathbb{G}_m \otimes_{\mathbb{Z}} X_*(\mathbb{G}_m^n)$. Similarly in the formal setting, putting $X_*(\widehat{\mathbb{G}}_m^n) = X(\mathbb{G}_m^n) \otimes_{\mathbb{Z}} \mathbb{Z}_p = \mathbb{Z}_p^n$ (the formal cocharacter group), we have $\widehat{\mathbb{G}}_m^n = \widehat{\mathbb{G}}_m \otimes_{\mathbb{Z}_p} X_*(\widehat{\mathbb{G}}_m^n)$. A slightly more general version of Chai's rigidity lemma can be stated as follows (e.g., [H10] Lemma 3.7):

Lemma 6.4 (C.-L. Chai). If $Z \subset \widehat{\mathbb{G}}_{m/\mathbb{F}}^n$ is a reduced equidimensional formal subscheme of dimension r stable under the diagonal action of an open subgroup of $\operatorname{Aut}_{gp}(\widehat{\mathbb{G}}_m) = \mathbb{Z}_p^{\times}$, then

$$Z = \bigcup_{L} \widehat{\mathbb{G}}_m \otimes_{\mathbb{Z}_p} L \subset \widehat{\mathbb{G}}_{m/\mathbb{F}}^n,$$

where L runs over (finitely many) \mathbb{Z}_p -direct summand of $X_*(\widehat{\mathbb{G}}_m^n)$ of rank r.

The proof is given in [C] but is technical and long; so, we admit this lemma.

We apply this to the formal completion \widehat{H} along $z_0^n = (z_0, z_0, \dots, z_0) \in I^n$ inside $\widehat{I}^n = \widehat{\mathbb{G}}_m^n$. Since H is stable under $\tau \mapsto \tau^{\alpha^{1-c}}$ for $\alpha \in O_{(p)}^{\times} / \mathbb{Z}_{(p)}^{\times} \xrightarrow{1-c} \mathbb{Z}_p^{\times}$, by continuity,

 \widehat{H} is stable under the closure \mathbb{Z}_p^{\times} of $\{\alpha^{1-c} | \alpha \in O_{(p)}^{\times}\}$. Since H is an excellent irreducible scheme, \widehat{H} is reduced equidimensional of dimension n-1. Thus, by the above lemma,

(6.1)
$$\widehat{H} = \bigcup_{L} \widehat{\mathbb{G}}_m \otimes_{\mathbb{Z}_p} L \subset \widehat{\mathbb{G}}_m^n = \widehat{I}^n,$$

where L runs over (finitely many) \mathbb{Z}_p -direct summand of $X_*(\widehat{I}^n)$ of rank n-1. Let $\mathcal{H} \to H$ be the normalization of H. Since H is irreducible, \mathcal{H} is irreducible. By (6.1), each point over z_0^n of \mathcal{H} is indexed by $\{L\}$, and for the point $y_L \in \mathcal{H}$ over z_0^n corresponding to L, $\widehat{\mathcal{H}}_{y_L}$ is étale over $\widehat{\mathbb{G}}_m \otimes L$. Write $I^n = I' \times I''$ for $I' = I^{n-1}$ and I'' = I for the last component.

Lemma 6.5. The scheme \mathcal{H} is finite flat over I' around z_0^{n-1} . In particular, each L is of rank n-1 and projects down to an open subgroup of $X_*(\widehat{\mathbb{G}}_m^{n-1}) \cong \mathbb{Z}_p^{n-1}$. If one of L surjects down onto $X_*(\widehat{I'})$ ($\widehat{I'} = \widehat{\mathbb{G}}_m^{n-1}$), all of L surjects down onto $X_*(\widehat{I'})$, and the projection $\mathcal{H} \to I'$ is étale finite around z_0^{n-1} .

Proof. Since the projection of the first (n-1)-factor $I' = I^{n-1}$ is dominant, at least one of L, call it L_0 , projects down to an open \mathbb{Z}_p -submodule of $X_*(\widehat{\mathbb{G}}_m^{n-1})$. If there is L with image in $X_*(\widehat{I'})$ of rank < n-1, the non-flat locus $\mathcal{H}^{nf} \subset \mathcal{H}$ of $\mathcal{H} \to I'$ is a nonempty proper closed subscheme of \mathcal{H} . Since dim $\widehat{\mathbb{G}}_m \otimes L = \operatorname{rank} L = n-1$, \mathcal{H}^{nf} has dimension n-1 equal dim \mathcal{H} ; so, \mathcal{H} has to be reducible, a contradiction. Thus $\mathcal{H} \to I'$ is finite flat around z_0^{n-1} via faithfully flat descent from $\widehat{\mathcal{H}}/\widehat{I'}$ to \mathcal{H}/I' .

If one of L, call it L_0 , surjects down to $X_*(\widehat{I'})$ and another L_1 has image smaller than $X_*(\widehat{I'})$, the ramified locus \mathcal{H}^{ram} of $\mathcal{H} \to I'$ is nontrivial proper closed subscheme of dimension n-1, again a contradiction to the irreducibility of \mathcal{H} ; so, $\mathcal{H} \to I'$ is étale finite around z_0^{n-1} , again via faithfully flat descent from $\widehat{\mathcal{H}}/\widehat{I'}$ to \mathcal{H}/I' . \Box

When n = 2, by applying a power of the *p*-power Frobenius or its dual to H (that is, applying $\rho(\alpha)$ for α generating $\mathfrak{p}O_{(p)}$ or its dual $\rho(\overline{\alpha})$), we may assume that at least one L surjects down to $X_*(\widehat{I'})$; so, by the above lemma, all L surjects down to $X_*(\widehat{I'})$. Thus we may assume that $\mathcal{H} \to I'$ is étale finite around z_0^{m-1} . Now assume n = 2. Then, over an open dense subscheme $U \subset \mathcal{H}$ containing all points above z_0^2 , the two projections $\pi_L : U \to I' = I$ and $\pi_R : U \to I'' = I$ are étale finite.

We consider the universal elliptic curve $(\mathbf{E}, \boldsymbol{\eta})_{/I}$. We pull it back to \mathcal{H} : $(\mathbf{A}, \eta_A) = \pi_L^*(\mathbf{E}, \boldsymbol{\eta})$ and $(\mathbf{B}, \eta_B) = \pi_R^*(\mathbf{E}, \boldsymbol{\eta})$. For a point $y \in \mathcal{H}$ over $z_0^2, \hat{\mathcal{H}} := \hat{\mathcal{H}}_y = \{(\tau^b, \tau^a) | t \in \hat{I} = \widehat{\mathbb{G}}_m\} \subset \hat{I} \times \hat{I}$. Since $\pi_j : \mathcal{H} \to I$ is étale finite around y, we may assume that $a, b \in \mathbb{Z}_p^\times$; so, we may assume that b = 1. Let X = X(O). The map $\hat{I} \ni \tau \mapsto \tau^a \in \hat{I}$ is induced on $\tau \in \hat{I} = \operatorname{Hom}_{gp}(X[\overline{\mathfrak{p}}^\infty], X[\mathfrak{p}^\infty])$ by regarding a as an endomorphism of $X[\mathfrak{p}^\infty]$. Thus identifying $X = X(O)_{/\mathbb{F}}$ with the fibers $\mathbf{A}_y = \mathbf{B}_y$ of \mathbf{A} and \mathbf{B} at y, we regard the unit $a \in \operatorname{End}(X[\mathfrak{p}^\infty])$ as a O_p -linear map $a : \mathbf{A}_y[p^\infty] = X[p^\infty] \to X[p^\infty] = \mathbf{B}_y[p^\infty]$ inducing identity on $X[\overline{\mathfrak{p}}^\infty]$. We note the following fact (see [H10] Proposition 3.15):

Lemma 6.6 (C.-L. Chai). Further shrinking the open neighborhood U of y in \mathcal{H} , we may assume that the isomorphism $a : \mathbf{A}_y[p^{\infty}] = X[p^{\infty}] \to X[p^{\infty}] = \mathbf{B}_y[p^{\infty}]$ extends to $\tilde{a} : \mathbf{A}_{/U}[p^{\infty}] \to \mathbf{B}_{/U}[p^{\infty}]$. This implies that $\hat{\mathcal{H}}_u \cong \widehat{\mathbb{G}}_m$ by $(\tau, \tau^{\widetilde{a}}) \leftrightarrow \tau$ at any point $u \in U(\mathbb{F})$.

32

Here is a sketch of a proof of the above lemma. Since a can be approximated p-adically by $\alpha_n \in R_{(p)}$ modulo p^n , a can be extended to $\rho(\alpha_n) : \mathbf{A}[p^n]_{\widehat{\mathcal{H}}} \to \mathbf{B}[p^n]_{\widehat{\mathcal{H}}}$. Passing to a limit, we have an extension $\widehat{a} : \mathbf{A}[p^{\infty}]_{\widehat{\mathcal{H}}} \to \mathbf{B}[p^{\infty}]_{\widehat{\mathcal{H}}}$. Write \mathcal{O} for the stalk of $\mathcal{O}_{\mathcal{H}}$ at y; so, $\widehat{\mathcal{H}} = \mathrm{Spf}(\widehat{\mathcal{O}})$. Since \widehat{a} is determined by its restriction a to $\mathbf{A}_y[p^{\infty}]$, it is a unique extension of a. Since $\widehat{\mathcal{O}} \otimes_{\mathcal{O}} \widehat{\mathcal{O}}$ is reduced (because of excellency of \mathcal{O}), the pull-backs of \widehat{a} by two projections $\widehat{\mathcal{H}} \times_{\mathcal{H}} \widehat{\mathcal{H}} \to \widehat{\mathcal{H}}$ and three projections $\widehat{\mathcal{H}} \times_{\mathcal{H}} \widehat{\mathcal{H}} \to \widehat{\mathcal{H}} \times_{\mathcal{H}} \widehat{\mathcal{H}} \to \widehat{\mathcal{H}} \times_{\mathcal{H}} \widehat{\mathcal{H}}$ coincides; so, \widehat{a} satisfies the descent datum with respect to $\widehat{\mathcal{O}}/\mathcal{O}$, getting desired U.

Proof of Theorem 6.2. Since the two projections $\pi_j : \mathcal{H} \to I$ (j = L, R) are dominant, we have $\operatorname{End}(\mathbf{A}) \otimes \mathbb{Q} = \operatorname{End}(\mathbf{B}) \otimes \mathbb{Q} = \mathbb{Q}$. Let $\mathbf{Y}_{/\mathcal{H}} = \mathbf{A} \times_{\mathcal{H}} \mathbf{B}$. Thus there are only two possibilities of $\operatorname{End}^{\mathbb{Q}}(\mathbf{Y}) = \operatorname{End}(\mathbf{Y}_{/\mathcal{H}}) \otimes \mathbb{Q}$: Either $\operatorname{End}^{\mathbb{Q}}(\mathbf{Y}) = \mathbb{Q} \times \mathbb{Q}$ or $\operatorname{End}^{\mathbb{Q}}(\mathbf{Y}) = M_2(\mathbb{Q})$. Suppose that $\operatorname{End}^{\mathbb{Q}}(\mathbf{Y}) = M_2(\mathbb{Q})$. By semi-simplicity of the category of abelian schemes, we have two commuting idempotent $e_? \in \operatorname{End}^{\mathbb{Q}}(\mathbf{Y})$ such that $e_A(\mathbf{Y}) = \mathbf{A}$ and $e_B(\mathbf{Y}) = \mathbf{B}$. Since $\operatorname{End}^{\mathbb{Q}}(\mathbf{Y}) = M_2(\mathbb{Q})$, we can find an invertible element $\tilde{\beta}$ in $GL_2(\mathbb{Z}_{(p)}) \subset M_2(\mathbb{Q})$ such that $\tilde{\beta} \circ e_A = e_B$; so, $\tilde{\beta} : \mathbf{A} \to \mathbf{B}$ is an isogeny with $\tilde{\beta} \circ \eta_A = \eta_B$, whose specialization to the fiber of \mathbf{A} and \mathbf{B} at y gives rise to an endomorphism $\beta \in \operatorname{End}(X(O)) \otimes \mathbb{Q}$. Thus the isogeny $\tilde{\beta}$ is induced by $\rho(\beta)$, and we conclude $\Delta_{1,\beta} = H$.

We suppose $\operatorname{End}^{\mathbb{Q}}(\mathbf{Y}) = \mathbb{Q} \times \mathbb{Q}$ and try to get a contradiction (in order to prove that $\operatorname{End}^{\mathbb{Q}}(\mathbf{Y}) = M_2(\mathbb{Q})$. We pick a sufficiently small open compact subgroup $K \subset$ $G(\mathbb{A}^{(p\infty)})$ maximal at p so that the normalization \mathcal{H}_K of $H_K \subset Y_K \times Y_K$ is smooth at the image of y. The variety Y_K is naturally defined over a finite extension $\mathbb{F}_q/\mathbb{F}_p$ as the solution of the moduli problem $\mathcal{E}^{(p)}/K$. The universal elliptic curve \mathbf{E}_K is therefore defined over I_{K/\mathbb{F}_q} , and \mathcal{H}_K is a variety of finite type over \mathbb{F}_q . Let η be the generic point of $\mathcal{H}_{K/\mathbb{F}_q}$, and write $\overline{\eta}$ for the geometric point over η and $\mathbb{F}_q(\overline{\eta})^{sep}$ for the separable algebraic closure $\mathbb{F}_q(\overline{\eta})^{sep}$ of $\mathbb{F}_q(\eta)$ in $\mathbb{F}_q(\overline{\eta})$. Take an odd prime $\ell \neq p$, and consider the ℓ -adic Tate module $T_{\ell}(\mathbf{Y}_{\overline{\eta}})$ for the generic fiber $\mathbf{Y}_{\overline{\eta}}$ of \mathbf{Y} . We consider the image of the Galois action Im(Gal($\mathbb{F}_q(\overline{\eta})^{sep}/\mathbb{F}_q(\eta)$)) in $GL_{O_\ell \times O_\ell}(T_\ell(\mathbf{Y}_{\overline{\eta}}))$. Then by a result of Zarhin ([DAV] Theorem V.4.7), the Zariski closure over \mathbb{Q} of $\operatorname{Im}(\operatorname{Gal}(\mathbb{F}_q(\overline{\eta})^{sep}/\mathbb{F}_q(\eta)))$ is a reductive subgroup \mathcal{G} of $GL_{\mathbb{Q}_{\ell}\times\mathbb{Q}_{\ell}}(T_{\ell}(\mathbf{Y}_{\overline{\eta}})\otimes\mathbb{Q})$, and $\operatorname{Im}(\operatorname{Gal}(\mathbb{F}_q(\overline{\eta})^{sep}/\mathbb{F}_q(\eta)))$ is an open subgroup of $\mathcal{G}(\mathbb{Q}_{\ell})$. Moreover, by Zarhin's theorem, the centralizer of \mathcal{G} in $\operatorname{End}_{\mathbb{Q}_{\ell}\times\mathbb{Q}_{\ell}}(T_{\ell}(\mathbf{Y}_{\overline{\eta}})\otimes\mathbb{Q})$ is $\operatorname{End}(\mathbf{Y})\otimes\mathbb{Q}_{\ell}$. Since the reductive subgroups of GL(2) are either tori or contain SL(2), the derived group $\mathcal{G}_1(\mathbb{Q}_\ell)$ of $\mathcal{G}(\mathbb{Q}_\ell)$ has to be $SL_2(\mathbb{Q}_\ell \times \mathbb{Q}_\ell)$. By Chebotarev's density, we can find a set of closed points $u \in \mathcal{H}_K(\mathbb{F})$ with positive density such that the Zariski closure in \mathcal{G} of the subgroup generated by the Frobenius element $Frob_u \in \operatorname{Im}(\operatorname{Gal}(\mathbb{F}_q(\overline{\eta})^{sep}/\mathbb{F}_q(\eta)))$ at u with $\pi_j(u) = u_j \ (u_j \in I_K(\mathbb{F}))$ is a torus containing a maximal torus $T_u = (T_{u_1} \times T_{u_2}) \cap \mathcal{G}_1$ of the derived group \mathcal{G}_1 of \mathcal{G} . In particular the centralizer of T_u in \mathcal{G}_1 is itself. Thus \mathbf{Y}_u is isogenous to a product of two non-isogenous elliptic curves $Y_1 = E_{u_1}$ and $Y_2 = E_{u_2}$ defined over a finite field. The endomorphism algebra $M_i = \operatorname{End}^{\mathbb{Q}}(Y_i)$ is an imaginary quadratic field of \mathbb{Q} generated over \mathbb{Q} by the relative Frobenius map ϕ_j induced by $Frob_u$, and $M_1 \neq M_2$. The relative Frobenius map $Frob_u$ acting on $X_*(\widehat{I}_{u_1}) \cong \mathbb{Z}_p$ has one eigenvalue: $\phi_1^{(1-c)\sigma}$ for the CM type $\Sigma_1 = \{\sigma\}$ of Y_1 , which differ from the eigenvalues of $\phi_2 \in \text{End}(Y_2)$ on $X_*(I_{u_2}) \cong \mathbb{Z}_p$. Since we have proven that over the open dense subscheme U of \mathcal{H} , the formal completion of U at $u \in U$ with $u = (u_1, u_2) \in X \subset V^2$ is canonically

isomorphic to a formal subtorus $\widehat{Z} \subset \widehat{I}_{u_1} \times \widehat{I}_{u_2}$ with co-character group $X_*(\widehat{Z}) \cong \mathbb{Z}_p$, we may assume that our point $u = (u_1, u_2)$ as above is in the (open dense) image U_K of U in H_K . Projecting $X_*(\widehat{Z})$ down to the left and the right factors I_K , the projection map $X_*(\widehat{Z}) \to X_*(\widehat{I}_{u_j})$ is actually an injection commuting with the action of $Frob_u$. Thus $Frob_u$ has more than one distinct eigenvalues on $X_*(\widehat{Z})$ of rank 1, which is a contradiction. Thus we conclude that $\operatorname{End}^{\mathbb{Q}}(\mathbf{Y}) = M_2(\mathbb{Q})$ for any choice of small open compact subgroups K maximal at p.

As we have remarked at the beginning, $\widehat{\mathcal{H}}_y \subset \widehat{\mathcal{H}}_{z_0^2} \subset \widehat{I} \times \widehat{I}$ is given by $\{\tau, \tau^{\beta^{1-c}}) | t \in \widehat{\mathbb{G}}_m\}$ for nonzero $\beta \in O_{(p)}$. Suppose that y corresponds to L; so, $\widehat{\mathcal{H}}_y \subset \widehat{I} \times \widehat{I}$ coincides with $\widehat{\mathbb{G}}_m \otimes L$. On the other hand, we have the skew-diagonal $\Delta_\beta = \Delta_{1,\beta} = \{(z, \rho(\beta)(z)) | z \in I\} \subset I \times I$. The formal completion $\widehat{\Delta}_\beta$ along (z_0, z_0) therefore coincides with $\widehat{\mathcal{H}}_y$ and $\widehat{\Delta}_\beta = \widehat{\mathbb{G}}_m \otimes L \subset \widehat{\mathcal{H}}_{(z_0, z_0)}$ inside \widehat{I}^2 . Thus $\Delta_\beta \subset H$. By the irreducibility of H, we conclude $H = \Delta_\beta$.

There are two ways of proving Theorem 6.3. One is an induction reducing things to Theorem 6.2, and another is to prove that $\operatorname{End}(\mathbf{Y}) \otimes \mathbb{Q} = M_2(\mathbb{Q}) \times \mathbb{Q}^{n-2}$ for $\mathbf{Y} = \prod_j \pi_j^* \mathbf{E}$ for the projection π_j of \mathcal{H} to *j*-th component *I* (after a permutation of the factors *I*).

References

Books

- [ABV] D. Mumford, Abelian Varieties, TIFR Studies in Mathematics, Oxford University Press, 1994
- [AME] N. M. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves, Ann. of Math. Studies 108, Princeton University Press, 1985
- [DAV] G. Faltings and C.-L. Chai, Degeneration of Abelian Varieties, Springer, 1990
- [GME] H. Hida, Geometric Modular Forms and Elliptic Curves, 2000, World Scientific Publishing Co., Singapore (a list of errata available at www.math.ucla.edu/~hida)
- [HMI] H. Hida, *Hilbert modular forms and Iwasawa theory*, Oxford University Press, 2006 (a list of errata available at www.math.ucla.edu/~hida)
- [IAT] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, Princeton, NJ, and Iwanami Shoten, Tokyo, 1971.
- [ICF] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Text in Mathematics, 83, Springer, New York, 1980.
- [LFE] H. Hida, Elementary Theory of L-functions and Eisenstein Series, LMSST 26, Cambridge University Press, Cambridge, England, 1993
- [MFG] H. Hida, *Modular Forms and Galois Cohomology*, Cambridge Studies in Advanced Mathematics **69**, Cambridge University Press, Cambridge, England, 2000. (a list of errata available at www.math.ucla.edu/~hida)
- [PAF] H. Hida, p-Adic Automorphic Forms on Shimura Varieties, Springer Monographs in Mathematics, 2004, Springer

Articles

- [C] C.-L. Chai, A rigidity result for p-divisible formal groups, Asian J. Math. 12 (2008), 193-202 (available at: www.math.upenn.edu/~chai)
- [C1] C.-L. Chai, Families of ordinary abelian varieties: canonical coordinates, p-adic monodromy, Tate-linear subvarieties and Hecke orbits, preprint 2003 (available at: www.math.upenn.edu/~chai)
- $\label{eq:cell} [CE] R. F. Coleman and B. Edixhoven, On the semi-simplicity of the <math display="inline">U_p$ -operator on modular forms. Math. Ann. **310** (1998), 119–127

- [FeW] B. Ferrero and L. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. **109** (1979), 377–395
- [Fi] T. Finis, The μ -invariant of anticyclotomic *L*-functions of imaginary quadratic fields, Journal für die reine und angewandte Mathematik. Volume **2006**, Issue 596, 131-152
- [Gr] R. Greenberg, Trivial zeros of *p*-adic *L*-functions, Contemporary Math. **165** (1994), 149–174
- [GS] R. Greenberg and G. Stevens, p-adic L-functions and p-adic periods of modular forms, Inventiones Math. 111 (1993), 407–447
- [H86a] H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Ec. Norm. Sup. 4th series **19** (1986), 231–273.
- [H86b] H. Hida, Galois representations into $GL_2(\mathbb{Z}_p[[X]])$ attached to ordinary cusp forms, Inventiones Math. 85 (1986), 545–613.
- [H86c] H. Hida, Hecke algebras for GL_1 and GL_2 , Sém. de Théorie des Nombres, Paris 1984-85, Progress in Math. **63** (1986), 131–163
- [H88a] H. Hida, Modules of congruence of Hecke algebras and *L*-functions associated with cusp forms, Amer. J. Math. **110** (1988), 323–382
- [H88b] H. Hida, On *p*-adic Hecke algebras for GL_2 over totally real fields, Ann. of Math. **128** (1988), 295–384.
- [H89] H. Hida, Nearly ordinary Hecke algebras and Galois representations of several variables, Proc. JAMI Inaugural Conference, Supplement to Amer. J. Math. (1989), 115–134
- [H04a] H. Hida, Non-vanishing modulo p of Hecke L-values, in: "Geometric Aspects of Dwork's Theory, II" (edited by Alan Adolphson, Francesco Baldassarri, Pierre Berthelot, Nicholas Katz, and Francois Loeser), Walter de Gruyter, 2004, pp. 735–784 (preprint available at www.math.ucla.edu/~hida)
- [H04b] H. Hida, Greenberg's *L*-invariants of adjoint square Galois representations, IMRN, 2004 No.59, 3177–3189
- [H06] H. Hida, Anticyclotomic main conjectures, Documenta Math, Extra Volume Coates (2006), 465–532 (preprint available at www.math.ucla.edu/~hida)
- [H07a] H. Hida, Non-vanishing modulo p of Hecke L-values and application, In "L-functions and Galois representations", London Mathematical Society Lecture Note Series **320** (2007) 207-269 (preprint available at www.math.ucla.edu/~hida)
- [H07b] H. Hida, On a generalization of the conjecture of Mazur-Tate-Teitelbaum, International Mathematics Research Notices 2007 : article ID rnm102, 49 pages, doi:10.1093/imrn/rnm102
- [H10] H. Hida, The Iwasawa μ-invariant of p-adic Hecke L-functions, to appear in Annals of Mathematics, (preprint available at www.math.ucla.edu/~hida or at http://annals.math.princeton.edu/issues/AcceptedPapers.html)
- [K] N. M. Katz, *p*-adic *L*-functions for CM fields, Inventiones Math. **49** (1978), 199–297.
- [M] B. Mazur, Modular curves and the Eisenstein ideal, Publ. IHES 47 (1977), 33–186
- [MTT] B. Mazur, J. Tate and J. Teitelbaum, On *p*-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Inventiones Math. **84** (1986), 1–48
- [MT] B. Mazur and J. Tilouine, Représentations galoisiennes, différentielles de Kähler et "conjectures principales", Publication IHES **71** (1990), 65–103
- [MW] B. Mazur and A. Wiles, Class fields of abelian extensions of Q. Inventiones Math. **76** (1984), 179–330
- M. Ohta, Ordinary *p*-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math. Ann. **318** (2000), 557-583
- [O1] M. Ohta, Congruence modules related to Eisenstein series. Annales scientifiques de l'École Normale Supérieure, Series 4, 36 (2003), 225–269
- [P] R. Pink, Compact subgroups of linear algebraic groups. J. Algebra 206 (1998), 438–504
- [R] K. A. Ribet, On *l*-adic representations attached to modular forms. II. Glasgow Math. J. 27 (1985), 185–194
- [S] W. Sinnott, On the μ -invariant of the Γ -transform of a rational function, Inventiones Math. **75** (1984), 273–282
- [S1] W. Sinnott, On a theorem of L. Washington, Astérisque 147-148 (1987), 209–224

 [V] V. Vatsal, Special values of L-functions modulo p. International Congress of Mathematicians. Vol. II, 501–514, Eur. Math. Soc., Zürich, 2006

Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A. $E\text{-mail}\ address: \texttt{hida@math.ucla.edu}$