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0. — Introduction

Let p be an odd prime. Starting from a modular Galois representation
¢ into GLy(I) for an irreducible component Spec(I) of the spectrum of the
universal ordinary Hecke algebra of prime-to-p level N, we study the Selmer
group Sel(Ad(p) @ v~ 1) /o of Greenberg [G] for the adjoint representation
of Ad(y) on the trace zero subspace V(Ad(y)) of M(I) and the universal
character v unramified outside p deforming the trivial character of Gg =
Gal(Q/Q). The pontryagin dual of Sel(Ad(¢)),q is basically known to be a
torsion [-module of finite type by a result of Flach [F] and Wiles [W] under
a suitable assumption on ¢. The key point of the proof is to show for an
arithmetic height 1 prime P, the subgroup Sel(Ad(y))[P] killed by P is
finite. Our Selmer group Sel(Ad(¢) @ v~ 1) is naturally a module over I[[T]]
for I' = Im(v) (2 Z, ). However, it is well known that for the augmentation
ideal P of I[[T"]], Sel(Ad(y) @ v~1)[P] has non-trivial I-divisible subgroup,
and hence the co-torsionness of Sel(Ad(y)®@v 1) over I[[I']] does not follow
from the co-torsionness of Sel(Ad(¢))/g over L. In this paper, under a
suitable assumption, we prove a control theorem giving the following exact
sequence :

0 — Sel(Ad()) /g — Sel(Ad(¢) @ v ) - T* -0,

where [* is the Pontryagin dual module of [ on which I' acts trivially. Actu-
ally this assertion is valid for more general 2-dimensional representations ¢
not necessarily modular (Theorems 2.2 and 3.2) and also for Sel(Ad(y)),r
for a general number field F'. Although the above exact sequence does not
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directly yield the co-torsionness of Sel(Ad(¢) @ v~!), when ¢ is modular,
we can deduce it from the co-torsionness of Sel(Ad(y)),q using the fact
that the p-th Hecke operator T'(p) is transcendental over Z, in the univer-
sal ordinary Hecke algebra (see Theorem 3.3). For these, we consider the
universal ordinary deformation ring Ry of ¢ restricted to Gal(Q/F) as in
[W]. Then we have natural projection 7 : Rr — I, and we can identify
Sel(Ad(y)),r with the module (called a Mazur module) of 1-differentials of
Ry as in [MT] which gives a tool of proving the above control theorem. To
help the reader to understand the formal but subtle argument dealing with
various deformation rings, we added to the main text a lengthy Appendix
which describes a general theory of controlling deformation rings.

1. — Control of differential modules

In this section, we describe how a group action on a ring induces a
group action on its differential modules.

1.1. Functoriality of differential modules. We start with a noetherian
integral domain A with quotient field K. Let H be an A-algebra, and
A : H — B be an A-algebra homomorphism. The differential module is
then defined by

Ci(\;B) = Tor{{(Im()\),B) >~ Ker(A) @ua B

(C1)
>~ (Ker())/ Ker(A)?) @p,\ B.

See [H2] Section 6 and [H3] Section 1 for a general theory of these modules
including above isomorphisms. Suppose that we have two surjective A-

algebra homomorphisms : H 7 %, Bwith \ = (o 6. Anyway, these
modules are torsion modules over A if B is of finite type as an A-module.
Then we recall Theorem 6.6 in [H2] :

PROPOSITION 1.1. — Suppose the surjectivity of 6 and . Then we have
the following canonical exact sequences of H-modules :

Tor] (B, Ker(u)) — C1(6;T) @1 B — Cy(\; B) — Cy(u; B) — 0 ;

Proof : we have an exact sequence of H-modules :

0 — Ker(6) — Ker(\) 4, Ker(u) — 0.
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Tensoring B over H with the above sequence, we obtain the desired result.

We now suppose that a finite group G acts on H through A-algebra
automorphisms. Thus the finite group G acts on Spec(H ). We consider the
following condition :

(Nt) Spec(T) is the fixed point subscheme of G in Spec(H) .

Let a be the augmentation ideal of Z[G]. Then the condition (Nt) is
equivalent to

(Nt') Ker(#) is generated over H by g(z) — x for # € H and ¢ € G, that is,
Ker(6) = HaH.

Let ¢ € G. Then, under (Nt), the action of ¢ — 1 induces an A-linear
map : Ker(A) — Ker(8). If z,y € Ker()), then
o(zy) — vy = (o(z) — z)(o(y) —y) + z(o(y) — y) + y(o(z) — z)
= (o(z) — z)(o(y) — y) = 0mod Ker(A) Ker(6) .

Note that C1(6;T) @1, B = (Ker(0)/ Ker(A) Ker(6)) ®,» B. Thus the A-
linear map induces a B-linear map [0 — 1] : C1(\; B) — C1(6;T) @1, B.
Under (Nt), o(z) — z for # € H and 0 € G generates Ker(f) over H. Now
assume that

(Sec) A has a section ¢ : B — H of A[G] — modules.

Then for each y € H, we can write y = & @ (A(y) for ¢ = y — (A\(y) €
Ker()), and hence o(y) —y = o(z) — 2 € (0 — 1) Ker(A). Thus [0 — 1](z)
for o € G and = € Ker(\) generates C1(6;T) @7 , B over B, and

Boealo — 1] : BoeaCi(A; B) — C1(6;T) @7, B is surjective.

This shows that the image of Ci(0;T) @7, B in Ci(\;B) is equal to
aCi(A; A), and we have

COROLLARY 1.1. — Suppose (Nt) and (Sec). Then we have
Ci(p; B) = Ci(X; B)/aC1(X; B) = Ho(G, C1(A; B))

where a is the augmentation ideal of Z|G].

We now put ourselves in a bit more general setting where p is not
necessarily surjective. We write By for Im(x) and consider the following
three algebra homomorphisms :

HosB* ¥ T70,B"S Byo,B B,
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where m(a®b) = ab. Since Ker(u®id)’ is a surjective image of Ker(u)’ @ 4 B,
the natural map : C1(A; B)®4 B — C1(A®id; B ® 4 B) is surjective. When
B is flat over A, the map is an isomorphism of B ® 4 B-modules. Similarly,
the natural maps

Cl(A,Bo) ®A B — Cl(/\ ®1d,BO ®A B) ’
(Ext1) Ci(p; Bo) @4 B — C1(p ®id; By ® 4 B) and
Cl(G;T) (X)AB—>01(9;T®AB)

are all surjective and are isomorphisms if B is flat over A. By Proposition
1.1, we get an exact sequence, writing B’ for By ® 4 B,

Torfg'(Ker(m),B) — Ci(p®@id; B")@p B —
Ci(mo(p®id); B) —» Cy(m;B) — 0.

(Ext2)

We get from the short exact sequence : 0 — Ker(y) — T — By — 0, an
exact sequence : Torf(Bo, By) — Ker(u)®4 By = T®4 By — By®4 By —
0, and as a part of it, we know the exactness of the following sequence :

Tors(By, By) — Ker(p) @4 By — Ker(p ®@id) — 0 .

Applying @7 B to the last sequence, writing 7" for T'® 4 B, we have another
exact sequence :

Torf(BO,BO) ®@p B — (Ker(p) ®4 By) @ B —
Ci(p®id; B") @p B — 0

(Ext2))

and

(Ker(i) @4 Bo) @1+ B = (Ker()/ Ker(n)*) @4 By @1 B
— ((Ker()/ Kex(1)) @5, By) 94 B @ B

= (Ker(p)/ Ker(p)*) @p, B = Ci(p; Bo) @p, B -
This combined with (Ext2) shows the exactness of
(Ext3) C1(p; Bo) @B, B — C1(mo (p®id); B) — Cy(m;B) — 0.

If By is A-flat, then Torf(Bo, By) = 0. When B = By, the above sequence
is nothing but the well known exact sequence for the closed immersion u
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of X = Spec(By) into Y = Spec(T) over S = Spec(A) : Ker(u)/ Ker(p)? —
Wy s — Qx5 — 0.

2. — Control Theorems of universal ordinary deformation rings

We fix a prime p > 3. For a number field X in Q, we write Gy =
Gal(Q/X) for the absolute Galois group over X. Let £ be a valuation ring
finite flat over Z, with residue field IF. We consider a p-ordinary deformation
problem D = Dy defined on the category CNLgy of complete noetherian
local 9-algebras with residue field F. Morphisms of CNLy, are assumed to
be local D-algebra homomorphisms. See [T] and Appendix for a general
theory of such deformation problems. Let (Rx, px ) be the universal couple
of the deformation problem Dx of representations of Gx. We study how the
Galois action controls Rx.

2.1. Deformation problems. Let p be a continuous representation of
G into GLy(F) for a number field E. We consider the following condition
for an algebraic extension F/E :

(Algp) p restricted to Gp is absolutely irreducible .

We assume (Alp). For each prime ideal [, we write Fy for the [-adic
completion of F' and Gp, for the absolute Galois group over Fi. Let C' be
an integral ideal of E prime to p and write Clz(Cp) for the strict ray class
group of £ modulo C'p. We also pick a character y : Clg(Cp) — 9D such
that the order of y is prime to p. We write C( ) for the conductor of y and
assume that C'|C(x). By class field theory, we may regard y as a character
of Gr. We write y4 for the restriction of x to the decomposition subgroup
g E, at each prime q. Let M be a finite set of primes outside p. We assume
that M contains all prime factors of C'(x) outside p. We write M () for the
set of primes in M dividing C(x) and put M' = M — M(x). We write ¥ for
the union of M and the set of all prime factors of p. Then for q € 3, write
I, (resp. N, q) for the inertia subgroup of Gg, (resp. the p-adic cyclotomic
character NV restricted to G E, ). Here we normalize cyclotomic characters so
that they take the geometric Frobenius at each unramified prime ideal [ to
the norm of the ideal [. Under this convention, we consider a deformation
problem of p on CNLy. A deformation p : G — GL3(A) of p is called of
type D = Dg; if p satisfies the following five conditions (UNR), (x, ), (Reg,)
for each prime p|p, (x4) for each prime q € M(y) and (V) for each prime
ge M':

(UNR) 7 is unramified outside ¥ ;
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(Xp) We have an exact sequence of ¢ B, -modules :
0— V(pip) = V(p) = V(p2,p) — 0 with V(py ) A-free of rank 1,

p1,p unramified and p; , mod m = xp modm on the inertia subgroup Ij,.
Writing p; for p; mod m, we assume

(Regp) Prp F P2p -

We assume the following conditions for q € M :

(xq) As I —modules, V(p) = V(id) @ V(x4) with V(x4) A-free of rank 1
for q|C(x) ,

W, q) Forge J\/l', we have an exact sequence, of G . -modules, non-split

over I .
0= Vipr,q) = V(p) = V(p2,q) = 0
where V(ps,q) is A-free of rank 1, p; 4 (¢ = 1,2) is unramified and
Pl,qu_j = Nq-

Since the order of y is prime to p, x4 for ¢ € M(x) is non-trivial. To
make our deformation problem Dg non-empty, we assume that p satisfies
the above five conditions. The contragredient of this deformation problem
is studied in [W] and is denoted by D = (Ord,%X, O, M) (for E = Q)
there. As shown in [W], the problem D is representable, and hence Dg
is also representable. See [T] and Appendix for the proof in more general
case. To apply the argument in [T] and Appendix to our situation here, we
note the following facts : for the maximal extension Fy of F' unramified
outside X, the Galois group G = Gal(Fy,/E) satisfies the condition (pF') in
Appendix; any deformation of type Dp, factors through G'; the group D € S
(resp. its subgroup I) is given by a choice of decomposition subgroups
(resp. its inertia subgroup) at each p’, and the condition (Regp) is the
same as (RGp) in Section A.2.2 for the decomposition subgroup D of p
in G. We write (Rpg, pr) for the universal couple for Dg. Thus for each
deformation p : Gp — GL2(A) of type D, there exists a unique local
$)-algebra homomorphism ¢ : Ry — A such that p is strictly equivalent
to ppg. Here we say p is strictly equivalent to p' if p(7) = zp'(7)z~" for
T € éig(A) = 1+ maM>(A) independent of 7. We write p ~ p' if p is
strictly equivalent to p'.

Let F' be a finite extension of £. Write p, (resp. x r) for the restriction of
p (resp. x) to Gr. We consider the deformation problem Dy of p on CNLg
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given as follows. Let M p(x) (resp. M) be the set of prime ideals dividing
C(xr) and prime to p (resp. the set of primes dividing primes in M'). We
write X  for the union of M (), M, and the set of all prime factors of p in
F. A deformation p of p; is a continuous representation p : G — GL2(A)
with pmodmy4 = pp for an object A in CNLy. A deformation p of pj
is of type Dy if p satisfies the following five conditions (UNRy), (x»,r).
(Regp p) for each prime P of F' dividing p, (xg,r) for @ € Mp(x) and
(Ng) for Q € MY :

(UNRp) p is unramified outside > ;
(x»,” We have an exact sequence of Gp,-modules for each prime ideal P p:
0— V(p,p) = V(p) = V(pzp) — 0 with V(pz p) A-free of rank 1,
p1,p unramified and p; p modm = yp modm on Ip ;

(Regp r) p1.p 7 Pa p for each prime ideal P|p .

where p; p = p; p modm. Writing x ¢ for the restriction of x to Gr,, we
assume :

(xo,r) As Ig—modules, V(p) = V(id) @ V(xo) with A-free of rank 1
for Q €e Mp ,
(Ng) For Q € M’ we have an exactsequence, of Gp,-modules,

non-split over o,

0= Vipi,e) = V(p) = Vip2,e) = 0
where V(p2,0) is A-free of rank 1, p; o (¢ = 1,2) is unramified and
p1.007.0 = No.

Then Dy is representable under (Alp). We write H = Gal(Fy/F).
Then H is a normal subgroup of G with G/H = A = Gal(F/E). We take
Sc = {Dy}p|p and Sy = {Dp}p|, for the decomposition subgroups D for
each prime “?”. Then to the quadruple (G, H, S, Sir) the theory described
in Appendix (Sections A.2.1-3) applies, and it is easy to deduce the repre-
sentability from the argument in Section A.2.3. Hereafter, assuming (Al ),
we write (R, pp) for the universal couple representing the problem Dp.

2.2. Controlling universal deformation rings and Mazur modules.
We now suppose that F/E is cyclic of degree d. Since pp restricted to
H = Gal(Fy/F) is a solution of the deformation problem Dy, we have
a non-trivial algebra homomorphism « : R — Rp such that apr = pp.
If p is a deformation of type Dp, then we have a unique ¢ : R — A such
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that ppp ~ p. Then p|y ~ ¢pp|y =~ papr. Let us write Fr (resp. F) for the
deformation functor of the problem Dy (resp. Dg). Then the Galois group
A = Gal(F/E) naturally acts on Fr as follows : taking ¢ € G and define
p°(g) = p(logo™) for p € Fr(A) and ¢ € H. We take c(c) € GLy(9O)
such that ¢(¢) = p(o)modm, and define pll = ¢(a)™"pc(c) € Fr(A).
The strict equivalence class of pl°! is well defined depending only on
the class of ¢ in A, and in this way A acts on Fr and Ry through
9-algebra automorphisms. We define a new functor & by Fa(4) =
{p € Fr(A)|pl®l ~ p}. Since pa is the unique homomorphism bringing
pr down to p|y, the deformation subfunctor :

Fr,r(A) = {pln € Fr(A) | p € F(B) for a flat A-algebra B in CNLg}

is representable by (Im(«),apr) under (Alp), as long as app can be
extended to an element of F(B) for an algebra B flat over Im(«) in CNLg.
The argument proving this is the same as the proof of Theorem A.2.3. To
check the extendibility of apr, we introduce the following assumptions. Let
F, be the maximal subfield of F such that d' = [F} : E] is prime to p. Let
S be the set of primes of E ramifying in F'. For each prime q of E, we write
I, (resp. I(q)) for the inertia group of q in G (resp. A). We also write D(q)
for the decomposition subgroup of A at q. We assume for g outside p

(TRq) |I(q)| is prime to p .
For p|p, we assume either (TR, ) or

(Exyp) Every character of I(p) N Gal(F/Fy) with values in A* can be
extended to a character of A having values in
B”* for a flat extension B of A such that it is

unramified outside p .

These conditions correspond the conditions (TRp) and (Exp) in Sec-
tion A.2.3. If I(p) N I(q) N Gal(F/F,) = {1} for any two primes p dividing p
and an arbitrary ¢, then (Ex,) is satisfied. In particular, if F' is a subfield
of Q. (Exp) is satisfied, where Qo is the unique Z,-extension of Q.
Take 7 € F&(A). By Corollary A.1.2 combined with the argument in
A.2.1, there exists a faithfully flat A-algebra B in CNLg such that 7 extends
to a representation 7 : G — GLy(B) with 7 = pmodmg. By (TRy), the
unramifiedness at ¢ 1 p in S — M of p implies the unramifiedness of 7z,
where S is the set of primes ramifying in '/ E. We now look at the restriction
of 7f to the inertia group I = I for primes q in M or dividing p. By (TRy)
and the fact that the decomposition group at q acts through conjugation
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on the maximal tame quotient of the inertia subgroup by the cyclotomic
character NV, the conditions (yg) (resp. (Ng)) for p implies (x4) (resp.
(Ny)) for 7 at ¢ = Q N E. We look at the restriction of 7 to I,. Since
the characteristic polynomial of (¢ ) for an element o of I, has two distinct
roots in F by (Reg,) and (xy), that of 7g(0) again has two distinct roots
a and b in B by Hensel's lemma. Then writing V for Ker(mg(o) — a - id),
V(ng)/V is B-free of rank 1, and on V', Dy, acts by a character 7, . Replacing
a by b if necessary, we may assume that 7, is trivial on [ (p). If p satisfies
(TRy), the argument is the same as q above. Now suppose (Ex; ). Since 7,
is trivial on I(p), 7, factors through the p-primary quotient of I(p). Thus by
(Exyp ). we can lift 7, to a p-power order character £ of A unramified outside
p. Replacing 7 by 7x ® £ !, we may assume that 75 satisfies (xp) because
¢ = 1modm. Thus 7 is a deformation of type D, and we get

PROPOSITION 2.1. — Assume (Alp), (TRq) for q outside p and one of
(Exp) or (TRy) for p|p. Then © € F&(A) can be extended to an element
g of F(B) for a faithfully flat A-algebra B in CNLgy. Moreover the functor
FE,r is represented by (Im(a ), apr).

For each integral ideal C' of a number field X, we write Clx(Cp®) for
the strict ray class group modulo Cp°. We allow ¢ = oo, and Clx(Cp™>) =
lim Clx(Cp®). Then by class field theory, there exists an abelian extension

Xo/X unramified outside Cp such that Gal(X/X) = Clx(Cp™). We
consider the character det(pp) : Gp — Rj. By (xg). the restriction of
this character to the inertia subgroup /g factors through a finite quotient.
Thus there exists an integral ideal C' prime to p of ' such that det(pr)
factors through Zr = Clp(Cp™>), and hence there exists an algebra
homomorphism : O[[Zp]] — Rp taking z € Zp to det(pg(z)). We take
C maximal among the ideals satisfying the above condition. We write Ap
for the image of O[[ZF]| in Rr which is an object in CNLg.

We now modify the deformation problem Dp on CNLgy and create a
new one D, defined over the category CNL, of complete noetherian local
A p-algebras with residue field F by adding the following condition to the
conditions of Dy :

(det)  det(p) for each deformation p : G — GL3(A) of type Dg

coincides with det(pp) composed with the inclusion i : Ap — A .

For any deformation p : G — GLy(A) of type D,, it is automatically a
deformation of type Dp. Thus we have a unique -algebra homomorphism
¢ : Rp — Asuchthat ¢pp ~ pand ¢(det(pg)) = det(p), which implies that
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¢ is actually a Ap-algebra homomorphism. Therefore (Rp, pp) represents
the new problem D). We consider another deformation functor ¥, g r
defined on CNL, by

Faer(A)={plu € Far(A)|lp € Fa(B) for a flat A-algebra B in CNL, } .

By Lemma A.2.1 in Appendix, actually Fx g r(A) = {plg € Fa r(A)lp €
Fa(A)}. By the argument proving Theorem A.2.1, we can conclude that
this functor is represented by (Im(«)Ag, pr|n), where we write Im(a)Ap
for the image of Im(a)®pA in Ry. Here is the argument : let p and p' be
two deformations of p over E of type D, with values in GLy(A). Suppose
that p &~ p' on H. Under (Alp), p = p' @ ¢ for some character £ of Gal(F/E)
(see Corollary A.2.1). Since in our deformation problem, the determinant is
fixed, we have ¢? = 1. Since p = p @ ¢ and € is quadratic, if £ # 1, ¢ modm
is non-trivial, because p is odd. By [DHI] Proposition 4.1, p is an induced
representation of a character of Ker(¢), which violates (Alr). Thus £ is
trivial. The algebra Im(« ) may not be a A-algebra for A = Ap. We thus find

Homp a5 (Im(a)Ap, A) = {7|g | # € F(A), det(n) =det(pp)}/ =
= Fa(A) = Homp_a1g(RE, A) for A—algebras A.

Thus under (Aly), we have Im(a)Ap = Rg.
THEOREM 2.1. — Assume (Al ) and one of (Exy) or (TRy) for plp. (TRy)

Jor q outside p. Then we have Im(«)Ap = Rp. If a prime factor p of p ramifies
totally in the maximal p-extension of E in F, then Im(«) = Rp.

Proof : We only need to prove the last assertion. Here we give a short
argument restricting ourselves to our special case. See Appendix for the
treatment in more general cases. We argue similarly as above by replacing
the deformation problem D, by Dg. Thus we pick two deformations p and
p' of p over E of type D with values in GLy(A). Suppose that p =~ p' on
H. Under (Alp), p = p' ® £ for some character ¢ of Gal(F/E). If £ # 1,
by our assumptions and (xyp), {p1,p = p3, and {pay = p} . Since { mod m
is trivial (because ¢ is of p-power order), this contradicts to (Regp). Thus
¢ = 1 by the total ramification of p, and we find

Homgp _a1g(Im(a), A) = Fp r(A) D Homp a1 (RE, A) for O—algebras A |
which shows the result, because Im(«) C Rg.

Let a be the ideal of Ry generated by [¢](z) — « for all z € Ry and a
generator 0 € A. Then 7 = ppmod a: H — GLy(A) for A = Rp/a satisfies
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77l ~ 7 and hence, by proposition 2.1, = extends to a representation wg
in F(B) for a faithfully flat A-algebra B in CNLgy. On the other hand, we
have the Galois representation pp attached to Ry with aw o pp &~ pp on
H. By the universality of (Rg, pr), we have an 9-algebra homomorphism
0 : Rp — R such that 6 o pp =~ 7. We conclude from fapp ~ 0pp ~ mp
that 6o coincides with the inclusion map of A into B. Thus « is injective
on A = R/a. This shows (Nt) in 1.1 for (R, Im(«)) in place of (H, T') there.
See Theorem A.2.3 for more general result of this type.

By definition, the ideal C' defining Ay is invariant under A, because p
is A-invariant. Thus A naturally acts on A . Identifying Zp = Gal(F /F),
we have the restriction map res : Zp — Zp (= Gal(E/E)). This induces
a A-equivariant algebra homomorphism res : Ap — Ap. We now take a
closed O-subalgebra A} in Rp which is stable under the action of A. We
can take A, to be Ay, but some other choice is also possible. The map
a : A, — a(A’;) coincides with res on the image of A and is equivariant
under the Galois action. Let I be a normal integral A',-algebra which is a
member of CNLg. Let 7 : Rp — [ be a A';-algebra homomorphism. We put

" =m(ra ®n, id) : RF&X\)AfF]I — Tand p'y = m(x ®ar, id) : RE®A’FH — 1

for the multiplication m : I& A, I — I, where [y = Im(~). Here “®" indicates
the completion of the algebraic tensor product under the adic topology of
the maximal ideal of the algebraic tensor product. Since the condition (Nt) is
insensitive to tensor product, 7o ®id : Rp ® XFH — Rg® ,\/F]I again satisfies
(Nt) if « is surjective. Note that R F@ v [ is an [- algebra and hence /\’F has
a trivial section of [-modules. Thus we get from Corollary 1.1.

THEOREM 2.2. — Assume (Alp) and one of (Ex), or (TRy) for p|p.
(TRq) for q outside p. Let I be a normal integral A'y-algebra in CNLy and

7 : Rp — I be a A'lz-algebra homomorphism which is a morphism in CNL.
Then we have, for A = Gal(F/E),

(i) Spec(Im(«)) is the maximal subscheme of Spec( Ry ) fixed under
the action of A ;

(ii) If a is surjective, then Cq(p'p; 1) = C1(Ap; 1)/ (0 — 1)Ci(ANp; 1),
where ¢ is a generator of A.

Suppose that « is surjective and I is a A’m-module of finite type. We now
take a subalgebra A, of Ry containing a(A';). Note here that Cy (p'y; 1) can
be different from Ci(p;I) for pfy = m(r @y id) : Rp @51 T — 1. We now
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compute the difference using the following diagram :

[
AIE ®Q(AIF)]I — AIE ®AEH—>H

l l

id ®6
RE®Q(A/F)]I — RE@AQEH_)H'

We have an exact sequence, writing I' = Rg @ I,

Tor! (I, Ker(p'y)) — C1(1d @8; T) @1 I — Cy(pe; T) — Cy(pty; 1) — 0 .

By the diagram, since the multiplication map has a section of A’;-modules,
we have

Cl(ld (X)G, T) = 01(9; AIE ®AIE H) ®A39 RE and

Since 6 is a scalar extension to [ of the multiplication map : A’ D a(AL) Ay —

A';. Thus we see that C(6; A’ @, I) = Q41 /a(ar) @ay, I, and we have an
exact sequence :

(Ext4) TOI?(H, Ker(p'y)) — Qa1 jaay) @ay, I —

C1(Ap;1)/(o = 1)C1(AR3; 1) — Cr(pp; 1) — 0.
Then as seen in [H3] Lemma 1.11, if A, = O[[Wp]] and A, = O[[Wg]] for
a p-profinite subgroup Wx of Zx, we have Q1 /x, = Ay @2 Wg/ res(Wr),
and hence C1(id @0;T)@r [ =2 1@z Wg/res(Wr). We write Ax and px for
Ay and p'y when Ay = Ax. Assume that A}, contains Ap. By a similar
argument using the following diagram with exact rows :

—~ [’
A'F®AF]I — AIF ®A/F]I—>H

;L\ id ®6 l
RF@AFH — RF@A%H_)]I,

we get the following exact sequence :
(Ext'4) Qprynr@apl = C1(Ap; 1) = Cy(Np; 1) — 0

Here I may not be a Ap-module of finite type, but we assume it is A’-
module of finite type. The exactness of the above sequence follows from the
compactness of these modules and [EGA] IV, 0.20.7.18.
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3. — Selmer groups

Keeping notation introduced in the previous section, under a suit-
able assumption, we deduce the control theorem for the Selmer group
Sel(Ad(¢)®v "), from the control theorem of the deformation rings (The-
orem 2.2). Then assuming the transcendence of ¢1 ,(¢,) over Z, for the
geometric Frobenius ¢, at p and the co-torsionness of Sel(Ad(y))q over I,
we prove the co-torsionness of Sel(Ad(y) @ v~!) q over I[[T]].

3.1. Selmer groups. Here we suppose that £ = Q; so, instead of
writing primes in E as q, we use the Roman character ¢ for that. Let I be
an integral normal local domain complete under my-adic topology for the
maximal ideal my. We assume that [ is an algebra over O and I/my = F.
Let ¢ : Gg — GL,(I) be a continuous Galois representation. Thus E = Q
in the notation of the previous section. Let V' (¢) = I" be the representation
space of ¢ and W(y) be a subspace of V(¢) stable under Gg,. We define
two Galois modules V(¢)* = V @1 I* and W(p)* = W(p) @11*, where I* is
the Pontryagin dual module of I. Let Q.. /Q be the unique Z,-extension. We
identify Gal(Qs/Q) with I' = 1 4 pZ, by the cyclotomic character V. Here
N satisfies N/ (qbq) = ¢ for the geometric Frobenius ¢, at ¢. We write v = v,
for the inclusion of Gal(Q.,/Q) into O[[[']]. Let T',,, be the subgroup of I'
of index p™, and write Q,, for the fixed field of I',,,. We write the projection
wm : O[[T]] — O[[T'/T,,]] and put v,, = 7 0ov. We put form =1,2,...,00,

Vie@vy') =V(e)0oV(vy'), Wlp @ vy') = Wie)doV (')
where V(v,,') = O[['/T,,] for finite m.

LEMMA 3.1. — We have the following isomorphisms of [[[T']|-modules for
m=1,2,...,00,

H'(Gq,,.V(¢)) = H(Go, V(e ®vy')")
H'(I, NGy, . V(e)" /W) ) = H(L, V(e ® v, )" /W(p@v,')")

Moer/r, H' (7L~ V) [W(p)) = H (L, V(e @ vy ) [W(e @vy')Y)
forq#p,
where I, is the inertia subgroup at q of Gg. I[[T']] acts through coefficients

on the right-hand side, and on the left-hand side 1 acts through coefficients
but I' acts through the group Gg_, by conjugation.
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Proof : Note that V(p ® v,;')* is the induced representation of (in-
jective type) of V(p)* restricted to Gy, to Gg, that is, V()@oV(r;!) is
isomorphic to the space of continuous functions Cont(I'/T,,, V(¢ ) ) on
I' with values in V(¢)*, on which Gy acts by ¢g¢(v) = ¢(g)é(¢~ ) for
¢ € Cont(I'/Ty,, V(¢)*). Thus by Shapiro’s lemma, we have the first iso-
morphism in the lemma. The second isomorphism can be proven in the
same manner because I,/I, N Gg,, = I'/T',,. Since I, C Gg.., the third
isomorphism is obvious and induced by the first.

We now fix a representation p satisfying the conditions defining D. Let
(Rg, pg) be the universal couple representing the problem D for p. We
assume that Spec(I) gives a closed subscheme of the normalization of the
reduced part of Spec(Rg). Let 7 : Rg — I be the projection and ¢ = 7pg
be the representation of Gy into GL4(I). Since p is odd, we can decompose
V(e @1¢Y) = Endy(V(¢)) into the sum of trace zero space sl(V(p)) and
the center Z(y). We write the representation on sl (V(y)) as Ad(p), that
is, V(Ad(¢)) = sl2(V(¢)). We have a filtration (x,) and (N;) of the Galois
representation of Gg, for ¢ € M' U {p} : V(pg,1,4) C V(pg). This induces
the filtration on sl,(V(y¢)) : 0 C V,F(Ad(p)) C V, (Ad(p)) C V(Ad(y))
given as follows (see [HO]) :

VE(Ad(9) = {4 € sL(V(¢))|8(V(pg,a,4)) = 0} and
Vi (Ad(p)) = {9 € sa(V(¢))[e(V(po,1,6)) CV(po,1,4)} -

Let F' be an algebraic extension of Q. Suppose (Alp) and that p
satisfies the condition defining Dr. Then the above filtration stable un-
der G, induces a filtration for each prime Q in M'% U {Plp} : 0 C
V3 (Ad(y)) C V5(Ad(p)) C V(Ad(p)). In other words, if 0Gg,0™' 2
Gr,. then VQi(Ad(go)) = O'ti(Ad(gD)). For each [-direct summand W of
V(Ad(p)) or V(Ad(¢) @ v;,;}) for 0 < m < oo, we define W* = W @ I* for
the Pontryagin dual I* of [. When m = oo, for each I[[T']]-submodule W of
V(Ad(p) @ v™1) = V(Ad(9))@oV(r~1), we define W* = W @y LT
for the Pontryagin dual [[[T']]* of [[[T']]. We also put

VE(Ad(p) @ v,') = Vi (Ad(p)@oV(vy,') for m =0,1,...,00.

We let the Galois group act on W* through W and write ® for one
of Ad(y) and Ad(y) @ v,;! for m = 0,1,...,00. For each prime ideal Q
of F' and a subset £ of M, we consider the following subgroup Lg of
HY(Gro, V(®)*) :

Lo =ker(H'(Gp,,V(®)*) — H' (1o, V(®)*/V3(®)*)) for Q € LU{P|p},
Lo =ker(H' (Gp,,V(®)*) — H'(Ig,V(®)*)) for Q outside £ U {P|p} .
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Then associated Selmer group of ¢ over F' is defined by
(Sel)  Selg(®),p = Noker(H' (Gp, V(®)*) — H'(Gr,, V(®)*)/Lg)) -

The Selmer group defined in [G] Section 4 is equal to Selg(Ad(y))/F,
which we write simply as Sel(Ad(y)), . By a general theory due to Green-
berg [G] p. 217, the Pontryagin dual Sel*(Ad(¢)),r of Sel(Ad(y)),r is of
finite type over I. In this case, starting from a modular Galois representa-
tion p, it is basically known by Flach [F] and Wiles [W] that Sel*(Ad(y)),q
is an [-torsion module of finite type if Spec(I) gives an irreducible compo-
nent of Rg. It has been conjectured by Greenberg that Sel”(Ad(¢)),r (resp.
Sel*(Ad(¢)) ® v=1)/p) is an I-torsion (resp. I[[I']|-torsion) module of finite
type if I is sufficiently large.

If F/Q is a Galois extension, by definition, Gal(F/Q) naturally acts on
Sel*(Ad(¢)),r. and the restriction map of cohomology takes Sel(Ad(y)),
into Sel(Ad(¢)),r. By Lemma 3.1, for the subfield Q,, of Q. we have the
following commutative diagram for n > m :

Selﬁ(Ad(go))/@m o Selﬁ(Ad(go)@Vn:l)/@

SelE(Ad(go))/@n o Selg(Ad(go)@Vn_l)/@

where ., , is induced by the natural inclusion V(Ad(¢) ® v;')* C
V(Ad(¢) @ v;1)* induced by the dual map of the projection O[['/T',,] —
OI[I'/T,,]. Since the formation of Galois cohomology commutes with injec-
tive limit of coefficients, we get the following version of a result of Greenberg
[G] Proposition 3.2 :

(Sel1) tim Sel(Ad(¢));q,, = lim Selc(Ad(¢) @ v,")

— Selo(Ad(p) © v ™) s = Sel(Ad(2))q.. -

3.2. Mazur modules and Selmer groups. We return to the situation
in 2.1. We assume (Alp) and the conditions defining Dr for p. Take a A-
algebra homomorphism 7 : Rp — [ and suppose that [ is a A p-module of
finite type. Let ¢ = wpr. We consider the scalar extension R = Rr @, [,
which is naturally an [-algebra. Then we consider the module {21 of mg-
adically continuous 1-differentials over [. Then

Homp(Qr/1, M) = Homp, (g, /o, M) = Derp, (Rp, M)



16 H. HIDA

for each topological [-module M of finite type or an injective limit of such
modules. Here every homomorphism and derivation as above is supposed to
be continuous under the my-adic topology. We consider the ring Rp[M] =
Ry @ M with M? = 0. Then for § € Dery . (Rp, M), we have an A p-algebra
homomorphism «(¢) : Rp — Rp[M] given by r +— r @ 6(r). Any Ap-
algebra homomorphism, inducing the identity modulo M, is of the form
((6): Rp — Rp[M] for a derivation é.

We consider the deformation p : Gr — GLy(Rp[M]) of pp. Then
we can write down p = pp @ u' for v' : Gp — Endy(M @& M). Define
u(c) = u'(c)pp(c)~'. Then

u(o7) = (07)pr(07) ™" = (prp(o)u () + u'(0)pp(7))pr(o7) ™
— Ad(pr)(o)u(r) + u(o) .

Note that det(1 @ u) = Tr(u) for v € Endy(M @ M). Thus by (det)
in 2.2, u is a 1-cocycle, under the adjoint action Ad(pp) on Ad(M) =
V(Ad(y)) ®1 M in Endy(M & M), having values in Ad(M ). One can check
that the map : p — the cohomology class of u from the set of deformations
of pr of type D is an injection. For primes Q in M r(x), by (x o), the order
of p(Ig) is prime to p, and thus (a) u(Ig) = 0. For Q@ € M/, or Q|p, we have
() w(Gry ) C V5 (Ad(p)) @1 M and () u(Ig) C V3 (Ad(y)) @1 M. Since G,
normalizes Ig, the non-splitting of the exact sequence in (Ng) or (Regp)
shows that (c) implies (b). It is obvious that if we are given a 1-cocycle u
satisfying (a) and (c), p = pr @upr is a deformation of type D, . Thus we get
a version of the results in [MT] Proposition 25 and [HT] Proposition 2.3.10 :

THEOREM 3.1. — Suppose that [ is a A p-module of finite type. We have
Homp(Qr/1, ") = C1(\ 1)* = Selp (Ad(p)) /7

where A is given by m o (7 ®id) for the multiplication m : Iy @4, I — [ with
Iy = Im(7) and “¢” indicates the Pontryagin dual module.

3.3. Control theorem of Selmer groups of Ad(y). We now assume that
E =Qand F = Q; C Q. Then it is easy to check that if p satisfies the
condition of Dp, then p restricted to G satisfies the conditions of Dp.
We assume (Alg_ ). Then we write «; (resp. A;, m;) for the morphism
o : R; = Rp — Rg (resp. O[[T';]] in A, the multiplication m : Ty@,; I — ).
We write p; for the universal representation realized on R;. Now let Spec(I)
be an irreducible component of the normalization of Spec(Rg) and write
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7 : Ry — I for the projection map. We assume that [ is a torsion-free Ag-
module of finite type. We apply the above theorem to 7; = 7a; : R; — L
We write A\; = mj o (7; ® id). Under (Alg_ ), by Theorem 2.1, Im(7;) =
Im(7) = Iy independent of j. Then similarly to «;, we can construct an
algebra homomorphism «; : Ry — R; so that o o pr = p;. Then a; i
induces a projection map

Ci(mr;Ip) — Ci(7j;1p), Cr(my; I) — C1(my; 1) and Cy(Ag; 1) — Ci(Aj; 1) .

Since Ry is topologically of finite type over A;, all these modules are
made of compact modules. Note that projective limit is an exact functor
on the category of compact modules. Then we take the projective limit of
these modules, and write them as Cy(Ax;I), C1(7oo;I) and Cy(moo; ).
Then we have an exact sequence from (Ext4) in 2.2, for the generator +;

Ofrj = Gal(Qoo/Q]), k > 3 and Tj = RJ' ®AJ— I

(Ext5) Tor?j (I Ker(pg, ) = 1@z T;/Te = Ci(Ap; 1)/ (5 — 1)Ci(Ag3 T) —

Since these are compact modules, after taking projective limit with
respect to k, we still have the following exact sequence :

(Ext6) Tor, (I, Ker(ug; )) — 107, Tj(2 1) = C1(Aao; 1)/(7j—=1)C1(Ano; T) —
Cl()\j; H) — 0.

Suppose Ry is reduced. Then if Ry is a Ag- module of finite type,
Ci(Xo;I) is a torsion I-module of finite type. We now show that
Ci1(Ao; 1)/ (v — 1)C1(Aoc; I) contains actually a copy of I. For that, we look
into the following exact sequence obtained from (Ext3) in 1.1 :

Ci(mj510) @r, I SN Ci(Aj;I) = Ci(mj;I) - 0 for y =0,1,...,00.

We study Ker(¢;). By definition, A; is isomorphic to O[[I';]]. We write
A for O[[[]]. By (Ext2-3) in 1.1, this module is a surjective image of
Tor® (Ker(m ;), 1) if Iy is flat over A, where we write I° for Iy @4, I. Suppose
for the moment that Iy is A-flat. We write A° for A @, A. We first compute
Torfo(Ker(mj),A) when I = A. Identifying A with O[[T]], we see easily
that A° = O[[T]][S]/((1 4+ S)? — (14 T)?) for ¢ = p’. Then Ker(m;) is a
principal ideal generated by S — 7', and decomposing (1+ 5)? —(1+T1)? =
(S—=T)f(S,T), we have an isomorphism Ker(m;) =2 A°/(f(S,T)). Thus we
have an exact sequence :

0—=(S—T)A° = A° f(i’:,;) A° — Ker(m;) — 0.
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Tensoring A, we get Tor?’ (Ker(m;),A) = 0 and lim Tor?’ (Ker(m;),A)
J
= 0. Since [ is a A-module of finite type, Ker(:;) is a torsion I-module
in general. In particular, if Cy(Ag,I) is of I-torsion, Cy (7o, by) @y, I is of
[-torsion.

Writing II; for I ® A; I, we have projective systems of surjective homo-
morphisms I; — [;_; and Ker(m;) — Ker(m;_1). Writing I for lim I;,
J
we know that Ker(mo,) = lim Ker(m;) and that Tor™ (Ker(mao ), I) =
J
(11_@ Tor]ij (Ker(m;),T). Note that I, = I@gp. It is obvious that Ker(m., ) is

j

the ideal of the diagonal A in Spec(lly) Xgpec(oy Spec(I). Obviously A is irre-
ducible and spanned by S —T'. Thus Ker(my,) is I -free. This implies that
Tor}® (Ker(mao ), I) = 0. Thus we have an exact sequence of I[[I']]-modules :

0— C1(7Foo;lp) @p, I Loy Ci1(Aso; I) = Ci(moo; 1) — 0.

When [, is not flat over A but A-torsion free, then I, can be embedded
into a A-free subalgebra I' of I such that I'/I; is pseudo-null. Thus
we can repeat the above argument in the category of [-modules with
pseudo-morphisms. We then get the above exact sequence with pseudo-
null Ker(to).

We now study Ci(mu; o). Then, by definition, we have C;(m; ;1) =
Qy/a;» where Homy, (€2, /5;, M) is naturally isomorphic to the module
Dery, (Iy, M) of continuous derivations over A; for all compact [p-modules
M. As we have seen (see also [H3] Lemma 1.11), we have Ker(my,) =
(S — T)]IO@)DHO. This shows that Cy(mu; Ip) = Iy and that Cj(me; L) is a
torsion I[[I']]-module of finite type.

Suppose either that Ry is reduced and is a A-module of finite type or
Ry is reduced and Spec(ly) is an irreducible component of Spec(Rg ). Then
C1(Xo; 1) is of torsion and cannot contain a submodule isomorphic to I.
Thus the inclusion of I into C1(Ax; ) composed with the projection from
C1(A;; 1) onto I is a non-zero [-linear map, and it is injective. Writing M for
Sel'vy (Ad(p) @ v~1) /g, we have a commutative diagram with exact rows :

€j

10z, T, — M/* —1)M — (A1) — 0

n l l

€o

0 — T®gT — M/y-1)M — Ci(A;I) — 0 ,
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where the last two vertical arrows are surjective and the first vertical map
is injective induced by the snclusion : I'; C I'. Thus ¢; is injective.

As is remarked in Section A.1 (see (AI) after Corollary A.1.3), the
condition (Alg_, ) is equivalent to (Alg). We record what we have proven.

THEOREM 3.2. — Suppose (Alg), the conditions of D for p and that 1 is a
torsion-free Ay-module of finite type giving the normalization of an irreducible
component of Spec(Rg). Let Sel(Ad(¢) @ v~'),q be the Pontryagin dual
module of the Selmer group Sel;(Ad(p) @ v~!) /g. We have the following two
exact sequences of I-modules :

]I®prji>sel* ,(Ad(cp)@l/_l)/(@/(’ypj—l) Sellyy (Ad(p)@r ™) g—Ci(Aj;1)—0
Cy(Too; o) @1, 1 L0, Sel* J(Ad(p) ® 1/_1)/@ —-1—-=0

with pseudo-null kernel Ker(t,), which vanishes when I is flat over A.
Moreover suppose that Rg is reduced and either that Rg is a A-module of
finite type or that Spec() is an irreducible component of Spec(Rg). Then ¢
is injective.

3.4. Cotorsionness of the Selmer group over [[[I']]. We write A} for
the subalgebra of R, topologically generated over O by a(pp 1 p(¢p)) for
F = Qj, where ¢p is the geometric Frobenius element in Dp /Ip. Taking
a unit u in O such that pg; ,(¢,) = umodmg, we assume that, with the
notation of (xp ).

(Ind) the subalgebra of Iy topologically generated over O by ¢y p(¢,) is 1somor-
phic to the one variable power series ring O[[X]] via v1 ,(dp) —u — X.

Since 7 takes pg.1,,(¢p) to @1 p(¢p). po.1,p(¢p) — u is analytically in-
dependent over 9. Since p totally ramified in Q,, « takes pr 1 p(¢p) to

pQ,1,p(¢p). Thus (Ind) implies

(Ind;) the subalgebra of R; topologically generated over O by pp1p(dp) s
isomorphic to O[[X]] via pp1 p(dp) —u — X and is stable under

Gal(Q;/Q).

Thus A" = A’ is independent of j and R; is naturally an algebra over
A'. We also suppose that I is a Ay-torsion free module of finite type. Since
Iy is an integral domain, [, is a A'-torsion free module. We write /\; for the
composite of 7; @id : RJ@A/H — I,@ /I and the multiplication : I, Al — 1,
where “®” indicates the completion under the adic topology of the maximal
ideal of the algebraic tensor product. We prove the following theorem in this
section :
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THEOREM 3.3. — Suppose (Aly), (Ind), that [ is a torsion-free A-module of
finite type giving the normalization of an irreducible component of Spec(Rg)
and that Sel’y (Ad(y)),q is a torsion I-module. Then we have

(1) Selyy(Ad(p)) ® v™1) g is a torsion I[[T]]-module of finite type;

(ii) There is a pseudo-isomorphism of Sel’y (Ad(p)) @ v™!) g into
M x 1 for a torsion [[[I']]-module M = C1(\ ;1) such that M /(v — 1)M is
a torsion I-module and M is pseudo-isomorphic to C(7s; lo) @1, I;

(iii) If Selyq (Ad(¢)),q is a pseudo-null I-module and A' = 1, then
Sel’y (Ad(¢)) @ v~1)q is pseudo isomorphic to I, on which T' acts trivially ;

(iv) Ifly is_ formally smooth over O, then we have the following exact
sequence of [[[T']]-modules :
0— Ci(moe; ) — C1(A;T) — QH/A/ -0,

where QH /A s the module of continuous 1-differentials or equivalently is the

my-adic completion of QH/ A (which is a torsion I-module of finite type by
(Ind)).

By the theorem, Sel}.(Ad(¢))®@v ") q is a torsion I[[I']]-module of finite
type for any subset £ of M'. The theorem combined with Theorem 3.2
reduces the study of Sel}.(Ad(¢)) @ v~") g to the study of C(7og; 1) if I is
formally smooth over .

Here is a concrete case where the theorem applies. For a positive integer
N prime to p, let h°"4(N;9) be the universal ordinary Hecke algebra
for GL(2)/¢. Then h°™(N;9O) is an algebra over O[[I' x (Z/NpZ)*]]. The
algebra structure is given so that h°*4(N;9)/P,h°*(N;9) is isomorphic
to the ordinary Hecke algebra of weight « + 1 of level Np, where P is
the prime ideal of A generated by v — N (v)*. Take a primitive character
¥» modulo Np and suppose that @) has order prime to p. We take the
algebra direct summand h(v) of h°*(N; ) on which (Z/NpZ)* acts by
. Take a maximal ideal m of h(¢) with residue field F and write H for
the m-adic completion of the Hecke algebra h(t). Then we have a unique
isomorphism class of Galois representations p : G — GLy(H) as in [H1]
(see also [DHI] Section 1) if p = pmod m is absolutely irreducible. In this
case, p and p satisfy the requirement of the deformation problem Dg. Since
H is reduced and A-free of finite rank (see [H1] and [H] Chapter 7), the
reducedness and the finiteness of Rg over Ag follows from Wiles’ result
[W] Theorem 3.3 asserting that (Rg, pg) = (H, p) under the assumption
(Alp) for F = Q(4/(—1)(r=1/2p). Thus under this condition, for each
irreducible component Spec(I) of the normalization of Spec(H ) and the
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projection 7 : H — I, Sel}y,(Ad(¢))/q for ¢ = 7p is a torsion I-module
of finite type. This also follows from a result of Flach [F] in some special
cases. The condition (Ind) can be verified in this case as follows. Note that
p0.1,p(0p) = T(p) in H. Thus ¢ ,(¢,) specializes to an algebraic integer
a, in O modulo P, with |a,| = p*/? for any archimedean absolute value | |
on Q(a, ) for infinitely many «. Thus ¢4 ,(¢,) is transcendental over £ and
hence (Ind) is satisfied. Thus in this case Sel’y,(Ad(¢) @ v™!) is a torsion
I[[I"]]-module of finite type.

We give two proofs of the theorem. The first one is just a repetition of
the argument in the previous section replacing A; by A’, which is easy
but we need to assume an additional assumption that [ is a A’-module of
finite type. The other one works in general, but we need to use the theory of
imperfection modules in [EGA] IV.0.20.6. Anyway we look into the following
exact sequence obtained from (Ext3) in 1.1 for y = 0,1,...,00:

Ci(mj;1p) @, I 4, Ci(N;T) — Cr(m;1) — 0

where m' : [y@,/I — I is the multiplication map and /\9 : R]-@ oI — Lis the
composition m' o (ra; ®id). Note here that the first term Cy(7j; Io) ®r, I is
the same as the case studied in 3.3.

We study Ker(¢;). As we remarked, here we assume that I, is a A'-
module of finite type and will deal with the general case later. Then Ker(t})

is a surjective image of Torgl (Ker(m'), I) if [ is flat over A and is a surjective
image up to pseudo-null error in general (see (Ext2) and (Ext2')), where we
write I' for Iy ®, I. Note that this fact holds independently of 7. We have

the long exact sequence for M' = Tor]fO(Ker(m' ),Ip) and I}y = Iy @a+ Lo :
0—>J\J’—>I®H;I—>I—>QHO/N —0
obtained out of the following short exact sequence :
0110 -1, —0.

Thus M' is an [y-module of finite type. Since /A is a torsion Ip-
module, localizing at a prime P outside Supp({ly,/a+), we have Ip/ I3 =
0, and by Nakayama's lemma, Ip = 0, which implies M}, = 0. Thus
Supp(M') C Supp(Qr,/ar), which shows that M' is a torsion I;-module
of finite type. Thus Ci(7s;1y) ®@r, I is pseudo-isomorphic to C; (A, ;) as
I[[T]]-modules. By Theorem 2.2, we have

Ci( A D)/ (7 = DC1(A; I) = C1(Ags I)
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Thus if C1(Ag;I) = Sely, (Ad(y)),q is of I-torsion, Cy(mo;1o) @1, I and
hence C(Aj; ) are I-torsion modules of finite type. The Krull dimension of
C1(Ay; 1) over I satisfies dimyp(Cy(Ag; 1)) < dim(I). By [EGA] 1V.0.16.2.3.1,
we have

dim(I[[T]) = dim(T) + 1 > dimyry)(C1(Al; D/ (v = DC1(A; 1)) + 1

Thus Cy(AL ;1) is a torsion I[[I']]-module, and hence C(7o;1y) @, I

is a torsion I[[T']]-module of finite type. Then Theorem 3.2 tells us that
Selyy (Ad(p) @ v~1) /g is a torsion I[[I']]-module of finite type.

A principal ingredient of the second proof is the theory of imperfection
modules in [EGA] IV §0.20.6; so, we recall the theory here and generalize
it in the case of compact adic rings. Here © is a valuation ring finite and
flat over Z, with residue field F. Let A be a base ring which is an object

of CNL = CNLp. If X — Y is a morphism in CNL, we write 2y, x for the
mx-adic completion of the module of one differentials of Y over X. Then
Qy /x is a Y -module of finite type and hence is compact. We consider local

algebra homomorphisms in CNL : A — A . B % C. Then by [EGA]
0.20.7.18 we have an exact sequence

ﬁB/A@BC Rk QO/A = ﬁC/B —0,

where “®” indicates the mc¢-adic completion. We define the imperfection
module T,/ 4 following [EGA] 0.20.6.1.1 by

Yopya = Ker(Qp a®pC 5 Qoya) -

Then we have the following commutative diagram with exact rows (see
[EGA] 0.20.6.16) :

o ~ jl o~ ~ o~ ~ p1 o~ ~
0 — Qua0aC — (24/404C) D (Qp/a®@pC) — Qp®pC — 0

l u, ®id J{ (vu)«Bid J{ Vi

Po

- -~ jO ~ ~ —~ ~
0 — Qpn@pC — (g ®(2p@sC)  — Qg —0,

where, writing f = u,®id and ¢ = vy, ji1(z) = 2@ f(z), p1(yDz) = z— f(y),
Jo(z) =g(z)® 2 and po(y d z) = g(z) — y. We put

T%/A/A = Ker(ﬁA/A®AC — QB/A@)BC) .
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Then by the snake lemma, we have an exact sequence (cf. [EGA]
0.20.6.17) :
(E1) R R R
0— Yg/A/A — Yeram — Yorpn — Qpra®pC — Qeja — Qeyp — 0.

Now suppose that v is surjective, and hence SAIC /B = 0. By [EGA]
0.20.7.20, we have another exact sequence :

(E1") Ker(v)/ Ker(v)? — QB/A@)BC — QC/A — 0.

If B/ Ker(v)? — C has a section of A-algebras (for example, if C is
formally smooth over A), then

0 — Ker(v)/ Ker(v)? — Qpa @ C — Qcypy — 0

is exact (cf. [EGA] 0.20.6.10). Since taking mp-adic completion is a left
exact functor, we have the exactness of

0 — Ker(v)/ Ker(v)? — QB/A@)BC — QC/A — 0.
This shows that if B/ Ker(v)* — C has a section of A-algebras, then
Ye p/a = Ker(v)/ Ker(v)?
and the following sequence is exact :
(E2) Oﬁrg/A/A—’TC/A/A — Ker(v)/Ker(v)2—>§B/A®BC—>QC/A—>O .

Let K be a finite extension of the quotient field L. of A = 9O[[t]] for a
variable t. Let [ be an A-subalgebra of K integral over A with quotient field
K. Thus dim(I) = 2. Since A is a Japanese ring, [ is an A-module of finite
type. Thus we have a surjection v : A[[X;,...,X,]] — [. This yields an
exact sequence

Ker(v)/ Ker(v)? — @;1dX; — Qg — 0.

Since Qg1 = 0, Q)4 is a torsion [-module of finite type. We also have
the following exact sequence :

OHTH/A/D _)QA/D ®AH—>§H/D —)Q]I/A—)O .

_Since any continuous derivation of A can be extended to K, the image
of QA/D RaIl=1dT = 1in QH/D is [-free of rank 1. Since {}/ 4 is a torsion
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I-module, QA/D ® 4 I has to inject into QH/D. Thus Tr/4/90 = 0. Let s € my,
and suppose s is analytically independent over 9. Let A = O[[s]] C 1. We
consider SA)H /A- Then we have, taking a surjective algebra homomorphism
o' A[[ Xy, XS]] > T

Ker(v')/ Ker(v')*> — @;1dX; — Qs — 0 .

If t and s are analytically independent over O, then I becomes integral
over the power series ring O[[T, S]] = O[[¢, s]], which is impossible because
dim(I) = 2. Thus ¢ and s are analytically dependent, and the evaluation
map v' : O[[T, S]] — [ at (¢, s) has non-trivial kernel P. The prime P cannot
have height 2 or more because dim(Im(v")) = 2. Thus P is of height 1, and
it is therefore generated by a single element f(7', S) because O[T, S]] is a
unique factorization domain. Then we have

of of . o
gt s)dt + 5 (t5)ds = 0 in Oy, and
Qoo = (O[ft, slldt @ O[ft, 8]]ds)/(—(t s)dt + g—é(t s)ds) .

Suppose %(t s) = 0. Then ﬁ(T S) is divisible by f(T,S), that is,

) d d d

f = fg for g € O[[T, S]] and hencenasé(t s) = (ga—f; + f3%)(t,s) = 0.
Repeatlng this argument, we find gS{ (t,s) = 0 for all n, and hence
f(T,S) € O[[T]] because O is of characteristic 0. This is in contradiction

to the analytic independence of t. Thus %(t, s) # 0. Similarly we know

that %(t, s) # 0. Since ds and dt has a linear relation, ds is [-linearly

independent. We thus conclude for an analytically independent s, QH /O[]
is a torsion [-module. We now look at the following exact sequence :

0 — Tyoso — QogoPorsnl = Qo — Qyorg — 0

Since s is analytically independent, Qg[[s]] /9 ®g[[s]]]l = [ via ds — 1.
Since Q]I/D[[S]] is a torsion I-module and Q]I/o @1 K is of dimension 1,
QD[[s]]/D®D[[s]]]I has to inject into Q]I/g This shows that T]I/D[[s]]/D =0.

We now consider the situation where we have a surjective 9|[s]|-algebra
homomorphism 7 : R — [ for an object R of CNLy. By (E1), we have the
following exact sequence :

0= Y% opa/0 = Tyorsyo — Yiyr/o — Qryora®rl = Quogg — 0,
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and Y1/p/o = Ker(r)/Ker(n)? = Cy(x;1) if I is formally smooth over O.
By the above result, this yields a short exact sequence :

0 = Yi/rso — Qrjosn@rl = Qryoy — 0.

Now we study how large the difference of Yy/r/o and Ci(7, 1) =
Ker(w)/ Ker(7)?, when I is not formally smooth over 9. The key point here
is that Ty /o is independent of the choice of s. We pick t' € R so that
7(t') = t as above. We regard R as an 9[[t]]-algebra through the algebra
homomorphism of O[[t]] into R taking t to ¢'. Then we have again an exact
sequence : R R R

0= Yi/rso = Lryoq@rl = Ly og — 0.

We have a surjective [-linear map r : Cy (7, ) — Ty/g/o from (E1) and
(E1). LetI' =1 Qoqg I and m : I' — I be the multiplication. In this case,
if I is flat over O[[t]], by (Ext2 and Ext2'), Ker(r) is a surjective image of
Tor]f (Ker(m),I), which is a torsion I-module of finite type, because I is an
9[[t]]-module of finite type. Even if [ is not flat over O[[t]], one can embed
I into an O[[t]]-flat module with pseudo-null cokernel. Thus Ker(r) is a
surjective image of Tor]f(Ker(m), I) up to pseudo-null error. The error is
annihilated by a power mﬁ” for a positive M independently of R and the
choice of t' with 7(¢') = t (but depending on I and #). Thus without any
assumption, Ker(r) is a torsion I-module of finite type killed by a non-
trivial ideal a of I independent of R.

We now give the second proof. Here we do not assume the integrality
of T over A’. Since the result over I is just a scalar extension of the result
over [, we only need to prove the assertions (i)-(iv) replacing I by [,. Thus
hereafter, we assume that Im(7y) = I and discard the assumption that
I is integrally closed. Thus hereafter, we write [ instead of I, for Im(x).
We pick ¢t € I so that I is integral over O[[t]]. We take t; € R; so that
a; x(tr) = t; and m(tg) = t. Then we apply the above theory to R = R;,
s = pra,p(op) € Rj for F = Q; and t' = t;. Then we have an exact
sequence of compact modules :

Ci(m;, 1) Tygr0 — 0,

where Ker(r;) is the image of a torsion [-module X = Tor];(Ker(m), I) of
finite type (independent of j) up to a bounded [-pseudo-null error. Taking
the projective limit with respect to j, we find that ro : Ci(7oo;l) —
Ty /Reo /O :m Ty /R; /o is surjective because of the compactness of these

j
modules and that Ker(r.,) is an I-torsion module of finite type. Thus rq,
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is an [[[I']]-pseudo-isomorphism. By our assumption : I = Im(7g), we
have Qp, N = C1(A}; ). By taking the projective limit of the exact
sequences : 0 — Typg o — QR],/A;@R]I (= Ci(A;D) — QH/A; — 0 for
A" = O[[s]], we get another exact sequence :

.
00

0= Tyr_ /o = Ci(A; 1) — QH/A/ — 0 for Ry, = lim R; .

J

Since ﬁﬂ /A is a torsion [-module of finite type, T]I/ R../9 is pseudo-
isomorphic to C(7;1) as I[[I']]-modules. Thus Cj(7.;I) is pseudo-
isomorphic to C; (A ;1) as [[[I']]-modules. By Theorem 2.2, we have

Cr(A; /(v = DC1(Aee; T) = Cr(Ags I) -

As in the first proof, the assumption that Sel’y,(Ad(¢)),q is a torsion
I-module tells us that C (7g; I) is of [-torsion. Again by the exact sequence :

Ker(rg) — Cy(mo; 1) — C1(Ay; 1) — QI/A/ -0,

the I-torsionness of Ker(ry), Ci(mo;1) and QH/A/ tells us the same for
C1(Ay;I). Then we conclude the assertions (i)-(iii) as in the first proof. If
I is formally smooth over O, Ker(r;) = 0 for all j. The assertion (iv) follows
from this immediately.
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Appendix : control of universal deformation rings of representations

In this appendix, we give a general theory of controlling the deformation
rings of representations of a normal subgroup under the action of the
quotient finite group.

A.1. — Extending representations

Let G be a profinite group with a normal closed subgroup H of finite
index. We put A = G/ H. In this section, we describe when we can extend
a representation 7 of a profinite group H to GG (keeping the dimension of
7). The theory is a version of Schur’s theory of projective representations
[CR] Section 11E.

A.1.1. — Representations with invariant trace

Let O be a complete noetherian local ring over Z, with residue field
F. We consider the category CNL = C'N Ly of complete noetherian local
O-algebras with residue field F. Any algebra A in this section will be
assumed to be an object of C NL. For each continuous representation
p:H — GL,(A) and o € G, we define p?(g) = p(cga™").

We take a representation = : H — GL,(A) for an artinian local O-
algebra A with residue field F. We assume one of the following conditions :

(Aly) p = m modmy is absolutely irreducible for the maximal ideal m 4
of A;
(Zp) The centralizer of p(H ) as an algebraic subgroup of GL(n)y is the
center of GL(n).

Of course the first condition implies the second. There are some other
cases where the last condition is satisfied; for example, (Z) holds if the
following condition is satisfied :

(Redy) p is upper triangular with distinct n characters p; at diagonal
entries, and its image contains a unipotent subgroup U' such that
u'/(u',u"y=U/(U,U) for the unipotent radical U.

LEMMA A.1.1. — Suppose (Zy). Then the centralizer of = in GL,(A)
is A*.

We assume the following condition :
©) 7 =c(o)'7%(0) with some ¢(c) € GL,(A) foreach o € G .
If we find another ¢'(0) € GL,(A) satisfying 7 = () "' 77¢'(o), we have

m=7c (o) elo)me(o) (o),
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and hence by Lemma 1.1, ¢(¢)~'¢/(¢) is a scalar. In particular, for o, 7 € G,

(o) 7 Te(or) =1 =c(r) nTe(T) = e(7) (o) T nTe(o)e(T),

and hence, b(o,7) = c¢(o)c(t)e(or)™ € A*. Thus c(o)c(7) = b(o, T)c(oT).
This shows by the associativity of the matrix multiplication that
(elo)e(r))elp) = W(a, 7)e(07)e(p) = W(a, 707, p)e(op) and
c(o)(e(r)e(p)) = e(@)b(T, p)e(Tp) = b7, p)b(0, Tp)e(0Tp)
and hence (o, 7) is a 2-cocycle of G. If h € H, then
7(g) = c(ht) 'n(hrgr 'R e(hT) =
c(ht) ' w(h)e(T)n(g)e(m) m(h) " e(hT).

Thus c(h7) '7(h)c(t) € A*. Thus if we let h € G act on the space
C(G; M,(A)) of continuous functions f : G — M,(A) by flh(g) =
7(h)~1 f(hg), then c is an eigenfunction belonging to a character ¢ : H —
A*. Now we take n : G — A* such that n(hr) = {1 (h)n(r) for all

h € H. For example, writing G = || .r H7 (disjoint), we may define
n(h7) = £~1(h). We replace ¢ by nec. Then c satisfies that

(m) c(ht) = 7n(h)e(r) forall h € H .
Since ¢(1) commutes with Im(7), ¢(1) is scalar. Thus we may also assume
(1d) o(1)=1.
Note that for h, h' € H,
b(ho,h't) = c(ho)e(h'T)e(hoh'T) ™ =
r(h)e(o)m(h)e(T)c(or) ' r(hah'o™1) ™1
= 7(h)x(R"b(o, 7)m(hah'c )™t = b(o, 7).

Thus b is a 2—cocycle factoring through A.

If b(o,7) = ((0)((7)((o7)~" is further a coboundary of ( : A — A*,
we modify ¢ by (~!c. Since ( factors through A, this modification does not
destroy (7). Then ¢(o7) = ¢(o)e(7) and ¢(h7)e(7) for h € H. Thus ¢ extends
7 to G. Let d be another extension of 7. Then x(¢) = ¢(o)d(c)™! € A isa
character of G. Thus ¢ =d ® .

We consider another condition
(Inv) Tr(r) = Tr(x?) forall o € G.

Under (Alp), it has been proven by Carayol and Serre [C] that (Inv) is
actually equivalent to (C'). Thus we have
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THEOREM A.1.1. — Let 7 : H — GL,(A) be a continuous represen-
tation for a p-adic artinian local ring A. Suppose either (Aly) and (Inv)
or (Zy) and (C). Then we can choose c¢ satisfying (7). Then b(o,7) =
c(o)e(T)e(or)™! is a2—cocycle of A with values in A*, and if its cohomology
class in H*(A, A™) vanishes, then there exists a continuous representation
7 of G into GL,(A) extending ©. Moreover all other extensions of = are
of the form gy ® x for a character x of A with values in A*. In particular,
if H* (A, A*) = 0, then any representation © satisfying either (Aly) and
(Inv) or (Zy) and (C') can be extended to G.

COROLLARY A.1.1. — If A is a p—group, then any representation © with
values in GL,(F) for a finite field of characteristic p satisfying either (Al )
and (Inv) or (Zy) and (C') can be extended to G.

This follows from the fact that |F*| is prime to p, and hence H?(A,F*)
= 0. When A is cyclic, then H%(A, A*) = A*/(A*)? for d = |A|. If for a
generator o of G, £ = ¢(c?)n(c?)™! € (AX)?, then b is a coboundary of
((07) = ¢/, By extending scalar to B = A[X]/(X? - ¢), in H*(G, B®),
the class of b vanishes. Thus we have

COROLLARY A.1.2. — Suppose either (Alr) and (Inv) or (Zr) and (C). If
A is a cyclic group of order d, then = can be extended to a representation of
G into GL,(B) for a local A-algebra B which is A—free of rank at most d.

Let p = m modm 4. We suppose that p can be extended to . Then
we may assume that the cohomology class of b(c, 7) mod m 4 vanishes in
H?(G,F*). Thus we can find ( : G — A* such that

a(o,7) = b(o,7)(0)(T)¢(o7) " modm, =1.

Then a has values in @m(A) = 1 4+ my4. In particular, if the Sylow p-
subgroup S of G is cyclic, we have H?(S, @m(A)) = @m(A)/@m(A)|S|.
Write ¢ for the element in @m(A) corresponding to a. Then for B =
A[X]/(X151 =€), the cohomology class of a vanishes in H?(S, @m(B)) This
implies that in H%(S, B*), the cohomology class of b vanishes.

COROLLARY A.1.3. — Suppose either (Al ) and (Inv) or (Zy) and (C).
Suppose A has a cyclic Sylow p—subgroup of order g. If p can be extended to
G, then 7 can be extended to a representation of G into GL,(B) for a local
A-algebra B which is A—free of rank at most g.

We now prove the following fact :

(A) When A is cyclic of odd order and n = 2, the condition (Aly) is
equivalent to (Alg).
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We start a bit more generally. Let p be an absolutely irreducible repre-
sentation of G into GL,(K) for a field K. For the moment, n is arbitrary.
We assume that A is cyclic of order prime to n. We prove that p cannot
contain a character of H as a representation of H, which shows the equiv-
alence when n = 2. Suppose by absurdity that p restricted to H contains
a character y. If x is invariant under the conjugate action of A, x can be
extended to a character of G, and it is easy to see in this case, p has to con-
tain an extension of y, and hence reducible. Thus Y is not invariant under
A. If x is invariant under a subgroup H' D H of GG, again by the same
argument as above, p gets reducible on H' containing a character y' of H'
extending y. Thus we may assume that conjugates of y' under A' = G/H'
are all distinct. By Mackey's theorem, the induced representation Ind(x’)
for H' to G is irreducible. By Frobenius reciprocity or Shapiro’s lemma,
the induced representation Ind(x’) has a unique quotient isomorphic to p.
Thus |A'| = n, which contradicts to the assumption that the order of A
is prime to n. Of course, one can generalize the above argument for more
general A not necessarily cyclic.

A.2. — Deformation functors of group representations
We suppose that G satisfies the following condition (cf. [T]) :

(pF) All open subgroup of GG has finite p—Frattini quotient

We fix a representation p : G — G L, (IF) satisfying (Zy ). In this section, we
study various deformation problems of p and relation among the universal
rings.

A.2.1. — Full deformations
We consider a deformation functor 75 : CNL — SETS given by

Fu(A)={p: H - GL,(A) | p=p modm}/ =

where “~” is the strict equivalence in GL,(A), this is, the conjugation by

elements in (/}’IH(A) = 1+ maM,(A). The functor Fy is representable
(IT] Theorem 3.3) under (Z ). We write (R, ppr) for the universal couple.
Since p¢ restricted to H is an element in Fp(Ry ), we have an O-algebra
homomorphism « : Ry — R¢ such that apy = pe|m-

We like to determine Ker(«) and Im(«) in terms of A. By choosing a lift
¢o(0) € GL,(O) for o € G such that ¢y(0) = p(c) mod me, we can define

for any p € Fa(A), p7(9) = plogo™) and pl?)(g) = co(0) 7" p7(g)co(o) in
Fr(A). In this way, A acts via ¢ — [0] on Fy and Ry. Then as seen
in Section 1, we can attach a 2-cocycle b on A with values in G,,(A4)

to any representation p € Fp(A) with pl?l ~ p in the following way.
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First choose a lift ¢(o) of p(o) in GL,(A) for each ¢ € (G such that
p=clo) p?c(oc)and c(hT) = p(h)c(r) for h € H and 7 € G. Then we know
that ¢(o)c(7) = b(o, 7)c(o7) for a 2—cocycle b of A with values in @m(A) If
we change ¢ by ¢’ such that ¢/(0) = ¢(0')((0) for ((¢) € Gn(A), we see from
c(o)e(t) = b(o,7)e(or) that '(o)d' (1) = b(o,7)¢(0)((T)c (o7)¢((oT)7 .
Thus the cocycle b’ attached to ¢’ is cohomologous to b, and the cohomology
class [b] = [p] € H*(A,G,,(A)) is uniquely determined by p. If [p] = 0, then
b(o,7) = (o) ¢(7) ¢(oT) for a 1-cochain (. We then modify ¢ by ¢( and
by constant so that ¢(1) = 1. Then ¢ extends the representation p to a
representation 7 of G (Theorem A.1.1).

LEMMA A.2.1. — Suppose (Zy;) and that n is prime to p and pl°l ~ p for
p € Fru(A). If det(p) can be extended to a character of G having values
in an A-algebra B containing A, then p can be extended uniquely to a
representation © : G — GL,(B) whose determinant coincides with the
extension to G of det(p).

Proof : by applying “det” to ¢ and b, we know that [det(p)] = [det(d)] =
[p]™. If n is prime to p, the vanishing of [p]™ in Hz(A7@m(B)) is equiv-
alent to the vanishing of [p]. Thus if det(p) extends to G (that is [p]" =
0), then p extends to a representation = of G which has determinant
equal to the extension of det(p) prearranged. We now show the unique-
ness of 7. We get, out of 7, other extensions 7 @ y € Fg(B) for x €

HY(A,G,,(B)) = Hom(A, G,,(B)). Conversely, if 7 and 7' are two exten-
sions of p in Fg(B), then for h € H, n'(c)p(h)x'(c)™! = w(o)p(h)w(c)"
and hence 7(c)"'7'(0) commutes with p. Then by Lemma A.1.1, x(o) =
m(c) 'x'(o) is a scalar in G,,(B).
x(o7) =n(or) 7' (o7) = 7(7) ' w(o) 7' (o) (7)
= n(7) 7 x(0)7'(7) = x(o)x(7).

Thus Y is an element in H'(A,G,,(B)) and 7' = 7 ® . which shows that
det(n') is equal to det(m)x™. If det(#') = det(7), then x™ = 1. Since y is of
p—power order, if n is prime to p, y = 1.

Here is a consequence of the proof of the lemma :

COROLLARY A.2.1. — Let my € F(B) be an extension of p € F(A) for
an A-algebra B containing A. Then we have

{mo @ x | x € Hom(A, G (B))} = {7 € F&(B) | mu = p} -

It is easy to see that if H*(A,F) = 0, then H?(A, @m(A)) = 0 for all A
in CNL. Therefore we see, if H*(A,F) = 0,

®) FH(A)=H°(A, F(A) X Fs(A)/A(A) for A(A)=Hom(A, G, (A)).
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Here we let Y € A(A) act on Fg(A) via 7 —> = @ x. Suppose that

F4 is represented by a universal couple (R a,pu,a) and [pgal = 0 in
H%*(A,G,,(Rp,a)). Then for each p € F5(A), we have ¢ : Rya — A
such that pg A = p. Then ¢.[puya] = [p] and therefore, [p] = 0 in

H2(A, @m(A)) This shows again (*).

Let us show that the functor F I% is representable by applying the
Schlessinger criterion (see [Sch] and [T] Proposition 2.5). For a Cartesian
diagram in CNLg :

T

A3:A1XAA2 Em— Al

a2

A2 I A,

we need to check the bijectivity of the natural map
vir s Fia(Ax xa Ag) — Fig (A1) X pacay Fii(As).
We already know from the representability of Fj; that

YH : }_H(Al X A AQ) = fH(Al) XFH(A) fH(AZ)

Since F4 is a subfunctor of Fp, F5(A1) X Fa(a) F&(A,) is a subset
of Fri(A1) X5y a) Fu(Asz), and hence 74 is injective. Take an element
(p1,p2) of F&(A1) X Fa () F5(As). Then aqp; ~ asps, that is, there exists
T € ézn(A) such that za1p127! = agp,. We may assume that a; is
surjective (cf. [T] Proposition 2.5). Then we can lift = to z' € @n(Al).
Then replacing p; by z'p;z' ™1, we may assume that a;p; = «ypy. Thus
p = p1 X ap2 hasvaluesin GL,(A;x 4A4,). Itis easy to see that p is invariant
under A. Thus 74(p) = (p1, p2), and therefore 7% is surjective. Then it is
obvious that F4 is represented by Ryan=Ru/YseaRu(lo] —1)Rp.

PROPOSITION A.2.1. — Suppose (Zy). Then F5 is represented by
(RH)AypH,A)fOT‘RH,A = RH/C( with a = EaeARH([O'] — 1)RH and pg A =
pu moda. If either [pp a] = 0 in HZ(A,@M(RHA)) or H*(A,F) = 0, then
we have Fg /A = F5 viaw — 7p.

We now consider the following subfunctor F¢ ; of Fp; given by

Fa,u(A)={plu € Fu(A) | p € Fg(B) for a flat A-algebra B in CNLy}.



ON SELMER GROUPS OF ADJOINT MODULAR GALOIS REPRESENTATIONS 33

Here the algebra B may not be unique and depends on A. Let us check
that Fg g is really a functor. If ¢ : A — A’ is a morphism in CNL
and p|lg € Fg,u(A) with p € Fg(B), B being flat over A, then A'® 4B
is a flat A'-algebra in CNL. Then (¢ @ id)p € Fa(A'@4B) such that
o(plr) = ((¢ @ id)p)|u. Thus Fr(yp) takes Fg u(A) into Fg g(A'), which
shows that Fg g is a well defined functor. For each p € Fg p(A), we
have an extension p € Fg(B). By the universality of (Rg, pi), we have
¢ : Rg — B such that ¢pg = p. Then p|p = (¢pa)|lo = v(paln) = papn.
This shows that ¢« is uniquely determined by p|y € Fg p(A). Therefore
¢ restricted to Im(«) has values in A and is uniquely determined by
plu € Fa u(A). Conversely, supposing that [apy| = 0 in HY(A,Gpn(B))
for a flat extension B of Im(«) in CNL, for a given ¢ : Im(a) — A which
is a morphism in C'N L, we shall show that p = papy is an element of
Fa, 1(A). Anyway app can be extended to G as an element in F(B), and
hence apy € Fg,u(Im(a)). We note that p can be extended to G because
[papr] = ¢«|apn]| which vanishes in H%(A, @m(B')) for B' = BR1m(a), A
Thus p € Fg rn(A), and Fg, g is represented by (Im(a), app) as long as
[apy] =0in H*(A, @m(B)) for a flat extension B of Im(«) in CNL.

We have the following inclusions of functors : 7y O F I% D Fe,u D
Fa/A, the last inclusion being given by p — p|g. The functor F 4 is
represented by Ry /a for a = Y,caRp([o] — 1)Rp. Because of the above
inclusion, if [apy] = 0 in H2(A, G,,(B)) for a flat extension B of Im(«) in
CNL, the ring Im(«) is a surjective image of Ry7/a = Ry a. If [pga]l =0
(for p.a = p moda) in H(A, @m(B’)) for a flat extension B’ of Ry a in
CLN, then py a € Fa,u(Rp ) and thus .7'-1% =Fa,u.

PROPOSITION A.2.2. — Assume (Z ;) and that [appg] = 0 in H*(A, @m(B))
Jor a flat extension B of Im(a) in CNL. Then Fg n is represented by
(Im(«), appr). If further [pr,a]l = 0 in Hz(A7@m(B’)) Jor a flat extension
B' of Ry A, then we have Fg i = fﬁ.

The character det(py) induces an (O-algebra homomorphism
O[[H*]] — Ry for the maximal continuous abelian quotient H*® of H.
We write its image as Ay and write simply A for Ag. Thus we have a char-
acter det(py) : H — A};. We consider the category CNL,, of complete
noetherian local A j;—algebras with residue field F. We consider the functor
Fray,m: CNLy, — SETS given by

Fray,a(A)={p: H—-GL,(A)| p=pmodmy and det(p) = det(pn)}/~ .

Pick p : H — GL,(A) € Fuy,,u(A). Then regarding A as an O-algebra
naturally, we know that p € Fp(A). Thus there is a unique morphism
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¢ : Ry — A such that ppy =~ p. Then ¢(det(ppy)) = det(p), and ¢ is
a morphism in CN L, , . Therefore (Ry, py) represents Fy, . Similarly to
Fa, 1. we consider another functor on CNL, :

Faau(A)={plu | p € Frc(B) for a flat A-algebra B in CNL,}/ =~ .

Take p € Fa ¢, 1u(A) such that p = p'|p for p' € Fi (B). Then there exists
a unique ¢ : Rg — B with det(p') = ¢(det(pg)). Since the A-algebra
structure of B is given by det(p'), ¢ induces a A-algebra homomorphism of
Im(a)A into B for the algebra Im(«)A generated by Im(«) and A. From p =
(epc)la = ¢lpcln) = papp, we see that the A-algebra homomorphism
¢ restricted Im(«)A is uniquely determined by p. Supposing that [app]
vanishes in H?(A, @m(B )) for a flat extension B of Im(«), we knows
that [apy] vanishes in H2(A, G, (Im(a)A ®@1m(a) B)). For any morphism
¢ :Im(a)A — Ain CNLy, [papn]| = p«[app] vanishes in H*(A, @m(B'))
for B' = A @1 (o) B which is flat over A. Thus we have an extension 7 of p
to GG having values in B’. Suppose further that n is prime to p. In this case,
as already remarked, we can always extend p without extending A and
without assuming the vanishing of [apy], because det(p) can be extended
to G by ¢ o det(p¢). Thus we know :

Fracu(A)={plu|p € Frc(Ad)}/ ~ .

Since det(p) can be extended to G without changing A, there is a unique
extension of 7 with values in GL,(A) such that det(r) = ¢ o (det(pg)).
which implies that # € Fx ¢(A) and hence 7|y € Fa ¢, u(A). Thus Fa g1
is represented by (Im(a)A, appr) if n is prime to p. We consider the natural
transformation : Fp ¢ — Fa,g,u sending 7 to 7|i. As we have already
remarked, the extension of p € Fy g n(A) to 7 € Fo(A) is unique if n is
prime to p. Thus in this case, the natural transformation is an isomorphism
of functors. Therefore (Rg, pg) = (Im(a)A, appr ). Thus we get

THEOREM A.2.1. — Suppose (Zy ) and that either n is prime to p or [apy]
vanishes in H*(A, @m(B)) Jor a flat extension B of Im(«). Then Fy ¢ u is
representable by (Im(«)Ag, app ). Moreover if n is prime to p, we have the
equality R = Im(a)Ag.

Since « restricted to Ay coincides with the algebra homomorphism
induced by the inclusion H C G, a(Apy) C A. We put R' = Im(a) @, A. By
definition, the character 1®det(p¢ ) of G coincides on H with (aodet(py))®
1 in R'. Thus apy can be extended uniquely to p; : G — GL,(R')
such that det(p;) = 1 ® det(pg) if n is prime to p. Thus we have a
natural map ¢ : Rg — R' such that (pg = py;. Since R¢ is an algebra
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over A and Im(«), it is an algebra over R'. Thus we have the structural
morphism ¢ : R" — R¢. By Theorem A.2.1, /' is surjective. By definition,
tapp = |l = tpgln = app @1 and cdet(pg) = det(py;) = 1 @ det(pg).
Thus (wapy = (apy © 1) = apy and idet(pg) = (1 @ det(pg)) =
det(pg). Thus ¢'¢ is identity on A and Im(«), and hence ¢'¢ = ¢d. Similarly,
w!'pl, = tpG = pg- This shows that
W (apy @ 1) = apy) = (apy ® 1) and
w'(1 @ det(pg)) = (det(pg)) = 1@ det(pa) -

Thus ¢/ is again identity on Im(a) ® 1 and 1 ® A, and «' = id. Let X,
(resp. X)) indicate the maximal p-profinite (resp. prime-to—p profinite)
quotient of each profinite group X . Write w for the restriction of det(p¢) to
(G (), Define x : G** — O[[G2]]* by k(g) = w(g)[gp] for the projection
gp of g into ng, where [z] denotes the group element of = € ng in the
group algebra. Assuming that [ is big enough to contain all g-th roots of
unity for the order ¢ of Im(w), we can perform the same argument replacing
(A, A, det(pa)) by (O[HE], O[[G2V]], 1 ® ). Thus we get

COROLLARY A.2.2. — Suppose (Zy;) and that n is prime to p. Then we
have

(Ra,pa) = (Im(a) @r, Ag,apn @ det(pg)) =
(Im(a) @oyaar OlIG")), apy @ k).
In particular; R¢ is flat over Im(«).

By Hochschild-Serre spectral sequence, we have an exact sequence

Hy(A,Zy) — Ho(A,H(H,Z,)) — H1(G,Zy) — H(A,Z,) — 0

It It It
Ho(A H®), — ng — A;b — 1

bl

“, 9

where the subscript “p” indicates the maximal p—profinite quotient. Suppose
that I is big enough to contain all dy—th roots of unity for the prime-to—p
part dy of the order d of A. Then the inclusion H C G induces the following
commutative diagram :

o O[H]] — O[G]]

l l

Ot:AH — Ag.



36 H. HIDA

As seen in Corollary 2.2, this diagram is Cartesian. Thus A is flat over A ;.
If Hy(A,Zy) =0 (& H*(A,Q,/Z,) = 0), Spec(Im(a')) = Spec((’)[[ﬂgb]])A,
and hence Spec(a(Apg)) = Spec(Ay)?. From the exact sequence, if O
contains a primitive g-th roots of unity for the order ¢ of A%, we get

Im(a') = H°(A(0), O[[G2"]),

where x € A(O) takes ¥yeqara(g)[g] to Syeqaralg)x(g)lg].

A.2.2., — Nearly ordinary deformations

Now we impose the following additional condition to our deformation
problem : let S = S be a finite set of closed subgroups of . For each
D € S, let S(D) be a complete representative set for H-conjugacy classes
of {yDg~' N H | g € G}. In the main text (Section 2), the data S is given by
a choice of decomposition subgroups of G = Gal(Fy/E) at primes dividing
p. For simplicity, we assume that D N H € S(D) always. Then the disjoint
union Sy = | |pcs S(D) is a finite set, because |S(D)| = |H\G/D|. Let
Pp be a proper parabolic subgroup of GL(n) /o defined over O indexed
by D € S. For each D' € S(D) such that D' = H N gDg™ ', we define
Pp = ¢(g)Ppc(g)~! for alift ¢(g) € GL,(O) of p(g). We assume

(NO) p(D) C Pp(F) for each D € S¢ .
Then we consider the following condition :

NO ) there exists gp € @n(A) foreach D € Sy
S such that gpp(D)g,' C Pp(4),

where (/}'zn(A) = 1+maM,(A). We define a subfunctor F7*° of the functor
F-, with various restriction “7” introduced in the previous section, by

7 %(A) = {p € F2(A) | p satisfies (NOx)},

where X denotes either G or H depending on the group concerned. Then
by (NO), (NOx) and our choice of Pp, F7*°(F) = {p|x} # 0. Let us write
gl (resp. Pp) for the Lie algebra of GL,(F) (resp. Pp(F)). Note that D acts
on gl and Pp by conjugation. We can identify gl with V @ V* = Homyp(V, V)
for the representation space V' of p, where V* is the contragredient of V.
Then Pp can be identified with

{g € HOII]I[(V, V) | gFD C Fb}7
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for a filtration Fp : {0} = Fy, C F; C --- C F, = V. Here ¢Fp C Fp
implies that ¢ F; C F; for all «. The filtration F'p naturally induces a double
filtration F4p on gl and Pp. Since this filtration is compatible with that of
Pp, it induces a filtration of gl / ‘Pp, which is stable under the adjoint action
Ad(p) of p. As shown in [T] Proposition 6.2, under the following regularity
condition for every D € Sy,

(Regp) H(D,gl/Pp)=0,
F%° is representable for X = H or (G. We can think of a stronger condition :
(RGD) HO(D,gr(g[/PD)) =0

This condition is stronger than the condition (Regp), because on
gr(gl/Pp), D acts through the Levi-quotient of Pp. Writing the represen-
tation of D on F;/F;_ as PD.is (RGp) is equivalent to

In the same manner as in the previous section, we can check that A acts
on Fjy°. Take D € S and put D' = DN H € S(D). Since p is invariant
under A and p € F5°(F),

(Inv) ﬁ[ng.i =pp;ingr(V)foralliand o € D.

For p € F¥°(A), we have gp € ézn(A) such that p(D) C g5, Pp(A)gp.
This implies that V(p) has a filtration Fp(p) : {0} = Fy(p) C Fi(p) C

C F.(p) = V(p) stable under D such that F;(p) is a direct A-
summand of V(p) for all : and Fp(p) @4 F = Fp. We write pp; for

the representation of D on Fj(p)/Fi_i(p). Now suppose p € Fi™°(A)

and [p] = 0 in H%A,G,,(B)) for a flat A-algebra B. Then we find an
extension 7 : G — GL,(B) of p. Let 0 € D and D' = H N D. Thus
m(o)p(d)m(o)™t = p(ed'c™') € g5 Pp(A)gp: for all d € D' and hence
m(o)p(d)m(o)p(d) ™! € g5 Pp(A)gp: . From this and (Regp), it follows
that 7(0) € gl_),l Pp(B)gp for o € D (see [T] Proof of Proposition 6.2). Thus,
taking gp = ¢gp, we confirm that = € F{»°(A). Since F° is stable under
the action of Z\., all the arguments given for Fx in the previous paragraph
are valid for F%°. Writing (R%°, px°) for the universal couple representing
F%°, we conclude
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THEOREM A.2.2. — Suppose (Zy ), (Regp) for all D € Sy and that n is
prime to p. Then we have the equality R7° = Im(a™°)A%°, where a™° :
R}%° — RE° is an O-algebra homomorphism given by o™ °p%° ~ p&°|u
and Ag° is the image of O[[G4]] in RE°. Moreover we have

(R&°, p&°) = (Im(a™ %) @y AG®, @™ pFi” @ det(péi®))
= (Im(a"™) oy OUGH ) ™ pt* @ &) .

A.2.3. — Ordinary deformations

Fix a normal closed subgroup I = Ip of each D € S. For D' =
gDg™'NH € S(D), weput I = glpg ' NH.Wecall p € F%°(A) ordinary
if p satisfies the following conditions :

(Ordx) pp, is of rank1 over A and I C Ker(pp ) for every D € Sx .

We then consider the following subfunctor F¢¢ of F2° :

FYUA) = {p e Fr°(A) | pis ordinary} .

ord ,ord

It is easy to see that the functor F? is representable by (R3'%, p3¢) under
(Regp) for every D € Sx.

Let p € Ford(A). Suppose [p] = 0in H%(A, G (B)) for a flat A-algebra
B. Then we have at least one extension 7 of p in F2°(B). We consider

mp1 D — AX for D € S. We suppose one of the following two conditions
foreach D € S :

(TRp) |Ip/Ip N H| is prime to p;

(Exp) Every p—power order character of I/Ip N H can be extended to a
character of A having values in a flat extension B’ of B so that it is
trivial on I for all D' € S different from D.

Under (TRp), as a homomorphism of groups, 7p restricted to Ip
factors through pp, ; which is trivial on I. Thus 7p; is trivial on Ip. We
note that 7p ; is of p-power order on Ip/H N Ip because p p,1 Is trivial on
Ip and pp; is trivial on Ip N H. Thus we may extend 7p ; to a character n of
A congruent 1 modulo mp:. Then we twists = by !, getting an extension
7' = 7 ®n~! such that 7r’D)1 is trivial on Ij. Repeating this process for the
Drs satisfying (Exp), we find an extension = € F2'%(B) for a flat extension
B of A. We now consider

FE&H(A) = {plu € FF{U(A) | p € F&*(B) for a flat extension B of A} .

In the same manner as in Section 2, if either n is prime to p or [a°"?p%74] = 0
in H%(A, G,,(B)) for a flat extension B of Im(a°"%) in CN L¢, we know that
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.7-_0”1 is represented by (Im(a°"®), a°"?por?), where o™ : Ro7Y — R is
an (’)—algebra homomorphism given by a°"? p”d pgd

Let p € F2r4,(A) and 7 be its extension in F2'%(B) for a flat A-algebra
B in CN Lo. The character det(7) is uniquely determined by p on the
subgroup of sz generated by all Ip ,, because another choice is 7 @ x
for a character x of A and (7 ® x)p1 = x on Ip,. If G;b is generated
by the Ip ,’s and H,, det(7) is uniquely determined by p. Thus assuming
that n is prime to p, = itself is uniquely determined by p. Therefore the

natural transformation : F2'¢ — g{’% given by p — p|y identifies F2r?

with a subfunctor of ]—"g{%, inducing a surjective O—algebra homomorphism
B : Im(a’"?) — R such that pZd|; = Bapird. Since pZd|y = apye,
is the identity on Im(a”d), and we conclude that Im(a°"?) = R2'?. This

implies

THEOREM A.2.3. — Suppose (Zy), (Regp) for D € Sy, either (TRp) or
(Exp) for each D € S and that n is prime to p. Suppose further that the
Ipy’s forall D € S and H, generate G3*. Then we have Im(a°"?) = R*.

In particular, for any deformation p € F¢ ord %(A), there is a unique extension
7 € ForY(A) such that 7|y = p. Iffurther (P57 = 0 in HX(A,Gpn(B))
Sfor a flat extension B of Rj’f,‘fﬁ, then R%dA ~ Im(« Ord) = OGrd, where
Ry = RY*/Soen Ry (o) -~ DRE

A.2.4. — Deformations with fixed determinant

We take a character y : G — O such that y = det(p)modme.
We then define FX'(A) = {p € Fi(A) | det(p) = x|x}. Supposing the
representability of .7:)?(, it is easy to check that F ;‘(’? is representable. Since
the determinant is already fixed and can be extended to G, by the argument
in the previous sections shows that if n is prime to p,

XA xSt X
fH —fG’H—fG.

Write (RY X ,pY ) for the universal couple representing JF %’? and define
X’ R’fi’ RG so that aX"pY; ~ pé’?. Then we have

PROPOSITION A.2.3. — Suppose (Zy), (Regp) for D € Sy and that n is
prime to p. Then we have

RY' [SoeaRY (lo] = DRY' = Ry = Im(a™’) = R,

L . cord
where R is either R}, RS"™” or RS°"™.
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For each p € F}J;°(A), we decompose det(p) = x€ so that £ is a p-power

order. If n is prime to p, there is a unique character ¢ n . H — @m(A)
exists. Then we define pX = p ® £~/ which is an element of F% " °(A).
Writing fy for the deformation functor Fy for x|H in place of p|;, we have

.0

a natural transformation : F},° — F};"™° x fy given by p — (pX,det(p)).
If (pX, det(p)) = (p', det(p")). then

p=p* @ (det(p)/x)"/" = p* @ (det(p')/x)"/" = p'.
Thus the transformation is a monomorphism. For a given (pX, det(p)), we
can recover p as above. Thus we get F7;° = FN™° X fy. Since (O[[H']], )
represents fy;, we see, if n is prime to p,
(R, ) = (RY™IH), 3”@ wi/7).
Similarly we get
(R, pin) = (RY[H), e @ 5117).
Note that, if n is prime to p,

?5A ~ X:?zA A J— Xz? A ? ~ X?
Fu SFy " xfg=Fguxfrand Foug = Fey X Fae,u -

Thus o’ = aX? x o/ for o' as in the end of the paragraph A.2.1. This shows
that

THEOREM A.2.4. — Suppose (Zy), (Regp) for D € Sy and that n is
prime to p. Then if O contains a primitive |Agb |-root of unity, we have

Im(a’) = RS Bo(O[G)A@

? . 3 -
where RY' is either RY, or RK™°.

Manuscrit recu le 23 octobre 1995
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Corrections to “On A-adic forms of half integral weight for SL(2)o”
by Haruzo Hida
in “Number Theory, Paris 1992-93” Lecture Note Series 215, 139-166

p. 145 line 15 : “U(p®) = {3 €S|s, = (S >1k> modp"}” should read

U™ ={seU|s,= (3 ;)modpa}

p. 145 line 1 from the bottom : “for w%’; ® w°® |py,” should read “for
w%’; ® w° |v,, where w°® is the dualizing sheaf on X, L,

p- 146 line 8 : “the first horizontal map” should read “the first vertical map”.
146 line 10 : “the first row” should read “the second column”.

146 line 14 : “second row” should read “first column”.

146 line 14 : “the vertical maps” should read “the horizontal maps”.

T v T T

146 line 15 : “rows” should read “columns”

The second diagram in p. 146 should be replaced by the following :

0 0

! ) !
HO(Uy,w(k+ 3) @ Z/p°T —— H(Uy,w(k+ 3) @ Z/p°Z)

l l
HU,,w(k +2)@Z/p°Z —— H(Uy,w(k+1)@Z/p°Z)

l l

HU,,0(D)) 0 2/p’L —  H'(U,,0(D) & Z/p'Z)
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The diagram in p. 147 should be replaced by the following :

0 0
! ) !
HO(UOO’w(k—l_ %))@Z/p’gZ — HO(Uooaw(k+ %)@Z/pﬁZ)
l l
H (U ,w(k+2)®Z/pPZ == H"(Uw,w(k+1)®Z/p"Z)
l l

|

H(U.,0(D))® Z/p°Z H(UL,O(D)® Z/p°Z)

The second formula in (4.1) : “a(n, f | T(¢*)) = a(p*n, f) if ¢ | Np*”, should
read

“a(n, f | T(¢*)) = a(¢®n, f) if ¢ | Np*~

p- 149 line 9 from the bottom «Pr(P)=1* should read pT(P)_l”.

In the formula of Theorem 3 in p. 153 : “¢),(n + m)” should read
“Yylnfm)"

At several places in pp. 155-157, “Q./l” should read “Q;".

In the proof of Lemma 3, (k/2) should read k + (1/2) (thus (k/2) — 1 is
replaced by (2k — 1)/2).

p. 157 line 5 from the bottom : “u? # «” should read “u? = «a”.
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