Adjoint L-value formula and Tate conjecture Haruzo Hida Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A. Talk at Columbia University, April, 2023

Abstract: For a Hecke eigenform f, we state an adjoint L-value formula relative to each quaternion algebra D over \mathbb{Q} with discriminant ∂ and reduced norm N. A key to prove the formula is the theta correspondence for the quadratic \mathbb{Q} -space (D, N). Under the $R = \mathbb{T}$ -theorem, p-part of the Bloch-Kato conjecture is known; so, the formula is an adjoint Selmer class number formula. We also describe how to relate the formula to a consequence of the Tate conjecture for quaternionic Shimura varieties.

§0. Class number formulas. Dirichlet's class number formula in 1839:

$$\frac{\sqrt{d} \cdot L(1, \left(\frac{-d}{2}\right))}{2\pi} = \sum_{\mathfrak{a} \in Cl_K} e^{-1} \quad (e = |O_K^{\times}|, CL_K := \text{class group})$$

for an imaginary quadratic field $K = \mathbb{Q}[\sqrt{-d}]$.

Siegel's mass formula in 1935 for a definite quaternion algebra $D_{\mathbb{O}}$ with an Eichler order R of level N:

$$\mathfrak{m} = \mathfrak{m}_1 \frac{\zeta(2)}{\pi^2} = \sum_{\mathfrak{a} \in Cl_D} e_{\mathfrak{a}}^{-1}, \quad \mathfrak{a} \in Cl_D = D^{\times} \backslash D_{\mathbb{A}}^{\times} / \hat{R}^{\times} D_{\infty}^{\times} = Sh_R$$

where Cl_D is the right ideal classes and $e_{\mathfrak{a}} = |\{\alpha \in D | \alpha \mathfrak{a} \subset \mathfrak{a}\}^{\times}|$ with the rational part of Siegel's mass \mathfrak{m}_1 . If D has prime discriminant p and N = 1, $\mathfrak{m}_1 = (p-1)/2$.

Allow now an indefinite quaternion algebra with its Shimura curve Sh_R . Consider the quadratic space (D, N) for type reduced norm N, whose even Clifford group is almost $G = G_D := D^{\times} \times D^{\times}$ by the action $v \mapsto h^{-1}vg$ for $h, g \in D^{\times}$.

§1. Two formulas. Let $\delta(Sh_R)$ be the diagonal image of Sh_R in $Sh_R \times Sh_R$. Choose well Schwartz-Bruhat functions ϕ, ϕ' on D_A . Write $\theta^*(\phi)(f)$ for the theta lift of $S^{new}(\Gamma_0(\partial N))$ to Gand $\theta_*(\phi)(\mathcal{F} \otimes \mathcal{G}) \in S_2(\Gamma_0(\partial N))$ $(\mathcal{F}, \mathcal{G} : Sh_R \to \mathbb{C})$ for the theta descent. Assume that $\int_{Sh_R} \mathcal{F} d\mu = \int_{Sh_R} \mathcal{G} d\mu = 0$ (cuspidality).

Theorem A: We have $\theta_*(\phi)(\mathcal{F} \otimes \mathcal{G}) = \sum_{n=1}^{\infty} (\mathcal{F}, \mathcal{G}|T(n))q^n$ for $q = \exp(2\pi i\tau)$ with $(\mathcal{F}, \mathcal{G}) = \int_{\delta(Sh_R)} \mathcal{F}(h)\mathcal{G}(h)d\mu_h$. So $\theta_*(\phi)$ and $\theta^*(\phi)$ are Hecke equivariant.

Theorem B:

$$\prod_{p|\partial} (1-p^{-2})^{-1} \mathfrak{m}_1 \frac{L(1, Ad(\rho_f))}{2\pi^3}$$
$$= \begin{cases} \int_{\delta(Sh_R)} \theta^*(\phi')(f)(h) d\mu_h & \text{if } D_{\infty} \cong M_2(\mathbb{R}) \\ \sum_{\mathfrak{a} \in \delta(Sh_R)} \frac{\theta^*(\phi')(f)(\mathfrak{a})}{e_{\mathfrak{a}}} & \text{if } D_{\infty} \cong \mathbb{H}. \end{cases}$$

Under $R = \mathbb{T}$ theorem at a prime p, p-primary Bloch-Kato conjecture known for $Ad(\rho_f)$; so, This is an adjoint Selmer class number formula after dividing by the canonical period $\Omega_+\Omega_-$.

§2. Theta kernel. If D is definite, Schwartz function $\phi_{\infty}(\tau; v_{\infty})$ is given by $e(N(v_{\infty})\tau)$ ($\tau \in \mathfrak{H}$: the upper half complex plane). If indefinite, we follow Shimura's choice. For a Bruhat function $\phi^{(\infty)}$ on $D_{\mathbb{A}}^{(\infty)}$, we have the theta series

$$\theta(\phi)(\tau; h_l, h_r) = \sum_{\alpha \in D} \phi(h_l^{-1} \alpha h_r) \phi_{\infty}(\tau; h_l^{-1} \alpha h_r) \quad \text{on } \mathfrak{H} \times G_D(\mathbb{A})$$

which can be extended to an automorphic form on $Y_{\Gamma} \times Sh \times Sh$ for $Sh := D^{\times} \setminus D^{\times}_{\mathbb{A}} / D^{\times}_{\infty}$ and $Y_{\Gamma} := \Gamma \setminus \mathfrak{H}$ for a congruence subgroup Γ . For a weight 2 cusp form $f \in S_2(\Gamma)$ and automorphic forms $\mathcal{F}, \mathcal{G} : Sh \to \mathbb{C}$, we define

$$\theta^{*}(\phi)(f)(h_{l},h_{r}) = \int_{Y_{\Gamma}} f(\tau)\theta(\phi)(\tau;h_{l},h_{r})y^{-2}dxdy, \ (h_{l},h_{r} \in D_{\mathbb{A}}^{\times})$$
$$\theta_{*}(\phi)(\mathcal{F} \otimes \mathcal{G})(\tau) = \int_{Sh \times Sh} \theta(\phi)(\tau;h_{l},h_{r})(\mathcal{F}(h_{l}) \cdot \mathcal{G}(h_{r}))d\mu_{l}d\mu_{r}.$$

We choose the Haar measure $d\mu_{?}$ on $D^{\times}_{\mathbb{A}}$ suitably. We call $\theta^{*}(\phi)(f) : Sh \times Sh \to \mathbb{C}$ a theta lift and $\theta_{*}(\phi)(\mathcal{F} \otimes \mathcal{G}) \in M_{2}(\Gamma)$ a theta descent.

§3. Two good choices of Schwartz-Bruhat functions. Case A: At N, we identify $R/NR = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in M_2(\mathbb{Z}/N\mathbb{Z}) \right\}$ (Eichler order). Let ϕ_R be the characteristic function of

$$\left\{x \in \widehat{R} | x \mod NR = \left(\begin{smallmatrix} a & b \\ 0 & d \end{smallmatrix}\right), \ d \in (\mathbb{Z}/N\mathbb{Z})^{\times}\right\}.$$

Then the first choice is

$$\phi(v) = \phi_R(v^{(\infty)})\phi_{\infty}(\tau; v)$$

as a Schwartz-Bruhat function on $D_{\mathbb{A}}$. In this case, $\Gamma = \Gamma_0(\partial N)$.

Case B: Let ϕ_L be the characteristic function of \hat{L} . Choose $0 < c \in \mathbb{Z}$ and $L := \hat{\mathbb{Z}} \oplus \hat{R}_0$ for $R_0 = \{v \in R | \operatorname{Tr}(v) = 0\}$, and put $\phi'_{R_0} = (1 - c^3)^{-1}(\phi_{R_0} - \phi_{cR_0})$. Then we define, writing $v = z \oplus w$ with $z \in Z_A$ and $w \in D_{0,A}$

 $\phi'(v) = \phi_{\mathbb{Z}}(z^{(\infty)})\phi'_{R_0}(w^{(\infty)})\phi_{\infty}(\tau; v).$

We have $\Gamma = \Gamma_0(4c^2\partial N)$.

§4. Higher weight k and indefinite case. For a higher weight k or an indefinite case, we need to replace the Schwartz function ϕ_{∞} by a standard Schwartz function of Siegel–Shimura by multiplying a vector valued spherical function for (D, N) and then in the indefinite case, we modify $\theta(\varphi)$ (for $\varphi = \phi, \phi'$) and \mathcal{F} and \mathcal{G} into vector valued differential forms by the Eichler–Shimura map. Then \mathcal{F} and \mathcal{G} are closed harmonic 1-forms with values in a locally constant sheaf $\mathcal{L}_{n/A}$ whose fiber is the symmetric *n*-th tensor representation over an appropriate ring A for n = k - 2. We replace $(\mathcal{F},\mathcal{G})$ by the cup product $(\mathcal{F},\mathcal{G})_n := \int_{\delta(Sh_R)} \mathcal{F} \cup \mathcal{G}$ of $H^*(Sh_R, \mathcal{L}_{n/\mathbb{C}}) \times H^*(Sh_R, \mathcal{L}_{n,\mathbb{C}}) \to H^{2*}(Sh_R, \mathbb{C}) = \mathbb{C}$ in Theorem A (* = 0, 1 definite or indefinite).

In Theorem *B*, we pull back the class $\theta(\phi')^*(f)$ on $Sh_R \times Sh_R$ to $\delta(Sh_R)$ and integrate over $\delta(Sh_R)$. Then Theorem B is valid in general.

§5. Canonical periods. If D is indefinite, Sh_R is a Shimura curve. Let A be a DVR at a prime \mathfrak{p} such that $\mathbb{Z}[\lambda] = \mathbb{Z}[\lambda(T(n))|n \in \mathbb{Z}] \subset A \subset \mathbb{Q}[\lambda]$ for the Hecke field $\mathbb{Q}[\lambda]$ of $f(\text{i.e.}, f|T(n) = \lambda(T(n))f)$. Define \mathcal{F}_{\pm} by $H_{\lambda} := H^1(Sh_R, \mathcal{L}_{n/A})[\lambda, \pm] = A[\mathcal{F}_{\pm}]$, where \pm indicate the \pm -eigenspace of complex conjugation on Sh_R . Put $H := H^1(Sh_R, \mathcal{L}_{n/A})[\pm]$ and $S := H^0(Sh_{R/A}, \omega_{/A}^k)$ for the weight k Hodge bundle ω^k .

Also define \mathcal{F} by $S[\lambda] = A\mathcal{F}$ ($\mathcal{F} \in S_k(\hat{R}^{\times})$). By Hodge decomposition, $H \otimes_A \mathbb{C} = S \oplus \overline{S}$. Then we project \mathcal{F} to a unique element $\omega^{\pm}(\mathcal{F})$ of the \pm -eigenspace $H^1(Sh_R, \mathcal{L}_{n/\mathbb{C}})[\lambda, \pm]$ of complex conjugation and define the period $\Omega_{\pm}^D \in \mathbb{C}^{\times}$ as $\omega^{\pm}(\mathcal{F}) = \Omega_{\pm}^D[\mathcal{F}_{\pm}]$. The period Ω_{\pm} in Theorem B is $\Omega_{\pm}^{M_2(\mathbb{Q})}$. We just put $\Omega_{\pm}^D = 1$ if D is definite.

Tate conjecture predicts $\Omega^{D}_{\pm}/\Omega_{\pm} \in \mathbb{Q}[\lambda]^{\times}$ if D is indefinite.

The conjecture is known for k = 2 by Faltings and Prasanna for $k \ge 2$ to good extent. We hope to give a far easier proof valid also for Hilbert modular forms.

§6. Relation to Tate conjecture. Assume that D is indefinite. Let E be one of $H^1(Sh_R, \mathcal{L}_{n/\mathbb{Q}[\lambda]})[\pm]$. Decompose $E \otimes_A \mathbb{Q} = E_{\lambda} \oplus E_{\lambda}^{\perp}$ into λ -eigenspace E_{λ} and its Hecke stable complement, and write \widetilde{H}_{λ} for the projection of H to E_{λ} . Define $c_D := (\mathcal{F}_+, \mathcal{F}_-)_n$ which is called cohomological D-congruence number, and $\widetilde{H}_{\lambda}/H_{\lambda} \cong A/c_DA$. We know, in \mathbb{C}/A^{\times} , under the $R = \mathbb{T}$ -theorem at a prime p, forgetting about a π -power

(*)
$$(\mathcal{F}_+, \mathcal{F}_-)_n = c_D \stackrel{R \equiv \mathbb{T}}{=} c_{M_2(\mathbb{Q})} \stackrel{H, \underline{1981}}{=} \frac{L(1, Ad(\rho_f))}{\Omega_+\Omega_-}$$
 (up to A^{\times}).

By Theorem A, for $u_{\pm}^D \in \mathbb{C}^{\times}$, $\theta_D^*(f) = u_{\pm}^D \mathcal{F}_{\pm} \otimes u_{\pm}^D \mathcal{F}_{\pm}$. Thus

$$L(1, Ad(\rho_f)) \stackrel{\text{Theorem B}}{\Rightarrow} \int_{\delta(Sh_R)} \theta_D^*(\phi')(f)$$
$$= u_+^D u_-^D (\mathcal{F}_+, \mathcal{F}_-)_n \stackrel{(*)}{\Rightarrow} u_+^D u_-^D \frac{L(1, Ad(\rho_f))}{\Omega_+ \Omega_-}.$$

Thus $u_{\pm}^D u_{\pm}^D / \Omega_{\pm} \Omega_{\pm} \in A^{\times}$. Thus if $u_{\pm}^D u_{\pm}^D = \Omega_{\pm}^D \Omega_{\pm}^D$ (i.e. $u_{\pm}^D \mathcal{F}_{\pm} = \omega^{\pm}(\mathcal{F}) \Leftrightarrow \theta_D^*(\phi') = \omega^{\pm}(\mathcal{F}) \otimes \omega^{-}(\mathcal{F})$), the *A*-integral Tate conjecture in this case holds (which I hope to prove in future).

§7. Proof of Theorem A. Let $h_k(\partial N; A)$ be the subalgebra of $\operatorname{End}_{\mathbb{C}}(S_k(\Gamma_0(\partial N)))$ generated over A by Hecke operators T(n) and $S_k(\Gamma_0(\partial N); A) = S_k(\Gamma_0(\partial N)) \cap A[[q]]$. Recall

Duality theorem The space $S := S_k(\Gamma_0(\partial N); A)$ is A-dual of $H := h_k(\partial N; A)$ such that for a linear form $\phi : h_k(\partial N; A) \to A$, $\sum_{n=1}^{\infty} \phi(T(n))q^n \in S_k(\Gamma_0(\partial N); A)$. Writing $f = \sum_{n=1}^{\infty} a(n, f)q^n \in S_k$, the pairing $\langle \cdot, \cdot \rangle : H \times S \to A$ is given by $\langle h, f \rangle = a(1, f|h)$.

By Jacquet-Langlands correspondence, $H^*(Sh_R, \mathcal{L}_{n/A})$ is a module over $h_k(\partial N; A)$. Then applying the above theorem to the linear form $h_k(\partial N; A) \ni h \mapsto (\mathcal{F}, \mathcal{G}|h)_n$, we get Theorem A.

For the proof of Theorem B, we resort to an idea of Waldspurger.

§8. An idea of Waldspurger. Computing the period of $\theta^*(\phi')(f)$ for a quadratic space $V = W \oplus W^{\perp}$ over an orthogonal Shimura subvariety $S_W \times S_{W^{\perp}} \subset S_V$ has two steps:

(S) Split $\theta(\phi')(\tau, h, h^{\perp}) = \theta(\varphi)(\tau, h) \cdot \theta(\tau, \varphi^{\perp})(h^{\perp})$ $(h^? \in O_{W?}(\mathbb{A}))$ for a decomposition $\phi' = \varphi \otimes \varphi^{\perp}$ (φ and φ^{\perp} Schwartz–Bruhat functions on $W_{\mathbb{A}}$ and $W_{\mathbb{A}}^{\perp}$);

(R) For the theta lift $(\overline{\theta}^*(\phi')(f))(h) = \int_Y f(\tau)\theta(\phi')(\tau,h)d\mu$ with a modular curve Y, the period P over the Shimura subvariety $S \times S^{\perp}$ (S for O(W) and S^{\perp} for O(W^{\perp})) is given by:

$$\int_{S\times S^{\perp}} \int_{Y} f(\tau)\theta(\phi')(\tau;h)d\mu(\tau)dh \quad (d\mu(\tau) = y^{-2}dxdy; \text{Seesaw})$$
$$= \int_{Y} f(\tau) \left(\int_{S^{\perp}} \theta(\varphi^{\perp})(\tau;h^{\perp})dh^{\perp} \right) \cdot \left(\int_{S} \theta(\varphi)(\tau;h_{0})dh \right) d\mu.$$

Then invoke the Siegel–Weil formula to convert inner integrals into the Siegel-Weil Eisenstein series $E(\varphi)$ and $E(\varphi^{\perp})$, reaching Rankin-Selberg integral

$$P = \int_Y f(\tau) E(\varphi^{\perp}) E(\varphi) d\mu = L$$
-value.

§9. *D* definite and n = 0. For simplicity, we assume that *D* is definite and n = 0. Then $D = Z \oplus D_0$ for the center *Z* and $D_0 := \{v \in D | \operatorname{Tr}(v) = 0\}$. So $W = Z = (\mathbb{Q}, x^2)$ and $W^{\perp} = D_0$. Computing Siegel–Weil formula for $\varphi = \phi_{\mathbb{Z}}$, we have $E(\varphi) = \sum_{n=-\infty}^{\infty} q^{n^2}$ (Riemann's theta series). In the definite case, $E(\varphi^{\perp})$ is a weight $\frac{3}{2}$ Eisenstein series times m.

For general φ^{\perp} , $E(\varphi^{\perp})$ is the sum of the Eisenstein series $E_{\infty}(\varphi^{\perp})$ of the infinity cusp and $E_0(\varphi^{\perp})$ of the zero cusp. For the Rankin convolution, $\int_Y f\theta(\varphi)E_0(\varphi^{\perp})d\mu_{\tau}$ causes a trouble. Our choice of $\varphi^{\perp} := \phi'_{R_0}$ introducing $0 < c \in \mathbb{Z}$ is made to have the vanishing $E_0(\phi'_{R_0}) = 0$ and the identity $E_{\infty}(\phi'_{R_0}) = E_{\infty}(\phi_{R_0})$. The Rankin convolution $\int_Y f\theta(\varphi)E_{\infty}(\phi_{R_0})d\mu_{\tau}$ is computed in 1976 by Shimura and produces the adjoint L-value in Theorem B. All the computation can be generalized to the Hilbert modular case over a totally real field F and a quaternion algebra $D_{/F}$.