Control of Pro-Limit Mordell–Weil groups.

Haruzo Hida*

Department of Mathematics, UCLA,

Abstract: We give a control theorem of partially ordinary factor of modular jacobians. Then we prove almost constancy of Mordell–Weil rank of Shimura's abelian variety quotients moving along an slope 0 analytic family. We fix a prime p assumed ≥ 5 for simplicity.

*The author is partially supported by the NSF grant: DMS 1464106.

§1. The U(p)-operators. We have a well known commutative diagram of $U(p^{s-r})$ -operators:

where the middle u' is given by $U_r^s(p^{s-r})$ and u and u'' are $U(p^{s-r})$. These operators comes from $\Gamma\begin{pmatrix}1 & 0\\ 0 & p^{s-r}\end{pmatrix}\Gamma'$ for $u : \Gamma = \Gamma_r = \Gamma'$, $u' : \Gamma = \Gamma_s^r, \Gamma' = \Gamma_r$ and $u : \Gamma = \Gamma_s^r = \Gamma'$.

Note that $U(p^n) = U(p)^n$. Define an idempotent $e := \lim_{n\to\infty} U(p)^{n!}$ as an endomorphism of *p*-torison group $J_r[p^{\infty}]$ and $J_s^r[p^{\infty}]$. Then the above diagram implies

 $J_{r/\mathbb{Q}}[p^{\infty}]^{\text{ord}} \cong J_{s/\mathbb{Q}}^{r}[p^{\infty}]^{\text{ord}}$ and $J_{r/\mathbb{Q}}^{\text{ord}}(k) \cong J_{s/\mathbb{Q}}^{r,\text{ord}}(k)$, where "ord" indicates the image under e.

\S **2.** fppf cohomology.

Since we have $J_{r/\mathbb{Q}}^{\text{ord}}(k) \cong J_{s/\mathbb{Q}}^{r,\text{ord}}$, to get a control of $J_{r/\mathbb{Q}}^{\text{ord}}(k)$, we need to replace the cohomology group in the above commutative diagram by something else.

Suppose that we have morphisms of three varieties schemes $X \xrightarrow{g} Y \xrightarrow{g} S = \operatorname{Spec}(k)$. Then we get, for $?_T = ? \times_S T$,

$$\operatorname{Pic}_{X/S}(T) = H^{1}_{\operatorname{fppf}}(X_{T}, O_{X}^{\times})$$
$$\operatorname{Pic}_{Y/S}(T) = H^{1}_{\operatorname{fppf}}(Y_{T}, O_{Y_{T}}^{\times})$$

for any *S*-scheme *T* with $H^1_{fppf}(T, O_T^{\times}) = 0$ (for example T = Spec(K) for a field). We suppose that the functors $Pic_{X/S}$ and $Pic_{Y/S}$ are representable by smooth group schemes. We then put $J_? = Pic_{?/S}^0$ (? = X, Y). We apply this to $X = X_s$ and $Y = X_s^r$ with cuspidal ∞ -sections.

§3. A spectral sequence under fppf topology. For an fppf covering $\mathcal{U} \to Y$ and a presheaf $P = P_Y$ on the fppf site over Y, we define via Čech cohomology an fppf presheaf $\mathcal{U} \mapsto \check{H}^q(\mathcal{U}, P)$ denoted by $\underline{\check{H}}^q(P_Y)$. The inclusion functor from the category of fppf sheaves over Y into the category of fppf presheaves over Y is left exact. The derived functor of this inclusion of an fppf sheaf $F = F_Y$ is denoted by $\underline{H}^{\bullet}(F_Y)$ (see Milne III.1.5 (c)). Thus $\underline{H}^{\bullet}(\mathbb{G}_{m/Y})(\mathcal{U}) = H_{\text{fppf}}^{\bullet}(\mathcal{U}, O_{\mathcal{U}}^{\times})$ for a Y-scheme \mathcal{U} as a presheaf.

Assuming that f, g and π are all faithfully flat of finite presentation, we use the spectral sequence of Čech cohomology of the flat covering $\pi : X \twoheadrightarrow Y$ in the fppf site over Y (Milne III.2.7):

$$\check{H}^{p}(X_{T}/Y_{T},\underline{H}^{q}(\mathbb{G}_{m/Y})) \Rightarrow H^{n}_{\mathsf{fppf}}(Y_{T},O_{Y_{T}}^{\times})$$
(2)

for each S-scheme T.

§4. New fppf commutative diagram. Suppose that S = Spec(k) = T. We have $H^1(Y, O_Y^{\times}) \cong \text{Pic}_{Y/S}(T)$. From this spectral sequence, we have the following commutative diagram with exact rows:

where we have written $J_? = \operatorname{Pic}_{?/S}^0$. Note that

$$\check{H}^{0}(\frac{X}{Y}, J_{X}(k)) = J_{s}[\gamma^{p^{r-1}} - 1](k).$$

$\S5.$ Control of ordinary Mordell–Weil groups.

By an explicit computation of Čech cohomology (which we recall later if time allows), from deg(U(p)) = p, we get

Key Lemma. $U(p)^m(\check{H}^q(\underline{H}^0_Y)) = 0$ for $m \gg 0$.

Thus we get **Theorem 1** (Control). We have $J_s^{\text{ord}}(k)[\gamma^{p^{r-1}}-1] \cong J_r^{\text{ord}}(k)$ and $(J_s/(\gamma^{p^{r-1}}-1)(J_s))^{\text{co-ord}} \cong J_r^{\text{co-ord}}.$

Here $J_s^{\text{ord}}(k)[\gamma^{p^{r-1}}-1] := \text{Ker}(\gamma^{p^{r-1}}-1:J_s^{\text{ord}}(k) \to J_s^{\text{ord}}(k))$ and the second identity is the **sheaf** identity.

$\S6$. Shimura's abelian variety quotients.

A prime $P \in \operatorname{Spec}(\mathbb{T})(\overline{\mathbb{Q}}_p)$ is called *arithmetic* of weight 2 if P factors through $\operatorname{Spec}(\mathbb{Z}_p[\Gamma/\Gamma^{p^r}])$ for some $r \ge 0$. Associated to P is a unique Hecke eigenform of weight 2 on $X_1(Np^r)$ for some minimal r > 0. Write B_P (resp. A_P) for the Shimura's abelian quotient (resp. abelian subvariety) associated to f_P of the jacobian J_s (for $s \ge r$). Note that $A_P \subset J_s$ and $J_s \twoheadrightarrow B_P$ are stable under $w_s = \begin{pmatrix} 0 & -1 \\ Np^s & 0 \end{pmatrix}$.

If s > r, f_P regarded as $S_2(\Gamma_s)$ is still Hecke eigenform; so, $\pi^* : J_r \to J_s$ send A_P of level Np^r isogenous to A_P of level Np^s . The Albanese map $\pi_* : J_s \to J_r$ is $T^*(n)$ -equivariant; so, B_P of level Np^s does not cover by π_* the B_P of level p^r .

This causes some problems.

$\S7$. Albanese functriality.

Let $\iota_s : C_{s/\mathbb{Q}} \subset J_{s/\mathbb{Q}}$ be an abelian subvariety stable under T(n), U(l) and w_s and ${}^t\iota : J_{s/\mathbb{Q}} \twoheadrightarrow {}^tC_{s/\mathbb{Q}}$ be the dual abelian quotient. We then define $\pi : J_s \twoheadrightarrow D_s$ by $D_s := {}^tC_s$ and $\pi = {}^tw_s \circ {}^t\iota_s \circ w_s$ for the map ${}^tw_s \in \operatorname{Aut}({}^tC_{s/\mathbb{Q}}[\mu_{p^s}])$ dual to $w_s \in \operatorname{Aut}(C_{r/\mathbb{Q}}[\mu_{p^s}])$. Then ι and π are defined over \mathbb{Q} and Hecke equivariant (i.e., T(n)-equivariant).

Taking
$$C_s$$
 to be $J_r \ r \leq s$, we write π_s^r for $\pi : J_s \to J_r$ and put $\widehat{J}_{\infty}^{\text{ord}}(k) = \varprojlim_r J_r^{\text{ord}}(k)$ with respect to π_s^r .

Now let $\iota_s : A_{P,s} := \pi^*(A_P) \subset J_s$ for s > r and $B_{P,s}$ be the quotient abelian variety of J_s .

Then
$$\pi^* : A_P^{\text{ord}} \cong A_{P,s}^{\text{ord}} \text{ and } \pi_s^r : B_{P,s}^{\text{ord}} \cong B_P^{\text{ord}}.$$

\S 8. An identity.

By computation, $\pi_s^r \circ \pi_{r,s}^* = p^{s-r}U(p^{s-r})$. To see this, as Hecke operators coming from Γ_s -coset, $\pi_{r,s}^* = [\Gamma_s 1 \Gamma_r]$ (restriction) and $\pi_{r,s,*} = [\Gamma_r]$ (trace). Thus we have

$$\pi_s^r \circ \pi_{r,s}^*(x) = x |[\Gamma_s] \cdot w_s \cdot [\Gamma_r] \cdot w_r = x |[\Gamma_s \mathbf{1} \Gamma_s^r] [\Gamma_s^r \cdot [w_s w_r] \cdot [\Gamma_r] \\ = x |[\Gamma_s^r : \Gamma_s] [\Gamma_s^r \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & p^{s-r} \end{pmatrix} \Gamma_r] = p^{s-r} (x | U(p^{s-r})).$$

Corollary 1. We have the following two commutative diagram for s' > s

$$\begin{array}{cccc} A_{P,s'}^{\mathsf{ord}} & \xleftarrow{\sim} & A_{P,s}^{\mathsf{ord}} \\ \pi_{s'}^{s} & & & \downarrow p^{s'-s} U(p)^{s'-s} \\ A_{P,s}^{\mathsf{ord}} & \underbrace{\longrightarrow} & A_{P,s}^{\mathsf{ord}}. \end{array}$$

§9. Naive control. Pick a height 1 principal prime $P = (\varpi) \in$ Spec(T). Suppose $\varpi | (\gamma^{p^r} - 1)$ (prime P with this property is called an *arithmetic* prime). The control result and the corollary before tells us the exactness of

$$0 = \varprojlim_{s} A_{P,s}^{\operatorname{ord}}(k) \to \widehat{J}_{\infty}^{\operatorname{ord}}(k)_{\mathbb{T}} \xrightarrow{\varpi} \widehat{J}_{\infty}^{\operatorname{ord}}(k)_{\mathbb{T}} \to B_{P}^{\operatorname{ord}}(k)$$

is exact. Suppose that ${\mathbb T}$ is an integral domain. We expect that

$$\operatorname{rank} B_P(k) = R \cdot [\mathbb{Q}(f_P) : \mathbb{Q}]$$

for almost all P. Here $\mathbb{Q}(f_P)$ is the field generated by the Hecke eigenvalues of f_P (the Hecke field of f_P).

This follows if $E^{\infty}(k) := \operatorname{Coker}(\widehat{J}^{\operatorname{ord}}_{\infty}(k)_{\mathbb{T}} \to B^{\operatorname{ord}}_{P}(k))$ is finite for $R = \operatorname{rank}_{\mathbb{T}} \widehat{J}^{\operatorname{ord}}_{\infty}(k)_{\mathbb{T}}.$

$\S 10$. Control theorem.

Theorem 2. For almost all principal arithmetic prime $P = (\varpi) \in$ Spec(T), we have the following exact sequence (of *p*-profinite Λ -modules):

$$0 \to \widehat{J}_{\infty,\mathbb{T}}^{\operatorname{ord}}(k) \xrightarrow{\varpi} \widehat{J}_{\infty,\mathbb{T}}^{\operatorname{ord}}(k) \xrightarrow{\rho_{\infty}} B_P^{\operatorname{ord}}(k) \to E_2^{\infty}(k) \to 0.$$

If k is a number field, the error term $E_2^{\infty}(k)$ is finite under $|\underline{\mathrm{III}}^1(k^S/k, T_p B_P^{\mathsf{ord}})| < \infty$. If k/\mathbb{Q}_l is a finite extension with $l \neq p$, for any principal (ϖ) , $E_2^{\infty}(k) = 0$, and if k/\mathbb{Q}_p is a finite extension, $E_2^{\infty}(k)$ is finite if A_r hs good reduction over $\mathbb{Z}_p[\mu_p^{\infty}]$.

This tells us that if $|\underline{\mathrm{III}}^1(k^S/k, T_pB_{P_0}^{\mathsf{ord}})| < \infty$ ($\Leftarrow |\underline{\mathrm{III}}(k^S/k, B_{P_0}^{\mathsf{ord}})| < \infty$ and $\dim_{\mathbb{Q}(f_{P_0})} B_{P_0}(k) \otimes_{\mathbb{Z}} \mathbb{Q} \leq 1$) for one point P_0 , the generic A-rank of $\widehat{J}_{\infty,\mathbb{T}}^{\mathsf{ord}}(k)$ is constant equal to rank $B_{P_0}(k) = \dim B_{P_0}$ or 0; so, if the constancy of the rank for almost all principal P.

§11. Error term and Tate–Shafarevich groups. Let k be a number field. Put $E^{s}(k) = \operatorname{Coker}(J_{s}^{\operatorname{ord}}(k) \to B_{P}^{\operatorname{ord}}(k))$. From the exact sequence

$$0 \to \varpi(J_s^{\text{ord}})(k^S) \to J_s^{\text{ord}}(k^S) \to B_P^{\text{ord}}(k^S) \to 0,$$

we have $E^s(k) \hookrightarrow H^1(\varpi(J_s^{\text{ord}}))[\varpi]$ for $H^1(?) = H^1(k^S/k,?)$.

It is easy to show $E^{\infty}(k_v) = 0$ if $v \nmid p$. By a result of P. Schneider on universal norm from $k_v[\mu_{p^{\infty}}]/k_v$ for p|v, we have $E^{\infty}(k_v)$ is finite if v|p. Since $\prod_{v \in S} E^s(k_v) = \prod_{v|p} E^s(k_v)$ is finite, essentially

$$E^{s}(k) \hookrightarrow \underline{\mathrm{III}}^{1}(k^{S}/k, \varpi(J_{s}^{\mathrm{ord}}))[\varpi].$$

We can also show that

$$\underline{\mathrm{III}}^{1}(k^{S}/k, T_{p}A_{P}^{\mathsf{ord}}) \twoheadrightarrow \underline{\mathrm{III}}^{1}(k^{S}/k, \varpi(J_{s}^{\mathsf{ord}}))[\varpi]$$

up to finite error.