Control of Pro-Limit Mordell-Weil groups.

Haruzo Hida*
Department of Mathematics, UCLA,

Abstract: We give a control theorem of partially ordinary factor of modular jacobians. Then we prove almost constancy of Mordell-Weil rank of Shimura's abelian variety quotients moving along an slope 0 analytic family. We fix a prime p assumed ≥ 5 for simplicity.
*The author is partially supported by the NSF grant: DMS 1464106.
§1. The $U(p)$-operators. We have a well known commutative diagram of $U\left(p^{s-r}\right)$-operators:

$$
\begin{array}{rlc}
J_{r, R} & \xrightarrow{\pi^{*}} & J_{s, R}^{r} \tag{1}\\
\downarrow u & \swarrow u^{\prime} & \downarrow u^{\prime \prime} \\
J_{r, R} & \xrightarrow{\pi^{*}} & J_{s, R}^{r},
\end{array}
$$

where the middle u^{\prime} is given by $U_{r}^{s}\left(p^{s-r}\right)$ and u and $u^{\prime \prime}$ are $U\left(p^{s-r}\right)$. These operators comes from $\Gamma\left(\begin{array}{cc}1 & 0 \\ 0 & p^{s-r}\end{array}\right) \Gamma^{\prime}$ for $u: \Gamma=\Gamma_{r}=\Gamma^{\prime}$, $u^{\prime}: \Gamma=\Gamma_{s}^{r}, \Gamma^{\prime}=\Gamma_{r}$ and $u: \Gamma=\Gamma_{s}^{r}=\Gamma^{\prime}$.

Note that $U\left(p^{n}\right)=U(p)^{n}$. Define an idempotent $e:=\lim _{n \rightarrow \infty} U(p)^{n!}$ as an endomorphism of p-torison group $J_{r}\left[p^{\infty}\right]$ and $J_{s}^{r}\left[p^{\infty}\right]$. Then the above diagram implies

$$
J_{r / \mathbb{Q}}\left[p^{\infty}\right]^{\text {ord }} \cong J_{s / \mathbb{Q}}^{r}\left[p^{\infty}\right]^{\text {ord }} \quad \text { and } \quad J_{r / \mathbb{Q}}^{\text {ord }}(k) \cong J_{s / \mathbb{Q}}^{r, \text { ord }}(k),
$$

where "ord" indicates the image under e.

§2. fppf cohomology.

Since we have $J_{r / \mathbb{Q}}^{\text {ord }}(k) \cong J_{s / \mathbb{Q}}^{r, \text { ord }}$, to get a control of $J_{r / \mathbb{Q}}^{\text {ord }}(k)$, we need to replace the cohomology group in the above commutative diagram by something else.

Suppose that we have morphisms of three varieties schemes $X \xrightarrow{\pi}$ $Y \xrightarrow{g} S=\operatorname{Spec}(k)$. Then we get, for $?_{T}=? \times_{S} T$,

$$
\begin{aligned}
\operatorname{Pic}_{X / S}(T) & =H_{\mathrm{fppf}}^{1}\left(X_{T}, O_{X}^{\times}\right) \\
\operatorname{Pic}_{Y / S}(T) & =H_{\mathrm{fppf}}^{1}\left(Y_{T}, O_{Y_{T}}^{\times}\right)
\end{aligned}
$$

for any S-scheme T with $H_{\text {fppf }}^{1}\left(T, O_{T}^{\times}\right)=0$ (for example $T=$ $\operatorname{Spec}(K)$ for a field). We suppose that the functors $\operatorname{Pic}_{X / S}$ and $\mathrm{Pic}_{Y / S}$ are representable by smooth group schemes. We then put $J_{?}=\mathrm{Pic}_{? / S}^{0}(?=X, Y)$. We apply this to $X=X_{s}$ and $Y=X_{s}^{r}$ with cuspidal ∞-sections.
§3. A spectral sequence under fppf topology. For an fppf covering $\mathcal{U} \rightarrow Y$ and a presheaf $P=P_{Y}$ on the fppf site over Y, we define via Čech cohomology an fppf presheaf $\mathcal{U} \mapsto \breve{H}^{q}(\mathcal{U}, P)$ denoted by $\underline{\underline{H}}^{q}\left(P_{Y}\right)$. The inclusion functor from the category of fppf sheaves over Y into the category of fppf presheaves over Y is left exact. The derived functor of this inclusion of an fppf sheaf $F=F_{Y}$ is denoted by $\underline{H}^{\bullet}\left(F_{Y}\right)$ (see Milne III.1.5 (c)). Thus $\underline{H}^{\bullet}\left(\mathbb{G}_{m / Y}\right)(\mathcal{U})=H_{\text {fppf }}^{\bullet}\left(\mathcal{U}, O_{\mathcal{U}}^{\times}\right)$for a Y-scheme \mathcal{U} as a presheaf.

Assuming that f, g and π are all faithfully flat of finite presentation, we use the spectral sequence of Čech cohomology of the flat covering $\pi: X \rightarrow Y$ in the fppf site over Y (Milne III.2.7):

$$
\begin{equation*}
\breve{H}^{p}\left(X_{T} / Y_{T}, \underline{H}^{q}\left(\mathbb{G}_{m / Y}\right)\right) \Rightarrow H_{\mathrm{fppf}}^{n}\left(Y_{T}, O_{Y_{T}}^{\times}\right) \tag{2}
\end{equation*}
$$

for each S-scheme T.
§4. New fppf commutative diagram. Suppose that $S=$ $\operatorname{Spec}(k)=T$. We have $H^{1}\left(Y, O_{Y}^{\times}\right) \cong \operatorname{Pic}_{Y / S}(T)$. From this spectral sequence, we have the following commutative diagram with exact rows:

$$
\begin{array}{ccccccc}
\breve{H}^{1}\left(\underline{H}_{Y}^{0}\right) & \hookrightarrow & H^{1}\left(Y, O_{Y}^{\times}\right) & \rightarrow & \breve{H}^{0}\left(\frac{X}{Y}, \underline{H}{ }^{1}\left(\mathbb{G}_{m, Y}\right)\right) & \rightarrow & \breve{H}^{2}\left(\underline{H}_{Y}^{0}\right) \\
\breve{H}^{1}\left(\underline{H}_{Y}^{0}\right) & \rightarrow & \operatorname{Pic}_{Y / S}(k) & \rightarrow & \breve{H}^{0}\left(\frac{X}{Y}, \operatorname{Pic}_{Y}(k)\right) & \rightarrow & \breve{H}^{2}\left(\underline{H}_{Y}^{0}\right) \\
\uparrow & & \cup \uparrow & & \cup \uparrow \\
?_{1} & \rightarrow & J_{Y}(k) & \rightarrow & \breve{H}^{0}\left(\frac{X}{Y}, J_{X}(k)\right) & \rightarrow & ?_{2},
\end{array}
$$

where we have written $J_{?}=\mathrm{Pic}_{? / S}^{0}$. Note that

$$
\breve{H}^{0}\left(\frac{X}{Y}, J_{X}(k)\right)=J_{s}\left[\gamma^{p^{r-1}}-1\right](k) .
$$

§5. Control of ordinary Mordell-Weil groups.

By an explicit computation of Čech cohomology (which we recall later if time allows), from $\operatorname{deg}(U(p))=p$, we get

Key Lemma. $U(p)^{m}\left(\breve{H}^{q}\left(\underline{H}_{Y}^{0}\right)\right)=0$ for $m \gg 0$.

Thus we get
Theorem 1 (Control). We have
$J_{s}^{\text {ord }}(k)\left[\gamma^{p^{r-1}}-1\right] \cong J_{r}^{\text {ord }}(k)$ and $\left(J_{s} /\left(\gamma^{p^{r-1}}-1\right)\left(J_{s}\right)\right)^{\mathrm{co} \text { ord }} \cong J_{r}^{\text {co-ord }}$.

Here $J_{s}^{\text {ord }}(k)\left[\gamma^{p^{r-1}}-1\right]:=\operatorname{Ker}\left(\gamma^{p^{r-1}}-1: J_{s}^{\text {ord }}(k) \rightarrow J_{s}^{\text {ord }}(k)\right)$ and the second identity is the sheaf identity.

§6. Shimura's abelian variety quotients.

A prime $P \in \operatorname{Spec}(\mathbb{T})\left(\overline{\mathbb{Q}}_{p}\right)$ is called arithmetic of weight 2 if P factors through $\operatorname{Spec}\left(\mathbb{Z}_{p}\left[\Gamma / \Gamma^{p^{r}}\right]\right)$ for some $r \geq 0$. Associated to P is a unique Hecke eigenform of weight 2 on $X_{1}\left(N p^{r}\right)$ for some minimal $r>0$. Write B_{P} (resp. A_{P}) for the Shimura's abelian quotient (resp. abelian subvariety) associated to f_{P} of the jacobian J_{s} (for $s \geq r$). Note that $A_{P} \subset J_{s}$ and $J_{s} \rightarrow B_{P}$ are stable under $w_{s}=\left(\begin{array}{cc}0 & -1 \\ N p^{s} & 0\end{array}\right)$.

If $s>r, f_{P}$ regarded as $S_{2}\left(\Gamma_{s}\right)$ is still Hecke eigenform; so, $\pi^{*}: J_{r} \rightarrow J_{s}$ send A_{P} of level $N p^{r}$ isogenous to A_{P} of level $N p^{s}$. The Albanese map $\pi_{*}: J_{s} \rightarrow J_{r}$ is $T^{*}(n)$-equivariant; so, B_{P} of level $N p^{s}$ does not cover by π_{*} the B_{P} of level p^{r}.

This causes some problems.

§7. Albanese functriality.

Let $\iota_{s}: C_{s / \mathbb{Q}} \subset J_{s / \mathbb{Q}}$ be an abelian subvariety stable under $T(n)$, $U(l)$ and w_{s} and ${ }^{t} \iota: J_{s / \mathbb{Q}} \rightarrow{ }^{t} C_{s / \mathbb{Q}}$ be the dual abelian quotient. We then define $\pi: J_{s} \rightarrow D_{s}$ by $D_{s}:={ }^{t} C_{s}$ and $\pi={ }^{t} w_{s} \circ{ }^{t} \iota_{s} \circ w_{s}$ for the map ${ }^{t} w_{s} \in \operatorname{Aut}\left({ }^{t} C_{s} / \mathbb{Q}\left[\mu_{p_{s}}\right]\right)$ dual to $w_{s} \in \operatorname{Aut}\left(C_{r / \mathbb{Q}\left[\mu_{p s}\right]}\right)$. Then ι and π are defined over \mathbb{Q} and Hecke equivariant (i.e., $T(n)$-equivariant).

Taking C_{s} to be $J_{r} r \leq s$, we write π_{s}^{r} for $\pi: J_{s} \rightarrow J_{r}$ and put

$$
\hat{J}_{\infty}^{\text {ord }}(k)=\underbrace{\lim }_{r} J_{r}^{\text {ord }}(k) \text { with respect to } \pi_{s}^{r} \text {. }
$$

Now let $\iota_{s}: A_{P, s}:=\pi^{*}\left(A_{P}\right) \subset J_{s}$ for $s>r$ and $B_{P, s}$ be the quotient abelian variety of J_{s}.

Then $\pi^{*}: A_{P}^{\text {ord }} \cong A_{P, s}^{\text {ord }}$ and $\pi_{s}^{r}: B_{P, s}^{\text {ord }} \cong B_{P}^{\text {ord }}$.

§8. An identity.

By computation, $\pi_{s}^{r} \circ \pi_{r, s}^{*}=p^{s-r} U\left(p^{s-r}\right)$. To see this, as Hecke operators coming from Γ_{s}-coset, $\pi_{r, s}^{*}=\left[\Gamma_{s} 1 \Gamma_{r}\right]$ (restriction) and $\pi_{r, s, *}=\left[\Gamma_{r}\right]$ (trace). Thus we have

$$
\begin{aligned}
& \pi_{s}^{r} \circ \pi_{r, s}^{*}(x)=x\left|\left[\Gamma_{s}\right] \cdot w_{s} \cdot\left[\Gamma_{r}\right] \cdot w_{r}=x\right|\left[\Gamma_{s} 1 \Gamma_{s}^{r}\right]\left[\Gamma_{s}^{r} \cdot\left[w_{s} w_{r}\right] \cdot\left[\Gamma_{r}\right]\right. \\
&=x \left\lvert\,\left[\Gamma_{s}^{r}: \Gamma_{s}\right]\left[\Gamma_{s}^{r}\left(\begin{array}{c}
1 \\
0
\end{array} p^{0-r}\right) \Gamma_{r}\right]=p^{s-r}\left(x \mid U\left(p^{s-r}\right)\right) .\right.
\end{aligned}
$$

Corollary 1. We have the following two commutative diagram for $s^{\prime}>s$

$$
\begin{aligned}
A_{P, s^{\prime}}^{\text {ord }} & \stackrel{\pi_{s, s^{\prime}}^{*}}{\sim} \\
\pi_{s^{\prime}}^{s} \mid & A_{P, s}^{\text {ord }} \\
A_{P, s}^{\text {ord }} & =A_{P, s}^{p^{s^{\prime}-s} U(p)^{s^{\prime}-s}}
\end{aligned}
$$

§9. Naive control. Pick a height 1 principal prime $P=(\varpi) \in$ $\operatorname{Spec}(\mathbb{T})$. Suppose $\varpi \mid\left(\gamma^{p^{r}}-1\right)$ (prime P with this property is called an arithmetic prime). The control result and the corollary before tells us the exactness of

$$
0=\varliminf_{s}^{\lim _{s}} A_{P, s}^{\text {ord }}(k) \rightarrow \hat{J}_{\infty}^{\text {ord }}(k)_{\mathbb{T}} \xrightarrow{\varpi} \hat{J}_{\infty}^{\text {ord }}(k)_{\mathbb{T}} \rightarrow B_{P}^{\text {ord }}(k)
$$

is exact. Suppose that \mathbb{T} is an integral domain. We expect that

$$
\operatorname{rank} B_{P}(k)=R \cdot\left[\mathbb{Q}\left(f_{P}\right): \mathbb{Q}\right]
$$

for almost all P. Here $\mathbb{Q}\left(f_{P}\right)$ is the field generated by the Hecke eigenvalues of f_{P} (the Hecke field of f_{P}).

This follows if $E^{\infty}(k):=\operatorname{Coker}\left(\hat{J}_{\infty}^{\text {ord }}(k)_{\mathbb{T}} \rightarrow B_{P}^{\text {ord }}(k)\right)$ is finite for $R=\operatorname{rank}_{\mathbb{T}} \hat{J}_{\infty}^{\text {ord }}(k)_{\mathbb{T}}$.

§10. Control theorem.

Theorem 2. For almost all principal arithmetic prime $P=(\varpi) \in$ $\operatorname{Spec}(\mathbb{T})$, we have the following exact sequence (of p-profinite Λ-modules):

$$
0 \rightarrow \widehat{J}_{\infty, \mathbb{T}}^{\mathrm{ord}}(k) \xrightarrow{\varpi} \widehat{J}_{\infty, \mathbb{T}}^{\mathrm{ord}}(k) \xrightarrow{\rho_{\infty}} B_{P}^{\mathrm{ord}}(k) \rightarrow E_{2}^{\infty}(k) \rightarrow 0 .
$$

If k is a number field, the error term $E_{2}^{\infty}(k)$ is finite under $\left|\underline{\mathrm{III}}^{1}\left(k^{S} / k, T_{p} B_{P}^{\mathrm{ord}}\right)\right|<\infty$. If k / \mathbb{Q}_{l} is a finite extension with $l \neq p$, for any principal $(\varpi), E_{2}^{\infty}(k)=0$, and if k / \mathbb{Q}_{p} is a finite extension, $E_{2}^{\infty}(k)$ is finite if A_{r} hs good reduction over $\mathbb{Z}_{p}\left[\mu_{p^{\infty}}\right]$.

This tells us that if $\left|\underline{\mathrm{III}}^{1}\left(k^{S} / k, T_{p} B_{P_{0}}^{\text {Ord }}\right)\right|<\infty\left(\Leftarrow\left|\underline{\operatorname{III}}\left(k^{S} / k, B_{P_{0}}^{\text {ord }}\right)\right|<\right.$ ∞ and $\left.\operatorname{dim}_{\mathbb{Q}\left(f_{P_{0}}\right)} B_{P_{0}}(k) \otimes_{\mathbb{Z}} \mathbb{Q} \leq 1\right)$ for one point P_{0}, the generic Λ-rank of $\widehat{J_{\infty, \mathbb{T}} \text { ord }}(k)$ is constant equal to rank $B_{P_{0}}(k)=\operatorname{dim} B_{P_{0}}$ or 0 ; so, if the constancy of the rank for almost all principal P.
§11. Error term and Tate-Shafarevich groups.
Let k be a number field. Put $E^{s}(k)=\operatorname{Coker}\left(J_{S}^{\text {ord }}(k) \rightarrow B_{P}^{\text {ord }}(k)\right)$.
From the exact sequence

$$
0 \rightarrow \varpi\left(J_{s}^{\text {ord }}\right)\left(k^{S}\right) \rightarrow J_{s}^{\text {ord }}\left(k^{S}\right) \rightarrow B_{P}^{\text {ord }}\left(k^{S}\right) \rightarrow 0,
$$

we have $E^{s}(k) \hookrightarrow H^{1}\left(\varpi\left(J_{s}^{\text {ord }}\right)\right)[\varpi]$ for $H^{1}(?)=H^{1}\left(k^{S} / k, ?\right)$.
It is easy to show $E^{\infty}\left(k_{v}\right)=0$ if $v \nmid p$. By a result of P . Schneider on universal norm from $k_{v}\left[\mu_{p} \infty\right] / k_{v}$ for $p \mid v$, we have $E^{\infty}\left(k_{v}\right)$ is finite if $v \mid p$. Since $\prod_{v \in S} E^{s}\left(k_{v}\right)=\prod_{v \mid p} E^{s}\left(k_{v}\right)$ is finite, essentially

$$
E^{s}(k) \hookrightarrow \underline{\mathrm{II}}^{1}\left(k^{S} / k, \varpi\left(J_{s}^{\text {ord }}\right)\right)[\varpi] .
$$

We can also show that

$$
\underline{\mathrm{III}}^{1}\left(k^{S} / k, T_{p} A_{P}^{\text {ord }}\right) \rightarrow \underline{\mathrm{III}}^{1}\left(k^{S} / k, \varpi\left(J_{s}^{\text {ord }}\right)\right)[\varpi]
$$

up to finite error.

