
CONTROL OF NEARLY ORDINARY HECKE ALGEBRAS

HARUZO HIDA

Abstract. Let p be a prime and F be a totally real field. We describe the structure
theory of the nearly-ordinary Hilbert modular p-adic Hecke algebra for F . In particular,
if we fix a central character (without allowing the character to deform), we prove that
the dimension (over Zp) of the cuspidal part is [F : Q] and the Eisenstein part is 1 + δ
for the p-adic defect δ of the Leopoldt conjecture. We may be able to touch the control
theorem and the Galois representation into GL(2) with coefficients in the algebra.

We prepare some notation to define Hilbert modular Hecke algebras (for F ) in a classical
way. Write I = Homfield(F, Q). Let G = ResO/ZGL(2) for the integer ring O of F . Thus
G is a group scheme with G(A) = GL2(A⊗Z O); so, G(Z) = GL2(O), G(Q) = GL2(F ),

G(Ẑ) = GL2(Ô) for Ẑ =
∏

`:primes Z` and Ô =
∏

l: prime ideals Ol
∼= O⊗ZẐ, G(A) = GL2(FA)

for the adele ring A of Q (FA = F ⊗Q A) and G(R) = GL2(R)I since F ⊗Q R = RI by
ξ ⊗ r 7→ (σ(ξ)r)σ∈I . Then G(R) = {(gσ)σ∈I ∈ G(R)|gσ ∈ GL2(R)} acts naturally on
Z = (C − R)I by component-wise linear fractional transformation. Let Z ⊂ G be the
center; so, Z(A) consists of scalar matrices in G(A). Let T0 = G2

m/O be the diagonal torus

of GL(2)/O, and put T = ResO/ZT0. Then T contains the center Z of G, and identify

T = T/Z with ResO/ZGm via y 7→
(

y 0
0 1

)
∈ T . Take an open subgroup U ⊂ G(Ẑ) of

the form U =
∏

l Ul with Ul ⊂ GL2(Ol) (such a group is called a level subgroup), and
consider the (abstract) Hecke ring RU with convolution product of compactly supported
bi-U -invariant Z-values functions on G(A(∞)) (where A = A(∞)×R). Here the convolution
product f ∗ g(x) =

∫
f(xy−1)g(y)dy is defined under the Haar measure on G(A(∞)) with∫

U
dy = 1. For any open-compact bi-U -invariant set X ⊂ G(A(∞)), we write [X] for the

characteristic function of X. Then

RU =
⊕

x∈G(A(∞))

Z[UxU ]

and is an algebra with identity [U ]. Thus shows RU =
⊗

l RUl
for the convolution algebra

RUl
with respect to Ul ⊂ GL2(Fl). The standard level subgroup in G(Ẑ) of Γ0(N)-type

for an integral ideal N (called a level) is given by

(0.1) Γ̂0(N) =
{

( a b
c d ) ∈ G(Ẑ)

∣∣c ∈ NÔ
}

.

We also define the Γ1-type level subgroup

Γ̂1(N) =
{

( a b
c d ) ∈ Γ̂0(N)

∣∣a− 1, d − 1 ∈ NÔ
}

.
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We fix a level N prime to p and a level subgroup U with Γ̂0(N) ⊃ U ⊃ Γ̂1(N). Since
U =

∏
l Ul with Ul ⊂ GL2(Ol), Ul = GL2(Ol) for l - N. Each f ∈ RU is a tensor product

of local functions fl : GL2(Fl) → Z and fl is the characteristic function of GL2(Ol) for
almost all l - N; in other words, f(x) =

∏
l fl(xl) and [UxU ] =

⊗
l[UlxlUl], where [UlxlUl]

is the characteristic function of the double coset UlxlUl.
Write Ua = U ∩ Γ̂0(p

a) and U1
a = U ∩ Γ̂1(p

a). Hereafter we only consider a general level
subgroup S with Ua ⊃ S ⊃ U1

a for some a. If we need to indicate the exponent a of the
p-power level, we write Sa for S. At p, we consider, fixing a generator $p of pOp for p|p,

∆ =
{

( a b
0 1 ) ∈M2(Op ×ON)|a ∈

∏

p|p

$Z
p × F×

N

}
.

It is easy to check that ∆S = SpN∆SpN is a multiplicative semi-group. We consider

HS = {f ∈ RS |Supp(fpN) ⊂ ∆S} where fpN =
⊗

l|pN

fl.

Since ∆S is a multiplicative semi-group, HS is an algebra, and we can again factor HS =⊗
l HS,l, and HS,l = RUl

for all l - p. For such groups S = Sa ⊂ S ′
b = S ′ with a ≥ b > 0, the

association [SxS] 7→ [S ′xS ′] (x ∈ G(A(∞)) with xpN ∈ ∆) induces a linear map HS � HS′

(a ≥ b > 0) and hence a linear map: HS � HS′ (by the tensor product expression). By
group theory, as rings, HS′ ,p

∼= HS,p
∼= Z[US($p)] (US(y) = [S

(
y 0
0 1

)
S]) by this map:

Lemma 0.1. The algebra HS is commutative, and the above linear map is an isomorphism
of rings: HS

∼= HS′ for all a > b > 0.

We identify all HS by the above isomorphism and write it as H. For any commutative
ring R, we write H(R) for the scalar extension H ⊗Z R.

If Ua ⊃ S ⊃ S ′ ⊃ U1
a (so, S . S ′ with commutative quotient S/S ′), we can think of the

Hecke ring HS
S′ =

⊕
x∈∆S

Z[S ′xS ′]. Then HS
S′ ∼= HS[S/S ′] ∼= H[S/S ′] (the group ring of

S/S ′) by a natural map. Here is a general lemma.

Lemma 0.2. Let M be a Zp-module of finite or cofinite type and u : M →M be a linear
operator. Then the p-adic limit e = limn→∞ un! exists in EndZp(M) and satisfies e2 = e.

Proof. Taking the Pontryagin dual if necessary, we may assume that M is a Zp-module
of finite type. Since Zp[u] ⊂ EndZp(M) is a commutative Zp-algebra finite over Zp. Thus
it is a product of finitely many local rings; so, we may assume that Zp[u] is a local ring.
Then the residue field Zp[u] has order q, and hence uq−1 is either congruent to 0 or 1
modulo the maximal ideal m. Let qm = |Zp[u]/mm|; so, qm = (q− 1)qam for an increasing
sequence a1 = 0 < a2 < · · · < am < · · · of integers, and uqm is either congruent to 0 or 1
modulo the maximal ideal mm according as uq−1 is congruent to 0 or 1 m. Then we have

limn→∞ un! = limm→∞ uqm =

{
1 if u 6∈ m,

0 if u ∈ m.
�

1. Axiomatic method

Let K/Qp be a finite extension and W ⊂ K be the p-adic integer ring of K. Fix U
as above. We give ourselves HUa

Sa
(W )-modules {M∗

S}S . Since the action of Z(A(pN∞)) is
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contained in the H(W )-module structure, the group Z(A(pN∞)) acts on M∗
S , and suppose

the action extends to Z(A(∞)). We require {M∗
S}S to satisfy the following axiom (A0–A4)

for a� 0:

(A0) The center Z(A(∞)) acts on M∗
S by a continuous character ε : Z(A(∞))→ W×;

(A1) M∗
S is p-divisible of finite corank (its Pontryagin dual MS is W -free of finite rank);

(A2) If U1
∞ ⊂ S ′

b ⊂ Sa ⊂ U1 (b ≥ a), we have a HUb

S′
b
(W )-linear maps [SxS ′] : M∗

S′ →M∗
S

for x ∈ ∆S′ (such that [SxS ′]◦[S ′yS ′′] is induced by [SxS]∗[S ′yS ′′] if S ⊃ S ′ ⊃ S ′′)
and ιS/S′ : M∗

S →M∗
S′ forming an injective system {M∗

S , ιS/S′}S, and if T (Z/pbZ) ⊃
(S ′

b/U
1
b ) surjects down to (Sa/U

1
a ) ⊂ T (Z/paZ), we have [S

(
pb−a 0

0 1

)
S ′] ◦ ιS/S′ =

US(pb−a) and ιS/S′ ◦ [S
(

pb−a 0
0 1

)
S ′] = US′(pb−a);

(A3) If Ua ⊃ S ⊃ S ′ ⊃ U1
a , MS

∼= H0(S/S ′,MS′) by ι∗S/S′ (⇔M∗
S
∼= H0(S/S ′,M∗

S′)).

We assume that the action of S/S ′ on MS′ factors through S/S ′ = S · Z(Qp)/S
′ · Z(Qp)

(this we can achieve by twisting by a character), for simplicity.

(A4) If Ua ⊃ S ⊃ S ′ ⊃ U1
a , for each minimal prime ideal P ⊂ W [S/S ′], MS/PMS is

free of finite rank over W (⇔ M∗
S[P ] := {x ∈M∗

S |Px = 0} is p-divisible).

Let M be a projective limit lim←−S
MS = lim←−a

MU1
a
. Since the finite group Ua/U1

a
∼=

T (Z/paZ) acts on MU1
a
, M is a W [[T(Zp)]]-module as well as an H(W )-module. Giv-

ing M the topology of projective limit of the p-adic topology of MS , the ring EndW (M)
is a compact ring. The subring h = h(M) ⊂ EndW (M) generated by the operator in
H(W ) and the action of T (Zp) is the compact Hecke algebra of M . For each S, we have
an S-version hS = h(MS) ⊂ End(MS) = End(M∗

S) which is the algebra generated by
the action of H(W ) and T (Zp) (factoring through T (Z/paZ) if S = Sa). Then h(MS) is
W -free of finite rank (by (A1)) and h = lim←−S

hS . Consider the U(pm) = US(pm) operator

S
(

pm 0
0 1

)
S. Since for any S ⊃ S ′ as above, we check by computation the following fact:

Lemma 1.1. Let S = Sa ⊃ S ′ = S ′
b with b ≥ a > 0. If m ≥ b− a and the image of S ′ in

T (Z/pbZ) = Ub/U
1
b modulo pa is the image of S in T (Z/paZ), we have

S
(

pm 0
0 1

)
S ′ =

⊔

u∈Op/pmOp

(
pm u
0 1

)
S ′.

From this, it is easy to conclude U(pm) = U(p)m. Consider eS = limn→∞ U(p)n! ∈ hS

and e = lim←−S
eS ∈ h. Let M◦

S = eS ·MS, M◦ = e ·M = lim←−S
M◦

S, h◦ = e ·h and h◦
S = eShS.

Split T (Zp) = Γ × µ for a torsion-free p-profinite subgroup Γ and a torsion subgroup µ.

Theorem 1.2. We write Λ for W [[T (Zp)]] and Λ for W [[Γ]]. Then we have

(1) For S = Sa, M◦
S is a projective (⇔ flat) module of finite type over W [Ua/S];

(2) M◦ is a projective Λ-module of finite type (so, M◦ is free of finite rank over Λ);

(3) For a level group S = Sa with a > 0, regarding T (Z/paZ) � Ua/S as a quotient

of T (Zp), put aS = Ker(Λ � W [Ua/S]). Then M◦
S′/aSM◦

S′
∼= M◦

S for all S ′ ⊂ S
and M◦/aSM◦ ∼= M◦

S canonically by the projection M◦ � M◦
S ;

(4) h◦ is a Λ-torsion-free module of finite type.
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Proof. For simplicity, we assume that X(U) is smooth; other wise, replace T (Zp) by

T ′ = 1 + pa0Op ⊂ T (Zp) (for a0 such that X(U1
a0

) is smooth) and use the fact that Λ is
free (and faithfully flat) over W [[T ′]] to recover the result for Λ.

Let Ua ⊃ S ⊃ S ′ ⊃ U1
a . Regard MS′ as A-module for A = W [S/S ′]. To see M◦

S′ is A-
projective, for each local ring Am of A, we need to prove that the localization Mm := M◦

S′,m

is Am-free. Since for any finite extension W ′/W , W ′[S/S ′] is W [S/S ′]-free and hence

is W [S/S ′]-faithfully flat. Thus freeness over Am and over Am ⊗W W ′ is equivalent.
Replacing W by W ′, we may assume that Am/P ∼= W for all minimal ideals P of Am. Let
n = dimMm/mMm. Choose a set of generators x1, . . . , xn of Mm over Am by Nakayama’s
lemma, we have a surjection π : An

m � Mm sending (a1, . . . , an) to
∑

j ajxj. By (A4),

Mm/PMm is W -free for each minimal prime P ⊂ Am. We have a surjection πP : W n =
(Am/P )n � Mm/PMm. The minimal number of generators of Mm/PMm over Am/P = W
is dim(Mm/PMm ⊗A A/m) = dimMm⊗A A/m = n, then the LHS and RHS of πP are free
of rank n over W ; so, πP is an isomorphism; hence Ker(π) ⊂

⋂
P P n − {0}. Thus M◦

S′ is
A-projective, proving (1). Passing to the limit, we get (2) by (A3).

We now prove (3). If Ua ⊃ Sa ⊃ S ′
a ⊃ U1

a , (3) follows from (A3). Thus we assume
that S ′ = S ′

b ⊂ Sa = S with b > a, and we first assume first that the image of S ′ in
T (Z/pbZ) modulo pa is the image of S in T (Z/paZ). By (A2) (and Lemma 1.1), we have
the following commutative diagram:

MS′

ι∗
S/S′

� MS

US′(p)b−a ↓ ↖ u∗ ↓ US(p)b−a

MS′ � MS

for u = [S
(

pb−a 0
0 1

)
S ′]. Since U(p) is invertible on M◦

S and M◦
S′ , this shows that M◦

S′ ∼= M◦
S

as H(W )-modules and also as T (Zp)-modules as long as the image of S ′ in T (Z/pbZ)
modulo pa is the image of S in T (Z/paZ). In general, taking Sa ⊃ S ′′

a ⊃ S ′
b such that

Ua ⊃ Sa ⊃ S ′′
a ⊃ U1

a and that the image of S ′ in T (Z/pbZ) modulo pa is the image of S ′′

in T (Z/paZ), we have M◦
S′
∼= M◦

S′′ by the above argument, and M◦
S′′/aSM◦

S′′
∼= M◦

S by
(A3). Passing to the limit, we get M◦/aSM◦ ∼= MS . Since we get

• Λ/aU1
a

= W [T (Z/paZ)];
• M◦

U1
b
/aU1

a
M◦

U1
b

∼= M◦
U1

a
for all b > a > 0;

• M◦
U1

a
is W [T(Z/paZ)]-projective of finite type for all a > 0,

passing to the limit, we conclude that M◦ is Λ-projective of finite type. This proves (1),
(2) and (3). Since h◦ ⊂ EndΛ(M◦) ∼= Mr(Λ) for r = rankΛ M◦, h◦ is Λ-torsion-free of
finite rank, and (4) follows. �

Remark 1.1. We can remove (A0) and (A4) deforming the central character. In that case,
the limit group lim←−a

Ua/U
1
a is isomorphic to T (Zp). However, in application, automorphic

forms of level S is also invariant under Z(Q); so, we need to think of the quotient GU :=
lim←−a

Z(Q)Ua/Z(Q)U1
a
∼= T (Zp)/ZU , where ZU = Z(Q)∩U ⊂ Z(Z) is the group of U -units.

The assertion of the above theorem is valid replacing T (Zp) by GU which is isogenous to

Z[F :Q]+1+δ
p for the p-adic defect δ of the Leopoldt conjecture.
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2. Choice of MS

To describe the examples of MS , we assume (by twists) that the central character
ε is trivial for simplicity. We consider quaternionic Shimura varieties. Let D be a 4-
dimensional central simple algebra over F (in short, a quaternion algebra over F ). Fix
a maximal order R of D, and define an algebraic group GD(A) = (R ⊗Z A)× for a ring
A. For simplicity, we assume GD(Z`) ∼= G(Z`) for all primes `. Such a GD always

exists. Identifying GD(Ẑ) with G(Ẑ), we can use the same level subgroups U and Γ̂∗(N)
for GD. Since GD for any D shares the same center, we identify them with Z. Then
we consider automorphic varieties X(S) = GD(Q)\GD(A)/S · Z(A)CD, where CD is the
maximal compact subgroup of G(R). If U is sufficiently small, X(S) is a smooth complex
manifold. If G(R)/Z(R) is compact (that is, D⊗QR is a product of copies of the Hamilton
quaternion algebra H/R), X(S) is just a set of finitely many points. If G(R)/Z(R) is
noncompact, we have a partition I = ID

⊔
ID for non-empty ID such that we have

D⊗QR ∼= M2(R)ID×HID
. Through the M2(R)ID , GD(R) acts on ZD = (C−R)ID by linear

fractional transformation, and X(S) ∼=
⊔

g ΓSg\ZD (ΓSg = g−1S · Z(A)g ∩ GD(Q)) for a

complete representative set {g} (with gp = 1) of GD(Q)\GD(A(∞))/S·Z(A(∞)) (the set {g}
is finite: the approximation theorem). Thus dimC X(S) = d = |ID|. Under he condition

that GD(Ẑ) ∼= G(Ẑ), |ID| ≡ [F : Q] mod 2 (Hasse). In the case of ID 6= ∅, by the theory
of canonical models of Shimura, it is the manifold of C-points of a quasi projective variety
X(S)/E for the reflex field E. Here E is generated over Q by

∑
σ∈ID

σ(ξ) for ξ ∈ F . In

particular, E = F if ID is made of the identity embedding F ↪→ F , and we have F = Q
if ID = I (the Hilbert modular case). An obvious choice of MS is Hd(X(S),W ) (so,
M∗

S = Hd(X(S),K/W )). We think of the Hecke algebra h(MS) ⊂ EndK(Hd(X(S),K))
generated over W by the operators of H(W ) and T (Zp). Then we can define h◦(MS) and
h◦ = lim←−S

h◦(MS). By the Jacquet-Langlands correspondence (e.g. [HMI] 2.3.6), we have

Lemma 2.1. The algebras h◦ and h◦
S are independent of the choice of D as long as

D 6= M2(F ). For two choices of such D and D′, we have an isomorphism between them
sending [SxS ′] of the D-side to [SxS ′] of the D′-side. If D = M2(F ), the cuspidal part of
h◦

S coincides with the corresponding Hecke algebra of a division D in the same way.

Hereafter, we use the symbol h to indicate the cuspidal Hecke algebra common to all D
and use H for the full Hecke algebra for D = M2(F ); so, H◦ has Eisenstein component.
By the above lemma, to study h◦, we can choose a quaternion algebra we like. If |ID| ≤
1, MS is W -torsion-free (because dimX(S) ≤ 1). This shows (A1), and (A2) follows
from the fact that we have the restriction map ιS/S′ = ResS/S′ for cohomology and the
correspondence action of [SxS ′] on homology and cohomology group. It is a left action
on cohomology groups and by the Poincaré duality we get the homological right action.

Lemma 2.2. Suppose |ID| ≤ 1 and put MS = Hd(X(S),W ). Then the conditions (A3–4)
are satisfied by {MS}S .

The conditions (A3–4) follows trivially when |ID| = 0; so, we may assume |ID| = 1. We
give a sketch of the proof.
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Proof. A key is the inflation-restriction exact sequence for H1:

0→ H1(S/S ′,K/W )
Inf−→ H1(X(S),K/W )

Res−−→ H1(X(S ′),K/W )S → H2(S/S ′,K/W ),

and it is easy by computation to show that Im(Inf) and Coker(Res) is killed by e; so,
H1(X(S),K/W ) ∼= H1(X(S ′),K/W )S and the Pontryagin dual version is (A3). Extend-
ing scalar if necessary, each minimal prime P ⊂ W [S/S ′] is generated by (s − χ(s)) for
s ∈ S/S ′ for a character χ : S/S ′ → W×. Since S/S ′ is the Galois group of the covering
X(S)/X(S ′), we write K/W (χ)/X(S) and W (χ)/X(S) for the twist of the constant sheaves
by χ. Then by the same argument as above for W (χ−1), we get H1(X(S),K/W (χ−1)) ∼=
H1(X(S ′),K/W (χ−1))S. The Pontryagin dual of the right-hand-side is MS′/PMS′ . By
the exact sequence H1(X(S),K(χ−1)) → H1(X(S),K/W (χ−1)) → H2(X(S),W (χ−1)),
since e kills H2(X(S),W (χ)), H1(X(S),K/W (χ−1)) is p-divisible, and hence its dual
MS′/PMS′ is W -free by (A4). �

Proposition 2.3. Suppose |ID| ≤ 1. For each height 1 prime P ⊃ aS of Λ, the localization
M◦

P is h◦
P -free of rank r = 2|ID|. Moreover we have a surjective isogeny ιS : h◦/aSh

◦ → h◦
S

sending [U∞xU∞] to SxS for x ∈ G(A(∞)) with xpN ∈ ∆.

Proof. For finite level, MS ⊗W K is known to be free of rank r = 2|ID| over hS ⊗W K.
Thus for any height 1 prime P ⊃ aS of Λ (so, Λ/P is W -free),

M◦
P /PM◦

P
∼= (M◦

S/PM◦
S)⊗W K ∼= (hS/PhS)r ⊗W K ∼= (h◦

P /Ph◦
P )r.

By Nakayama’s lemma, we have a surjection (h◦
P )r → M◦

P . If it has a kernel, M◦
P has

Λ-torsion, since h◦
P is Λ-torsion free of finite rank. This is a contradiction, and we get

the freeness over h◦
P . We also have, (h◦

P /Ph◦
P )r ∼= M◦

P /PM◦
P
∼= MS ⊗W K/PMS ⊗W K ∼=

(hS ⊗W K/PhS ⊗W K)r; so, the projection h◦ to h◦
S sending [U∞xU∞] to [SxS] induces

h◦
P /Ph◦

P
∼= (hS ⊗W K/PhS ⊗W K). Since aS =

⋂
P P for such P , we conclude that the

map h◦/aSh
◦ � h◦

S has finite kernel and is an isogeny. �

Remark 2.1. As we said, we can remove (A0) varying also the central character. We can
take MS = Hd(Y (S),W ) for Y (S) = GD(Q)\G(A)/SCD. In that case, M◦ is W [[Γ]]-

torsionfree of finite rank for the torsion-free part Γ ⊂ T (Zp)/O
×
+ of GU . All analogous

results as above hold for GU in place of T (Zp). The resulting Hecke algebras, we write
hn.ord for the cuspidal one and Hn.ord that with Eisenstein component.

We can consider higher weight case also. The set of algebraic characters X(T ) =
Homalg gp(T/Q, Gm/Q) can be identified with Z[I]2 so that κ = (κ1, κ2) ∈ Z[I]2 induces the

following character on T (Q) = F× × F×

T (Q) 3 (ξ1, ξ2) 7→ κ(ξ1, ξ2) = ξκ1
1 ξκ2

2 ∈ Q×
,

where ξκj =
∏

σ∈I σ(ξj)
κj,σ ∈ Q×

. Take K sufficiently large so that GD(K) = GL2(K)I ,
and we write the projection to the σ ∈ I component GL2(K) as σ again. Then the
rational representation L(κ;K) of GD of highest weight κ = (κ1, κ2), taking the ordering
so that κ > 0 if κ1,σ < κ2,σ for all σ ∈ I, is given by

L(κ,K) =
⊗

σ∈I

(
(det ◦σ)κ1,σσ⊗(κ2,σ−κ1,σ )

)
,
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where σ⊗n is the n-th symmetric tensor representation. Letting σ⊗n act on polynomials
WXn + WXn−1Y + · · · + WY n by γP ((X,Y )) = P ((X,Y )tσ(γ)ι) for the involution ι
with γι + γ = Tr(γ), this representation has W -integral structure. We write L(κ;W ) for
the W -integral subspace on which GD(W ) acts. We put L(κ;A) = L(κ;W )⊗W A for any
W -module A. Since X(S) ∼=

⊔
g∈Ω ΓSg\ZD, we have a covering L(κ;A) on X(S) which is

given over ΓSg\ZD as a quotient ΓSg\(ZD × L(κ;A)) by the diagonal action.
There is an adelic version of the definition of L(κ;A). We let u ∈ U act on L(κ;A) from

the right by u−1
p ∈ GD(Zp) ⊂ GD(W ) and let Z(A) act on L(κ) by scalar multiplication

of ε̂(zp)
−1 for the p-adic avatar ε̂ of ε, L(κ;A) ∼= GD(Q)\(GD(A)× L(κ;A)/S · Z(A)CD.

Since ΓSg ∩ Z(Q) acts trivially on ZD, this quotient to be well defined étale space,
ΓSg ∩ Z(Q) ⊂ O×

+ has to act trivially on L(κ;A); so, at least, κ1 + κ2 = [κ]
∑

σ∈I σ (if
A = W ). By this condition, if one of κj is non-parallel (that is, not of the form k

∑
σ∈I σ),

the other is also non-parallel. In particular κ1 6= 0. Thus the original U(p) given by
the action of α =

(
p 0
0 1

)
∈ GD(Qp) on L(κ;A) is divisible by pκ1 = det(α)κ1 = p

∑
σ κ1,σ .

Thus to have nontrivial space, we need to divide the action of [SxS] by det(xp)
κ1 to make

it optimally integral. Using this new operator [SxS]◦ = det(xp)
−κ1 [SxS], if |ID| ≤ 1,

we can verify (A0-4) for M∗
S = M∗

κ,S = Hd(X(S), L(κ;K/W )). We write U◦(pm) for
[SαmS]◦. This modification only affect Hecke operators supported at p. We write T ◦(y)

for [S
(

y 0
0 1

)
S]◦ for y ∈ Ô ∩ F×

A . If y ∈ Op, we write U(y) for [S
(

y 0
0 1

)
S] and U◦(y) for

[S
(

y 0
0 1

)
S]◦. If Ul = GL2(Ol) and l - p, T ($l) for a uniformizer $l of Ol is independent of

the choice of $l; so, we write it as T (l). The resulting Hecke algebra of weight κ and the
module M◦ of weight κ, we write h◦

κ and M◦
κ . An important fact is

Theorem 2.4 (Independence of weight). We have canonical compatible isomorphisms
h◦ ∼= h◦

κ and M◦ ∼= M◦
κ . The isomorphism: h◦ ∼= h◦

κ sends [SxS] to [SxS]◦ for all
x ∈ G(A(∞)) with xpN ∈ ∆.

Note that T (Zp) ∼= O×
p by

(
y 0
0 1

)
↔ y, and y acted on M◦

κ originally by U(y); so, the
above isomorphism becomes Λ-linear if we use U◦(y) = y−κ1

p U(y) for the action of y.

Proof. Here is a sketch of a proof. For simplicity, we assume that p is unramified in F/Q;
so, we can take W unramified over Zp. The evaluation of polynomials in L(κ,W/pmW )
at (X,Y ) = (1, 0) gives a U1

m isomorphism L(κ,W/pmW ) ∼= W/pmW ; so, we get a
T ◦(y)-equivariant morphism of im : Mκ,U1

m
⊗W W/pmW ∼= MU1

m
⊗W W/pmW . After

taking the limit, we get a morphism i∞ : Mκ → M . The inclusion W/pW 3 a 7→
aY κ2−κ1 ∈ L(κ;W/pW ) is a morphism of U1-module; so, we have j : MU1

1
⊗W W/pW →

Mκ,U1
1
⊗W W/pW . Take τ =

(
0 1
p 0

)
∈ GD(Qp) and δ = ( 0 1

1 0 ) ∈ GD(Zp). Then define
J = [U1δU1] ◦ j ◦ [U1τU1] : MU1

1
⊗W W/pW → Mκ,U1

1
⊗W W/pW . By computation, we

find, on MU1
1
⊗W W/pW and Mκ,U1

1
⊗W W/pW , i ◦ J = U◦(p) and J ◦ i = U(p). Thus

M◦
U1

1
⊗W W/pW ∼= M◦

κ,U1
1
⊗W W/pW . By Nakayama’s lemma applied to the Jacobson

radical of Λ implies that i∞ : M◦
κ →M◦ is surjective. Then by comparing the rank over

Λ, i∞ is an isomorphism satisfying T (y) ◦ i∞ = i∞ ◦ T ◦(y). �

Corollary 2.5. Let πκ : Λ → W be the W -algebra homomorphism induced by T (Zp) 3
z 7→ z−κ1 ∈ W×. If κ1 ≤ κ2, we have a W -algebra isogeny ικ : h◦ ⊗Λ,πκ W � h◦(Mκ,U1)
which sends T (y) to T ◦(y) for all integral F -idele y.
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There is one more choice of MS . If we have a good p-integral model X(S)/W , we can
think of Hd(X(S),OX(S)) which is the dual of H0(X(S),ΩX(S)/W ). This can be done tak-
ing “Igusa style model” and the cuspidal part Ωcusp

X(S)/W of ΩX(S)/W if D = M2(F ), though

it is quite involved to prove (A1–4). A good point is that Hom(H0(X(S),Ωcusp
X(S)/W ),W )

is isomorphic to the corresponding Hecke algebra; so, we get (see [PAF] and [HMI] 4.3.9)

Theorem 2.6. Suppose that X(U) is smooth over W . Then h◦ (resp. hn.ord) is free of
finite rank over Λ (resp. W [[Γ]]). The isogenies ιS and ικ are isomorphisms.

3. Galois representations

When |ID| = 1 (so [F : Q] odd), taking MS to be the étale homology of the Shimura
curve X(S)/F . Pick a prime P ⊃ aU1

a
∩ Λ. Since M◦

P
∼= (h◦

P )2 (if X(U) is smooth) by

Proposition 2.3, the Galois action produces a Galois representation ρh : Gal(F/F ) →
GL2(h

◦
P ) (constructed in [68c] in [CPS], [H81] and [H86]). If [F : Q] is even, a similar

construction is possible if we allow ramification of D at finite places. By the theory of
pseudo-representation of Wiles, as he showed, we can actually construct ρh : Gal(F/F )→
GL2((h

◦
P )red) even in the case of even degree ([W] and [H89b]).

Theorem 3.1 (A. Wiles, H. Hida). Let T be a reduced local ring of h◦ or hn.ord. Then
there exists a continuous Galois representation ρT : Gal(F/F )→ GL2(TP ) such that

(1) ρT is unramified outside p, ∞ and N;
(2) Tr(ρT(Frobl)) = T (l)|T with the arithmetic Frobenius element Frobl at primes l

outside p, ∞ and N;
(3) If T ⊂ h◦, det ρT = ε̂N for the p-adic cyclotomic character N ;
(4) For each decomposition group Dp (p|p), ρT|Dp

∼=
(

β ∗
0 α

)
, α([y, Fp]) = U◦(y)|T and

πκ ◦ α([u, Fp]) = u−κ1 and πκ ◦ β([u, Fp]) = u−κ2NFp/Qp(u)−1 for u ∈ O×
p , where

[x, Fp] is a local Artin symbol (with N ([u, Fp]) = NFp/Qp(u)−1 and N (Frob`) = `).

Remark 3.1. If the residual Galois representation ρT mod mT for the maximal ideal mT
of T is absolutely irreducible, we have ρT with values in GL2(T).

Let U = Γ̂1(N). Let F pN/F be the maximal abelian extension unramified outside pN.
Then we split C = Gal(F pN/F ) = Cp × C(p) for the p-profinite part Cp and prime-to-
p part C(p). Thus Cp is isogenous to Z1+δ

p . We consider the continuous group algebra
W [[Cp]] and consider the inclusion ι : Cp→ W [[Cp]]

×. If p is odd, then ρ⊗ η 6∼= ρ for any
2-dim Galois representation ρ and any character η 6= 1 of Cp. Since p is odd, we have a
unique

√
ι : Cp → Cp ⊂ W [[Cp]]

×. For T ⊂ h◦, ρT ⊗
√

ι has determinant ιdet ρT = ιε̂N
and is a promodular representation into GL2(T[[Cp]]). Since we have the Galois character
δ = det(ρhn.ord), h◦ = hn.ord/(δ(σ)− ε̂N (σ))σ, and we have a unique local ring Tn.ord of
hn.ord surjecting down to T. Since ρT⊗

√
ι is realized by a quotient of Tn.ord (because order

p character has square-free prime-to-p conductor), there exists an algebra homomorphism
π : Tn.ord → T[[Cp]] such that π ◦ ρTn.ord

∼= ρT.

Proposition 3.2. If p is odd and Tn.ord and T are reduced, then Tn.ord ∼= T[[Cp]] by π.
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Anyway, dimT = [F : Q] for T ⊂ h◦ and dim Tord = [F : Q] + 1 + δ. Write H◦
E and

Hn.ord
E be the Eisenstein component. The Galois representation ρT for local ring T of H◦

E

has trace ε̂N (σ)ι + ι−1. Since Tn.ord ∼= T◦[[Cp]], we have

Proposition 3.3. The algebras H◦
E and Hn.ord

E are equidimensional and has dimension
1 + δ and 2 + 2δ, respectively.

References

Books

[CPS] G. Shimura, Collected Papers, I, II, III, IV, Springer, New York, 2002.
[HMI] H. Hida, Hilbert modular forms and Iwasawa theory, Oxford University Press, 2006.
[PAF] H. Hida, p-Adic Automorphic Forms on Shimura Varieties, Springer Monographs in Mathe-

matics, Springer, 2004.
[SGL] H. Hida, On the Search of Genuine p-Adic Modular L-Functions for GL(n), Mem. SMF 67,

1996.

Articles

[H81] H. Hida, On abelian varieties with complex multiplication as factors of the Jacobians of
Shimura curves (Doctor’s Thesis at Kyoto University, 1980), Amer. J. Math. 103 (1981),
727–776.

[H86] H. Hida, Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Inven-
tiones Math. 85 (1986), 545–613.

[H89a] H. Hida, On nearly ordinary Hecke algebras for GL(2) over totally real fields, Adv. Studies
in Pure Math. 17 (1989), 139–169.

[H89b] H. Hida, Nearly ordinary Hecke algebras and Galois representations of several variables, Proc.
JAMI Inaugural Conference, Supplement to Amer. J. Math. (1989), 115–134.

[H91] H. Hida, On p-adic L-functions of GL(2) × GL(2) over totally real fields, Ann. Inst. Fourier
41 (1991), 311–391.

[W] A. Wiles, On ordinary Λ-adic representations associated to modular forms, Inventiones Math.
94 (1988), 529–573.

Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A.


