Local indecomposability of Tate modules of abelian varieties of GL(2)-type

Haruzo Hida*

Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A. June 19, 2013

Abstract: We prove indecomposability of p-adic Tate modules over the p-inertia group for non CM (partially p-ordinary) abelian varieties with real multiplication. I will also discuss its application (given by Bin Zhao) to local indecomposability of Hilbert modular Galois representations.

^{*}A talk on in a conference at Lyon École Normale. The author is partially supported by the NSF grants: DMS 0753991 and DMS 0854949.

§1. Greenberg's Question.

Pick a totally real field $F \subset \overline{\mathbb{Q}}$ with integer ring O.

Take a non CM AVRM A over a number field $k \subset \overline{\mathbb{Q}}$ with integer ring \mathfrak{D} ; so, $O \hookrightarrow \operatorname{End}(A_{/k})$, $\dim A = [F : \mathbb{Q}]$ and the centralizer of O in $\operatorname{End}(A_{/\overline{\mathbb{Q}}})$ is O.

Pick a prime $\mathfrak{p}|p$ of O and consider \mathfrak{p} -adic Tate module $T_{\mathfrak{p}}A$. Suppose that A has good reduction \widetilde{A} modulo a prime $\mathfrak{P}|p$ of k, and assume that $\widetilde{A}[\mathfrak{p}](\overline{\mathbb{F}}_p) \cong O/\mathfrak{p}$ (\mathfrak{p} -ordinary at \mathfrak{P}).

Greenberg's Question: Is $T_{\mathfrak{p}}A$ indecomposable over the decomposition group $D_{\mathfrak{P}}$?

§2. Solution.

Theorem 1. Yes it is indecomposable.

I try to explain my far-fetched proof and its consequences, assuming that p is unramified in $F \cdot k$ (this assumption has been removed by Bin Zhao; so, the theorem is unconditional).

Fix a prime p and

- a finite set of rational primes $p \in \Xi$ unramified in $F \cdot k$;
- field embeddings $\mathbb{C} \stackrel{i_{\infty}}{\longleftarrow} \overline{\mathbb{Q}} \stackrel{i_{l}}{\longrightarrow} \mathbb{C}_{l}$ for all primes l.

Write \mathfrak{l} (resp. \mathfrak{L}) be prime of O (resp. \mathfrak{D}) induced by $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_l$.

§3. Hilbert modular Shimura variety.

Let $\mathbb{Z}_{(\Xi)} = \mathbb{Q} \cap \prod_{l \in \Xi} \mathbb{Z}_l$, and $\mathbb{A}^{(\Xi)}$ be the adele ring away from $\Xi \cup \{\infty\}$. Put $V = O^2$ and $V(R) = V \otimes_{\mathbb{Z}} R$ for $\mathbb{Z}_{(\Xi)}$ -algebras R.

Hilbert modular Shimura variety $Sh_{/\mathbb{Z}_{(\Xi)}}^{(\Xi)}$ classifies

$$(A, \eta^{(\Xi)}, \overline{\lambda})$$

made of an AVRM A, level structure for $TA = \varprojlim_N A[N]$

$$\eta^{(\equiv)}:V(\mathbb{A}^{(\equiv)})\cong TA\otimes_{\widehat{\mathbb{Z}}}\mathbb{A}^{(\equiv)}$$

and prime-to-≡ polarization class. Thus

$$Sh^{(\Xi)}(R) \cong \{(A, \eta^{(\Xi)}, \overline{\lambda})_{/R}\}/\approx,$$

where \approx is by prime-to- $\equiv F$ -linear isogenies. We remove " (\equiv) " from our notation if no confusion is likely.

 $\S 4. \operatorname{Aut}(Sh).$

Let $G=\mathrm{Res}_{F/\mathbb{Q}}GL(2)$. We let $G(\mathbb{A}^{(\Xi)})$ act on Sh by

$$\eta \mapsto \eta \circ g$$
.

If $x \in Sh$ corresponds $(A_x, \eta_x, \overline{\lambda}_x)$, let

$$M_x = \operatorname{End}^0(A_x) = \operatorname{End}(A_x) \otimes \mathbb{Q}.$$

Then we can embed

$$M_x^{\times} \xrightarrow{\rho_x} G(\mathbb{A}^{(\Xi)})$$
 by $\alpha \circ \eta_x = \eta_x \circ \rho(\alpha)$.

Then $\rho(M_x^{\times})$ gives rise to the stabilizer of x.

If $M_x = F$, the action of M_x^{\times} is trivial; but, if M_x/F is a CM extension, the action factors through M_x^{\times}/F^{\times} .

§5. Serre—Tate deformation theory

Assume that $\underline{A}=(A,\eta,\overline{\lambda})$ has ordinary good reduction at \mathfrak{L} . Consider its reduction

$$\underline{A}_{\mathfrak{L}} = (A_{\mathfrak{L}}, \eta_{\mathfrak{L}}, \overline{\lambda}_{\mathfrak{L}}) = (A, \eta, \overline{\lambda}) \otimes \overline{\mathbb{F}}_{\mathfrak{L}}$$

for an algebraic closure $\overline{\mathbb{F}}_{\mathfrak{L}}$ of $\mathbb{F}_{\mathfrak{L}}:=\mathfrak{O}/\mathfrak{L}$, which gives rise to a point $x_{\mathfrak{L}}\in Sh(\overline{\mathbb{F}}_{\mathfrak{L}})$.

Let $W_l = W(\overline{\mathbb{F}}_{\mathfrak{L}})$. Then the formal completion \widehat{S}_l of Sh along $x_{\mathfrak{L}}$ is isomorphic to the Serre-Tate deformation space.

For any complete local ring R with residue field $\overline{\mathbb{F}}_{\mathfrak{L}}$,

$$\widehat{S}_l(R) \cong \{\underline{\mathcal{A}} := (\mathcal{A}, \eta_{\mathcal{A}}, \overline{\lambda}_{\mathcal{A}})_{/R} | \underline{\mathcal{A}}_{/R} \otimes_R R / \mathfrak{m}_R = \underline{\mathcal{A}}_{\mathfrak{L}} \} / \cong .$$
 As is well known, $\widehat{S}_l \cong \widehat{\mathbb{G}}_m \otimes O$.

§6. Serre–Tate coordinates

Identify $\widehat{\mathbb{G}}_m = \operatorname{Spf}(\widehat{W_l[t,t^{-1}]})$. Then consider the rigid analytic space \widehat{S}_l^{an} associated to \widehat{S}_l in the sense of Berthelot.

Taking the σ -component of "log(t)" given by

$$\tau_{l,\sigma}: \widehat{\mathbb{G}}_m \otimes O(W_l) = (1 + \mathfrak{m}_{W_l}) \otimes_{\mathbb{Z}} O \xrightarrow{\log_p} \prod_{\sigma} W_l \xrightarrow{\sigma} W_l,$$

we may identify $\widehat{S}_{l}^{an} = \operatorname{Sp}(\mathbb{C}_{l}\{\{\tau_{l,\sigma}\}\}_{\sigma}).$

We have a decomposition

$$\Omega_{\widehat{S}_l^{an}/\mathbb{C}_l} = \bigoplus_{\sigma} \Omega_{\sigma/\mathbb{C}_l}^{an}$$

such that Ω_{σ}^{an} is generated by $d\tau_{l,\sigma}$.

$\S 7.$ CM action on \widehat{S}_l

Let $M_{\mathfrak{L}}=\operatorname{End}_F^0(A_{\mathfrak{L}/\overline{\mathbb{F}}_{\mathfrak{L}}})$ which is a CM quadratic extension of F generated by the $N(\mathfrak{L})$ -power Frobenius map $\phi_{\mathfrak{L}}$.

We can embed $\alpha \in M_{\mathfrak{L}}^{\times}$ into $G(\mathbb{A}^{(\Xi)})$ by $\alpha \circ \eta_{\mathfrak{L}} = \eta_{\mathfrak{L}} \circ \rho(\alpha)$.

Then we have, writing t for $t \otimes 1$ and $t^a = t \otimes a$,

$$\tau_{l,\sigma} \circ \rho(\alpha) = \alpha^{\sigma(1-c)} \tau_{l,\sigma} \iff t \circ \rho(\alpha) = t^{\alpha^{1-c}}.$$

So we call $\tau_{l,\sigma}$ σ -eigen-coordinate. Any σ -eigen-coordinate on \widehat{S}_{l}^{an} is **proportional** to $\tau_{l,\sigma}$.

The origin $\tau=0$ gives rise to the canonical CM lift A^{cm} of $A_{\mathfrak{L}}$.

Hereafter we take $W = \bigcap_{l \in \Xi} i_l^{-1}(W_l)$ inside $\overline{\mathbb{Q}}$.

§8. Point $x \in \widehat{S}_p \subset Sh$ of $(A, \eta, \overline{\lambda})$.

Suppose $T_{\mathfrak{p}}A$ is decomposable over $D_{\mathfrak{P}}$. If \mathfrak{p} remains prime over p, by non-CM property, we have $t(A) \neq 1$ and hence $T_{\mathfrak{p}}A$ cannot be decomposable.

We may assume that there are more than two prime factors of (p) in F. For simplicity, we assume that $[F:\mathbb{Q}]=2$; so, $(p)=\mathfrak{pp}'$. Write $\sigma:F\hookrightarrow\overline{\mathbb{Q}}_p$ corresponding to \mathfrak{p} and $\sigma':F\hookrightarrow\overline{\mathbb{Q}}_p$ corresponding to \mathfrak{p}' .

Then we have

$$\tau_{p,\sigma}(x) = 0$$
 and $\tau_{p,\sigma'}(x) \neq 0$.

§9. Kodaira-Spencer map.

Let $\pi: \mathbf{A} \to Sh$ (resp. $\widehat{\pi}: \mathbf{A} \to \widehat{S}_l$) be the universal abelian varieties. By the O-action on \mathbf{A} , O acts on $\Omega_{\mathbf{A}/Sh}$ and $\Omega_{\mathbf{A}/\widehat{S}_l}$.

Writing $\omega = \pi_* \Omega_{\mathbf{A}/Sh}$ and $\omega_l = \widehat{\pi}_* \Omega_{\widehat{\mathbf{A}}/\widehat{S}_l}$, we have the following decomposition into σ -eigenspaces:

$$\omega = \bigoplus_{\sigma} \omega^{\otimes \sigma}$$
 and $\omega_l = \bigoplus_{\sigma} \omega_l^{\otimes \sigma}$.

The Kodaira-Spencer map induces a canonical isomorphism

$$\Omega_{\sigma,Sh/\mathcal{W}} \cong \omega^{\otimes 2\sigma}, \Omega_{\sigma,\widehat{S}_l/W_l} \cong \omega_l^{\otimes 2\sigma}.$$

§10. Stability under CM action.

Since $\tau_{p,\sigma} \circ \rho(\alpha) = \alpha^{\sigma(1-c)} \tau_{p,\sigma}$, the fiber $\omega_p^{\otimes 2\sigma}(x)$ at x of the invertible sheaf $\omega_p^{\otimes 2\sigma}$ is stable under the action of $\rho(M_{\mathfrak{P}}^{\times})$.

Since

$$\omega_p^{\otimes 2\sigma}(x) = \omega^{\otimes 2\sigma}(x) \otimes_{\mathcal{W}} W_p,$$

the fiber at x of the global sheaf $\omega^{\otimes 2\sigma}(x)$ is stable under $\rho(M_{\mathfrak{P}}^{\times})$.

Pick another prime $l \in \Xi$ so that A has ordinary good reduction at \mathfrak{L} . Then we have

$$\omega_l^{\otimes 2\sigma}(x) = \omega^{\otimes 2\sigma}(x) \otimes_{\mathcal{W}} W_l.$$

Thus $\omega_l^{\otimes 2\sigma}(x)$ is stable under $\rho(M_{\mathfrak{P}}^{\times})$; so,

$$\tau_{l,\sigma}(x) = 0$$
 and $\tau_{l,\sigma} \circ \rho(\alpha) = \alpha^{\sigma(1-c)} \tau_{l,\sigma}$.

§11. CM contradiction.

Ву

$$au_{l,\sigma}(x)=0 \ \ ext{and} \ \ au_{l,\sigma}\circ
ho(lpha)=lpha^{\sigma(1-c)} au_{l,\sigma},$$
 $A_{\mathfrak{L}}$ has CM by the same $M_{\mathfrak{P}}=M_{\mathfrak{L}}.$

The choice of $\mathfrak L$ is arbitrary, by Chebotarev density applied to the Galois representation on $T_{\mathfrak p}A$, we can find l with $M_{\mathfrak L} \neq M_{\mathfrak P}$, a contradiction.

Thus $T_{\mathfrak{p}}A$ must be indecomposable over $D_{\mathfrak{P}}$.

The argument works well for any \mathfrak{p} -ordinary A and general F.

§12. Kodaira-Spencer map again.

We restart with a CM abelian variety A^{cm} with CM by \mathfrak{D} .

Recall $\omega = \pi_* \Omega_{\mathbf{A}/Sh}$ and $\omega_l = \widehat{\pi}_* \Omega_{\widehat{\mathbf{A}}/\widehat{S}_l}$, we have the following decomposition into σ -eigenspaces:

$$\omega = \bigoplus_{\sigma} \omega^{\otimes \sigma}$$
 and $\omega_l = \bigoplus_{\sigma} \omega_l^{\otimes \sigma}$.

The Kodaira-Spencer map induces a canonical isomorphism

$$\Omega_{\sigma,Sh/\mathcal{W}} \cong \omega^{\otimes 2\sigma} \quad \text{and} \quad \Omega_{\sigma,\widehat{S}_l/W_l} \cong \omega_l^{\otimes 2\sigma}.$$

Writing the formal group $\widehat{\mathbf{A}}$ of $\mathbf{A}_{/\widehat{S}_l}$ as $\widehat{\mathbf{A}} = \widehat{\mathbb{G}}_m \otimes O$ with $\widehat{\mathbb{G}}_m = \operatorname{Spf}(W\widehat{[s_l,s_l^{-1}]})$, the Kodaira-Spencer map is given by

$$d\tau_{l,\sigma} \leftrightarrow \left(\frac{ds_{\sigma}}{s_{\sigma}}\right)^{\otimes 2}$$
.

§13. Katz period and proportionality.

Choose an algebraic differential ω^{cm} with

$$H^{0}(A^{cm}, \Omega_{A^{cm}/\mathcal{W}}) = (\mathcal{W} \otimes O)\omega^{cm}.$$

Assuming $A_{\mathfrak{P}}$ is ordinary, identifying $\widehat{A}^{cm}=\widehat{\mathbb{G}}_m\otimes O$ with $\widehat{\mathbb{G}}_m=\operatorname{Spf}(\widehat{W[s_l,s_l^{-1}]})$, Katz defined his p-adic period $\Omega_{p,\sigma}\in W_l^{\times}$ by

$$\omega_{\sigma}^{cm} = \Omega_{p,\sigma} \left(\frac{ds_l}{s_l} \right)_{\sigma}$$

comparing its σ -eigen components.

Comparing the fibers of the Kodair-Spencer map at $\tau=0$, we get $d\tau_{p,\sigma}/d\tau_{l,\sigma}=\Omega_{p,\sigma}^2/\Omega_{l,\sigma}^2$. Since $\tau_{p,\sigma}$ and $\tau_{l,\sigma}$ are proportional,

Theorem 2.
$$\tau_{p,\sigma}/\tau_{l,\sigma} = \Omega_{p,\sigma}^2/\Omega_{l,\sigma}^2$$

§14. Hilbert modular Galois representation.

Let f be a nearly p-ordinary weight 2 non CM Hilbert modular Hecke eigenform for a totally real field K.

Assume that its p-adic Galois representation $\rho_{\mathbf{f}}$ comes from an abelian variety $A_{\mathbf{f}}$ of GL(2)-type (e.g., \mathbf{f} is the image of Jacquet-Langlands correspondence from a Shimura curve).

Bin Zhao removed the unramifiedness assumption by the result of Deligne-Pappas and showed that $A_{\bf f}\sim A^e$ for an absolute simple AVRM over a number field $k_{/K}$; so,

Theorem 3 (B. Zhao). $\rho_{\mathbf{f}}|_{D_{\mathfrak{P}}}$ is indecomposable.

Balasubramanyam, Ghate and Vatsal have got a similar result under a different set of assumptions.

§15. Application to Coleman's problem.

Assume p>3 and let N be a positive number prime to p. Write $M_k^{\dagger}(\Gamma_1(N))$ for the space of elliptic overconvergent p-adic modular forms.

By the theta operator $\theta=q\frac{d}{dq}$, we have

$$\theta^{k-1}: M_{2-k}^{\dagger}(\Gamma_1(N)) \to M_k^{\dagger}(\Gamma_1(N)).$$

Coleman proved that for $k \geq 2$, every classical CM cuspidal eigenform of weight k and slope k-1 is in the image of θ^{k-1} .

Coleman's question is

Is there non-CM classical cusp forms in the image of θ^{k-1} ?

$\S 16$. Answer is no for k=2.

By p-adic Hodge theory (a result of Kisin), if f of \mathfrak{p} -slope k-1 is in the image of θ^{k-1} , ρ_f has to be decomposable at p (a remark made by Emerton).

Thus by the result of Zhao, we get

Theorem 4 (B. Zhao). Suppose k = 2. Then a \mathfrak{p} -slope 1 classical Hecke eigen cusp form is in the image of θ if and only if f has complex multiplication.