ANALYTIC VARIATION OF TATE-SHAFAREVICH GROUPS

HARUZO HIDA

ABSTRACT. We study a tower {X;},—0,1,2,... of modular curves obtained systematically twisting
the standard tower associated to {X1(Np")}, for a prime p > 5 and N prime to p. A given
Q-simple factor Ap, of the Jacobian Jy, of X,, associated to a p-ordinary Hecke eigenform is a
member of a p-adic analytic family {Ap}p of Q-simple factors of J, (r = 0,1,2,...), where P
runs over arithmetic points of a local ring T of the big Hecke algebra of the tower. Supposing
a minimalist condition on the arithmetic cohomology of Ap, in addition to regularity of T, we
study a sufficient condition for infinitely many Ap having Mordell-Weil rank < 1 and finite Tate—
Shafarevich group over a number field K. If we choose the twist well and if Ap, has root number
e = +1, we can make Ap to have the equal root number all over the family, which may be an
interesting case.

1. INTRODUCTION

Fix a prime p and a positive integer N prime to p throughout the paper. Let Spec(I) be an
irreducible component of (the spectrum of) the p-ordinary big Hecke algebra h. Attached to I is the
Mazur-Kitagawa p-adic L-function L(k, s) for the weight variable k and the cyclotomic variable s.
The function L is an element of the affine ring of the irreducible component of Spec(h™°') covering
Spec(I) for the two variable nearly p-ordinary big Hecke algebra h™°*, We study in this paper the
tower of modular curves { X, }, whose jacobians (or more precisely their p-ordinary part) correspond
to the one variable p-adic L-function k +— L((o + )k + 2, 6k + 1) heuristically for a fixed pair of
p-adic integers o, 6 € Z,. More precisely, choosing a primitive root ¢, € u,~ compatibly with r > 0
and picking a weight 2 Hecke eigenform f belonging to I whose Neben character restricted to Z;
sends 1 +p € Z to ¢o*9 the p-adic L-function L interpolates the complex L-value L(1, f ® €) for
the p-power order order character € of Z,5 with e(1 +p) = ¢~ 9. In this introduction, for simplicity,
we assume that « = § = 1; so the corresponding p-adic L-function k — L(2k + 2, k + 1) interpolates
the central critical values (so the function k — L(2k + 2,k + 1) could be identically zero). We call
the tower {X,}, with (o, d) = (1, 1) the self-dual tower (of prime-to-p level N), and here we sketch
the results for the self-dual tower. The general case of an arbitrary (a,d) will be taken care of in
the main text (see Section 3 for a precise definition of {X,},). The standard tower {X;(Np")},
corresponds to (a,d) = (0,1). Let J,/q for the Jacobian variety of X,. Since X, is essentially
a Galois twist of the modular curve sitting between X;(Np”) and Xo(Np"), we may assume that
HO(J,,Qy, )c) = S2(Iy) for a congruence subgroup I, with 'y (Np”) C I, € To(Np").

For a set of places S of a number field K, write K°/K for the maximal extension unramified
outside S. For a topological Gal(K®/K)-module M and v € S, we write H*(K%/K, M) (resp.
H*(K,, M) for the v-completion K, of K) for the continuous cohomology of the profinite group
Gal(K®/K) (resp. Gal(K,/K,) for an algebraic closure K, of K,) giving the discrete topology to
the coefficients M (so, H4(K° /K, M) and H9(K, M) is a torsion module if ¢ > 0). Define

IV (K /K, M) = Ker(H(K® /K, M) — [[ H(K,,M)) for j=1,2
veS
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and put I/ (KS/K, M), = IIV(K%/K, M) ®z Z,. Often we simply write IIT for IIT'. More
generally, for a module M, we define M, by M ®z Z, (so, M, is the maximal p-power torsion
submodule M [p>] of M if M is torsion, and the maximal p-profinite quotient if M is profinite).
Throughout the paper, when M is related to an abelian variety, we always assume that .S contains all
finite places at which the abelian variety has bad reduction in addition to all p-adic and archimedean
places of K. Unless otherwise mentioned, we assume S to be chosen finite.

In addition to the divisible Mordell-Weil group J,.(K) ®z, Q,/Zy, we study the Tate-Shafarevich
group g (J,.), Mg (K® /K, J.[p>]) and the Selmer group

Sel (J;) = Ker(H (K /K, J,[p™]) — [] H' (K., Jr)).
ves

The Tate-Shafarevich group and the Selmer group of an abelian variety are independent of S; so, we
omitted “K*°/K” from the notation. The Hecke operator U(p) and its dual U*(p) acts on Ik (J,)
and their p-adic limit e = lim,, ., U(p)™" and e* = lim, ., U*(p)™ are well defined on the above
groups H. We write H°' := e(H). More generally, adding superscript or subscript “ord” (resp.
“co-ord”), we indicate the image of e (resp. e*) depending on the situation.

By Picard functoriality, we have injective limits G :=lim G, with G, := J, [p>]°rd (a A-BT group
in the sense of [H14]), R = JU(R) = lim Jo'4(R) for J.(R) = lim J.(R)/p"J.(R) as an fppf
sheaf over K, Ik (J3Y) = lim g (J,)9rd, g (K5/K,G) = lim_ Uik (K°/K, J.[p>]°?), and
Sel (J2d) = lim Selg (J,)9rd. We study control under Hecke operators acting on these arithmetic
cohomology groups and J4(R) ®z Q,/Z, for number fields R = K. These groups are discrete
modules over the corresponding big Hecke algebra h, and we call them A-BT groups, ind A-MW
groups, ind A-TS groups and A-Selmer groups in order. By adding the superscript “V”, we indicate
their Pontryagin dual which are p-profinite h-modules. For a local ring T of h, adding subscript T,
we indicate the module cut out by T; e.g., JE%(R) = JZ4(R) ®n T. For each Shimura’s abelian
subvariety Ay C J, associated to a Hecke eigenform f € So(T';) (e.g., [IAT, Theorem 7.14]), we
can think of the ordinary part of the Tate-Shafarevich group IIlx (A f)grd and the Selmer group
Selg (Af)ord (see (1.2) and Section 8 of the text or [ADT, page 74] for the definition of these
groups). Let h be a big ordinary Hecke algebra with respect to the tower, and pick a primitive
connected component Spec(T) of Spec(h) in the sense of [H86a, §3]. Then points P € Spec(T)(Q,)
correspond one-to-one to p-adic Hecke eigenforms fp in a slope 0 analytic family. Assuming for
example that T is a unique factorization domain, in a densely populated subset Q1 C Spec(T) (@p)
of principal primes (indexed by (¢%, (%) = (¢, ¢) for ¢ € ppe), fp is classical, new at all prime factors
of N and of weight 2 (a definition of Qr will be given in (10.1)). Write Np"(¥) for the minimal level
of fp. Let Ap/g (resp. Bpjg) be Shimura’s abelian subvariety (resp. abelian variety quotient) of
Jy(py associated to fp (see Definition 5.3). Write Hp for the subfield of End(Ap/q) ®z Q generated
by the Hecke operators. In this introduction, for simplicity, we assume that Ap for every P € Qr
has potentially good reduction at p and that Ap for some P € Qr has good reduction over Z,. We
prove that ranky MY = dimpyac(ry MY @1 Frac(T) is finite for M = JEUG(K) ©z, Qp/Zy, Selx (J2%),
g (JZ%) and Il (K®/K, Gr) if T is a domain. We then prove partial control result relating the
above M with the corresponding classical arithmetic cohomology. Our control results implies

Theorem A. Let K be a number field (i.e., a finite extension of Q). Suppose that T is a unique
factorization domain and that there exists Py € Qr such that dimHPD Ap,(K) ®z Q < 1 with

[k (Ap,)9™| < 0o and Ap, has potentially good reduction at p. Then we have

(1) ranky JEW(K) ®z, Qp/Zp)Y < dimp, Ap,(K)©zQ < 1;

(2) if dimp, Ap,(K)®zQ =0, then rankr(JE4(K)®z, Qp/Zy)Y =0, Wk (Ap)o™d and Ap(Q)
are finite for almost all P € Qr;

(3) if rankr (JEG(K) @z, Qp/Zp)Y = dimp, Ap,(K) @z Q = 1, then there exists an infinite
subset Ctyr C Qr such that dimg, Ap(K) @2 Q = 1 for all P € Ctr and IHK(Ap)grd 18
finite for almost all P € Ctr.
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Here the words “almost all” means “except for finitely many”. We say that Ap, (or Pp) satisfy the
minimalist condition over K if dimp, Ap,(K) ®z Q < 1 with |Ilx(Ap,)5™| < co. This theorem
is a special case of Theorem 13.4, and the assertion (2) should be known at least for the standard
tower via control of A-Selmer groups done by earlier authors (though we give a proof of this in our
own way). Thus the new point in this paper is the assertion (3). Since we took the self-dual tower
here in the introduction, we may choose T so that the root number € is constant £1 in the family.
In the setting of the assertion (3), if we assume € = —1 and a weak form of the Birch-Swinnerton
Dyer conjecture asserting Ap(Q) is infinite for all P € Qp, we have Cty = Qr by the definition of
Ctr. Without assuming the weak form of the Birch—-Swinnerton Dyer conjecture, though unlikely,
we could have dimg, Ap(K)®zQ = 0 over an infinite set Ctﬂ% outside C'tt. The set Ctﬂ% is made of
arithmetic points where the control for the Mordell-Weil group fails (i.e., by p-adically interpolating
infinite order points in Ap(K) for P € Ctr, we have non-triviality of (JE%G(K) ®z, Qp/Zy)Y, but
for P € Ct3 such point specializes a transcendental object not descending to K). Since our method
does not construct a concrete point in Ap(K), it is difficult by our way to show unconditionally that
Ctﬂ% is finite (in an earlier version of this paper, it was claimed that Ctﬂ% is finite, but the argument
for finiteness of Ct7 is still incomplete). If we can determine the parity of dimy, Ap(K) ®z Q in
terms of € independently of the point P over the entire {21 outside a finite subset E, we would have

dimHP AP(K) Rz Q= dimHPO APO(K) ®z Q mod 2,

and Theorem A would imply the identity dimp, Ap(K) ®z Q = dimy, Ap,(K) ®z Q for all P €
Qr — E. See Conjecture 15.4 and a remark after the conjecture. Thus determining the parity is
important, though we do not touch this topic in this paper.

The parity conjecture for p-Selmer groups (for the self-dual tower) holds true under good circum-
stances by the results of Nekovar [N06, Theorem 12.2.8], [NO7] and [N09] (particularly, the result in
[NO7] is valid over any number field K'). Thus, by modifying Ap by an isogeny so that the integer ring
Op of Hp is embedded into End(Ap/q), if coranko,, Selk (Ap)°™ = dimpy, Ap(K)®zQ mod 2 hold
(i.e., corankop, Ik (Ap)grd is even), there is some hope of getting the parity of dimpy, Ap(K) ®zQ
and definitely know the generic rank in Theorem A.

The remaining case: 0 = ranky JE4(Q) ®z, Qp/Zy)" # dimp, Ap,(K) ®zQ = 1 is mysterious,
though in this non-matching dimension case, if we find another point P; satisfying the minimalist
condition with dimp, Ap, (K)®z Q = 0, we can bring the case into the situation in (2) (otherwise
if such points do not exist, we would have unthinkable ranky I1T K(Jgg%)v =1).

General statements covering all modular twisted towers (including the standard tower) will be
given in the main text. The ring T is often a power series ring of one variable over a discrete valuation
ring (and hence a unique factorization domain; see Theorem 5.6).

Let us now describe one technical idea and a most important tool for the proof. The technical
idea is how to separate the p-primary part of the arithmetic cohomology groups by “(partially)
completing p-adically” the coefficients, and the important ingredient is the control by Gal(X/Y) of
rational points of Jacobians of a Galois covering X — Y of curves. Fix a base field £k = Q or Q;.
For an abelian variety A over k, we consider the following Galois module

//1\(/@) =lim A(k)/p"A(x) for a finite Galois extension x/k,

—

1.1 .
(1.1) Alx)

lim A(F) for an infinite Galois extension «/k
F

with F running over all finite Galois extensions k inside . An explicit description of A(F) for a
finite extension F'/k is given at the end of this introduction as Statement (S), and only when x/k/Q
are finite extensions, we have the identity A(x) = A(k) @z Z,. The following fact plays a key role
to separate the p-primary part (and also the ordinary part of it):
(P) Though End(A,q) ®z Z, = End(A[p™]/q) does not act on the abelian variety Aq, it acts
on the fppf/étale abelian sheaf //1\/@.
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Thus we have A°*4(R) if A is modular abelian variety (i.e., A = Ap or J,.). We thus assume now
A = Ap. We consider the (continuous) Galois cohomology groups H4(K* /K, A\(K %)) for a number
field K and HY(K, //1\(?)) for k = Q; putting discrete topology on //1\(/@) for k = K9, K and profinite
topology on the Galois group. Here a number field means a finite extension of Q. We write these
cohomology groups as H ‘1(//1\) for a statement valid globally and locally. Recall M, := M ®z Z,
for a p-torsion module M. Then we prove, as Lemma 7.2, H'(A) = HY(A) ®z Z, = H'(A),,
where H'(A) stands for H9(KS /K, A(KS)) if K is global and HY(K, A(K)) if K is local. Thus we
conclude

Il (A°) = Ker(H' (K% /K, A(K%)) — || H' (K, A(K,))) = ik ()5,
ves
Selyc(A°™) := Ker(H' (K /K, A[p™|Y(K9)) — [] H (K., A"(K,))) = Selk (A)5.
ves

(1.2)

Anyway by (P), the p-part of the algebro-geometric IIT and Sel are translated into the sheaf theoretic
counterparts. Since A% [p>®](k) — A°Td(k) — A°(k) ®z, Qp is an exact sequence of Gal(k/Q)-
modules for k& = Q%,Q,, assuming N = 1 for simplicity (so, taking S = {p,o0}), we have a
commutative diagram with exact rows:

A%YQ) @z, Qp/Z, —— H(QS/Q, A% [p>]) —— H'(QS/Q, A%9)

JJ( Rch{ Rch{
A2YQy) @z, Qp/Zy ——  HY(Qy, AZp™]) —— HY(Qp, AZY).

Since A\‘gd(k) ®Q), for k = Q,Q, is a vector space over T/P®z, Q, of dimension 1 if dimy, Ap(Q)®
Q =1 (as easily seen; see Lemmas 5.4 and 5.5), 0 is surjective for al,most all P if the generic rank of
the family is equal to 1, showing finiteness of III(Q°/Q, A\‘;}d [p*°]) implies finiteness of IHQ(/T‘I’}d).
The existence of Py implies the T-torsion property of IILI(Q%/Q, Gr)" (see Corollary 11.2) and hence
the assertion (3) of the theorem follows since Ap(Q) is infinite for infinitely many P € Qr under
the non-triviality condition ranky(J2%(Q) ®z, Qp/Z,)Y = 1. Because of the use of this ad hoc fact
that Ap(Qp) ® Qp is Hp @ Qp-free of rank 1, the proof of Theorem A (3) is simpler when K = Q.
When K # Q, we need to go through more technical arguments described in Section 13.

To show infinity of P having infinite Ap(K) out of non-triviality of rankr (JE4(K) ®z, Q,/Zp)",
we need to find a way of how to recover A¥4(K) from the module JgéfiT(K ) (this type of results is
called control theorems relating an interpolated object to its specialization with small error terms).
The control is therefore an important ingredient in showing Theorem A. Since U(p) acts on H 1(:7;),
by (P), the limit idempotent e acts also on the coefficients Jp. T hough e acts on the outer tensor
product H'(.J,), without completing the coefficients, it is essential to have the action of e on the
coefficients to have a control result of .J,. for J, = Picg(r /k under the action of I' = 1+ pZ,, (through
diamond operators acting on the covering Xo,/X1). Let us describe this in some details. The control
stems from the following two facts:

(i) contraction property of the U(p) operator (e.g., (ul) in Section 3), and
(ii) a high power of U(p) kills the p-primary part of the kernel and cokernel of the natural
(pull-back) morphism: JI (K) := Picg(;/Q(K) — Js (K)Fpr ' (s > r) of K-rational points of
Jacobians for the modular curve X7 of T'; :=Tg(p®) N T, (see (u) and (u2)).
The author applied in [H86b] (and [H14]) the correspondence action of U(p) to the functor X —
HY(X,Q,/Z,) and in [H86a] to the functor X — H'(X,w") for modular curves X and the sheaf w*
of modular forms of weight & in order to prove the facts corresponding to (i) and (ii) in these cases
which result the modular p-adic deformation theory of ordinary modular forms and the Barsotti—
Tate groups of the ordinary part of the Jacobian of X (this includes the p-adic deformation theory
of modular Galois representations). Though it was clear at the time that if we had a well behaving
contravariant functor X +— H(X) with a correspondence action, we would have deformation theory of



ANALYTIC VARIATION OF TATE-SHAFAREVICH GROUPS 5

the ordinary part of H(X). However there was not (at least to the author) a clear choice (other than
HY(X,Qp/Z,) and H'(X,w")) of the functor at the beginning. A few years after the publication
of [H86a] and [H86b], the author realized that the functor X,x +— Hflppf(X/K, Gm) = Picx/k(K)
would possibly work (though the application to III is a more recent development). This paper in
conjunction with [H15] and [H16] represents the endeavour for achieving the control properties (i)
and (ii) for this functor (although the work should have been done earlier). In this way, we get the
control of the ind A-MW group, and out of the control of the ind A-MW group, we pull out the
control of the ind A-Selmer group and the ind A-TS groups. Similarly out of the control of G done
in [H86b] and [H14], we get the control of Ik (K*“/K,Gr) which shows the T-torsion property of
g (Q%/Q, Gr)¥ under the existence of Py as in Theorem A. Since J&4(K) ®z, Qp/Z, is not really
studied in [H15] and [H16], this paper is essentially self-contained independent of [H15] and [H16].

We may reformulate our result via congruence among abelian varieties. For such reformulation,
we recall first the definition of the congruence. An F-simple abelian variety (with a polarization)
defined over a number field F is called, in this paper, “of GL(2)-type” if we have a subfield Hs C
End’(A /r) = End(A,r) ®z Q of degree dim A (stable under Rosati-involution). If F' = Q (or more
generally F' has a real place), for the two-dimensional compatible system p4 of Galois representation
of A with coefficients in H 4, H,4 is generated by traces Tr(pa (Froby)) of Frobenius elements Froby
for F-primes [ of good reduction (i.e., the field Hy4 is uniquely determined by A; see [GME, §5.3.1]
and [Sh75, Theorem 0]). We always regard F as a subfield of the algebraic closure Q. Thus
O’y :=End(A,p) N Hy is an order of Hy. Write O for the integer ring of H4. Replacing A by the
abelian variety representing the group functor R +— A(R)®or, O, we may choose A so that Oy = O
in the F-isogeny class of A. Since finiteness of the Tate—Shafarevich group of A (not necessarily its
exact size) is determined by the F-isogeny class of A, we hereafter assume that End(A,p)NH = Ox
for any abelian variety of GL(2)-type over F'. For two abelian varieties A and B of GL(2)-type over
F, we say that A is congruent to B modulo a prime p over F if we have a prime factor p4 (resp.
pp) of pin Oy (resp. Op) and field embeddings o4 : Oa/pa — Fp and op : Op/pp — Fp such
that (A[pa] ®o4/pa,on Fp)*® = (BlpB] ®0p/pp,on Fp)®® and det T, A = det T, , B as Gal(Q/F)-
characters, where the superscript “ss” indicates the semi-simplification and T}, , A is the p4-adic
Tate module of the abelian variety A. Hereafter, we assume that the field F' is equal to Q, but the
base field K is any number field.

Let E/g be an elliptic curve. Writing the Hasse-Weil L-function L(s, E) as a Dirichlet series
Y one1 @nn~® with a,, € Z (i.e., 1 +p — a, = |E(Fp)| for each prime p of good reduction for E), we
call p admissible for E if E has good reduction at p, the self-dual p-adic analytic family including
E has generic rank equal to rank F(Q) and (a, mod p) is not in Qg := {£1,0}. Therefore,
the maximal étale quotient of E[p] over Z, is not isomorphic to Z/pZ up to unramified quadratic
twists. By the Hasse bound |a,] < 2,/p, p > 7 is not admissible if and only if a, € Qg (so, 2
and 3 are not admissible). Thus if E does not have complex multiplication, the Dirichlet density
of non-admissible primes is zero by a theorem of Serre as L(s, F) = L(s, f) for a rational Hecke
eigenform f. A proto-typical fact in this reformulation (which follows from Theorem A) is

Theorem B. Let E/q be a p-ordinary elliptic curve with |Illx (E)| < oo and dimg E(Q) ®z Q = 1.
Let N be the conductor of E, and pick an admissible prime p for E. Consider the set Ag, ), made up
of all Q-isogeny classes of Q-simple abelian varieties A of GL(2)-type with prime-to-p conductor
N congruent to E modulo p over Q. Then there exists an explicit (computable) finite set Sg of
primes depending on N but independent of K such that if p & Sk, infinite members A € Ag, have
finite g(A),, and constant dimension dimg, A(Q) ® Q = 1.

Here for the prime pa|p, we have (A[pa] ®0, /pa,0a Fp)®® = (Ep] ®F, Fp)**, and Ik (A)p, (resp.
Seli (A)p, ) is the p s-primary part of Il g (A), (resp. Selx(A),). We stated this theorem for K = Q
and an elliptic curve E as it is difficult to verify the minimalist condition numerically for general K
and a higher dimensional abelian variety, though we state and prove this theorem as Theorem 15.2
in the general setting. Also the definition of the set S will be given in Definition 15.1.
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If instead assuming finiteness of F(Q) and IIg(E) (i.e., finiteness of Selg(E)), this type of results
is known at least for the standard tower under possibly different assumptions by the control theorem
of the A-Selmer group. The new point of the above theorem is that we allow rankz F(Q) = 1. The
optimal expectation would be to have the assertion of the theorem for almost all members of Ag
but the theorem is short of this expectation. When the e-factor is —1 for E in the theorem, as
already discussed, this optimal expectation follows from the weak form of the Birch—-Swinnerton
Dyer conjecture.

For p outside Sg, the local ring T containing E = Ap, is unique and is a regular ring (so, UFD).
The set Sg is usually very small (and for example, for the rank 1 elliptic curve of conductor 37, Sg
is empty). If we assume the Birch-Swinnerton Dyer conjecture for abelian varieties of GL(2)-type
and we start with £ having epsilon factor —1, the generic rank condition for the family should be
valid always in the definition of admissible primes.

For an extension X of an abelian variety by a finite group scheme defined either over a number
field K or a local field K of characteristic 0, we define the fppf abelian sheaf X explicitly as follows:

) X(R) ®z 7, if [K : Q] < oo,
(S) X(R)=4 X[p>=](R) if [K: Q] <oo (I#p)or [K:R]< oo,
(X/X®))(R) as a sheaf quotient if [K : Q,] < oo

for fppf algebras R, where X (P) is the maximal prime-to-p torsion subgroup of X. If R is a finite
extension field of K (except for the case of K = R,C), X(R) = lim X(R)/p"X(R) as already
mentioned. Therefore, we could have defined X (R) := lim X(R)/p" X (R) except in the case where
K = R,C (and using this definition, the value X (R) is computed in [H15, (S) in page 228] as
specified in (S) above). For K = R, C, this is just a convention as H?(K,?) with coefficients in a

Zp-module ? just vanishes if p > 2. Throughout the paper, we write M" for the Pontryagin dual
module Hom(M, Q,/Z,,) for a Z,-module M.
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2. U(p)-ISOMORPHISMS

Replacing fppf cohomology we described in [H15, §3] by étale cohomology, we reproduce the
results and proofs in [H15, §3] as it gives the foundation of our control result, though we need later
to adjust technically the method described here to get precise control of the limit Tate-Shafarevich
group. Let S = Spec(K) for a field K. Let X — Y — S be proper morphisms of noetherian
schemes. We study

Higoe(T, R' f.G) = HG (T, R' f.G) = R' fLOX(T) = Picx;s(T)

for S-scheme T' and the structure morphism f : X — S. Write the morphisms as X — Y 2, S with
f = gom. We note the following general fact:

Lemma 2.1. Assume that 7 is finite flat. Then the pull-back of line bundles: Picy,s(T) > L —
7L € Picx;s(T') induces the Picard functoriality which is a natural transformation 7 : Picy,g —
Picx/s contravariant with respect to w. Similarly, we have the Albanese functoriality sending L €

Picx,s(T) to /\dcg(X/Y)W*E € Picy,s(T') as long as X has constant degree over Y. This map
7« : Picxs — Picy,g is a natural transformation covariant with respect to .

Hereafter we always assume that = is finite flat with constant degree.
In [H15, §3], we assumed that f and g have compatible sections S 2, Y and S 25 X so that
mo sy = s5. However in this paper, we do not assume the existence of compatible sections, but

we limit ourselves to T' = Spec(k) for an étale extension k of the base field K. Then we get (e.g.,
[NMD, Section 8.1] and [ECH, Chapter 3]), writing X7 = X xgT and Yr =Y xg T,

. ()
PICX/S(T) = Hioppf(Ta le*Gm) = Hflppf(XTa O;(T) = Hélt(XTa O;(T)

. ()
PICY/S(T) = Hioppf(Ta ng*Gm) = Hflppf(YTa O;;T) = Hélt(YTa O;;T)

for any S-scheme T'. The identity at (x) follows from the fact: Picy = 0, since T is a union of points
(i.e., Kk = k1 & - - - @ kp, for finite separable field extensions k;/K). We suppose that the functors
Picy,s and Picy g are representable by group schemes whose connected components are smooth (for
example, if X, Y are smooth proper and geometrically reduced (and S = Spec(K) for a field K); see
[NMD, 8.2.3, 8.4.2-3]). We then write J; = Pic? /s (7= X.,Y) for the identity connected component
of Picy/g. Anyway we suppose hereafter also that X, Y, S are varieties (i.e., geometrically reduced
separated schemes of finite type over a field).

For an fppf covering U — Y and a presheaf P = Py on the fppf site over Y, we define via Cech
cohomology theory an fppf presheaf U — H?(U, P) denoted by H”(Py) (see [ECH, 111.2.2 (b)]). The
inclusion functor from the category of fppf sheaves over Y into the category of fppf presheaves over
Y is left exact. The derived functor of this inclusion of an fppf sheaf F' = Fy is denoted by H*(Fy)
(see [ECH, II1.1.5 (c)]). Thus H*(G v )U) = Hg, (U, Oy;) for a Y-scheme U as a presheaf (here
U varies in the small fppf site over V).

To study control of the Picard groups under Galois action, assuming that f, g and 7 are all
faithfully flat of finite presentation, we use the spectral sequence of Cech cohomology of the flat
covering 7w : X — Y in the fppf site over Y [ECH, II1.2.7]:

(2.1) H?(Xr /Yy, H (Gryy)) = Hige(Yr, O5,) = H" (Yr, 05,

for each S-scheme T'. Here F'+— Hy (Y7, F) (resp. F +— H"(Yr, F)) is the right derived functor
of the global section functor: F' — F(Yr) from the category of fppf sheaves (resp. Zariski sheaves)

over Yr to the category of abelian groups. The isomorphism ¢ is the one given in [ECH, II1.4.9].
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Write Y, for H*(G,,/y,) and H* (QQ/T) for H* (X1 /Yr, QQ/T). From this spectral sequence, we
have the following commutative diagram with exact rows:

HY(HY,) —— Picys(T) —— H°(3%,Hy,) —— H*(Hy,)

1] ! [ i

(2.2) HY(HY,) — Picy;s(T) —— H°(3Z,Picx(T)) —— H*(HY,)
7 — KNI — HO(§2,Jx(T)) —— 75

Here the horizontal exactness at the top two rows follows from the spectral sequence (2.1).

Take a correspondence U C Y Xg Y given by two finite flat projections m,7m : U — Y of
constant degree (i.e., w;.Oy is locally free of finite rank deg(w;) over Oy ). Consider the pullback
Ux C X xg X given by the Cartesian diagram:

UX:UXYXSy(X XSX) E— XXSX
U ;YXSY

Let mjx =mj xgm:Ux - X (j =1,2) be the projections.
q

Consider a new correspondence U)((q) = Ux Xy Ux Xy -+ Xy Ux, whose projections are the
iterated product

T x(@ = Tjx Xy Xy Tjx: U)((q) - X@ (j=1,2).
Here is a first step to get a control result of A-TS groups:

Lemma 2.2. Let the notation and the assumption be as above. In particular, 7 : X — Y is a finite
flat morphism of geometrically reduced proper schemes over S = Spec(K) for a field K. Suppose
that X and Ux are proper schemes over a field K satisfying one of the following conditions:

(1) Ux is geometrically reduced, and for each geometrically connected component X° of X, its

pull back to Ux by w2 x is also connected; i.e., ™ (X) 77sz) 7O(Ux);

(2) (f om2,x)«Ovuy = f+Ox.

Ifmy : U =Y has constant degree deg(ms), then, for each q > 0, the action of U9 on HO(X, O%w)
factors through the multiplication by deg(ms) = deg(ma,x).

This result is given as [H15, Lemma 3.1, Corollary 3.2]. Though in [H15, §3], an extra assumption
of requiring the existence of compatible sections to X — Y — S, this assumption is nothing to do
with the proof of the above lemma, and hence the proof there is valid without any modification.

To describe the correspondence action of U on H?(X, 0%) in down-to-earth terms, let us first
recall that the Cech cohomology H ‘1();,—5, H°(G,, /yv)) for a general S-scheme T is given by

+1 1y
{(Cio,...vig)|Cio,...viq € HO(X;Q )aO;(qﬂ)) and Hj(cio...ij...iqﬂ opio..ij...z‘qﬂ)( = 1}
T

{dby...i, = Hj(b’io»..’z]‘...iq Opio...%j...iq)(fl)j |bio...5j...z‘q € HO(X;(I), O;(Tq))}

(2.3)

where we agree to put H° (X;O), Og?;) = 0 as a convention,

q q
X =X xy X xy -+ xy X x5T,0

x(@ = Ox xoy Ox Xoy -+ X0y Ox X050,
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the identity Hj (copy, cgedgen X;‘I+2) N X%Hl)
is the projection to the product of X the j-th factor removed. Since T' xp T = T canonically, we
q

_1y .
dsige) TP =1 takes place in O+ and p;,

have X;q) >~ Xp xp -+ xp Xp by transitivity of fiber product.

Consider a € H°(X,Ox). Then we lift 7} ya = aom x € H'(Ux,Ouy). Put ay := 7} ya.
Note that w2 x,«Ouvy is locally free of rank d = deg(mz) over Ox, the multiplication by ay has its
characteristic polynomial P(T') of degree d with coefficients in Ox. We define the norm Ny (ay) to
be the constant term P(0). Since « is a global section, Ny () is a global section, as it is defined
everywhere locally. If a € HY(X,0%), Ny(ay) € H(X,0%). Then define U(a) = Ny(ay), and
in this way, U acts on H°(X, 0%).

For a degree g Cech cohomology class [c] € HY(X,y,H’(G,,/y)) with a Cech g-cocycle ¢ =
(Cio,....i,)s U([c]) is given by the cohomology class of the Cech cocycle U(c) = (U(e;,
iy) 18 the image of the global section ¢;,, .. ;, under U. Indeed, (77 yci,

,,,,, i,)), where
,,,,, i,) Plainly satisfies
the cocycle condition, and (Ny (7] xCi,...i,)) is again a Cech cocycle as Ny is a multiplicative
homomorphism. By the same token, this operation sends coboundaries to coboundaries, and define

the action of U on the cohomology group. Thus we get the following vanishing result:

,,,,,,,,,,

Proposition 2.3. Suppose that S = Spec(K) for a field K. Let w: X — Y be a finite flat covering
of (constant) degree d of geometrically reduced proper varieties over K, and let Y <~ U ZY be two

finite flat coverings (of constant degree) identifying the correspondence U with a closed subscheme
T X T

U <= Y xgY. Writemjx : Ux = U xy X — X for the base-change to X. Suppose one of the
conditions (1) and (2) of Lemma 2.2 for (X,U). Then
(1) The correspondence U CY xgY sends H‘I(ﬁg{) into deg(mo)(HI(HY)) for all ¢ > 0.
(2) If d is a p-power and deg(ms) is divisible by p, HI(HY) for ¢ > 0 is killed by UM if pM > d.
(3) The cohomology HI(HY) with ¢ > 0 is killed by d.

This follows from Lemma 2.2, because on each Cech g-cocycle (whose value is a global section of

iterated product X;QH)), the action of U is given by UHY) by (2.3). See [H15, Proposition 3.3] for
a detailed proof.

Assume that a finite group G' acts on X,y faithfully. Then we have a natural morphism ¢ :
X X G — X xy X given by ¢(z,0) = (z,0(x)). Suppose that ¢ is surjective; for example, if Y is a
geometric quotient of X by G; see [GME, §1.8.3]). Under this map, for any fppf abelian sheaf F', we
have a natural map H°(X/Y, F) — H°(G, F(X)) sending a Cech O-cocycle ¢ € H*(X, F) = F(X)
(with pic = phe) to ¢ € H(G, F(X)). Obviously, by the surjectivity of ¢, the map H(X/Y, F) —
H°(G, F(X)) is an isomorphism (e.g., [ECH, Example I11.2.6, page 100]). Thus we get

Lemma 2.4. Let the notation be as above, and suppose that ¢ is surjective. For any scheme T' fppf
over S, we have a canonical isomorphism: H°(Xr/Yr, F) = H(G, F(Xr)).

We now assume S = Spec(K) for a field K and that X and Y are proper reduced connected curves.
Then we have from the diagram (2.2) with the exact middle two columns and exact horizontal rows:

T dchonto dchonto T

HY(HY) —— Picy;s(T) —— HO(3Z, Picy/s(T)) —— H(HY)

| o] Jo |
o —— KT —— HFE,Ix(T) —— 7o
Thus we have ?; = H/(HY) (j = 1,2).
By Proposition 2.3, if ¢ > 0 and X/Y is of degree p-power and p| deg(my), HI(HY) is a p-group,
killed by UM for M > 0.
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3. EXOTIC MODULAR CURVES

We study a more general tower { X, }, different from the standard one {X;(Np")},. We introduce
open compact subgroups of GLy(A(>)) giving rise to the general tower {X,},.

Let I' := 1+ pZ, C Z;;, where ¢ = 2 if p = 2 and € = 1 otherwise. Let v = 1+ p°, which is
a topological generator of I' = 4%». We define the Iwasawa algebra A := Z,[[[']] = lim Z,[I'/ I
and identify it with the power series ring Z,[[T]] sending v to ¢t = 1+ T. The group I is a maximal
torsion-free subgroup of Z,. Fix an exact sequence of profinite groups 1 — H, — I' x T’ T -1,
and regard H,, as a subgroup of I' x I'. This implies

(3.1) mr(a,d) = a®d™°

for a pair (o, 6) € Z; with oZ, + 0%, = Z, and hence H, = {(a,d) € Z} Z;|ao‘d75 = 1}. Thus
H,, only depends on P'(Z,); so, we freely identify («,d) with (za, 20) for any z € ZY. Writing p

for the maximal torsion subgroup of Z,, we pick a character § : u x pp — Z,; and define H = H¢ =

p’
He ¢ := Hp x Ker(€) in 2 x X =T x T x px p. We can take £(¢,¢') = ¢*'¢'™° for (o, ') € Z2.

r—e

Write 7 := 7ip x € : Z x ) — 7 and the image of H in (Z;)?/(I? ")? as H,. Then define, for
Z= Hl:primcs Zl’

To(M) := {(gg) € GLy(Z)|c e MZ}, Ty (M) = {(gg) eTo(M)|d—1€ MZ},

32) DY) :{(gg)erl(M)]a—leMZ},
T, =Ty, := {(g b) € To(p®) NT1(N)|(ap, dy) € H} LT =T, =To(@*)NT, (s>7).

By definition, T, N SL2(Q) =T (Np") if H, =T x {1} (i-e., (o, 0) = (0,1)) and {(a,d) = w(d) for

@) (the quadratic residue symbol)).

w(a) = lim, o a®" if p is odd and otherwise w(a) = (
We write this £ as wg.

Consider the moduli problem over Q of classifying the following triples

(E,/LN :_> Ea,UJ;DT i) E[pr] l) Z/pTZ)/Ra
N dpr Pp"

where F is an elliptic curve defined over a Q-algebra R and the sequence ppn — E[p"] — Z/p"Z
is meant to be exact in the category of finite flat group schemes. As is well known (e.g., [AME]),
the triples are classified by a modular curve U, g, and we write Z, for the compactification of
U, smooth at cusps. In Shimura’s terminology, writing Z/ for the canonical model attached to
U, = f% ()N fl(N ), the curve Z] is defined over Q(u,r) and is geometrically irreducible, while
we have Z,. = Resg(»m)/0Z, (When N > 4) which is not geometrically irreducible. We have the
identity of the complex points Z,.(C) — {cusps} = GLa(Q)\GL2(A) /U, R*SO2(R).

Each element (u, a, d) of the group G := (Z/NZ)* x Z; x Z, acts on Z, by sending (E, un AL

B, e 25 Elp] 225 7/ Z) to

aop,r

Ep"] —— Z/p"7Z),

(3.3) (E,¢pnou: un onou E, ji,r

where a o p,r(2) = ap,r(z) and the action on ¢, and ¢n. For z = (2n,2p) € (Z/NZ)* X L,
we write the action of (u,a,d) = (2w, 2p, zp) as (z). Via the inclusion I x I' C G, the two variable
Iwasawa algebra A :=Z,[[[’ x I']] is embedded into Z,[[G]] = A[(Z/NZ)* x p x p] for the maximal
torsion subgroup p of Z,.

We consider the quotient curves X, := Z,./H. The complex points of X, removed cusps is given
by Y,(C) = GLy(Q)\GLy(A)/T,R;SO5(R). Indeed, the action of (ap,d,) € H regarded as an

clement (% ;) ) € GL(Z,) C GLa(2) is given by (6, 9pr) — (9 0y, 0yr 00y). T det(F,) = 2%,
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by [IAT, Chapter 6], X, is a geometrically connected curve canonically defined over Q. We have an
adelic expression of their complex points.

X7(C) — {cusps} = GLy(Q)\GL2(A)/TRFSO5(R) = I';\§ and X, (C) =T,\9,

where 7 = 7 N SLy(Q) and I, = T, N SLy(Q). If det(T,) € Z*, our curve X§ = Resp, /oVp, and
X = Resp, @V, for Shimura’s geometrically irreducible canonical model Vg defined over Fg for
S = fg and T, (see [IAT, Chapter 6]). In any case, these curves are geometrically reduced curves
defined over Q with equal number of geometrically connected components (i.e., it is [F¢ : Q] for
Shimura’s field of definition F¢ C Q® fixed by det(T') C VA Gal(Q?*/Q)).

We fix a Z, basis ((vpr = exp(35r))r € Zp(1) x (Z/NZ)(1). Then we identify py,r with

(Z/Np"Z) by ¢, — (m mod Np"). For a triple (E, uy v, E, jipr % Elp] % Z/p"Z),

by the canonical duality (-,-) on E[Np"], we have a unique generator v € E[Np"|/Im(¢npr) for
dNpr = ON X ¢pr such that (v, dnpr(Cnpr)) = (wpr. Then the quotient E' := E/(Im(¢npr)) has an

inclusion piy,r —2— E' given by sending Civpr to (av mod Im(¢npr)) € E'. This gives a new triple

(B, @'y @prs Ppr ), Where ¢ is determined by (z, ¢),-((pr)) = ]frpr @ for z € E'[p"]. We define an
operator w, = w¢, . acting on Z, by sending (E, un on, E, ppr Por, E[p"] RN Z/p"7Z) to the
above (E', ¢y, ¢, - ). We have the following fact from the definition:

Lemma 3.1. The tower {X, g}, with respect to (a,d,&) is isomorphically sent by w, defined over
Q to the tower over Q with respect to (8, a, &) for &' (a,d) = £&(d,a). In other words, H defining the
tower {X,}, is send to H' defining the other by the involution (a,d) — (d,a). Regarding w, as an
involution of X, defined over Q(unyr), if 0. € Gal(Q(unypr)/Q) for z € (Z/NZ)* x L is given by
—1

oL

05 (Cnpr) = CRrpr» we have wi= = (z) o w, = wy o (2)
The last assertion of the lemma follows from wg;pr = Wo, (Cnpr) = Wz, = (2) O Wy, and w? =id.

The group ff; (s > r) normalizes T,, and we have fg /fs = TY/I'y is canonically isomorphic
to (Z, x Z,)/H mod p* by sending coset (‘C’Z)fs to (ap,dp) mod p® € (H mod p®), and the
moduli theoretic action of H coincides with the action of Gal(X,/X?) = ((Z) x Z))/H mod p®).
Through I' = (I' x I')/H,, (vesp. (Z, x Z;)/H = 7)), the one variable Iwasawa algebra A (resp.
Zy[[Z)]] = Alu]) acts on the tower { X}, as correspondences.

If det(f Hr) = 2X, as explained in [IAT, Chapter 6], X, o and X7 /0 is geometrically irreducible.
Though we do not need geometric irreducibility, we indicate here an easy criterion when geometric
irreducibility holds. We note that det(T',) > (Z®)*, where ZW =[], %Z = Z/Z,. Thus the
problem is reduced to the study of the determinant map at p. By aZ, + 0Z, = Z,, it is easy to see
by definition, embedding diagonally H into GL2(Z,), that

(3.4) det : H, — T is an isomorphism if and only if p{ (o +6) or a- § = 0.
If (o/,8") € Z? with /Z + §'Z = Z and £(a, d) = w(a)® w(d)~?,
(3.5)  det: (HNp X u)— pis an isomorphism if o’ + §" is prime to 2 (p — 1) or o’ - §' = 0.

The second condition becomes also a necessary condition if we replace o - ¢’ = 0 by o' - ¢’ =
modp—1if pisodd and by o - ¢’ =0 mod 2 if p =2. If o/ = ¢’ = 4, then Ker(§) D (¢, (), and
hence det(H) D p?. To have a non-trivial element in Ker(w?) in p\ 2, w' has to have odd order.

(3.6) det : (HNpx p) 2 pif o’ = =i and w' has odd order.

The image det(H) can be a proper subgroup in Z, , and the curves X, and X{ become reducible

over the subfield F' = F q fixed by det(H) identifying Gal(Q(up=)/Q) with Z.

As discussed in the introduction, an interesting case is when &(a, d) = w'(a)w™%(d) (i = 0,1,...,p—
2)and a = § = 1. Suppose o/ = § =ifor 0 < i < p (so, a’Z+06'Z = iZ). In this case, the L-function
L(s, fp) can have root number +1. By (3.6), det : Ker(£) — p is onto if and only if w’ has odd
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order (including the case where i = 0), and hence det(f Hr) = Z* if p > 2 and w' has odd order.
Otherwise, if p > 2, F¢ is a unique quadratic extension of Q inside Q(up). If p=2,if a = =1 and
o =8 =0, F=Q2,and ifa = =1and o =§ =1, then Fr = Q(v/—1,v2).

Taking (X,Y,U) /s to be (X;/q, X;”/Q, U(p))q for s > r > 1, to the projection 7 : Xy — X, the
result of the previous section is plainly applicable if X7 is geometrically irreducible, since U (p) is also
geometrically irreducible as it is the image of X7, := $/(I', N To(p***)) by the diagonal product
of two degeneration maps from X[, in X7 x X{. If not, writing X[ JFe = U; X¢,; for geometrically
irreducible components X{ ;, then U(p) restricted in each X ; x X{; is geometrically irreducible by
the same argument above and its degree is a p-power independent of the components; so, we can
apply the argument in Section 2 in these geometrically reducible cases.

Corollary 3.2. Let F' be a number field or a finite extension of Q; for a prime l. Then we have,
for integers r,; s with s > r > e,

(u) 7 2 Jg)o(F) — HO(X /XTI, Jjo(F)) © s0(F)/P" " —1] is a U(p)-isomorphism,
where Jgjo(F)[y?" " — 1] =Ker(y?" " —1:Jy(F)— Jy(F)) ande=1if p>2 and e =2 if p=2.

Here the identity at (x) follows from Lemma 2.4. The kernel A — Ker(y?" =1 : J,(A) — Js(A))
is an abelian fppf sheaf (as the category of abelian fppf sheaves is abelian and regarding a sheaf as a

r—e

presheaf is a left exact functor), and it is represented by the scheme theoretic kernel J,g[7?  —1]
of the endomorphism 7~ —1 of J;/g. From the exact sequence 0 — J,[y?" " —1] — J, AN Js,
we get another exact sequence: 0 — Jo[v*" * — 1](F) — Jo(F) AR Js(F). Thus

(3.7) Too(F) " =1] = Jyoy” " = 1(F).
By a simple Hecke operator identity (e.g., [H15, (3.1)]), we have the following commutative diagram
(i.e., the contraction property of the U(p)-operator):
Jr/r — . /R
(3.8) lu o [d

J’I’/R R :/Ra

where the middle v’ is given by UZ(p*~") = [['} ((1) psqr) I'y] and v and v are U(p*~"). Thus
(ul) 7 : Joyr — Jg g is a U(p)-isomorphism (for the projection 7 : X7 — X.).
The above (u) combined with (ul) and (3.7) implies the sheaf identity (u2) below for integers r, s
with s >r > e
(u2) 7+ Jgg — so? =1 =Ker(y?" " —1:Jsq — Js/g) is a U(p)-isomorphism.
We reformulate the above statement (u2) as follows:
Lemma 3.3. For integers r,s with s > r > €, we have morphisms

.

Cidygel? T =1 = Jlg and T = T/ (P = 1))

satisfying the following commutative diagrams:

L

—e

Te = Jyeh? 1]
(3.9) IR Lu”
Te = el -1,
To o Jya/0" " = 1)(Js/a)
(3.10) Tu* b T
To o I/ = D)
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where u and v are U(p*~") = U(p)*~" and u* and u""" are U*(p*~") = U*(p)*~". In particular,
= D(Js@)(T) = JI(T) (resp.

—1)(T)) is a U*(p)-isomorphism (resp. a U(p)-isomorphism,).

for an fppf extension T)q, the evaluated map at T: (Js/q/ (VP
JUT) T T

r—e

Proof. We first prove the assertion for 7*. We note that the category of groups schemes fppf over
a base S is a full subcategory of the category of abelian fppf sheaves. We may regard J;”/Q and

Js[y?"  —1] g as abelian fppf sheaves over Q in this proof. Since these sheaves are represented by
(reduced) algebraic groups over Q, we can check being U (p)-isomorphism by evaluating the sheaf at
a field K of characteristic 0 (e.g., [EAIL Lemma 4.18]). Since the degree of X, over X (r > €) is a p-

power, the kernel K := Ker(J;”/Q — S/@[FyPPE —1]) is a p-abelian group scheme. By Proposition 2.3
(2) applied to X = X,/q and Y = X[, (with s > 7), K := Ker(J] o — Joo[y* ~ —1]) is
killed by U(p)*™" as d = p*~" = deg(X,s/X{). Thus we get K C Ker(U(p)*™" : J{;q — J§ /)
Since the category of fppf abelian sheaves is an abelian category (because of the existence of the
sheafication functor from presheaves to sheaves under fppf topology described in [ECH, §II.2]), the
above inclusion implies the existence of ¢ with 7* o, = U(p)*~" as a morphism of abelian fppf
sheaves. Since the category of group schemes fppf over a base S is a full subcategory of the category
of abelian fppf sheaves, all morphisms appearing in the identity 7* o ., = U(p)*~" are morphism of
group schemes. This proves the assertion for 7*.

Take a number field so that X (K) # 0 (for example, the infinity cusp of X, is rational over
Q(ppe))- Then PicY, sk = Jg for any s > r > 0 by the self-duality of the jacobian variety. Note
that the second assertion is the dual of the first under this self-duality; so, over K, it can be proven
reversing all the arrows and replacing Js[y*" "—1] (resp. 7*, U(p)) by the quotient J,/(v*" " —1)J,
as fppf abelian sheaves (resp. ., U*(p)). By Lemma 2.1, every morphism and every abelian variety

r—e

of the diagram in question are all well defined over Q. In particular Js/(y?" ~ — 1)(J;) is an abelian
variety quotient over Q (cf., [NMD, Theorem 8.2.12] combined with [ARG, §V.7]). Then by Galois
descent for projective varieties (e.g., [GME, §1.11]), the diagram descends to Q. Since being U*(p)-
isomorphism or U (p)-isomorphism is insensitive to the descent process, we get the final assertion. O

Remark 3.4. For a finite extension k of Q or Q; and an abelian variety A/, recall //1\(/4) =
lim A(k)/p" A(k) and for an infinite Galois extension r/k, //1\(/@) = lim . /T(F) with F' running over
all finite Galois extensions k inside x (here note that /T(k) is not equal to A(k) ®z Z, if k is a finite
extension of Q;; see (S) in the introduction). Thus this process of taking projective limit and then
possibly an inductive limit with respect to F' preserves the commutative diagrams (3.8) and (3.9),
and the statements Corollary 3.2, (u), (ul), (u2) and Lemma 3.3 are also valid replacing the abelian

~

varieties A in each statement by A.

4. HECKE ALGEBRAS FOR EXOTIC TOWERS

Hereafter, we fix the data (a, d,£) which defines the exotic tower { X, },. We introduce the Hecke
algebra h, 5¢ for the tower {X,},. We assume in the rest of the paper the following condition:

(F) The Hecke algebra hq 5¢ is A-free.

In practice, if the local ring T of h, s ¢ we are dealing with is A-free, our argument works. However
there is not a good way to confirm directly A-freeness of T; so, we assume (F). If (o, §) = (0,1) and
&(a,d) only depends on d, this is always true, and as we see in this section, the A-freeness of hy 5 ¢
holds for p > 5 without any other assumptions, and even for p = 3, for most of («, d) including the
self-dual case of @ = = 1, the A-freeness of h, 5¢ holds (see Proposition 18.2).

As described in (3.3), z € Z acts on X;. Recall that J, /g (resp. J{,q) is the Jacobian of X,
(resp. X7). We regard J, as the degree 0 component of the Picard scheme of X,. For an extension
K g, we consider the group of K-rational points J,. (k).

For each prime [, we consider w; := (§9) € GL2(Q;), and regard @, € GL2(A) so that its
component at each place v 1 is trivial. Then A := wflfgwl N fg gives rise to a modular curve
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X (A) whose C-points (outside cusps) is given by GLa(Q)\(GL2(A)) x ($ U H))/A. We have a
projection 7] : X (A) — X7 given by $ 5 z +— z/l € §) in addition to the natural one m; : X (A) — X7
coming from the inclusion A C I',. Then embedding X (A) into X7 x X7 by these two projections,
we get the modular correspondence written by T'(1) if [ 1 Np and U(l) if /| Np. We can extend this
definition to T'(n) for all n > 0 prime to Np via Picard/Albanese functoriality (see Lemma 2.1).
We use the same symbol T'(n) and U(l) to indicates the endomorphism (called the Hecke operator)
given by the corresponding correspondence T'(n) and U(l). The Hecke operator U(p) acts on J,.(K)
and the p-adic limit e = lim,, o, U(p)™ is well defined on the Barsotti-Tate group J,.[p>°] and the
completed Mordell-Weil group :T;(K ) as defined in (S) above.

Let I be the maximal torsion-free subgroup of Z; given by 1+ pZ, for e = 1 if p > 2 and
e =2if p = 2. Writing v = 1+ p° € I', v is a topological generator of the multiplicative group
I = 4%». As described in (3.3), (u,a,d) € G = (Z/NZ)* x X x > acts on J, through the quotient
G/H = (Z/NZ)* x Z,. This action of (u,a,d) € G, we write as (u, a, d); so, for a prime [ { Np,
() = (u,a,d) for u= (I mod N) and a =d =1 in Z,.

Define h,(Z) by the subalgebra of End(J,) generated by T'(n) with n prime to Np, U(l) with
[|Np and the action of (z) coming from z = (u,a,d) € G. Put h.(R) = h,(Z) ®z R for a ring R.
Then we define h, = h, 4 5¢ := e(h.(Zp)). The restriction morphism hs(Z) > h +— h|;, € h(Z) for
s > r induces a projective system {h,}, whose limit gives rise to the big ordinary Hecke algebra

h=h,s¢N):= @hr.

Identify (Z/Np"Z)* with Gal(X,/Xo(Np")). Writing (I) (the diamond operator) for the action of
l € (Z/Np"Z)* on X,, we have an identity I(I) = T'(1)®> — T(I*) € h,(Z,) for all primes [ { Np.

Since I' C Z; C G/H, we have a canonical A-algebra structure A = Zy[[I']] < h sending v to
(1,a,d) for a,d € T such that nr(a,d) = v as in (3.1). If (o,0) = (0,1) = (¢/,¢"), it is now well
known that h is a free of finite rank over A and h, = h@x A/(7?" °~ — 1) (cf. [H86a], [GK13] or
[GME, §3.2.6]). More generally, by [PAF, Corollary 4.31], assuming p > 5, the same facts hold (and
we expect this to be true without any assumption on primes). Anyway, if p = 2, 3, the specialization
map h ®x A/(7?" ° — 1) — h, is onto with finite kernel, and h is a torsion-free A-module of finite
type. We will prove the A—freeness of h, 5¢(N) and isomorphisms h®@x A/(y?" * —1) = h,. for most
cases of p = 3 in Section 18 for the sake of completeness.

A prime P in Ary :=J,-( Spec(h;)(Q,) C Spec(h)(Q,) is called an arithmetic point of weight 2
in Spec(h). For a closed subscheme Spec(R) of Spec(h), we put

(4.1) Arg := Arn N Spec(R).
In this paper, we only deal with arithmetic point of weight 2; so, we often omit the word “weight

2” and just call them arithmetic points/primes. Though the construction of the big Hecke algebra
is intrinsic, to relate an algebra homomorphism A : h — Q,, killing 4P" —1 for r > 0 to a classical

Hecke eigenform, we need to fix (once and for all) an embedding Q , @p of the algebraic closure
Q in C into a fixed algebraic closure @p of Q,. We write iy, for the inclusion QcCcC.

More generally, for the jacobian variety J(Z,.) of the curve Z, defined above (3.3), we define h2-°*d
to be the maximal A-algebra direct summand of End(J(Z,)) ®zZ, in which U(p) is invertible. Then
as before we put h*°'d = h(N)ord .= lim_ hord which is a A-algebra. We consider

hn.ord,ap = hn.ord ®Zp W/a@hn.ord ®Zp %%
where a, is the kernel of the algebra homomorphism W{[Z; x Z,|] — W/[[Z)]]* induced by the
character (a,d) — p(a,d){(a,d) : Z; x L, — Z, . If we take p(a,d) = a®d= for (a,d) € T x T and
W =Zp, with £ : p x p — Z,, we have htord® = hy, 5 (V) under present notation. Then by [PAF,
Corollary 4.31], h™°*4% is A—free of finite rank for A, = Z,[[Im()]]. In particular, we have

Proposition 4.1. Assume p > 5 or (a,6,€) = (0, 1,wq), where wq(a,d) = w(d). Then hq 5¢(N) is
A-free of finite rank for A = Z,[[[%/H,)].
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Remark 4.2. For p < 3, we will prove in Proposition 18.2 A-freeness of h, s5¢(V) if it is obtained
by systematic twists of hg 1 ., (IN). This covers the interesting cases of analytic families of abelian
varieties, including some corresponding to the p-adic L-function k — L(2k + 2,k + 1) as in the
introduction.

We have injective limits Joo (K) = h_n>1rj;(K) and Joo[p](K) = lim J.[p*](K) via Picard
functoriality, on which e acts. Write G = Gq s5.¢ := e(Joo[p™°]), which is called the A-adic Barsotti-
Tate group in [H14] and whose arithmetic properties are scrutinized there. Adding superscript or
subscript “ord”, we indicate the image of e.

The compact cyclic group I' acts on these modules by the diamond operators. Thus Ju (K)°'d
is a module over A := Z,[[[']] = Z,[[T]] by v « t = 1+ T for a fixed topological generator v of
I' = 4%». The big ordinary Hecke algebra h acts on J2' as endomorphisms of functors.

Let Spec(T) be a connected component of Spec(h) and Spec(Il) be a primitive irreducible compo-

nent of Spec(T). For each h-module M, we put My := M &y, T; in particular, Jgéfiﬂ. = Jo 2L T as
an fppf sheaf. For P € Arp with P € Spec(I/(v*" "~ —1)I) (Q,), we write r(P) for the minimal r with
this property. Then the corresponding Hecke eigenform fp belongs to S2(I'1(Np”)). See Section 18

for an explicit description of the “Neben” character of fp in terms of (o, d, &).

5. ABELIAN FACTORS OF J,.

We give a description of abelian factors A5 and Bj of the modular jacobian varieties {J; }s of the
exotic modular tower which behave coherently in the limit process under the Hecke operator action.
Let ms s : Jo — Jp for s > r be the morphism induced by the covering map 75, : X5 = X, through
Albanese functoriality. Then we define 77, = w, o 75 . . 0 ws. Note that 77 is well defined over Q (cf.
Lemma 3.1), and satisfies T'(n) o 7 = 7% o T'(n) for all n prime to Np and U(q) o7’ = w% o U(q) for
all ¢|Np (as wr o hows = h* for h € he(Z) (? = s,7) by [MFM, Theorem 4.5.5].

Let Spec(T) be a connected component of Spec(h(N)). Write my for the maximal ideal of T and
1 for the idempotent of T in h(N). We assume the following condition

(A) We have w € m such that (w) N A is a factor of (y*" — 1) in A and that T/(w) is free of

finite rank over Z,.
We call a prime ideal P satisfying the above condition (A) a principal arithmetic point of Spec(T).
Write wy for the image of w @ (1 — 1t) in h, (s > r) and define an h,(Z)-ideal by

as = (wshs ® (1 — e)hs(Zy)) N hs(Z).
Write Ag for the identity connected component of Jg[as] = ﬂaeas Js[a], and put By = Js/asJs,

where a,.J, is a rational abelian subvariety of .J, given by a,Js(Q) = > aca, A(Js(Q)) C J5(Q).

oY, g(@)
_

Taking a finite set G of generators of ag, asJs is the image of a : @gec Js Js. The

kernel Js[as] = Ker(a) is a well defined fppf sheaves, which is represented by an extension of the
abelian variety As by a finite étale group scheme both over Q. Then by [NMD, Theorem 8.2.12],
the quotient aJs = (P, Js)/ Ker(a) is well defined as an abelian scheme and is the sheaf fppf
quotient. Then again By := Js/asJs is the fppf sheaf quotient and also abelian variety quotient
again by [NMD, Theorem 8.2.12]. By definition, Ay is stable under h4(Z) and hs(Z)/as — End(As).

Lemma 5.1. Assume (F) and (A). Then we have /T‘S’rd = j\;’rd[ws] and :T\S[as] = A,. The abelian
variety As (s > r) is the image of A, in Js under the morphism ©* = 7T;‘7T 2 Jp — Js induced
by Picard functoriality from the projection m = s, : Xg — X, and is Q-isogenous to Bs. The

morphism Js — Bs factors through Js X J, = B,. In addition, the sequence of fppf sheaves
TJord . Ford Ford _, Bord
0— A4 — Jord = Jgrd — B — 0
is an exact sequence.
Passing to the limit, we get the following exact sequence of fppf sheaves:

(5.1) 0— Aord _, jord =, jord _, pord _,
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where J34 = lim Jord and X4 = lim Xeord for X = A, B.

Proof. Taking a finite set G of generators of a5 containing w,, we get an exact sequence 0 — Jg[as] —

Js R Gl )N ®D,cq Js- Since X — X as in (S) is left exact, we have A, C MNaca, Ji|a) with finite
quotient. Applying further the idempotent since as = ((ws) & (1 — e)hs(Zp)) N hs(Z), we find

ord m J ord Jord [ws]
acas

We have an exact sequence
O_}Js[as][pm]ord_)(]s[poo]ord wWs J [ m]ordﬁcoker(ws) _>0,

and Coker(ws,) is p-divisible and is dual to Js[as] [poo]ord under the ws-twisted self Cartier duality
of J[p=°]°d (over Q; see [H14 §4]). This shows J,[a,][p>)°"d is p-divisible (so, (Js[as]/As)°" has
order prime to p), and hence Aord Julag)erd.

Plainly by definition, 7*(J,[a,]) C Js[as]. Since we have the following commutative diagram:

hs(Z) _ h(Z)
hS(Z;D)/(wshs ®(1- e)hS(Zp)) —_— hr(Z;D)/(wrhr ®(1- e)hr(Z;n))a

we have dim Ay = ranky hs(Z)/as = ranky h,.(Z)/a, = dim A,; so, A = 7*(4,).

The above commutative diagram also tells us that as D b, := Ker(hs(Z) — h,.(Z)) in he(Zy).
Thus the projection J; — Js/asJs = By factors through J,. = Js/b,.Js. Indeed, the natural pro-
jection: J,/bsJs/q = Jy/g has to be a finite morphism (as the tangent space at the origin of the
two are isomorphic), and we conclude Js/bsJs = J, by the universality of the categorical quotient
Js/asJs (cf., [NMD, page 219]).

Assummg X,(K) # 0, we have J, = Pic)_ sk by the polarization of the canonical divisor (e.g.,

[ARG, VII.6]). The dual sequence (over K) of the exact sequence of abelian varieties: 0 — Js[as] —

Js 2lo@see, @gec Js is @gec Js M Js — Bs — 0. Thus A, is isogenous to B, over K,

and by Galois descent, A, is Q-isogenous to Bs. Indeed, for the complementary abelian subvariety
At in J; of A, we have J,/AL = Bs, and the Q-isogeny follows without taking duality. Here
note that the quotient J,/AL exists as an abelian variety and also as an fppf sheaves by [NMD,
Theorem 8.2.12] (and [ARG, V.7]).

As explained just below (A), we have Im(P c Js Js) = asJs as fppf sheaves. Then
applying the argument of [H15, Section 1] to the exact sequence of fppf sheaves

-3, 9(@)

0— Jg[ @J—>aJ—>O
geG

we confirm the exactness of 0 — js[as] — @gec J, — aJ, — 0 as fppf sheaves. Thus ap-

=3 g9@)
—>

plying the idempotent e, we see Im(@gec Jord Jord) = a/s\Jso . Since the morphism

@gGG jsord z32 ) g(x)
ws(j"rd) — ag (jord). Thus a/s\JSOYd = w,(J°") as fppf sheaves, and the sequence 0 — A°rd —
Jord Zes gy = wS(Jord) — 0 is sheaf exact. Since By = J,/asJ, as fppf sheaves, 0 — w, (Jord)

J;’rd — B‘S’rd — 0 is exact as fppf sheaves. Combining the two exact sequence, we obtain the
exactness of the last sequence in the lemma. (I

j\;’rd factors through ws(j;’rd) as all ¢ = wsx with x € h,, noting w € G,

Assuming X (K) # 0, we have J, = Pic(} /x and the Rosati involution h — h* and T'(n) —
T*(n) which brings h,(Z) to hy(Z) C End(J, k). At the level of double coset operator [I'al”], the
involution has the effect [['aI”]* = [[Va'T"]. Thus the involution h — h* gives rise to an isomorphism
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h(Z) = h,(Z)* in End(J,/q) (even if X, (Q) = 0). Note that X;(Np")(Q) contains the infinity
cusp; so, for the standard tower, we have X,.(Q) # 0.

The Weil involution w, = [y ( o *01) T,] satisfies w,[[%a‘T%] = [[yals]ws. Thus ws o T*(n) =
T(n) o ws for all n including U(l). We write {X'} }s~, for the dual tower defined for (6, o, &’) with
¢ (a,d) = &€(d, a) which corresponds to {(I'7)* = ws["w; !}~ Thus the l-component of (I'")* for I|N
is given by {(‘C’ Z) € GL2(Z))|c € NZj,a—1 € NZZ} . Then w; gives an isomorphism w, : X — X'7.

defined over Q. Note that the fixed isomorphism p,s = Z/p°Z ((ps — 1) induces an isomorphism

(2,Q] 1

X7 =~ X" over Q(unpr). As an automorphism of X3 /o, .]» Ws satisfies ws™™ = (z) ows = wso(z)”

Hps]
for the Artin symbol [z, Q] with z € Z* (see Lemma 3.1).
Take a connected component Spec(T) of Spec(h) and an irreducible component Spec(I) of Spec(T).
Assume that I is primitive in the sense of [H86a, Section 3]. For each arithmetic P € Arp, the
corresponding cusp form fp is new at each prime [|N if and only if T is primitive.
We get directly from Lemma 5.1 the following proposition giving sufficient conditions for the
validity of (A) for Ay when f = fp is in a p-adic analytic family indexed by P € Spec(I).

Proposition 5.2. Let Spec(T) be a connected component of Spec(h) and Spec(I) be a primitive
irreducible component of Spec(T). Assume A-freeness of T (i.e., (F)). Then the condition (A) holds
for the following choices of (w, As, Bs):

(1) Suppose that an eigen cusp form f = fp new at each prime l|N belongs to Spec(T) and that
T =1 is regular (or more generally a unique factorization domain). Then writing the level of
fp as Np", the algebra homomorphism X : T — Q,, given by f|T(1) = N(T(1))f gives rise to
the prime ideal P = Ker(\). Since P is of height 1, it is principal generated by w € T. This
@ has its image as € Ty = T@AAg for Ay = A/(v?" " =1). Writehy, = h@y A, = Ts@1,h,
as an algebra direct sum for an idempotent 15. Then, the element ws = as @B 15 € hy for the
identity 15 of X, satisfies (A).

(2) Fizr > 0. Then w € mr for a factor w|(v*" *~ — 1) in A, satisfies (A).

Definition 5.3. If @ generates a principal arithmetic point P € Ary with associated Hecke eigen-
form fp having minimal level Np™F), we denote by Ap (resp. Bp) the abelian variety A, (resp.
B,.) forr =r(P).

We record two lemmas giving Hecke module structure of A\‘;}d(K

).
Lemma 5.4. Let K be a number field. Write rp := ranky Ap(K). Then we have [Hp : Q]|rp,
and writing rp = hp[Hp : Q], for an arithmetic point P € Spec(T), we have rankz, ARYK) =
rankzp E%rd(K) =hp- rankzp T/P and hp = dimHP AP(K) ®7 Q.

Proof. Note that Ap(K) ®z Q is a vector space over the field Hp; so, ranky Ap(K) = hp[Hp : Q]
for hp = dimHP AP(K) ®7 Q. Therefore A\p(K) ®Zp Qp = AP(K) Rz Qp = (Hp (2%0) Qp)hp as
hr(Z,)-modules (for the level Np” of fp. Here h,(Z,) is the Hecke algebra of level Np" of weight 2
as defined at the beginning of Section 4. For the idempotent 1t in h of T, we denote by the same
symbol 1r the idempotent in h,(Z,) which is the image of the original 1t as h, is a direct factor of
hy(Zyp). Then we have 17(Hp ®q Qp) = T/P ®z, Q, by definition. Thus we have

ABU(K) ®2, Qp = 11(Ap(K) 2 Qp) = 1n(Hp ®q Q)" = (T/P @z, Q)"

This shows the last identity for A\‘}}d(K ). The identity for E%rd(K ) also follows since Ap is isogenous
to Bp over Q. [l

Lemma 5.5. Let K be a finite extension of Q,. Then we have A\‘;}d(K) ®z,Qp = (T/P®z, Q) KQs]
as T/P-modules, and A\‘;}d(K) ®z, Qy =2 T/P®z, K as T/P ®z, K-modules.

Proof. By [Ma55], The group Ap(K) contains a subgroup W™ 4 for the p-adic integer ring W of
K. Thus we need to show that Ap(K)®z, Qp = Hp ®q K as Hp-module. Since K is complete, X,
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has K-rational point. Thus we can take the identity 0 of J, belongs to the image of X, under the
canonical Albanese embedding X, — J,.

Take a Néron model Ap/y of Ap over W, and write Ay its formal completion along the identity
of the special fiber of the Néron model. Then Lie(A) is isomorphic to the tangent space of A, w
at the identity. Since A is a smooth formal group over W, Lie(A) = WdimA = jydimAr = Note
that Lie(A) @y K = Lie(A X K) which is isomorphic to the tangent space at the identity of
Ap/k. Since Ap C J, and Lie(J, k) is isomorphic to the tangent space T,/ of X, at the base
point 0 € X,.(K). Since Qx, /x is isomorphic to the space of K-rational cusp forms of weight 2 on
X, (which is dual Hom(h,(K), K) as h,(K)-module), T}./x = h,.(K) as h,(K)-modules. Thus by
definition, Lie(A) ®@w K = Lie(Ap/g) ®q K = Hp ®q K,

The abelian variety has semi-stable reduction over Z[ppe], and we now take K = Qp[ppe]. Then

ord

the formal group A w C A/w gives rise to the connected component of the Barsotti-Tate group

/Al‘}grd [p°°] /w. Note that A°4(W) contains Wk T/P as a subgroup of finite index. By logarithm
map, for the Lie algebra Lie(A?) of A°™, we find Lie(A?) @y K = T/P ®z, K as T/P-modules.
Since A% is defined over Qp as a p-adic Lie group, the T/P-module structure descends to Q-
points (as described above), and we find that A\‘}}d(K ) ®z, Q, = T/P ®z, Qp as T/P-modules. By
extending scalar to an arbitrary K, we find A\‘;}d(K) ®z, Qp = T/P®z, K = (T/P ®z, Q)% as
T/P-modules. O

For a given Hecke eigenform f € S5(I'1(NN)), we now show that for almost all primes ordinary
for f, the local ring T given by f is regular. Let x : (Z/NZ)* — Q" be a Dirichlet character,
and consider the space S2(I'o(IN), x) of cusp forms of weight 2 with Neben character x. Write Z[x]
for the subalgebra of Q generated by the values of x. Then we can consider the Hecke algebra
ha(To(N), x; Z]x]) inside Endc(S2(To(N), x)) generated over Z[x] by all Hecke operators T'(n) and
U(l). Then this Hecke algebra is free of finite rank over Z, and hence its reduced part (modulo the
nilradical) has a well defined discriminant D, over Z. Here is a criterion from [F02, Theorem 3.1]
for regularity of T:

Theorem 5.6. Assume A-freeness of hose. Let f be a Hecke eigenform of conductor N with
fIT(p) = apf for a, € Q, of weight 2 and with Neben character x. Let p be a prime outside
6D, Np(N) (for o(N) = |(Z/NZ)*|). Suppose that for the prime ideal p of Zlap] induced by
ip : Q — Q,, (apmod p) is different from 0 and ++/x(p). Then for the connected component
Spec(T) of Spec(ha,s5¢) acting non-trivially on the p-stabilized Hecke eigenform corresponding to f
in S2(Lo(Np), x), T is a regular integral domain isomorphic to W ®z, A = W{[T]] for a complete
discrete valuation ring W unramified at p.

The result is valid always for p > 5 and for p = 3 under (F) (see Propositions 4.1 and 18.2). Here
is a proof of this fact since [F02, Theorem 3.1] is slightly different from the above theorem.

Proof. Let €° := lim,, o, T(p)™ € ha(T'o(N), x; A) for Z,[x]-algebra A. Put hg*d(T'o(N), x; A) :=
e®ha(To(N), x; A). Since U(p) = T'(p) mod p on Al[g]], the natural algebra homomorphism:
h$*(Lo(Np), x: A) — h3™ (Lo(N), x; A)

sending U(p) to the unit root of X2 — T'(p)X + x(p)p € hS*(To(N), x; A)[X] and T(I) to T(l) for
all primes [ # p is a well defined surjective A-algebra homomorphism.

Since p{ 6D, Np(N), we have p > 3 and p { p(Np). Write h for hy 5¢(N). Then h is A-free by
(F) and an exact control is valid (see Propositions 4.1 and 18.2). By the diamond operators (z) for
z € (Z/NpZ)*, h is an algebra over Z,[(Z/NpZ)*]. We can decompose h = &,h(y)) so that the
diamond operator (z) for z € (Z/NZ)* acts by 1(z) on h(¢), where ¢ runs over all even characters
of (Z/NpZ)*. From the exact control h/Th = h; (T =+ —1 € A), we thus get

h(x)/Th(x) = h3"(To(Np), x; Zp[x]) =: h
for the character x of (Z/NpZ)*, where
ha(To(Np), X; Zp[X]) = ha(T'1(Np), x; Z) QzZ[(Z/NpZ)* ],x Zp[X]
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and Zy[x] is the Z,-subalgebra of @p generated by the values of x. Here the tensor product is
with respect to the algebra homomorphism Z,[(Z/NpZ)*] — Z,[x] induced by x. Writing ¥ =
Hom,g(h(x),F,), for each A € ¥, ¥ := {m, = Ker(\)|\ € X} is the set of all maximal ideals of
h(x). Thus we have compatible decompositions h(x) = @,,csh(X)m and h = P, .5 hm (see [BCM,
II1.4.6]). Here the subscript “m” indicates the localizations at the maximal ideal m.

Identify > with Homgg(h, F,). Write %° for the subset of ¥ = Homy(h, F,) made of A’s such
that there exists

A e Homalg(hgrd(ro (N), x: Fp[X]), Fy)
with A(T'(1)) = A°(T'(1)) for all primes [ { pN. Here we put

hg™(To(N), x; Fplx]) 1= hg™ (Do (N), X3 Z[x]) ®z .

Accordingly let 3° denote the set of maximal ideals corresponding to A € ¥°. Since p-new forms
in S2(To(Np), x) have U(p)-eigenvalues ++/x(p) (see [MFM, Theorem 4.6.17]), by a, # £/ x(p)
mod p, we have further decomposition h = hy @ h' so that hy is the direct sum of hy, for m running
over 3. Since h(x)/Th(x) 2 h, by Hensel’s lemma (e.g., [BCM, I11.4.6]), we have a unique algebra
decomposition h(x) = hy @ h' so that hy/Thy = hy and h'/Th' = 1’

Since T(p) = U(p) mod (p) in hy, we get hy = h3™4(To(N), x; Zy[x]). Since p { Dy, the
reduction map modulo p: Homag (A, @p) — Y is a bijection. In particular, we have h = h™¢% @ hod
where A" is the direct sum of Ay, for A coming from the eigenvalues of N-primitive forms. Again
by Hensel’s lemma, we have the algebra decomposition hy = h™** @ h°? with h’/Th? = b’ for
? = new, old. Since h™*" is reduced by the theory of new forms ([H86a, §3] and [MFM, §4.6]) and
unramified over Z, by p t Dyp(N), we conclude h™" = @, W for discrete valuation rings W
finite unramified over Z, (one of the direct summand W acts on f non-trivially; i.e., W given by
Zp|f] = Zplan|n = 1,2,...] C Q, for T(n)-eigenvalues a, of f). Thus again by Hensel’s lemma,
we have a unique algebra direct factor T of h"*" such that T/TT = Z,[f] = W. Since W is
unramified over Z,, by the theory of Witt vectors [BCM, IX.1], we have a unique section W — T
of T — Zp[f] = W. Then W{[T]] C T which induces a surjection after reducing modulo T'. Then by
Nakayama’s lemma, we have T = W{[T]] = W ®z, A as desired. O

6. LIMIT ABELIAN FACTORS

We recall some elementary facts (e.g. [H15, §6, after (6.6)]) with proof to good extent. Let
t: Crq C Jyg (xesp. 7 : Joyg — D,jg) be an abelian subvariety (resp. an abelian variety
quotient) stable under Hecke operators (including U(I) for I[|Np) and w,. Here the stability means
that Im(¢) and Ker(w) are stable under Hecke operators. Then ¢ and 7 are Hecke equivariant. Let

Ls: Cg = W:W(C) C Js for s > r and Dy is the quotient abelian variety of ms : J; LI Jr = D,., where

L = Wy 0 Ts rx 0 Ws. The twisted projection 77, is rational over Q as wi ¥ = (z) ows = wg o ()71

for z € 2.

Since the two morphisms J. — JI and JI — Js[y?" ~ — 1] (Picard functoriality) are U(p)-
isomorphism of fppf abelian sheaves by (ul) and Corollary 3.2, we get the following two isomorphisms
of fppf abelian sheaves for s > r > 0:

(6.1) C, [pOO]ord ~L 0, [poo]ord and éfrd j égrd,

s s
since égfd is the isomorphic image of éfrd cJyin :T\S[prrfé — 1]. By the w-twisted Cartier duality
[H14, §4], we have

(6.2) D [poo](;ai ﬂ%) Dr[poo](;ai-
This isomorphism (6.2) is over Q not over the discrete valuation ring Z,) = Z, N Q as explained in
[H16, §11] (after the proof of Proposition 11.3 in [H16]), but the isomorphism (6.1) is usually valid
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over Zp (see Section 17). By Kummer sequence, we have the following commutative diagram
Dy (k) @ Z/p™Z = (Dy(k) @ Z/p™ )" —— H'(Dy[p™]")
" l ?l(6.2)
Dy (k) @ Z/p™Z = (Dy (k) @ Z/p"2)" —— H'(D,[p™])
This shows the injectivity of the following map
D) @ Z/p™Z — D (k) @ Z/p™ L.

Taking the w-twisted dual C, of Dy (which interchanges (a, d) to (6, @)), from Cod(k) = Cord(x),
the source and the target of the above map has the same order; so, it is an isomorphism. Passing
to the projective/injective limit, we get

(6:3) Dyt = Dyt and (Dy ©2Tp)* = (Dy ©2.T,)™

as fppf abelian sheaves. In short, we get

Lemma 6.1. Suppose that x is a field extension of finite type of either a number field or a finite
extension of Q. Then we have the following isomorphism

ér(ﬂ)ord ~ és(ﬂ)ord and ﬁs(ﬂ)ord;ﬁr(ﬂ)ord

* T
Trs,r Ts

for all s > r including s = oco.

Taking Cs to be A (and hence Dy = Bg by Lemma 5.1) and applying this lemma to the exact
sequence (5.1), we get a new exact sequence (for w in (A)):

(6.4) 0— Axd — jgd 2, jord — Bord — 0

since A\géd = lim A\‘;rd = /Tﬁrd by the lemma.
—S
We make B¢ explicit. By computation, 7% om) =p° "U(p*~"). To see this, as Hecke operators

from T's-coset operations, we have 7y, = [['s] (restriction with respect to I';/I's) and 7.« = [I'/]
(trace map with respect to I'y./T's). Thus we have

(6.5) g o W:,s = [[s] - ws - [07] - we =[] - [wsw,] - [Ty] = [ T[T ((1) pqu) L] =p*"U(P*").

Lemma 6.2. We have the following two commutative diagrams for s’ > s

~

Oord = Cord

T
s /75 5/75
”s/l lps U(p)
~ord Aord
CS _— CS y
and
DyY —— Dgrd
71':,
* /75 5/75
"] [r=ven
Nord Nord
DS _— DS .

In particular, we get ﬁggd = 1i_r>nS ﬁ,‘?rd = ﬁ,‘frd ®z, Qp.

Proof. By ), (resp. m;), we identify Cord with o™ (resp. D™ with D) as in Lemma 6.1. Then
the above two diagrams follow from (6.5).
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For a free Z,-module F' of finite rank, we suppose to have a commutative diagram:

Thus we have h_n>1n pran = h_n>1n S p"F = F®g Q. If Tis a torsion Zy-module
with pPT = 0 for B > 0, we have h_n>1n T = 0. Thus for general M = F & T, we have

lim M =M ®z, Q.

—n,c—pne

,T—=phT

Identifying f)gfd with ﬁ?rd by 7§ for all s > r, the transition map of the inductive limit lim_ f)gfd
is given by the following commutative diagram

ﬁgrd ﬁgrd

] | =
ﬁgrd ﬁgrd,
zps U (p) "
where the top arrow is induced by = .. Thus applying the above result for M = ﬁgrd(K ), we find
lim DY(K) = DI(K) @z, Qp. O
Applying this lemma to Ds = Bs, we get from (6.4), the following exact sequence:

Corollary 6.3. Assume (F). Let K be either a number field or a finite extension of Q; for a prime
l. For (w, A,, B,) satisfying (A), we get the following exact sequence of étale/fppf sheaves over K :

0 — A2 — jord Z, jord P, Bord g, — 0.
In particular, for K' = K° if K is a number field and K' = K if K is local, we have the following
ezact sequence of Galois modules: 0 — A (K') — JEYK') =5 JEYK') — BIYK') @z, Qp — 0.

Proof. Since a finite étale extension R of K is a product of finite field extensions of K, we may assume
that R is a field extension of K. Then by (S), B, (R)ord = B, (R)°™ is a Z,-module of finite type.
Then by the above lemma Lemma 6.2, taking D, to be B, we find that hLQS B, (R)°rd = B\,‘frd ®z, Qp.
Since passing to injective limit is an exact functor, this proves the first exact sequence:

Aord ord @ ord nord
0— AYC — JI — J¢ — B ®@z, Q, — 0.

Since X (K') = @K//F/K X°rd(F) for F running a finite extension of K, we get the exactness of
0 — API(K) — JEUK') = JEUKT).
Since 0 — A%™(K') — JoYK') & Jod(K') — Bo"(K') — 0 is an exact sequence of Galois
modules, passing to the limit, we still have the exactness of
0 — APYE) = JEE) = JENE') — BIY(K') @2, Qp — 0
proving the last assertion. O

Let G = J[p>]°™d. Then we have an exact sequence A,[p>®]>d — G, = G, — B,[p>°]°"? of fppf

sheaves. In this case, h_ﬂanPVTU () Bs[p>]°™d = 0 as B,[p™]°" is p-torsion. Passing to the limit,

we recover the following fact proven in [H14, §3, (DV) and §5]:

Corollary 6.4. We have an exact sequence of fppf sheaves over Q:
0 — A [p¥]! = Goo = Goo = 0

which extends canonically to an exact sequence of fppf sheaves over Zp)|pupe].
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7. GENERALITY OF GALOIS COHOMOLOGY

We prove some general result on Galois cohomology for our later use. Let S be a set of places
of a number field K. Suppose that S contains all archimedean places and p-adic places of K (and
primes for bad reduction of the abelian varieties when we deal with abelian varieties). Let K be
the maximal extension unramified outside S.

Lemma 7.1. Let {M,}, be a projective system of finite Z,[Gal(K*® / K)]-modules M,,. Write My, :=
lim M, and MY = lim M, for the Pontryagin dual M) of M,. Write G (resp. G, for a
place v of K) for the (point by point) stabilizer of MY in Gal(K®/K) (resp. Gal(K,/K,)) and
G = Gal(K°/K)/G (resp. G, := Gal(Kg/K,)/Gy)). Then, we have
(1) IIY(K® /K, M) = lim | 1N (K5 /K, M,,), and if S is a finite set, we have I (K5 /K, MY.) =
lim MK /K, M)Y).
—n
(2) OI*(K®%/K,MY) = lim | I3 (K5 /K, M), and if S is a finite set, we have

H*(K® /K, My) = lim H*(K® /K, M) and TI*(K®/K, M) = imI*(K® /K, M,).

n n

Proof. We first prove the assertion in (1) for projective limit. Since H°(?, M,,) (? = K°/K and
K,) is finite for all n, we have lim H'(?,M,) = H'(?, M) for ? = K*/K and K, by [CNF,
Corollary 2.7.6]. By definition, we have an exact sequence:

0 — I (K¥/K, M) — HY(KS/K,M,) — [ H'(K,,M,).
veES

Since any continuous cochain with values in lﬂln M, is a projective limit of continuous cochains
with values in M, we have a natural map H*(?,lim M,) — lim H'(?,M,) for ? = K°/K and
K,. Passing to the limit, we get the following commutative diagram with exact rows

HII(KS/K,@“MH) R Hl(KS/Ka@nMn) - HvGSHl(Kva@nMn)

l | |
lim MY (KS/K,M,) —— lim H'(K%/K,M,) —— [[,cglim H'(K,, M,).
This shows IITI' (K°/K, lim M,) = lim ' (K% /K, M,,) as desired. As for the injective limit, we
first note that the cohomology functor commutes with the limit. However it may not commute with
infinite product; so, we need to assume that S is finite (this fact is pointed out by D. Harari).

As for (2), since cohomology functor commutes with injective limit, the assertion (2) for injective
limits follows from the same argument as in the case of (1), noting that by local Tate duality, the
direct product [], g H?*(Ky, M, ) in the definition of III? can be replaced by the direct sum; so, we
have the assertion for the injective limit. If S is finite, H*(K° /K, M,,) is finite (e.g., [ADT, 1.5.1)).
Thus by [CNF, Corollary 2.7.6], we have lim H?*(?, M,) = H*(?,lim M,) for ? = K*/K and K,,
and hence once again the same argument works (replacing H' by H?). O

Let A be an abelian variety over a field K. Since the Galois group Gal(K/K) and Gal(K*/K)
is profinite and A(K) and A(K*®) are discrete modules, for ¢ > 0, the continuous cohomology group
HY(K® /K, A) for a number field K and H4(K, A) for a local field K are torsion discrete modules
(see [MFG, Corollary 4.26]).

Lemma 7.2. If K is either a number field or a local field of characteristic 0, we have a canonical
isomorphism for 0 < q € Z:

(7.1) HI(A) = H(A), = H'(A)[p™],
where HY(?) = HY(K® /K, ?) if K is a number field, and H%(?) = HY(K,?) if K is local.
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Proof. By (S), if K is a number field, we have

HYKS /K, A) =~ H(K®/K, A®y Z,) W HYK®/K,A) @z Z, = HI(K° /K, A),,
as H1(K®°/K, A) is a torsion module. Here the identity () follows from the universal coefficient
theorem (e.g., [CNF, 2.3.4] or [CGP, (0.8)]).

Now suppose that K is an [-adic with [ # p or archimedean local field. Then A= A[p®], and
we have a natural inclusion 0 — A(K) — A(K) — Q — 0 for the quotient Galois module Q.
Thus @ is p-torsion-free and p-divisible; i.e., the multiplication by p is invertible on ). Therefore
HYK,Q), = HI(K,Q) ®z Z, is a Qp-vector space for ¢ > 0 (so, HI(K,Q), = 0 though we
do not need this vanishing). By the exact sequence H1"'(K,Q), — HI(K, A\)p — HY(K,A), —
HY(K,Q),, we conclude HY(K, A), = H(K, A), as the two modules are p-torsion.

If | = p, we have A(K) = //1\(?) @® AP (K) under the notation of (S), and hence HY(K, A), =
Hq(//l\)p@Hq(K, AP, Since A(K) is a union of p-profinite group, we have Hq(//l\)p = H9(A). Since
A®)/(K) is prime-to-p torsion, we have HI(K, AP), = 0. Thus HY (K, A), = HI(K,A) ®z Z, =
HY(K, A) & HI(K, AP), = HI(K, A). O

8. DIAGRAMS OF SELMER GROUPS AND TATE-SHAFAREVICH GROUPS

We describe commutative diagrams involving different Selmer groups and Tate-Shafarevich groups,
which are the base of the proof of the control result in later sections. We assume p > 2 for simplicity.

Recall the definition of the p-part of the Selmer group and the Tate-Shafarevich group for an
abelian variety A defined over a number field K:

Il (A), = Ker(H' (K% /K, A), == [ H' (K., A),),
ves
Selxc(A), = Ker(H' (K5 /K, A[p™]) =< [ H'(K., A),).
veSs

As long as S is sufficiently large containing all bad places for A in addition to all archimedean and
p-adic places, these groups are independent of S (see [ADT, 1.6.6]) and are p-torsion modules.

Lemma 8.1. We can replace A in the above definition by //1\, and we get
WL (4), = Wy (4) = Ker(H' (K%K, 4) = (D H' (K., 4),
veES

Selx (A), = Sely (4) = Ker(H (K5 /K, A[p™]) = P HY(K,, A)).
veSs

(8.1)

Proof. Tt is known that image of global cohomology classes lands in the direct sum @, g H* (Ko, //1\)
in the product [, g H'(K,, A) (see [ADT, 1.6.3]).

By Lemma 7.2, we have [l g (A) = [l (A), = Il (A)®zZ,. Thus we may replace the p-primary
part of the traditional III-functor A — Ik (A), by the completed one A — Ik (A). O

Since A — III K(//l\) is covariant, from Lemma 3.3 (and Remark 3.4), we get the commutative
diagram for X = I and Sel:

X)) ™ X))
(8.2) lu Lu”

XK (Jr) = XK(:]\;)a
Similarly to the diagram as above, from Corollary 3.2, we get the following commutative diagram:
Xk(T) = Xe(Lp " -1))
(8.3) lu s L
Xe(JD) = Xx(Lh" " —1)).
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These diagrams provide us the following canonical isomorphisms

(8.4) Xi (1) = Xge (J[*" " = 1)) for X = III and Sel.

For any group subvariety A, of Js proper over Q stable under U(p) or any abelian variety
quotient A,q of J, stable under U(p), we have A = Ao g (1 - e)//l\, and hence Hq(?,//l\) =
H9(?, A" @ H(?,(1 — e)A) for ? = K and KS. This shows H4(?, A)°*d = H(?, A°*d), and

-~

hence X (A) = X (A)o! = X} (A)9™. Thus hereafter, we attach the superscript “ord” inside
the cohomology/Tate-Shafarevich group if the coefficient is p-adically completed in the sense of (S).
We define the ind A-TS group and the ind A-Selmer group by

Mg (Jo)*" := M (J) = i I (J77) = lin T ()5

r—

(8.5) o

Selic (Joo )™ 1= Sel g (J&?) = lim Selc (J™) = lim Sel (J,)5™

which are naturally h-modules.

Write HL(M) = @,cq HY(K,, M) and HI(M) = HI(KS/K, M) for a Gal(K*/K)-module M.
By [ADT, 1.6.6], IIL(K® /K, A), = IlLx (A),, for an abelian variety A,k as long as S contains all bad
places of A and all archimedean and p-adic places. Consider a triple (o, As = Js[as], Bs = Js/asJs)
satisfying the condition (A) of Section 5 and (F) in Section 4. Note that J™[w,] = A% (see
Lemma 5.1), we have H9(?, Jo"[w,]) = HY(?, A%*Y). This implies Ig(J*[wy]) = MIg(A%Y) =
Ik (A9*Y), where the last identity follows from [ADT, 1.6.6]. Recall the following exact sequence
from Corollary 6.3:

(8.6) 0 — API(K') = JEAK') = JEUK') = BYU(K') @2, Qp = 0,
where J34 = lim j\;’rd and K’ = K% and K,. We separate it into two short exact sequences:
57) 0 —ATY(K') = JEUK') S w(JL)(K') — 0,
| 0 —w(JEK') = JLUK') = B (K') @2, Q) — 0.
Define
Sel (w(JL)) := Ker(i - H'(K* /K, w(JE)[p™]) — Hg(w(JZY))),
(8.8) Ul (w(J5Y)) == Ker(i : H(K®/K, w(JL)) — Hy(w(JL),
Cuw (K,) = Coker(J24(K,) — B(K,) @z, Q).
Here we have written H§(X) :=[],cq H'(K,, X).
Look into the following commutative diagram of sheaves with exact rows:
@[p™]

Ar[pe]ord —— JZP>] —— S —— 0
5 | | | |
A =, ggd T, god , BrgQ,

Since Eﬁrd ® Qp is a sheaf of Q,-vector spaces and Jor4[p>] is p-torsion, the inclusion map i factors
through the image Im(w) = w(J2?); so, for a finite extension K of Q or Q,

(8.10) @ (I ™) = J& ™).

From the exact sequence, w(.J) — Jord E?rd ®z, Qp, taking its cohomology sequence, we get
the bottom sequence of the following commutative diagram with exact rows:

0 —— HY (@ (J&Y)[p®]) =—=—= H'(J[p™))
| dl |

—

[Toes Cuv(Ky) ——  Hi(w(J2Y) —— HLJ2Y).
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By the snake lemma, we get an exact sequence
(8.11) 0 — Selg (w(JL)) — Selg (JE) — [ Crw (K0),
vlp

since E?rd(Kv) ®z, Qp = Cyw(Ky,) = 0if v{p by (S) in the introduction.
Define error terms

e BT [P)(F) __ISNE) @) ()

. BalF) = o Gerapeey(ry) P50 ) = Sy my) — B o oo (F))
| o) e TIENE) ey @UIEDE) (T (F)
E*(F) := w(Jord(F))’ E>(F) := w(JI(F)) 1T> w(fgrd(F))

for ' = K, K,, and put B (K) = [[,cq E*(K,). If F'is a finite extension of Q; for I # p, by (S)
in the introduction, we have Egq(F) = E®(F). If A, = Ap for an arithmetic point P, we often
write E(F) for E*(F) as it depends on P. Noting G =+ G is an epimorphism of sheaves for
G = J24p>] by Corollary 6.4, we then get the following commutative diagram with two bottom
exact rows and columns:

LSel,* TWSel, *

Ker(tsels) ——  Selg (Aord) Selg (Jod) Lt Qe (w(J2))

| | | |

(8.13) Esa(K) ——— H'(Ay[p<)) —— H'(JZp™]) —=— H'(JZI[p™])

! | | |

EF(K) —— HLA2Y) 2  HLJL) > Hi(w(J2Y)).

Here the last map wg « could have 2-torsion finite cokernel if p = 2.
We look into A-TS groups. Let w € h coming from w, € End(J,/q) and suppose that () =

€

wh D (77" " —1). The long exact sequence obtained from (8.7) produces the following commutative
diagram with exact columns and bottom two exact rows:

Arige

Ker(ty,») —— Il (A2) 0 T (J29) 25 Mg (w(J2T))

| | | |

(8.14) EX(K) —— H'(Ar) —“— H'(J2Y) —Z— H'(w(J2Y)

! | |

EF(K) —— HiAxY) — HLJL)

=

H(w(J$9)).

By the vanishing of Hg(//l\r) ([ADT, Theorem 1.3.2] and Lemma 7.2), wg . are surjective. In each
term of the diagram (8.14), we can bring the superscript “ord” inside the functor IIl and H! to
outside the functor as the ordinary projector acts on j;, Joo and A, and gives direct factor of
the sheaf. The diagram “ord” inside is the one obtained directly from the short exact sequence of
Corollary 6.3. Thus we get from [BCM, Proposition 1.1.4.2] the following fact:

Lemma 8.2. Suppose (A) and (F). If EF(K) is finite, the sequence
0 — E%®(K) — Mg (A7) — Mk (J2Y) D Mg (w(J2Y))

is exact up to finite error. Moreover, if in addition Cprw (K) = 0, the sequence extends to the
following exact sequence up to finite error:

0 — E®(K) — Ml (A2 — Mg (J2Y) 2 Ml (J29).
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Proof. Applying [BCM, 1.1.4.2 (1)] to the third column of (8.14), the first column is exact. Thus
Ker(iy «) is isomorphic to E*°(K) up to finite error. Applying [BCM, 1.1.4.2 (1)] again to the
first three terms of the bottom row, we get exactness of 0 — Ker (i ) — g (A%) — Ik (J2I9).
Replacing Ker(cy, «) by E*®(K), we get the exactness of 0 — E®(K) — I (A9) — T (J29) up
to finite error. Since EZ°(K) is finite, again by [BCM, Proposition 1.1.4.2 (1)], we get the exactness

of I g (A%™) — Mg (Jo) =5 Mg (w(J2)) up to finite error. This finishes the proof for the first
sequence.

To extend the exact sequence, we look into the sheaf exact sequence: 0 — w(J24) SR Jord —
Berd ®z, Qp — 0, which produces the following commutative diagram with exact rows:

Ker(in.) ——— Hlg(w(Jo9)) 2 T (J2)

| | gl
(8.15) Cuw(K)  ———  HYAZY) s HY(JZY)
[L, Cuw(Ky) ——  HE(A)  —= HLJLY).

Again the left column is exact as the right column is exact. Then by the assumption Cpsw (K) = 0,
we get a canonical injection:

(8.16) i Mg (@(JRY)) — Mg (J2).
Thus we can replace the end term Ik (w(J29)) of the first exact sequence by Il (J2'Y), getting
the extended exact sequence up to finite error. ([

9. VANISHING OF THE FIRST ERROR TERM E°° FOR [-ADIC FIELDS WITH [ # p

In this section, we prove vanishing of the error term E*°(K) for local fields of residual charac-
teristic I # p, which combined with a similar (but more difficult) result for p-adic fields given in
Section 17 will be used in the following sections to prove the control result up to finite error of the
limit Selmer group, the limite Mordell-Weil group and the limit Tate-Shafarevich group.

More generally, for the moment, we denote by K either a number field or an l-adic field (the
prime [ can be p unless we mention that [ # p).

Lemma 9.1. Let K either a number field or an l-adic field. Then the Pontryagin dual E>(K)V of
E>*(K) is a Zp-module of finite type (i.e., E*°(K) is p-torsion of finite corank).
Proof. Let K’ = K if K is local and K = K* if K is global. We have an exact sequence
0 — E*(K) — H'(K' /K, A3 — H'(K'/K, J%Y).

By [ADT, 1.3.4], if K is local, H(K'/ K, Ao*d) =~ Pic%/K(K)V; so, we get the desired result. If K is
global, A"(K) @z F — HY(K'/K, A°[p]) — HY(K'/K, A°*%)[p] is exact, and the middle term is
finite by Tate’s computation of the global cohomology (taking S to be finite); so, H*(K'/K, A%9)
has Pontryagin dual finite type over Z,. This finishes the proof. O
Proposition 9.2. Assume (A) and (F). Let K be a finite extension of Q;. Then we have

(1) E(K) = Ker(Abcoord(K)V — Jteo-ord( [\ which, is under | # p in turn isomorphic to

= Ker(Ho(K, T, A7 (~1)) — Ho(K, T,J¢"(-1)))
for the negative Tate twist indicated by “(—1)",

(2) If 1 # p, the order |E*(K)| is finite and is bounded for all s.
(3) If 1 # p and Ho(K, T,A%4(~1)) = 0 (& AL°Y(K) = 0), we have E*(K) =0 for all s.
(4) Suppose l £ p. If T is an integral domain and A, has good reduction over the l-adic integer

ring W of K, then E*(K) =0 for all s.



ANALYTIC VARIATION OF TATE-SHAFAREVICH GROUPS 27

We will prove the finiteness and boundedness of E*(K) when | = p later in Section 17 under some
extra assumptions (see Theorem 17.2).

Proof. We have an exact sequence

~ o~ 1 -~ Ll feo
0 — E%(K) := Coker(ww, : JOYK) — w(Jo")(K)) = H' (K, A = HY(K, J').
By [ADT, 1.3.4], if K is local, for an abelian variety A over K, we have H!(K, A) = A*(K)V for

Al = Pic%/K. Note that A* = A'[p>] if I # p by (S) at the end of the introduction. From local Tate
duality and Lemma 7.2 (combined with Weil pairing A*[p>] and T, A(—1)), we conclude

E*(K) = Ker(ALoord(K)Y — Jheoord(K)V) = Ker(Ho(K, T, A% (1)) — Ho(K, T, J(~1)))

proving the first assertion.

We now claim that A%°"9(K) C A.[p>®](K) is finite. If A, has good reduction over W, we
have A, [p>](K) = A,[p>°](F) which is finite. Take the Néron model A, i of A,. By the universal
property of the Néron model, we find A, (W) = A.(K); so, A, w [p=](W) = A, yw[p™](K). Since
multiplication by p on A,y is étale (as | # p; see [NMD, Lemma 7.3.2], we find A,y [p>](W) =
A w [p>X)(F) € A, jw(F), which is finite (as A,y ® F is of finite type over F). This shows the
claim. The claim proves the assertion (2) as E*(K) — A,[p*](K) by (1). The assertion (3) also
follows from (1).

We now prove (4). If A, has good reduction over W, by Lemma 9.3 following this proof,

w(j\gﬁl‘-i) and j;’ﬁl‘-i have good reduction over the l-adic integer ring W of K, we have w(j\;’ﬁl‘-i)(K )=

Tor 0o ~ Tor oo — Tt,co-or Tt,co-ord[ oo ~ ,co-ord[ oo
()P (K) = w (I [p™](F) and similarly JU$" 7 (K) = Jo§ " p>)(K) = T3 [p™)(F)
for the residue field F of W. From the sheaf exact sequence A, — Js1 — w(Js 1), the corre-
sponding sequence of their Néron models is exact by [NMD, Proposition 7.5.3 (a)]. Over finite

field, by the vanishing of H'(F, X) for an abelian variety X p (Lang’s theorem [L56]), we find
Coker(JO(F) — w(J,1)"(F)) = 0; so, B(K) = 0. 0

Lemma 9.3. Suppose | # p, and let W be the l-adic integer ring of K. Then if A, has good

reduction (resp. additive, semi-stable) over W and T is integral, then JJf = J,r[p™]°™ and

w(j;yqy)ord = w(Js1[p™]°") are contained in an abelian factor of Js with good reduction (resp.
additive, semi-stable) over W for all s.

We indicated this fact in the proof of Proposition 9.2 saying that j;’ﬁl‘.i and w(j;yqy)ord has good
reduction over W.

Proof. As is well known (e.g., [H11, Remark after Conjecture 3.4}, the I-type (i.e., the l-local rep-
resentation ;) of automorphic representation occurring in a given ordinary p-adic analytic family
is independent of the member of the family. In other words, if I-type is a ramified principal series
m(a, B) or a Steinberg representation o(| - |;a, «), a|ZlX and f3|; are independent of members, and
if 7m; is super-cuspidal, the associate p-adic Galois representation restricted to the [-inertia group is
independent of the members up to isomorphism. Then by the criterion of Néron-Ogg-Shafarevich,
the reduction of any member Ap is independent of an arithmetic point P. O

10. CONTROL OF A-SELMER GROUPS
We start with a lemma.

Lemma 10.1. For a number field or an l-adic field K and G = J34[p™], the Pontryagin dual G(K)V
is a A-torsion module of finite type. For any arithmetic prime P, G(K)V ®, h/P", G(K) ®, h/P™
and G(K)[P™] are all finite for any positive integer n.

Proof. We give a detailed argument when K is a number field and briefly touch an l-adic field as
the argument is essentially the same. Let P € Ary, and suppose K is a number field. Suppose that
the Galois representation pp associated with P contains an open subgroup G of SLy(Z,). Let L be

the Pontryagin dual module of G(Q). If the cusp form fp associated to P has conductor divisible by
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N, the localization Lp is free of rank 2 over the valuation ring V' = hp finite over Ap (e.g., [HMI,
Proposition 3.78]). If not, by the theory of new form (e.g. [H86a, §3.3]), Lp is free of rank 2 over a
local ring of the form V[Xy,..., X,,]/(X*, ..., X%") = hp with nilradical coming from old forms
(e.g., [H13a, Corollary 1.2]). The contragredient pp = ‘pp" of pp is realized by Lp/PLp. Then G
is also contained in Im(pp), and Ho(K,Lp/PLp) = H(K,Lp)/PHy(K, Lp) is a surjective image
of Hyo(G, Lp/PLp), which vanishes. Thus Hy(K,Lp/PLp) = 0, which implies Ho(K,L)p = 0 by
Nakayama’s lemma. In particular, Ho(K, L) is a A-torsion module whose support is outside P.

If pp does not contain an open subgroup of SLs(Z,), by Ribet [R85] (see also [GME, Theo-
rem 4.3.18]), there exists an imaginary quadratic field M such that pp = Ind%ga for an infinite
order Hecke character ¢ of Gal(Q.M). Then it is easy to show that Ho(K,Lp/PLp) = 0, and in
the same way as above, we find Ho(K, L)p = 0 and that Hy(K, L) ®, h/P" is finite for all n. Thus
for any arithmetic prime P € Ary, Ho(K, L)p = 0 and hence G(K)Y = Hy(K, L) is A-torsion with
support outside P. Thus in any case, G(K)" ®, h/P™ = Ho(K, L) @, h/P" is finite for all n as h
is a semi-local ring of dimension 2 finite torsion-free over A. The module G(K)[P"] is just the dual
of Hyo(K, L) ®, h/P™ and hence is finite. Then (G(K) ®, h/P™)V = Ho(K, L)[P"], which is finite
by the above fact that Ho(K, L) is A-torsion with support outside P.

If K is l-adic, replacing K by its finite extension, we may assume that Ap has split semi-stable
reduction. Write F' for the residue field of P. Then either pp(Frob) for a Frobenius element Frob of
Gal(Q,;/K) has infinite order without eigenvalue 1 or the space V (pp) fits into a non-split extension
F — V — F(-1) for the Tate twist F'(—1) (by the degeneration theory of Mumford-Tate; cf.,
[DAV, Appendix]). Because of this description Ho(K,Lp/PLp) = 0, and by the same argument
above, the results follows. O

Since (w) is supported by finitely many arithmetic primes, Egse(K)Y := (G(K) ®n h/(w))Y =
G(K)Y[w] is finite by the above lemma,; so, we get

Corollary 10.2. Assume (A). If K is a number field, then Esq(K) is finite.

Let T be the local ring such that @ € my. We define Qr to be the set of points P € Spec(T)(Q,)
such that

(10.1) PN A contains t*" — 1 for some 0 < s € Z and P is principal as a prime ideal.

So, Or is a subset of Spec(T)N Ary, made of principal ideals. We see Egel(K)r = Coker(w : G(K)r —
G(K)r1), where My = M ®y T for an h-module M. Thus for the Galois representation pr acting
on T'Gr = lim_ T,G[y*" — 1], if pr modulo my is absolutely irreducible over Gal(Q/K), we conclude
Ese(K) = 0. Here pr = (pr mod mry) is the semi-simple two dimensional representation whose trace
is given by Tr(pr) mod mg. Indeed, the Galois module G[my] has Jordan-Hélder sequence whose
sub-quotients are all isomorphic to py; so, by Nakayama’s lemma, G(K) = 0. Write 5| Gal(@, /Qy) =

(F%E;) mod mr with the nearly ordinary character @ (i.e., B([p, Qp]) is equal to the image modulo

my of U(p)). Here ¥, = v, mod p. Then it is plain that G(K,) = 0 for all place v|p of K if D,1)
and P are both non-trivial over Gal(Q,/K,) for all v|p. We record this fact as

Corollary 10.3. Let p > 2, K be a number field, and suppose one of the following two conditions:
(1) pr is irreducible over Gal(Q/K);
(2) Upt and B are both non-trivial over Gal(Q,/K.) for all p-adic places v|p of K.
Then we have Egq(K) = 0.
Recall Mt = M ®u T for an h-module M.
Theorem 10.4. Let K be a number field and Spec(T) be the connected component such that w € mr.
Suppose p > 2, (A) and (F).
(1) Assume one of the following two conditions

(el) E®(K,)r is finite for all v|p,
(e2) A, does not have split multiplicative reduction modulo p at all primes plp of K.
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Then the following sequence
(10.2) 0 — Selx (A2™) — Selg (JEEG) = Selx (JL%).

is exact up to finite error.
(2) Assume one of the following two conditions:
(E1) Esa(K)r = E*(K,)r =0 for all v|Np,
(E2) T is an integral domain, A, has good reduction at all v|Np and |¢(Frob,) — 1|, =1 for
all v|p. Here Frob, is a Frobenius element in Gal(K,/K,) acting trivially on K|[ppye].
Then the sequence (10.2) is exact, and if in addition Cprw (Ky)r = 0 for all v|p, we have
Selg (w(JEY)) = Selg (JE%G).

o0

By (8.11), we have an exact sequence: 0 — Sel (ww(JLY)) — Selg (JEY) — I1,), Crpw(Ky), and
if Ap has potentially good reduction at p for all P € Qr, Hv|p E*(K,) vanishes under (E2) (see
Theorem 17.2). By our choice of T, we have A% = A4 and B = B4, By Corollary 10.3, (E2)

implies Ege(K) = 0. Indeed, 7,9%([p, Qp]) = 1 as A, has good reduction modulo p. We prove the
theorem under (E1) or (el), since Theorem 17.2 combined with Proposition 9.2 (4) shows (e2)=-(el)
and (E2)=(E1) for v|p.

Proof. Recall the following commutative diagram with two bottom exact rows and three right exact
columns from (8.13) (tensored with T over h):

Ker(isers) —2—  Selg(A2) 20 Selp (J&%)  —5 Selg (w(JL))
ll ﬁla ﬁl ﬁl
(10.3) Bsa(K) ——— HY(A4[p=]) —— H'(JI%[p™]) —=— H'(JZ4Lp™)

| l l l

BE(K) —— HYAYY) = HMJZE) 5 HY@USH)

eo ’ ’

By Proposition 9.2 and by the assumption (el), EZ°(K) is finite. Since the middle two columns are

exact, the left column is exact with injection ¢ (e.g., [BCM, 1.1.4.2 (1)]). Since the bottom row is

exact with injection eg, the map g is injective and Im(ig) = Ker(tgel,«). Suppose (E1). Then all the
terms of the left column vanish. So Ker(tge1,«) = 0 and the sequence:

(10.4) 0 — Selpe (A7) = Sel g (J29) — Sel g (w(J2r4)) —E1L Qe e (Jord)

is exact. The cokernel Coker(Sely (JU4) =5 Selk (w(JL9)) is global in nature and seems difficult to
determine, although Coker(Sel (ww(J24)) — Selx (J'4)) is local as in (8.11), and if Cprw (K,) = 0
for all v|p, it vanishes.

Now we assume (el). We need to prove the sequence (10.4) is exact up to finite error. By
Corollary 10.2, Fge(K) is finite. Since we know E*°(K,) = 0 for v prime to p by Proposition 9.2,
we conclude from (el) that E3°(K) is finite. Then the diagram (8.13) has two bottom rows exact up
to finite error. Since the Pontryagin dual of all the modules in the above diagram are A-modules of
finite type, we can work with the category of A-modules of finite type up to finite error (e.g., [BCM,
VII.4.5]). Then in this new category, the bottom two rows are exact and the extreme left terms a
pseudo-null. Thus the dual sequence of the theorem is exact up to finite error, and by taking dual
back, the sequence in the theorem is exact up to finite error. O

Corollary 10.5. Assume (F) and p > 2. Then we have
(1) The Pontryagin dual Selx (J4)Y of Sely (JY) is a A-module of finite type.
(2) If further SelK(//l\grd) = 0 for a single element w € mry satisfying (A) and (E1), then
Selg (J2') = 0 and SelK(//l\grd) =0 for every w € my satisfying (A) and (E1).
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(3) Suppose that T is an integral domain. If SelK(//l\ﬁrd) is finite for some w satisfying (A)
and (el), then Selx(J24)Y is a torsion T-module of finite type. Thus if T is a unique
factorization domain, for almost all P € Qr, Sel i (A%Y) is finite.

Proof. The condition (A) and (e2) is satisfied by any non-trivial factor @ of (v*" —1)/(y —1). Thus
Sel (J24)Y /- Selg (Jor9)Y pseudo isomorphic to Sel (A7) which is Z,-module of finite type;
so, by the topological Nakayama’s lemma, we conclude that Selx (J24)Y is a A-module of finite type.
The last two assertions can be proven similarly. O

11. CoNTROL OF A-BT GROUPS AND ITS COHOMOLOGY

Recall G := Go 5¢ = JZI[p™] which is a A-BT group in the sense of [H14]. Here the set S is
supposed to be finite. We study the control of the Tate-Shafarevich group of G.

Theorem 11.1. Let K be a number field. Suppose |S| < oo, (F) and (A) for w. Then the sequence
0 — OI(KS/K, A% 4p>]) — II(K°/K,G) = TII(KS /K, G) is exact up to finite error.

Proof. From the exact sequence 0 — /Tﬁrd [p>] — G =5 G — 0 of Corollary 6.4, we get a commutative
diagram with exact bottom two rows and exact columns:

Ker(y,) —— LI(KS/K, A2 [p>]) 2 MI(KS/K,G) — II(KS/K,Q)

| | | |

(111 EBpu(K) ——  HYAMp>]) ——  HY(G) =  HY9)

! ! ! !

[oes Egp(K,) ——  HYAp=])  —2  HYG) =2 HL(9),

where E%r(k) = Ese(k) = Coker(w : G(k) — G(k)).
By Lemma 10.1, EZ(K) and EZ;(K,) are finite. Thus as long as S is finite, [ ], g Egp(Ky) is
finite. Then the above diagram proves the desired exactness. O

Corollary 11.2. Let the notation and the assumption be as in the theorem. Assume that T is an
integral domain and that III(K* /K, A\‘;{)d[poo]) is finite for a principal arithmetic prime Py € Qr.
Then (K ® /K, Gr)" is a torsion T-module of finite type. In particular, Z,(Q,) is finite for the
support Z, C Spec(T) of U(K* /K, Gr)Y, and for all principal arithmetic points P € Spec(T) — Z,,
(K /K, A\‘;}d[poo]) is finite.

12. THE SECOND ERROR TERM Csw .

Put Eyw (k) = Coker(w(JgéfiT)(k) — Jgg%(k}), and recall Cpyw (k) = Coker(JgéfiT(k) L
Berd(k) @z, Qp). If P € Spec(T)(Q,,) is an arithmetic point generated by @ € T, we write E};y, (k)
(resp. CLy (k) for Enpw (k) (vesp. Crrw (k).

Proposition 12.1. Let k be a finite extension of Q or Q. Then CLy (k) = Eby (k) ®z, Qp/Zy,
canonically. In particular, if EY. (k) is compact (e.g., dimr, pg, g, E%rd(k) ®z, Qp = 1 and
Chw (k) #0), CLw(k) is isogenous to A\‘}}d(k) ®z, Qp/Zy. If T is an integral domain, then
the error term Cpy (k) = B4y (k) @z, Qp/Zy, vanishes for almost all P € Qr, and more precisely,
Chw (k) = Ef (k) @z, Qu/Zy, = 0 if and only if P € Qr is outside the support of the mazimal
T-torsion submodule of J.

Proof. Since Cpyy (k) is p-divisible torsion, we have C%,y, (k)®z,Q,/Z, = 0 and Tor?p (Chw (k),Qp/Zy) =
CL (k) (with Tory? (BEd(k) @z, Qp, Qp/Zy) = 0). Tosee EL (k) @2, Qp/Zp = CLyy (), we look
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into the exact sequence E¥ (k) — E%rd(k) ®z, Qp - Cipyw (k). Tensoring Q,/Z, with the se-
quence, we get the following exact sequence:

0 — Cliw (k) = Tory” (Ciw (), Qp/Zy) — Efpyy (k) @z, Qp/Zy — 0.
This shows the first assertion. If Efy, (k) is compact, by Eby (k) ®z, Qp/Z, = Chiy (k), we
have rankyz, E};y (k) = corank Chy (k) = dimg, E%rd(k) @z, Qp; so, Chry (k) is isogenous to
BY(k) ®z, Qy/Z, (and hence to BE(k) ®z, Qp/Zy).

We now assume that EYy, (k) ®z, Qy/Z, = C} (k) # 0. Then we have the following short
exact sequence:

0 — w(JL) (k) = JL%(k) 225 Im(poe,) (= Efpyy () — 0

with Z,-free Im(poo, 7). Then by [BCM, 1.2.5], we still have a short exact sequence:

0— W(Jgéfiﬂ‘)(k) Xz, Qp/Zp - Jgéfiﬂ‘(k) ®z, Qp/Zp L Im(/’oo,ﬂ‘) Rz, Qp/Zp — 0.

Note that (Im(poo,T) ®z, Qp/Zy)" is a P-torsion T-module of finite type. Thus P belongs to
the support Z, C Spec(T) of the maximal T-torsion submodule of (Jgg%(k} ®z, Qp/Zy)Y. Since

(JEG (k) @z, Qp/Zp)Y is a T-module of finite type, Zx(Q,) is a finite set. From our proof, we

o0

conclude EL (k) ®z, Qp/Z, # 0= P € Z,(Q,). O
We state a proposition showing that the limit Mordel-Weil group is of co-finite type over A:

Proposition 12.2. Assume (F). Let P = (w) € Qr. Let p > 2 and k be either a number field or
an l-adic field. The following sequence

(12.1) 0 — ARYk) @ Qp/Zy = JLL (k) ® Qp/Zp > TEL (k) ® Qp/Zp T Clyyy (k) — 0

is exact up to finite error except for Ker(w)/Im(:) which is a image of E¥ (k) with finite kernel
(so, it is at worst a A-torsion module of finite type). In particular, if T is an integral domain, the
Pontryagin dual J = (Jgéfiqr(k) ® Qp/Zy)Y is a T-module of finite type.

Proof. Since w(JgéfiT (k) = Jgéfiqr(k) / A\‘}}d(k), we have the following three exact sequences:

0 —w(JET (k) = w(J%T) (k) — EF (k) — 0,

o0

(12.2) 0 —ARI(k) — JLE(R) = @(JEG(R) — 0,

oo, T 0,

0 —w(JLT) (k) — J&T(k) — Efpw (k) — 0.
Tensoring with Q,/Z, over Z,, by Tor?p (X,Qp/Zy,) = X[p™], we get the following exact sequences
DL PEI6) — EF (k) — o(J2h(6) © Qp/Z, = w(JS4) (k) & Qp/Zy — 0,
(12.3)  @(JLE(R)[p™] = ABI (k) © Qp/Zy — LG (k) ® Qp/Zy Z> D(JLE () @ Qp/Zy — 0,
0 — w(JLT) (k) ® Qp/Zy — JER(K) @ Qp/Zp — Chpw (k) — 0,

where we replaced EL (k) ® Q,/Z, by CF (k) at the end of the last sequence (using Propo-
sition 12.1). The last sequence is exact since, by Corollary 6.3, EL;y (k) is a flat Z,-module
[BCM, 1.2.5]. The image Im((w(JL%(k)[p™] < A%d(k) ® Q,/Z,) is killed by w. Since ()
is arithmetic, by Lemma 10.1, this image is finite (i.e., factoring through the k-rational quotient of
Gr(k) = (w(JorfiT(k)))[poo] killed by w). Thus the sequence:

0 — ARY(k) ® Qp/Zy = JLL (k) ® Qp/Zp > TG (k) © Qp/Zp T Clyyy (k) — 0

¢ has finite kernel, Ker(w)/Im(:) is the image of E® (k) with finite kernel (by the first sequence
combined with the second of (12.3)) and the last three right terms are exact.

Suppose that T is an integral domain. By Lemma 9.1, E% (k) has p-torsion with finite corank over
Zy. Therefore Ker(JgéfiT(k) =, Jgg%(k))v is a T-torsion module of finite type. Then by Nakayama’s
lemma, the Pontryagin dual (J&%(k) ® Qp/Zp)Y is a T-module of finite type. O

oo, T
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The exceptional finite subset in P € Qr for the control of the limit Mordell-Weil group JZ% (k) @
Qp/Zy, is contained in the union of the following three type of proper closed subschemes of Spec(T)
whose @p—points are finite:

(a) the support Zi C Spec(T) of the maximal T-torsion submodule of Jgg%(k}v whose Q,-points
are finite by Proposition 12.1 (this set depends on the field k);

(b) the support Z, C Spec(T) of the maximal T-torsion submodule of II(k“/k,Gr)¥ whose
@p—points are finite by Theorem 11.1 (this applies to a number field k);

(¢) Z, C Spec(T) made of P € Qr not satisfying (e2) (this applies to the case where k is either
a number field or a p-adic field).

Corollary 12.3. Suppose that T is an integral domain with infinite Qr. Let P € wr — Z,, (@p). Let
K be a number field. Suppose either that HIK(/T‘]’DM) is finite or that the sequence

0— A\?Drd(K) ® Qp/Zp - JgéfiT(K) ® Qp/Zp = JgéfiT(K) ® Qp/Zp
is exact up to finite error. Then EX(K) is finite.

Proof. First suppose |II1x (A\‘}}dﬂ < 0o0. We look into the diagram (8.14) for P = (w). Since P ¢ Z,,,
by Proposition 9.2 and Theorem 17.2, EZ(K) is finite. Since the left column and the first three

term of the first row are exact in (8.14), from finiteness of Ik (A\‘}}d), we conclude E¥ (K) is finite.
If the sequence in the corollary is exact up to finite error, since E% (K) is isogenous to Ker(w)/Im(¢)
by Proposition 12.2, it is finite. O

13. CONTROL OF LIMIT TATE-SHAFAREVICH GROUPS AND MORDELL—WEIL GROUPS
We first study a relation of the Tate-Shafarevich group g (A\‘j}d) and III(K® /K, A\‘j}d[poo]).

Proposition 13.1. Suppose that T is an integral domain flat over A. Let K be a number field and
pick an arithmetic point P € Spec(T). Assume |S| < oo and that P is principal with P = (w). Let
Kerp'" be the kernel of the natural diagonal map: A%Y(K)®z, Q,/Z, — [T, AFYKy) ®z, Qp/Zy.
Then we have the following exact sequence

0 — KerM"W — (K /K, A4 [po°]) 225 T, (A%9).

Moreover Ilp is onto if K = Q and dimpy, Ap(Q) > 1. Thus assuming K = Q and dimpy, Ap(Q) >
1 and |HI(QS/Q,//1\‘I’§d[p°°])| < 00, we have IHQ(A\‘I’}d) is finite and dimp, Ap(Q) = 1. For general
K, if I(K°/K, A\‘;}d[poo]) vanishes (resp. is finite), the error term Ker™"V wanishes (resp. is
finite). Similarly if |IHK(//1\‘I’§d)| < 00 and dimy, Ap(K) ®z Q = 1, the two modules Ker®"' and
(K /K, A\‘;}d[poo]) are finite.

Proof. For K’ = K and K,, 4, (K’) (and hence A\ﬁrd(K ")) is p-divisible Z,-modules; so, the Z,-
module A\ﬁrd(K’)/A\ﬁrd [p™](K’) is a Qp-vector space (i.e., it is isomorphic to A\grd(K’) ®z,Qp). From
the short exact sequence A%[p>®](K') — ATI(K') — AI(K') ®z, Qp (K' = K° K,) of Galois
modules, we get the following commutative diagram with the bottom two exact rows:

Kerp™ —= TI(KS /K, A[pe]) s g (A3)
I | :
(131)  AMUK)®5, Q/Z, ——  HAAMP™)  —— HYAN) —— 0
al Rcs[p“’]J{ RCSJ,
[Lyp(A(0) 92, Qu/Zy) ——  HY(AXp™) 2 HYAM) —— 0.

The injectivity of Is and exactness of the bottom row prove the exact sequence in the proposition
by [BCM, 1.1.4.2 (1)].
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Assume that K = Q. By Lemma 5.5, A\ﬁrd((@p) ®z, Qp = T/P ®z, Q, as T/P-modules, and
hence A\ﬁrd((@p) ®z, Qp/Zy = T/P ®z, Qp/Zy up to finite error. If dimpg, A,(Q) ®zQ = m > 1,
by Lemmas 5.4 and 5.5, we find that A\ﬁrd((@) ®z, Qp/Zy = (T/P &z, Qp/Zy,)™. Since the source

and the target of the map ¢ are p-divisible, and from the finiteness of II1(Q*/Q, //1\2“1 [p>]), J is not
a zero map, which implies surjectivity of § as the corank of the target is equal to or less than m.
Therefore by snake lemma, if K = Q and dimpy, A, (Q) ®z Q = m > 1, we have an exact sequence:

0 — Kerp!" — TI(Q%/Q, AF[p™]) =5 Mig(AR?) — 0.
Thus we conclude m = 1 and Hl@(//l\‘}}d) is finite if I(Q°/Q, A\‘}}d[poo]) is finite.
If dimpy, Ap(K) ®z Q = 1, then Ap(K) @2 Q = [[,, Ap(K,) ®z, Q, has non-trivial image

which is an Hp-vector space. This it has dimension 1 over Hp, and hence 7 is an injection. Thus
o A%Y(K) — [Lpp A9*(K,) is a morphism of Z,-module of finite type with finite kernel. Then it

is clear after tensoring Qy,/Z, over Zj, ¢ has finite kernel; i.e., Kerﬁ\f W is finite, and hence finiteness
of Ik (A%9) implies that of II(KS /K, A% [p>]). O
Recall the troublesome exceptional subsets of Spec(T):

(a) the support Zj C Spec(T) of the maximal T-torsion submodule of Jgg%(k}v whose Q,-points
are finite by Proposition 12.1 (this set depends on the field k);
(b) the support Z, C Spec(T) of the maximal T-torsion submodule of II(k“/k,Gr)Y whose
Q,-points are finite by Theorem 11.1 (for a number field £);
(c) Zp C Spec(T) made of P € Qr not satisfying (e2) (so, r(P) < 1if P € Z,(Q,) N Q7).
We now consider the following conditions:
(P0) There exists Py € Qr —(Z,UZ,)(Q,) (so we have finite EZ°(K) := I1,, £% (Ky,)) such that
dimpy,, Ap,(K) ®7 Q =1 and Ik (A%Y) is finite,
(P1) There exists Py € Qp — (Z, U Z,)(Q,) such that dimg, Ap,(K)®zQ < 1 and Mk (A%Y)
is finite.
We have the following implication (P0) = Py € Qr — (Z, U Z,)(Q,) by Proposition 13.1. Note that
finiteness of E3°(K) follows if A+ Py does not have split multiplicative reduction over Z[pe] (so,
in particular, Ap, has potential good reduction at p; see Theorem 17.2).

Lemma 13.2. Let K be a number field and T be a normal integral domain with infinite Qr. Suppose
(P1). Then

(1) ranky (JEUEK) @z, Qp/Zy)" < 1,
(2) If dimHPO APD(K) Rz Q = 0, then ranqu(Jgéd(K) ®Zp Qp/Zp)v = 0,
(3) If rankp(JEYK) @z, Qp/Zy)Y = dimp, Ap,(K) ®zQ =1, then Py is outside Zk(Q,).

Write J = Jgg% as a sheaf and put J = J(K) ®z, Qp/Zy.
Proof. Suppose dimp,, Ap, (K)®zQ = 0 asin (2). Then the assertion (2) follows from Corollary 10.5
(3) as |Selx (AZY)| < oo under (P1).

By the finiteness of IHK(A\‘I’}Dd) and EF(K), E¥(K) is finite by Lemma 8.2. Then by Proposi-
tion 12.2, for a generator wy of Py,

JV I Y (ARNEK) ®z, Qp/Zy)" — 0
is exact up to finite error. Localizing at Py, we have the following exact sequence:
JP, = Jp, — (A\?Drd(K) ®z, Qp/Zp)" ®z, Qp — 0
Since dimt, pgq, A\‘j}d(K) ®z, Qp <1 by Lemma 5.4, by Nakayama’s lemma,
rankr JV = rankr, Jp <1

proving (1).
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We now prove the last assertion; so, we assume K = Q. Since Ik (A%Y) is finite, EF (K) is finite.
Thus J[wy] is isogenous to /T‘}{)d(K ) ®z, Qp/Z, by Proposition 12.2. Pick a pseudo isomorphism
JV 2 T X for a torsion T-module X of finite type. Then for a generator @y of Py, we have an
exact sequence up to finite error:

0— X[Py] = JV Z% JY - T/Py® X/PoX — 0.

Since JY /woJY = J[wo]” = (A}E%K)@Zp Qp/Z,)" = T/ Py up to finite error by Lemma 5.4, X/ Py X

has to be finite. Thus Py ¢ Supp(X)(Q,) = Zx(Q,). O

We now assume (P1) (as we know definitely that the finiteness of 11T K(A\‘I’}d) for almost all P € wr
if dimp, Ap,(K)®zQ = 0 by Corollary 10.5. Under (P1), we have two possibilities by Lemma 13.2;
i.e.,
Case 0: rankr(J92(K) ®z, Qp/Zy)" = 0 and
Case 1: rankp(J2Y(K) @z, Qp/Zy)Y = 1.

Lemma 13.3. Let J = J3%, and write wr = Qr/Gal(Q,/Q,) C Spec(T) (the Galois conjugacy

oo, T?
classes of Q). Suppose that T is a unique factorization domain. Then we have

T(K) @2, @y = P AFU(K) 22, Q,
Pecwr
as T-modules.
Proof. Then J(K) ®z, Q, = 11_11)1S Js(K) ®@z, Qp for J; := jgﬁ?. Since for P € Qr, A\‘j}d only
depends on Gal(Q,/Q,)-orbit of P, we have J,(K) ®z, Qp = D pewnnspec(T.) A\gd(K) ®z, Qp, since
JOH(K) €Y Pespec(T.)nwy AP- Passing to the limit, we obtain the desired assertion. O

Theorem 13.4. Let K be a number field, and put Zr k := (Z, U Zy U Zk )(Q,). Suppose (P1) and
that T is a unique factorization domain. Then we have

(0) rankr(JEG(K) ®z, Qp/Zy)Y < dimp, Ap(K)©zQ < 1.

(1) If Ap,(K) is finite (i.e., Py & Zx(Q,)), then rankT(JgéfiT(K)®Zpr/Zp)v =0and IHK(//[‘I’DM)
is finite for almost all P € Qr — Zr i ; in this case, we put Ctr := Qr — Zt k.

(2) If Ap,(K) is infinite (i.e., (P0) holds) and rankr(J2G(K) ®z, Qp/Zy)Y =0, we have Py €
Zr i, and assuming existence of a point Py € Qr — Zy i with finite IHK(A\‘I’DYId), IHK(//[‘I’DM)
is finite for almost all P € Qr — Zr ik ; again, in this case, we put Cty := Qr — Zt .

(3) If Ap,(K) is infinite (i.e., (P0) holds) and rankr(JE%G(K) ®z, Qp/Zy)Y = 1, then there
exists an infinite subset Cty C Qr — Z1, i including Py and dimg, Ap(K) @z Q =1 for all
P e Ctr and IHK(A\‘I’DM) is finite for almost all P € Ctr.

Moreover if P = (w) € Ctr, we have the following two exact sequences up to finite error:

0 —>//1\‘1’§d(K) 1z, Qp/Zp - Jgéd(K) 1z, Qp/Zp = Jgéd(K) 1z, QP/ZP —0
0 g (AZ?) — Mg (S = Mk (J2Y).
In particular, for P € Ctr, E¥(K) is finite.

(13.2)

The definition of Ctr in the assertion (3) will be given in the proof. The first inequality of the
generic rank follows from Lemma 13.2; so, we prove the rest.

Proof. Write J := J(K) ®z, Qp/Zy, Js := JO'f with J = Joo and w(Js) := w(JSf) as before. By
Lemma 13.2 (1), we get the assertion (0): rankr JV < 1, and by Lemma 13.2 (2), if Ap, (K) is finite,
ranky JY = 0, proving the first part of (1). Therefore we may assume rankr JV < 1.

We prove the two assertions (2-3) and the rest of (1). Tensoring J(K) and J,(K) with the exact
sequence 0 — Z, — Q, — Q,/Z, — 0, we get the tensored exact sequence with G, r(K) finite if
s < oo (Lemma 13.3):

0— Tor%p(jS(K)an/Zp) = gs,’ﬂ'(K) - js(K) J—s> js(K) ®Zp Qp - js(K) ®Zp Qp/Zp - O;
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where Ker(j) is finite by Lemma 10.1. Passing to the limit, the following sequence is exact:
(13.3) 0 — Gr(K) — J(K) 2= J(K) ®z, Q) — J — 0.
Suppose that rankyJY = 0 to prove (2). Then JV is supported by finite set Zg (@p) =

Supp(J¥)(Q,) C Spec(T). For P € Spec(T)(Q,), the following three conditions are equivalent:
(Z1) JY[P] = (J/PJ)" is infinite,

(ZZ) Pe SuppT(Jv)(Qp)a

(z3) JY/PJY = J|P]Y is infinite.
By Lemma 8.2 combined with Proposition 12.2, this shows that Py ¢ Zt x under the assmption of (1)
and Py € Z1,k (Q,) under the assumption of the assertion (2). Then the assertions (1) follows from
Corollary 10.5 (3) applied to Py, since the corresponding Selmer group is finite by the assumption.

Now we deal with the assertion (2) and the exactness of (13.2) in the cases of the assertions (1)
and (2). If J/PJ is infinite, (J (K)®z, Q,) @1 T/P # 0 which implies P € Qr by Lemma 13.3. Thus
Zk(Q,) C Qr. Thus by Lemma 13.3, independently of the choice of P, there exists some finite so > 0
such that if s > s, we have J,(K)®z,Q, = Js,(K)®z,Q, and hence J(K)®z, Qp, = Ts, (K)®z, Qp.
Thus we have the following commutative diagram with exact rows:

Tso(K)Gso1(K) —2— Toy(K) @2, Qy —— Ty(K) © Qy/2,

i ] o]
J(K)/Gr(K) —=— J(K)©z,Q —— J

The map a is surjective, and Ker(a) is finite as Supp(Js,(K)/Gs, 1(K)) = Supp(J(K)/Gr(K)).
Similarly, w(Js, )(K) and w(J)(K) is isogenous. Since E} (K) is finite, w(Js, (K)) is isogenous to
w(Tso ) (K). Thus all @ (T, )(K), w(Ts,(K)), w(J)(K) and w(J (K)) are isogenous. This implies
finiteness of E¥(K). Thus the sequence for P = (w) € Qr — Zr k

(13.4) 0— ABYK) @z, Qp/Zp — J 225 J — 0
is exact up to finite error by Proposition 12.2. Thus applying this fact to the following commutative
diagram with exact rows (up to finite error) for (@) = P € Qr — Zr k(Q,):

APYK) @z, Qp)Ly —— T —Z—

—»

(13.5) l l l

Sel g (A%9) — = Selg(J) —Z— Selg(J),

we get an exact sequence up to finite error for all P € Qr — Zr x(Q,):

(13.6) 0 — Mg (A%Y) - Mk () — Mk (T).

Note that Zx(Q,) = Supp(J¥)(Q,) by definition. If P € Qr — Z1 x(Q,) (which implies P €
Qr — Zk(Q,)), we have A\‘j}d(K), J[P] and J @ T/P are all finite. Thus for P = (w) € Qr
outside Zt g, localizing the sequence (13.4) at P, every localized term of (13.4) vanishes, and hence
dimr, pgq, A\‘;}d(K ) = dimpg, Ap(K) = 0 as desired (see Lemma 5.4). Thus under the assumption
of the assertion (2), Py ¢ Zr,k(Q,), we can apply the above exact sequence (13.6) to P = Pi, and
hence Il (J) is a torsion T-module because II1 K(//l\‘jgrld) is finite. Therefore, by (13.6), III K(A\‘I’}d)
is finite for almost all P € Q1 — Zt x proving (2).

Finally we prove the assertion (3) assuming ranky JY =1 and Ap, (K) is infinite. We recall the
proof of Lemma 13.2 (3). Then JV is pseudo isomorphic to T@Y for a torsion T-module Y without
finite T-submodules. Then J[w]" is pseudo isomorphic to T/Py®Y/PyY . Since Ik (A\‘}Dﬁ)d) is finite,
E% (K) is finite by Corollary 8.2, and the natural map

ARYK) ®2z, Qp/Zy — J[w0]
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has finite kernel and cokernel by Proposition 12.2. Thus
rankz, Y/PyY + rankg T/Py = coranky, A%Y(K) ®z, Q,/Z,.
Since dimp,, Ap,(K)®z Q =1, by Lemma 5.4,
corankz, A\‘}gﬁ)d(K) ®z, Qp/Zy, = rankz, T/Fy.

This implies rankz, Y/PyY = 0, and hence Py ¢ Zk(Q,), and hence by (P0),

(13.7) Py & Zn, k(Qy).

Applying the same argument to general P = (w) € Qr — Zx(Q,) in place of Py, we have the
following commutative diagram with exact rows

JY % J — (J[=])V

! ! !

Tey —2— TeY —— T/Pa@Y/PY.

Note that Y/PY is finite as P ¢ Zx (Q,,). Therefore rankz, (J[w])" = rankz, T/P. Since A\‘jgrd(K)®Zp
Qp/Z, — J[w] has finite kernel, if A\‘j}d(K) ®z, Qp/Z, is infinite, it has Zj-corank equal to
rankz, T/P = corankz, J[w], and therefore, the map A\‘;}d(K ) ®z, Qp/Z, — J[w| has to have
finite cokernel. We define C't/. to be the subset of all P € wr such that Ap(K) is infinite, and put

Ctr := {PU|P S Ctv/ﬂ- — Z'JLK, o€ Gal(@p/(@p)}
By (13.7), we know Py € Ctr.

By Lemma 13.3, J (K)®z, Q, = @PGC% ABYK) ®z, Qp. Since corankz, J is infinity, by (13.3),
dimg, J(K) ®z, Q, = 00; so, Cty has to be an infinite set, and hence Ctr is also infinite. Then for
P € Ctr, we conclude an exact sequence up to finite error:

0 — AQYK) @z, Qp/Zp — J = T — 0.
By this exact sequence, we conclude
dim'ﬂ*/p®(@p A\(ljgrd(K) ®Zp Qp = dimHP AP(K> Xz Q = ranqu JV =1
for all P € Cty. Again applying the snake lemma to the diagram (13.5), we conclude the exactness

of the sequence (13.6). Applying finiteness of g (A\‘}{)d) to (13.6) (as Py € Ctr), we conclude that

Ik (J) is T-torsion, and hence for almost all P € Cty, g (A\‘}}d) is finite. The last assertion for
EZ follows from Lemma 8.2. O

Remark 13.5. By the techniques invented in this work, we cannot prove that Qr — Ctr is a finite
set (so, we need a new idea for that). Indeed, for any Zariski dense subset 3 (i.e., an infinite subset)

of Spec(Q, ), we have an exact sequence
0—T5 [[(T/P) @z, Q, = Coker(i) — 0.
Pe3
Take the Pontryagin dual exact sequence:
0 — Coker(i)¥ == @D (T/P) @z, Q, =T — 0.
Pe3

This is because the Q,-vector space (T/P)®z, Q) is self-dual by the trace pairing. Thus J(K)/Gr(K)
could be something like Coker(z)V for any infinite subset 3 = Ctr of Q.
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14. PARAMETERIZATION OF CONGRUENT ABELIAN VARIETIES

Let B/g be a Q-simple abelian variety of GL(2)-type (as in the introduction). We assume that
Op = End(B/g) N Hp is the integer ring of its quotient field Hp. Then the compatible system
of two dimensional Galois representations pp = {pp,} realized on the Tate module of B has its
L-function L(s, B) equal to L(s, f) for a primitive form f € S3(I';(C)) for the conductor C' = Cp
of pp (see [KW09, Theorem 10.1]). Thus B is isogenous to Ay over Q (by a theorem of Faltings).
The abelian variety Ay is known to be Q-simple as H 4, is generated by Tr(pp(Frob;)) for primes I
outside Np. Let 7 be the automorphic representation of GL2(A) associated to f.

Fix a connected component Spec(T) of Spec(hqs¢). If (o, 6,€) # (0,1, wq), for P € Qr, the
minimal (nearly ordinary) form f := fp (in the sense of [H09, (L1-3)] and [H10, §1.1]) in =y
may not be primitive. We use the notation introduced in [H10, §1.1] for adelic automorphic forms
without recalling its definition. Assume that P is principal (i.c. (A)) and fp is on I',. Then we
define A¢ = J,[a,]° asin (A). If Ho, = Ha, = Hp, A¢ is Q-simple and is isogenous to Ay.

Lemma 14.1. Let the notation be as above. If the conductor of f is divisible by Np, the abelian
variety Ag is isogenous to B over Q and Ha, = Ha, = Hp. If the conductor of f is equal to N prime
to p and £|U(p) = o(p)f, As is isogenous to B ®o, Oplp(p)] as abelian varieties of GL(2)-type,
which is in turn Q-isogenous to B X B just as abelian varieties.

Proof. Since a; := Tr(pp(Frob;)) € Hy, for all i { Np, we have Hg C Ha,. Write 75 = @,y and
7 = m(p, B) or o(p, B) with p-adic unit i,(¢(p)). Note that the f is characterized by

(14.1) fe HOTHNp"),7) C So(TH(Np")), £IT(1) = arf for all 11 Np, £|U(p) = o(p)f
and 7((§9)f = @(d)B(a)f for a,d e Z,,

writing T'(1) for U(l) if I|N (see [H89, §2]). Here Sg(f%(]\]p’”)) for the open compact subgroup
f%(NpT) defined in (3.2) is the space of adelic cusp form defined in [H10, §1.1] taking ¢ in [H10,
§1.1] to be the identity character. Moreover for the member pg of pp associated to the place p4
induced by i, : Q — Q,, we have (cf. [H89, §2])

(14.2) pelr, = (”%1” ;) with 8 = |- |, (i, ! 01) (¢ has finite order over I,)

for the inertia subgroup I, C Gal(Q,/Q), regarding ¢, as characters of I, by local class field
theory. Then o € Gal(Q/Hp) < p% = pp < (7()7 = 7() where 7(>) = &;.oom. This
shows the minimal field of definition of 7(*) is Hp (a result of Waldspurger), and by (14.2), Hp
contains the values of ¢|7,. Thus Ha, = Hp(p) generated over Hp by the values of ¢, as the central
character ¥ p of 7 has values in Hp over Al) (which follows from the fact that det pp = ¥ pv for
the compatible system v of the cyclotomic characters). Let o € Gal(Q/Q). If ¢ or 8 is non-trivial
over Z or Ay is potentially multiplicative at p (i.e., the conductor of f is divisible by p), the nearly
ordinary vector f is characterized by the above properties (14.1) without f|U(p) = ¢(p)f. Thus in
this case, f7 € 7@ 2 7 for 0 € Gal(Q/Hp) implies f7 = f. In particular, Ha, = Hp as desired. If f
has conductor N, f is p-stabilized (i.e., f(2) = f(z) — B(p)f(pz)), then Ha, = Hp(¢(p)). Since ¢(p)
satisfies X2 —a, X +v¢p(p)p = 0 for the T(p) eigenvalue a, of f, we have [Ha, : Hg] < 2, and Af is
isogenous to B ®o, Op[e(p)] (as an abelian variety of GL(2)-type).

If the central character ip is trivial, Hg is totally real, and Hpg(¢(p)) is totally imaginary; so,
Ag is isogenous to B x B if the conductor of B is prime to p. Even if the central character is not
trivial, choosing a square root ¢ := /v p(p), T(p)( ! is self adjoint on Sz(To(N),¥p) (e.g., [MFM,
Theorem 4.5.4]), and hence a,(~! is totally real, but for the root p(p)¢~! of X% — a,¢(™'X + p,
Q(p(p)¢~1) is totally imaginary as with |a,| < 2,/p combined with [8(p)], < |¢(p)|, = 1. This
shows that H 4, is a quadratic extension of Hp, and hence As is isogenous to B x B. [l

Let A be another Q-simple abelian variety of GL(2)-type. Thus A is isogenous to A, for a
primitive form g € S2(I'1(Ca)) of conductor C4. Let 7, be the automorphic representation of g,
and write g for the minimal nearly p-ordinary form in 7,. Without losing generality, we may (and
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do) assume that O = End(A/g) N Hy is the integer ring of Ha. Note that Hp = Q(f) C Q and
Ha = Q(g). Suppose A is congruent to B modulo p with (B[pg] ®ypp) Fp)** = (Alpa] @upa) Fp)*®
as Gal(Q/Q)-modules. Here, for any ring R and a prime ideal p of R, x(p) is the residue field of p.

Write Oy, for the ps-adic completion of O4, and let T,, A = lim | Alp](Q,) (the pa-adic Tate
module of A). We call that A is of pa-type (a, 9, &) if we have an exact sequence of I,-modules
0 — V(e &) — Ty A — V(e 6 — 0 with V(ve %671 =2 V(e®, &) =2 0,, as Oy, -
modules, where ¢ is a character of Gal(Qp[pp<]/Qp) = Z with values in ppee, [u, Qp] with u € Z
(resp. [¢,Qp] for ¢ € p) acts on V(ve %, 671) by u=t - €°(u) (resp. by (7!-£&71((,1)) and on
V(e*,&71) by e(u)® (resp. by £7(1,()). Here [z, Q)] is the local Artin symbol. If £(¢,¢’) = £(€)
for (¢, (') € p? and o = 0, this is just a ps-ordinarity.

Choosing g (resp. f) well in the Galois conjugacy class of g (resp. f), we may assume that p4
and pp are both induced by the fixed embedding i, : Q— @p.

Lemma 14.2. Let the notation be as above. Suppose that Ca/Cp is in Z[%]X and that B (resp. A)
is of pp-type (resp. pa-type) (c,6,&). Write Cg = Np". Then there exists a connected component
Spec(T) of Spec(ha,5.6(IN)) such that for some primes P,@Q € Spec(T), f = fp and g = fq.

Proof. Let 5 be the two dimensional Galois representation into GLg(F) realized on Blpp] for F =
Op/pp. Write N for the prime-to-p part of Cp (and hence of C4). Replacing p by its semi-
simplification, we may assume that  is semi-simple. Since (B[pg]®u(pp)Fp)** = (Alpa] ®@ppa)Fp)**,
L(s,A) = L(s,g) and L(s,B) = L(s, f) imply f mod pgp = g mod pp. Since fp := f is nearly
p-ordinary with nearly ordinary character given by [u¢, Qp] — ep(u)*¢71(1,¢) (v € T and ¢ € u)
for a character ep : Z; — tip(Q,) and has central character z — ep(2)* 2671 (2,2)x(z) for

z € ZX, fB generates an automorphic representation whose p-component 7, is given by the principal
series (¢, ¢) (or the Steinberg representation o (¢, ¢)) with p(ul) = ep(u)*¢~1(1,¢) and ¢(u¢) =
lulpep(u)2€71(¢, 1). Moreover, fg|U(p) = ¢(p)fs with ord,(¢(p)) = 0. See [H89, §2] for these
facts (in particular, the p-component of fg is proportional to the nearly ordinary vector v in m,
fixed by the p-component of fH,T characterized by m,((§ 5))v = é(a)p(d)v for a,d € QF and
U(p)(v) = ¢(p)v).

The form f4 := g associated to A has similar property whose p-component is given by 7(¢', ¢')
(or the Steinberg representation o(¢’,¢’)) with ¢’ mod ps = ¢ mod pp and ¢’ mod ps = ¢
mod pp. More precisely, we have ¢’ (u¢) = ea(u)*¢~(1,¢) and ¢’ (u¢) = |ulpea(u)°E~1(¢, 1) for
a character €4 : Z) — iy (Q,). Thus g = fa (resp. f = fp) is lifted to a p-adic analytic
family (of type (o, d,&)) parameterized by an irreducible component Spec(I) (resp. Spec(J)) of
Spec(hq,5.¢(N)). Since f mod pp = g mod pp, the algebra homomorphisms A7 : hy 5¢(NV) — @p
realized as £|T'(n) = A\e(T'(n))f and g|T'(n) = Ag(T'(n))g satisfy Ar = Ag mod m for a maximal ideal
m of hy 5¢(N). Then, P = Ker()¢) and Q = Ker()\g) belong to the connected component Spec(T)
given by T = hg 5¢(N)m, since the local rings of h, 5¢(N) corresponds one-to-one to the maximal
congruence classes modulo B (P := {z € Q, : |z[, < 1}) of Hecke eigenforms of prime-to-p level
N (and of type (a,6,&)) just because the set of maximal ideals ¥ of hy 5¢(N) is made of Ker(\)
for A € ¥ = Homgug(has¢(N),F,). The maximal ideal m is given by Ker(Af mod P) = Ker(\g
mod P) for P = {z € Q, : =], < 1}. O

The following result is just a combination of the above Lemma 14.2 and Theorem 5.6.

Corollary 14.3. Let the notation and the assumptions be as in Lemma 14.2 and Theorem 5.6 (in
particular, we assume (F)). Assume that the abelian variety B has conductor N prime to p. Let
f € 82(To(N), x) be the primitive form with conductor N prime to p (so, & = 1) whose L-function
gives L(s, B). Write x| - |g1 for the central character of the automorphic representation generated
by f. Write fIT(p) = apf. If p1 6D, Np(N) and (apymod pg) & Qpp :={0,1,£+/x(p)}, then T is
a regular integral domain and f and g belongs to Spec(T).

Again we can replace the condition: p t 6D, No(N) by p{ 2D, Np(N) in the case where hq 5¢(N)
is A-free (see Proposition 18.2 for such cases).
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15. A GENERALIZED VERSION OF THEOREM B

Let B/g be a Q-simple abelian variety of GL(2)-type of conductor N such that Op = End(B/g)N
Hp is the integer ring of its quotient field Hg. We suppose the following minimalist condition:

(M) Ik (B) is finite and dimpy, B(K) ®z Q < 1.

Let pp = {pp.1} be the two dimensional compatible system of Galois representations associated to B.
Then pp comes from a Hecke eigenform f = > a,q™ € So(To(N), x) by [KW09, Theorem 1.10.1];
so, L(s,B) = L(s,pp) = L(s, f). Fix an embedding Op — Q and write pp for the prime ideal
of Op induced by i, : Q — Q,. Then we realize the Hecke algebra ha(T'o(N), x; Z[x]) inside
Endc(S2(To(N), x)) which is generated over Z[x] by all Hecke operators T'(n) and U(l). Then this
Hecke algebra is free of finite rank over Z, and hence its reduced part (modulo the nilradical) has a

well defined discriminant D, over Z.

Definition 15.1. Let S = Sg be the set of prime factors of 6D, N@(N) for the conductor N of pg,
where D, is the discriminant of the reduced part of ha(Lo(N), x; Z[x]).

We could include p = 3 defining S = Sg to be the set of prime factors of 2D, N¢(N) if h, 51 is
A-free (see remarks after Proposition 4.1 and see also Proposition 18.2). We write pp-type of B as
(a,d,1). The prime p & Sp is admissible for B over K if

(1) B has good reduction modulo p (so, p{ N);

(2) (ap mod pB) & Qg :={0,1,£+/x(p)} (so, B has potential partially p g-ordinary reduction
modulo p);

(3) For the local ring T of h, 51 with the arithmetic point Py for which Ap, isogenous to B,
the generic rank ranky JY = dimpy,, B(K) ®z Q.

Primes satisfying (1) and (2) has Dirichlet density 1 (e.g., [F02, §2.3] or [H13b, Section 7]). The
condition (3) is the deep assumption of matching dimension (difficult to verify if B(K) is infinite)
which tells us Py ¢ Zx for the mysterious finite set (27N Zx(Q,)) C Spec(T)(Q,) (see Lemma 13.2
(3)). When B(K) is finite, almost all primes outside Sp is admissible by the T-torsion of the ind
A-Selmer group (see Corollary 10.5 (3)). When B(K) is infinite, we do not know if most primes
outside Sp for which B is of type (1,1, 1) is admissible for B or not. Since p & Sg, the local ring T
of h carrying Ap, is unique by Theorem 5.6.

Since B has conductor prime to p, pp is unramified at p, and £ has to be the identity character
1 of p x p (on the other hand, («, d) can be freely chosen). Here is a general version of Theorem B:

Theorem 15.2. Assume (F) for («,d,1), and let K be a number field. Let p ¢ Sp be a prime
admissible for B and N be the conductor of B. Suppose the minimalist condition (M) and that
B s isogenous to Ap, for Py € Qr. Consider the set Ap, made up of all Q-isogeny classes of
Q-simple abelian varieties A,q of pa-type (o, 6, 1) congruent to B modulo p over Q with prime-to-p
conductor N. Then, infinite members A € Ap p have finite Ik (A)y, and dimpg, A(K) ®zQ equal
to dimpy, B(K)®z Q. If further Bord o A\‘}{)d for Py € Qr with Selg (B),, = 0 and all prime factors
of p in K has residual degree 1, then Selx(A)y, is finite for all A € Ap,, without exception.

Proof. Suppose that p is outside Sp, by Theorem 5.6, T is a regular integral domain I. Thus for
any P € Qr, we have P = (w) for w € I and (w, Ap) satisfies (A).

Since B[p%¥] is an ordinary Barsotti-Tate group by our assumption, A[p%] is potentially ordi-
nary by the congruence modulo p between A and B. Here we say A[p%] “potentially ordinary”
if Ho(k, A[p](Q,)) has non-trivial p-divisible rank and A[p%’] over Q, extends to a Barsotti-Tate
group with non-trivial étale quotient over the integer ring of a finite extension k of Q,. Choosing the
embedding O 4 — Q well, we may assume that p 4 is induced by Ip - Q— @p. Then by Lemma 14.2,
A is isogenous to a modular abelian variety Ap for P € Qp of a connected component Spec(T)
of Spec(hy 5,1(N)) for the big p-adic Hecke algebra h, 51 (N). Since B is of GL(2)-type, we have
B ~ Ap, (an isogeny) for Py € Qp with Py = (wp). Thus we conclude, up to isogeny,

App = {4q|Q € Qr}
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by the theorem of Khare-Wintenberger [KW09, Theorem 1.10.1] (combined with the proof of the
Tate conjecture for abelian varieties by Faltings).

Since O4 is the integer ring of H4, we can factor O4,, = O ®z Z, into the product O, =
O‘Xg @ 0%, so that for the idempotent e of the factor O%‘;, eA[p*] is the maximal p-ordinary
Barsotti-Tate group which becomes étale and multiplicative after étale extension. Since O4 ), acts
on //1\, we can define A°rd = e(//l\). Since A is isogenous to Ap, Aerd g isogenous to A\‘;}d; S0,
I (A°*9) is isogenous to Ik (A\‘j}d). From Remark ??, we know Py ¢ Zk(Q,). Then finiteness of

Ik (//1\0“1) for infinitely many members of Ap ;, and the assertion for the Mordell-Weil rank follows
from the assumption on the generic rank and Theorem 13.4.

Suppose Sel i (B°™) = 0 and K, for all v|p has residue field F,. Then |¢(Frob,)—1|, = |ap—1|, =
1 as p & Qp,p. Thus by Schneider [Sc83, Proposition 2, Lemma 3] (see also [Sc82, Proposition 2]),
we have, for all v|p,

(15.1) [ (K [y Koy A2 (K [p<])| = JAZ(E,)|” = |4 (Fy)| %

Note that |//1\T(Fp) 2 = 1 by our assumption. Strictly speaking, Schneider assumes in [Sc83, §7] that
A, has ordinary good reduction, but his argument works well without change replacing (4, (p) :=
A,[p™], A,) there by (A,[p>°]°rd, A°rd). Indeed, he later takes care of the general case of formal Lie
groups in [Sc87, Theorem 1] (including the case of the ordinary part of the formal group of A,.). So,
E>(K,)r = Ese(Ky)r = 0 for all v|p (see Theorem 17.2 and Corollary 10.3 for more details of this
fact). Then from Corollary 10.5 (2), we conclude Selx (Ap),, is finite for all P € Q. O

Remark 15.3. If we start with an elliptic curve E as in Theorem B, by its modularity, we find a
modular factor B C J;(Np") isogenous to E. Choose (a,d,1) = (1,1,1). The finiteness of Il (E)
implies the finiteness of Illg(B); so, the above theorem implies the statements of Theorem B.

Here is a conjecture:

Conjecture 15.4. Suppose and {(a,a) =1 for all a € Z,. Fiz a totally real field K. Let Spec(I)
be a primitive irreducible component of Spec(h). If a/d = 1, we assume that the root number is
€:= =1 for K. Then,

(1) if /6 =1, we have dimp, Ap(K) ®z Q = 15 for almost all P € Qy,

(2) if a/d # 1, we have dimp, Ap(K) ®z Q =0 for almost all P € Q.

As we remarked after stating Theorem A, if we could prove dimy, Ap(K) ®z Q = 15¢ mod 2

for almost all P € Qy, Conjecture 15.4 (1) holds once we find a good point Py with Ap, satisfying
the assumptions of Theorem 15.2.

16. p-LOCAL COHOMOLOGY OF FORMAL LIE GROUPS

We prove a technical lemma on Galois cohomology for proving vanishing of the error terms when
!l = p in Theorem 17.2. Just for finiteness of the error term, as will be explained in the proof
of the theorem, it follows from the computation of the universal norm by P. Schneider in [Sc83,
Proposition 2 and Lemma 3, §7] and [Sc87, Theorem 1], and therefore, perhaps, for the first reading,
the reader may want to skip this section.

Let K be a finite extension of @, inside @,. Write K, = K[up:] and X“" for the maximal

unramified extension of X = K, K, and XU is the completion of X*“". Let A be an abelian variety
defined over K. Suppose that End(A,x) contains a reduced commutative algebra O4. Assume

(A1) Ak, has semi-stable reduction over the integer ring W, of K,;
(A2) The formal Lie group of the Néron model of A over W, has a maximal multiplicative factor
A (see [Sc87, §1] for the maximal multiplicative factor);

(A3) Writing O 4 for the p-adic closure of the image of O 4 in End(A,w, ), we have A = G ®z, A
over /I/IZE”” as formal O s-modules, where 2 is an O 4-lattice in O4 ®z, Q, (i.e., ARz, Q, =
O4®z, Qp) and /I/IZZ” is the p-adic completion of the integer ring W*" of K!'".
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We now study the Gal(K, /K )-module structure and the cohomology of A(W;). The Barsotti-Tate
group AT [p>°] /0, has a filtration A[p>] — Aerd[poe] i, gord[poelpet ywhere AT [p>]Pet becomes
unramified over Qp[u,r]. On T, A[p>], Gal(K}"/K"") acts by a character v,7 with values in O,
where v, is the p-adic cyclotomic character. The character v factors through Gal(K}"/K"") =
Gal(Qp[ppr]/Qp). Identifying ¢ with the corresponding character of Gal(Qp[ppr]/Qp), we twist the
Galois action on the group functor R — A(R) so that

(16.1) o a =9~ (0lgfu,.))o(2)

for Q, [ppr]-algebras R, where o € Aut(R/q,). Since ¢(0)~" € Aut(A /g, [u,-1) gives a descent datum
(see [GME, §1.11.3, (DS2)]), we can twist A by this cocycle, and get another abelian variety A4, /g,
(see [Mi72, (a)]).

Similarly, on T, A[p>]P¢t, Gal(K""[ppr|/K"") = Gal(Qp[upr]/Qp) acts by a character ¢ with
values in 0. Identifying ¢ with the corresponding character of Gal(Qp[ppr]/Qp), via the new
action o - := ¢~ (0]g[u,.]))o(2), we get another abelian variety Ac;/q,. Thus the Galois action on
Act /g, [p*°]P" is unramified over Q.

For a scheme X,g and finite flat morphism S" — S, we write Resg /g X for the Weil restriction
of scalars; so, Resg//sX is a scheme over S such that Resg/ /s X(T') = X(S" xsT) for all S-schemes
T. We describe the twisted abelian variety As (? = p, et) as a factor of Resg, /x A. Here is a known
facts from [NMD, §7.6]:

(Resl) If S'/S is finite flat, Resg/ s X exists [NMD, Thereom 4],

(Res2) If X is a separated scheme over S, the natural map X — Resg//s5(X xg5’) corresponding
to the projection T' xg S’ — T is a closed immersion [NMD, page 197],

(Res3) If X — Y is a closed immersion, then Resg//sX — Resg//sY is a closed immersion,

(Res4) Let k'/k be a finite extension of fields. If X, for a field " is an abelian scheme with Néron

model X o for a discrete valuation ring O" with quotient field k, Reso /O)? is the Néron
model of Resy/ /X [NMD, Proposition 6].

Let Resg, kA be the restriction of scalars. Since A, = A = A, over W,., we find Resg, /g A =
Resg, )k Ay = Resk, /g Aer. Since Resg, ) gk A(R) = A(R®k K,) for each K-algebra R, the inclusion
R — R ®k K, given by x — z ® 1 produces a monomorphism of covariant functors A(R) —
Resg, /k A(R); so, we have a morphism of schemes (by Yoneda’s lemma), A — Resg, /x A. Since A
and Resk, /A are projective, we find that A < Resg, kA is a closed immersion. In the same way,
we have another closed immersion A, — Resg, /x A, = Resk, /k A.

Since K, ®x K; = [[,ccaix, k) Kr by sending @ y to (zo(y))s, for any variety X defined
over K., we have Resg, /g X = [[, X7, where X7 = X ®, o K,. Thus 7 € Gal(K,./K) acts on
Resg, /k X by a permutation: z = (25)s — 7= := (Zsr)s, and Gal(K,/K) — Aut(Resg, /g X).
Thus O4[Gal(K,/K)] C End(Resg, )k A,) by embedding Gal(K,/K) in this way. For z = (z4), €
Resy, kX (Q,), we have 2™ = 7|k, - (2]),. Then the image of A in Resg, kA, is given by
1y(Resg,  k Ap), where 1y = [K, : K|71 Y 471 (0)o € Oa[Gal(K,/K)]. Since T € Gal(Q,/K) acts
onz € Resk, )k Ay by (25)0 — (2] )or, writing the Galois action on A, as x +— 7 the action of o €
Gal(Q,/K) on z € A(Q,) is z — 1(o|k,)(0)(x°*), where ¥(0]|k, ) is regarded as an automorphism
of A,. By the same argument, writing the Galois action on A¢; as x +— xz7¢*, the action of o €
Gal(Q,/K) onz € A(Q,) is © — ¢(o|k,)(o)(x7). In particular, A, [p>°]® ™4 (K%) is unramified,
and the action of Gal(K,,/K) on A, [p>®](K%") is via the p-adic cyclotomic character. Here
A#O’Ord is the formal Lie group whose Barsotti-Tate group is the potentially connected part of the
Barsotti-Tate group of A,. This formal Lie group descends to W and is isomorphic Gm ®z, AU over

WU for the integer ring W of K. Thus we have an identity A = G, ®z, A() over WTM and
A[p™] = ppe @z, A(1p) over W, where A(p) = A as O g4-modules on which Gal(K./K) acts by

1. Note that the second identity is valid over W as this is the identity of Barsotti-Tate groups.
From this, we get
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Lemma 16.1. Assume p > 2. Let a € O 4 be given by the action of Frob. Then we have, for s > r,
H (Gal(K,/K), Alp"|(Ws)) = (A/ (0"~ vptp(0) = DA)[a— 1]
which is finite and bounded independent of s > r.

Proof. The Frobenius element Frob acts on A[p?] via multiplication by a. Note that, for s > r

AP I(Ws) = (pps (W) @2 A(¢))[a — 1]
= {& € pp: (W) @z AW)|(a — Dz = 0} = (A(Y)/p*A(¢))[a — 1]
as Gal(K/K)-modules. Since Gal(K/K) acts on pipe by vp, we conclude
H(Gal(K,/K), Alp*|(Ws)) = (%/(p*~", vpth(os) — DA)[a — 1]
as desired. g

17. FINITENESS OF THE p-LOCAL ERROR TERM

We assume (F) and p > 2. Here K/q, is a finite extension with p-adic integer ring W. Put
K, = K[pp+] with integer ring W.

We studied the A-BT group G o, associated to the tower {X;(Np")}, in [H14, §5], which is
defined over Z,[up]. Here wq(a,d) = w(d). For the general tower {X,}, determined by the fixed
data (,9,§), Ji is a factor of Resg, joJ1(Np") again over Q[u,r] if 7 > €, since Fz C Q[upr].
Thus taking the tower of regular model X,z (,,,] made out of the regular model X1(Np"),z,, (1]
(via the corresponding Weil restriction of scalars) and considering J,.z, [u,-] ‘= Picg(r JZp[yr] > OVET
L) [tp=]s G = Gas.e/Z lupeo] = JLUD™®) 2y, lpoe) 15 @ A-direct factor of g%fﬂ over Zp)|fips=]-
Thus Gz, (u,~] is @ A-BT group in the sense of [H14, §3] (replacing (CT) by (ct) in [H14, Remark 5.5]
if £ = 1). Though it is assumed that p > 3 in [H14, §3], the result there is valid for p = 2,3. This
is because the ordinary or nearly ordinary part is trivial if Np < 3 (and the assumption p > 3
is imposed to have Np > 4 for the representability of the elliptic moduli problem). We take its

s—e

connected component G7, |~ and put G? | = G°[y?"  — 1] which is a connected Barsotti—
p

8/Lp[ppoe
Tate group defined over Z,[pps]. Write G JZ,[uy=) fOT the formal Lie group associated to the connected

pS

Barsotti-Tate group gg/zp[#ps] [GME, 1.13.5].

We put GOO/ZP [poo] = @S G, where the projection G511 — G is induced by the natural trace
map 7% : Go — G, for s’ > s. We study Coker(j\;’rd(K) = w(j\;’rd)(K)). Identify E‘;rd with E;}rd
by 7} and A\grd with /Tﬁrd by 7% ,. Let As = A, be the connected formal Lie group over Zj|u:]
associated to (the connected component of) the Barsotti-Tate group of A, [pee]ord = A, [pee]erd.

We first study Coker(Gs(W) — w(Gs)(W)). We have an exact sequence of Barsotti-Tate groups
over the integral base Zp[y,,./] [H14, §5]:

(17.1) 0 — As[p™] — GJ — G/ As[p™] — 0.

This produces to the following commutative diagram of formal Lie groups over Z, [,ups/] with exact

TOWS:

— —

A G, G/ A, —— w(Gy)
ol ] |
Ay —— Gy —— Gy /Ay —— w(Gy).

Since G2/ As[p>°] is a Barsotti-Tate group over W by [H14, Theorem 5.4], G5/ A; is a smooth formal
group over W (e.g., [Sc87, Lemma 1]). Thus Gs = (Gs/As) Xw. As as formal schemes (but not
necessarily as formal groups). Anyway, this shows that Gs(Wy ) — w(Gs)(Wy) is surjective for all
s’ > s. Therefore, we get an exact sequence

(17.2) 0— A (Wy) = Gs(Wy) — @w(Gs)(Wy) — 0 for all s > s > r including s’ = oo.

Since Gal(K /K"") acts on A, by the p-adic cyclotomic character, we find A, = @Zl over WTM
for d = dim A,. In Corollary in the introduction of [O00] (see also [H13a, Lemma 4.2]), Ohta shows
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that 7G° := lim T,G; = h (and hence TGy = T) canonically as h-modules. Assuming (F), we

have T,G3 = hy; so, G = @m ®z, hs over /I/IZ“’”. Define 20 C hy by the annihilator of G4/ As and
B := Ker(h, — End(A /g, ). Hence we have an exact sequence of formal groups:

(17.3) 0— G @z, % — Gy 2> Gy — Gy @z, hy/B — 0

since 0 — A — h, = h, — h, /B — 0 is an exact sequence of Z,-free modules. Thus we have
A, & @m ®z, A over /I/IZZ“, and 2 is an hg-ideal and is an O 4 -module. This shows that As, Bs,
w(Jord) := Jord/ Aord and J, all satisfy (A1-3) in Section 16.

The action of the Frobenius [p : Q,] on A [p™](Q,) is the multiplication by a, ' € O (where a,, is
the image of U(p) in O 4,). Thus A; (WS“T) = %@@m(@“) = ARz, (H_mW;”) on which the natural
Galois action on @m(W;ﬂ) is twisted by a character ¢ : Gal(K,/K) = Gal(l/(\'ﬁ’”/l/{'”) — O}
induced by the nearly ordinary character ¢ sending [z, Q,] (z € Z)) to the image in O of the
Hecke operator in h, of the class of (3 2) in [9/T,. Write simply A for the abelian variety A,. Let
O4 := End(Aq), which is an order of the Hecke algebra generated over Q by Hecke operators T'(n)
in EndO(A/Q) =End(4,9) ®z Q.

Recall the Galois representation pa of Gal(Q,/K) realized on Tp//l\ﬁrd. Take the connected com-

ponent Spec(T) of Spec(h) such that h/wh = T/@T. Write symbolically palg.ug /x) = (”‘61/’ ;)

and pr = (”‘61/’ ;) for a deformation 1 : Gal(KX /K) — T* of ¢. Here vp1) and v,p7 acts on

T, A, [p>°] and on TGS, respectively. Thus ¢ (resp. ) gives the action on Tp//l\ﬁrd /Ty A, (resp. on
TGE). Note that TGE = Homy (T, A) as T-modules (so, if T is Gorenstein, the above form pr of
2 x 2 matrix is literally true). We write Frob € Gal(K¥'/K) for the Frobenius element inducing the
generator of Gal(F,/F) and an appropriate power of the identity id = [p, Q,] on Koo/K.

Proposition 17.1. Suppose (F). Let G° be the connected component of G = Gq 5.¢, and take a gener-
ator o of Gal(Ko /K). Then we have H' (Koo /K, G 1(Weo)) = (Ts/(vpth(0)—1)Ts)[(Frob)—1]. If
either [vpp(o) —1|, = 1 or |@(Frob) —1|, = 1, then we have the vanishing H' (Ko /K, G3(Wso)) = 0.

Proof. As we saw, under (F), we have GZ (W) = ppee (W) @2z, Ts(1h) as Gal(KY'/K)-modules,
where Gal(K¥'/K) acts on Ts(¢p) = T by 1. We apply Lemma 16.1 to the formal Lie group A
with A[p>] = G¢ 1. Note that a in the Lemma is the image of ¢ (Frob) in O 4 by [H14, (6-1)]. From
this, the cohomology of G, vanishes if either |v,1(0) — 1|, =1 or |p(Frob) — 1|, = 1. We have then
Hl(Koo/K, G°(We)) :h_IQS Hl(Koo/K, Gi(Ws)) = 0. O

Theorem 17.2. Let the notation be as in Theorem 10.4. Let K be a finite extension of Q, for
p > 2, and put Ky = K[pps] (s =1,2,...,00). If A, does not have split multiplicative reduction
over W, then the error term E*(K)r is finite. If further A, has good reduction over Wi = Wu,)
with |@(Frob) — 1|, =1, then E*(K)r vanishes.

Proof. Let us first sketch the proof. As before, we write symbolically w(Js) for the abelian variety

quotient J, /Ay, since Jo /Ay = Jord/Aord — (o) by definition. Thus Ay(F) < Jo(F) =
@ (Js)(F) is exact for any algebraic extension F) g, and hence Ad(F) — Jgﬁlﬁi(F) = w(J;’ﬁ?)(F) is
exact. We first assume that Jgﬁlﬁi is contained in an abelian subvariety of J, having good reduction
over W, (so, we may assume that the subabelian variety has good reduction over Wy). Then the

sequence
(17.4) 0 — A [p>]°d = Gy — w(Gs) = 0

is exact as Barsotti-Tate groups over Wy (see [H14, §5] and a remark after Corollary 6.4). Since
the complex of Néron models Ag/w, — Joyw, — w(Jsw,) is exact up to p-finite errors [NMD,

Proposition 7.5.3], the exactness of (17.4) shows the sequence A\zﬁvs — :f;’;gvs — w(J;’/rgvs) is exact
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as fppf sheaves over Ws. Since 0 — //1\‘537%1,5 (F) — A;;/rgvs (F) — w(Jg/rgvs)(F) — HY(F, A°rd) = 0 is
exact, (17.2) shows that Jo'9(K.) — w@(Jo") (K ) is onto.

By (15.1), we have

| H (Koo /K, AT (Ko))| = |Ar[p™] 7 (F) 2.

Since we have an exact sequence A% (K,.) < @7?(Km) — w( /\;’yﬂlﬁi(Koo)), by cohomology sequence
of this short exact sequence, we have the claimed finiteness.

Let us now sketch the proof in the non-split multiplicative case (over W). We have a similar exact
sequence of the formal Lie groups, and applying the formal version [Sc87, Theorem 1] (particularly in

the non-split multiplicative case), we get the finiteness for the connected part. The surjectivity (up
to finite error) for the special fiber (of Néron models) will be shown below. Thus if A, has either good

or non-split multiplicative reduction over W, we still have finiteness of H*(K /K, A\ﬁrd(Koo)) as
above. Then by the inflation-restriction exact sequence:

HY(K, /K, A\grd(KT» — H' (K /K, A\grd(KOO))

- HO(KT/Ka Hl(KOO/KTa A\grd(KOO)) - H2(KT/K5 A\grd(KT))a
finiteness of H (K, /K, AY(K,)) (j = 1,2) and H'(Ko/K,, A"(K,)) tells us finiteness of the
cohomology H (K /K, A%Y(K)), from which we conclude the finiteness of E<(K)y. If r = 1,
p1[K: : K] and

HY(K,/K, A%(K,)) =0 for q > 0.
Then, still assuming r» = 1, we conclude
(17.5) H' (Koo /K, A7 (Koo)) 2 H (K, /K, H' (Koo /Ky, AT (Kc)))

If in addition |p(Frob)—1|, = 1 and A, has good reduction over W,., from |H! (Ko /K, Ard(K )| =
| A, [p>°](F)|2 = 0, the groups in (17.5) vanish so, E*(K)r = 0. In any case, H' (Ko /K, A" (K.))
is finite. Similarly, by the formal group version [Sc87, Theorem 1], we conclude the finiteness of
HY (Ko /K, A(Wx)).

We now give details of the proof in the general case. We first look into the identity connected
components over W,. By (17.2),

0= Ar(Wao) = Goo(Weo) = @(Goo)(Weo) — 0
is exact. Taking its Galois cohomology sequence, we get another exact sequence
0= A (W) = Goo(W) = @(Goo)(W) — H' (Koo /K, A (W)
Since the cohomology group H'(Kw /K, A-(Wso)) is finite (cf. [Sc87, Theorem 1]), we find that

Coker(Glog (Wo ) SH/1) Z2, oG ) (Wi ) G210/ 50
is finite.
As for the special fiber (of the Néron models), we have the exact sequence:
0 — A%Y(F) — JoYF) = (T (F) — H(F, Ao,

If o(Frob) # +1, A, has good reduction (not just semi-stable one) over W,.; so, by Lang’s the-
orem [L56], H'(F, A%*d) ¢ HY(F,A,) = 0. Even if p(Frob) = +1, from the exact sequence
0 — AYF,) — A.(F,) — mo(A, /7,) — 0 for the connected component A° of A, we find
HY(F, A,) = HY(F,m(A,)) as Gal(F,/F) has cohomological dimension 1. Thus H(F, A%") is
finite. After passing to the limit, we find

| Coker(JEA(F) =2 w@(J2)(F))| < |mo(A, 5,)| < oo.

We have the following exact sequence:

0 — G°(Wao)t — G(Koo)r =% Joo (F)[p™)3 — 0.
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Indeed, the maximal étale quotient G¢* of G sw.. is a A-BT group by [H14, Proposition 6.3]; so,
its closed points lifts to a W,-point as W, is henselian. (Note that %Vm may not be an étale
Barsotti-Tate group for finite s.) Taking the fixed point of Gal(K%/K), we have

0— G(WI)F =) g(K)e % T (F) P18 — H (K2 /K, G°(Woo 7).

Then by Proposition 17.1, Coker(G(K)r T (F)[p>=]9"d) = 0 (assuming either |o(Frob) —1[, =1

or |¢vp(o) — 1|, = 1), and in particular, Coker(J4(K ) xed, Joo (F) [p>]954) = 0.

We have the following commutative diagram with exact rows and columns:

Goo(Woo)g =10 2y Jord(K)y 220 o (F) )3
(17.6) D(Goo) Woo )5 =) 2y (JZ (K )y —— @(Joo) (B)[p)g
Coker(@Wso) —— Coker(ws) ——  Coker(@Weo).

For the Frobenius endomorphism ¢ (= ¢(Frob)), we have

Joo (F) [poo]%rd = Jw(Fp)[poo]%rd[(b —1].
Since ¢ = p(Frob) mod mr, if p(Frob) # 1 mod my (& |p(Frob) — 1|, = 1), Joo(F)[p>]¥d = 0,
and Coker(@We ) — Coker(ws) — 0 is exact; so, Coker(ws) is finite.

We need to argue more if |[p(Frob) — 1|, < 1. We apply X — XV := Hom(X,Q,/Z,) to the
above diagram. Since Q,/Z,, is Zy-injective, X +— X is an exact contravariant functor, all arrows
of (17.6) are reversed, but exactness is kept. Since Coker(ws) — H'(K, A, ), its Pontryagin dual
module Coker(ws)Y is a Zp-module of finite type. Since this module killed by arithmetic prime
(w), we need to show the vanishing of the (w)-localization Coker(woo)z/w) = 0. Note that we have
a surjective morphism of A-module: Coker(red) —» Coker(red;) and that Coker(red) is killed by
(vpp(0) —1)|(vt — 1) by Proposition 17.1. Since (w) is prime to vt — 1, we have the vanishing of the
localization Coker(red J)E/w) = 0. From the diagram obtained by applying X — XV, the localized
sequence 0 = Coker(@e) () — Coker(we) () — Coker(@u)(,, is exact. Since Coker(@o)" is
finite under ¢(c) # 1 and ¢(Frob) # 1, we conclude Coker(@us) () = 0; so, Coker(we) () = 0
by the finiteness of Coker(@s). Since Coker(woo)z/w) = 0 is finite Zp-module, dualizing back, this
shows finiteness of Coker(we,) as desired. O

18. TWISTED FAMILY

We briefly describe, in down-to-earth terms, how to create the p-adic analytic family of modular
forms associated to an irreducible component of h, s¢ from a p-ordinary family coming from an
irreducible component of Spec(hg 1,4,,,). We show that as a A-algebra h°*d := hg ; 4., is isomorphic
to ha s¢ (for a specific choice £ depending on ¢) by T(1) — o({;)T'(1) regarding [ as an idele ; in
(AP>))* supported on Q. Here ¢ is a suitably chosen character of (A(*))*/Q* with values in
A*. For simplicity, we assume p > 2 and that ¢orq = 1 which implies £ = 1 (leaving the general
case to attentive readers). Recall open compact subgroups To(Np") in (3.2).

Let U(N) := A (1+ NZ) for Z = [, Zi = lim Z/NZ, where [ runs over all primes and the
projective limit is with respect to the divisibility order. By the isomorphism A*/Q*U(N)RJ =
(Z/NZ)* sending primes | € Q) — A outside N to the class of (I mod N), we regard a Dirichlet
character ¢ : (Z/NZ)* — Q" as an idele character. We use the symbol ¢, to denote the idele
character lifted from ¢. Let S(fo (Np®),e,€) =S (fo (Np®), e, €) for a character ¢, € : Z) — pps—1 X
tp—1 be the space of cusp forms f : GL2(Q)\GL2(A) — C satisfying the following four properties:

(S1) f(g(¢5)) = enlap)en(dy)f(x) for all (2 5) € To(Np®);

(S2) £(gz) = eaen(2)f(g) for z € A* (regarded as a scalar matrix in GLg(A);
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(S3) f(gr) = £(g)j(r,i)~2 with i = /=1 for r € SO2(R), where 7 € § (the upper half complex
plane) and j((25),7) = |ad — be|71/%(cr + d) for (24) € GLa(R);
(S4) the function $ 3 7 = goo (i) — £(90°)gu0)j(goo,)? € C induced on the upper half plane for
a fixed finite part g(oo) is a holomorphic function fg(m) : $H — C for each choice of g(oo).
Under the above three conditions (S1-3), fixing the finite part ¢g{>), (S4) means that the value
£(90°) g00)§(goo, 7)? only depends on 7 = goo(i) (as easily verified; see for example [MFG, §3.1.5)),
and we get a function f () (1) := £(90°) g00)§(goo, 7)?, which is required to be holomorphic in 7.
The space of cusp forms associated to hy 51 of level Np® is given by & (fo (Np®),e,¢€) with (g, ¢€)
sat1sfy1ng g% = 1. As in (S1-4), &, and €, has values in ji,:-1. Then (S1) implies that f is right
[,-invariant. In other words, putting S(T;) := ®b..S (To(Np*), e, ¢), S(Ts) is made of cusp forms
satisfying the following condition:
(1) flg(2h)) = f(z) forall (23) €T,
in addition to (S3) and (S4). Since X, — {cusps} = GLy(Q)\GLy(A)/T,SO(R), by sending f —
f1(r)dr € H°(X,,Qx, /c), we get an isomorphism

S(fs) = HO(Xsa QXS/(C)'

As explained in Section 3, X is canonically defined over Z,) = QNZ, as a moduli space classifying
ellptic curves with level structure described there, for any Z,-algebra A, we have well defined
H°(X,,9Qx,/4). Pulling back this integral structure to S (fs), we get the corresponding A-integral
space S(Ts, A).

Let k: Zy = (1 + pZp) X pp—1 — Zp[[T]]* be the A-valued character sending (1 + p)* € 1+ pZ,
tot*:=(1+T)* =3, (?)T™ and the entire y,_1 to the identity 1. Then we have

{(e;e):Z) xZ; — fpe—1|%€* =1} = {(k*, k%) mod (t —¢) : { € ppe—1}.
Writing k¢ := £ mod (¢ — () and taking (¢, €) = (k¢, /@E‘s), (S1-2) is summarized into
f(zau) = k23 (2)kc alagd, ) (2)

foru=(2Y) ¢ To(Np") and z in the center Z(A) of GLy(A).
Consider the space Si(To(Np*), ) of classical holomorphic cusp firms with Neben character ¢
for ¢ : (Z/p"Z)* — Q. A modular form f € S(To(Np*), ¢) satisfies
az +b &
FEEED) = o0 mod 7)1 (w) ez + )

for all (2%) € Io(Np®). Since ad =1 mod p*, /@CA(ag‘d;‘s) = rc(a®?) = ke(d=27%), and hence
f — f; induces an isomorphism of vector spaces

S(To(Np*), k2, k%) 22 So(To(Np*), KET),

but unless (a, d,1) = (0,1, 1), the Hecke operator action on the left-hand-side is a twisted one of the
right-hand-side depending on the data («, d, 1).

Here is a description of the twist. For a character ¢ : Z; — pps—1 and f € S(fo(NpS), 1,9),
define £ ®@ ¢ € S(To(Np*), pu, don) by £ p(g) = pa(det(g))f(g). Thus we get an isomorphism
Qp : S(fo (Np®),1,¢) = S(fo (Np®), oa, pad). By definition, we get the following fact.

Lemma 18.1. If f as above satisfies £|T(n) = AN(T(n))f (a Hecke eigenform) with T(l) = U(l) if
[|Np, we have (f @ p)|T(l) = oa(l)MNT(1))(f @ @) for all primes 1 prime to p, and for U(p), we have
(f@)|U() =AU(p))(f @ ). Thus this operation £ — f ® ¢ preserves “ordinarity”.

Here [; is an idele whose I-component is [ but is trivial outside I; so, pa(l;) = ¢(1) as long as [ # p.
The formula (f ® ¢)|U(p) = A(U(p))(f ® ) is consistent with (f @ ¢)|T(1) = @a(I)NA(T(D))(f @ )
because ¢ factors through the p-adic cyclotomic character whose value at p is equal to 1 (i.e.,

oa(pp) =1).
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By the lemma, out of the abelian subvariety A¢ attached to f, we get an abelian variety Agg, of
Js (for a suitable choice of («, §)) which is the @-twist of Af (see (16.1)); i.e., we have an identity of
l-adic Tate modules TjArg, = (T1Af) ® ¢ as Galois modules regarding ¢ as a Galois character via
7 = Gal(@(up=)/Q).

If f is a Hecke eigenform, the modular form f : GL2(Q)\GL2(A) — C and its right translations
R(g)(f)(z) = f(xg) = f(xg) for g € GL3(A) generate an irreducible automorphic representation
m = my of GLa(A). Similarly, the modular form f ® ¢ : GL2(Q)\GL2(A) — C and its right
translation R(g)(f®@¢)(z) = (f®@¢)(xg) = f(zg)pa(det(zg)) for g € GLa(A) generate an irreducible
automorphic representation meg,,. Plainly, we have meg, = 7™ ® @4. Inside meg,, we find a unique
new vector (f ® ¢)° which corresponds to a classical primitive Hecke eigenform (f ® ¢)] =: f, €
So(Co(C(m @ p)), pp?) for the conductor C(7 @ ¢a) of m @ pa. The form f, is usually not equal to
the classical form (f ® ¢); corresponding to the adelic form f ® ¢ even if f is new (as their Neben
types are plainly different). As explained in [H09, §3.1], f ® ¢ often has level smaller than the
level of the primitive form f,. Unless the p-component m, is super-cuspidal, m, ® ¢ has a non-zero
U (p)-eigenvector with non-zero eigenvalue. Indeed, if m, = 7(«, 3), there is a non-zero eigenspace
in ™ ® @a on which U(p) acts by apa(pp) (resp. Bpa(pp)) (if a(p) # B(p), the eigenspaces of each
of the above value is one-dimensional). If 7, is special, we have one dimensional eigenspace with
non-zero eigenvalue. Even if ¢ is highly ramified at p, the eigenvalues of U(p) for f ® ¢ and f are
equal.

Take a family for the standard tower (i.e., (o, d) = (0, 1))

Fi = {fp € Sa(To(Np"P)), ep)}pespecn(@,) = P € S(To(Np™™), 1, €P)} pespec()(@,)

which is an ordinary p-adic analytic family, and ep : Z /p — fi,rp)—1 (Q). If PNA = (t— (p) with
ep(1+p) = (p € piyrr)-1, We can rewrite

{fr € SCo(Np"™)). 1,2p)} pespecn@,) = 1 € SCo(NP" D), 160} pespecm@,)

as the family of (a,d) = (0,1). Pick a positive integer b prime to p. Then we consider the
twisted family Fi(b) = {fp ® Hé}/pb}' Since fp € S(fo(NpT(P)), LHEPl), we have fp Hél/pb c
S(fO (NPT(P)), Hél/pb, Hél/pbfl). Though

I r b b—1\ ~ r
SCoNp ), kel kgt ™) = SaDo(Np" ) ke,) by €= £
as vector spaces, the Hecke operator action comes from the left-hand-side, which is the twist by “2‘1/9 b
of the standart action on the right-hand-side. Thus in this case, the family is for the exotic tower of
(a,0) = (1,b—1) = b(3,1 — 1) as elements in P1(Z,). If one starts with fp, € S2(T'o(Np)) whose
L-function has root number +1, the L-function fp ® 5;1/ ? has the same root number. Therefore,

the most interesting case is when b = 2 and («,6) = (1,1). This process can be reversed by

/

tensoring back Hgl ‘T hough we have assumed that £ = 1, introducing the twist by a character ¢ :
P

(Z/pZ)* — pp—1 in addition to the twist by '/, we get one-to-one onto correspondence of families
of modular forms of ho 1 ¢,,., With {ra(a,d) = ¢(d) and hy 1 ¢, where {,(a,d) = ¢(d)p(a)p(d).
We leave the details of the argument for the non-trivial ¢ to attentive readers. This shows, writing
A=Z)|[T]) witht =1+T,

Proposition 18.2. Let the notation as above, and suppose p > 2. Then the algebra hyp_1 ¢, is
isomorphic to o1 6., (Ewa(a, d) = ¢(d)) as Zp-algebras by T(I™) s = 1/0108")/ 18,0 o, ()T (17
for primes I, where v = 1+ p and log,, is the p-adic logarithm and we have written T(I") = U(I")
for l|Np. The A-algebra structure of hyp_1¢, is obtained by transferring the A-algebra structure of
hg1¢,,., by this isomorphism. In particular, the algebra hy 1 ¢, is free of finite rank over A for all
primes p > 2.
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