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Abstract. Let p ≥ 5 be a prime. If an irreducible component of the spectrum of the ‘big’ ordinary
Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the

image of its Galois representation contains, up to finite error, a principal congruence subgroup
Γ(L) of SL2(Zp[[T ]]) for a principal ideal (L) 6= 0 of Zp[[T ]] for the canonical “weight” variable

t = 1 + T . If L 6∈ Λ× , the power series L is proven to be a factor of the Kubota-Leopoldt p-adic
L-function or of the square of the anticyclotomic Katz p-adic L-function or a power of (tp

m
− 1).

Throughout the paper, we fix a prime p ≥ 3, field embeddings C
i∞←↩ Q

ip
↪→ Qp ⊂ Cp and

a positive integer N prime to p. Let χ be a Dirichlet character modulo Npr+1. Consider the
space of modular forms Mk+1(Γ0(Np

r+1), χ) with (p - N, r ≥ 0) (containing Eisenstein series)

and cusp forms Sk+1(Γ0(Np
r+1), χ). Here χ is the Neben-typus. Let Z[χ] ⊂ Q and Zp[χ] ⊂ Qp

be the rings generated by the values χ over Z and Zp, respectively. The Hecke algebra H =
Hk+1(Γ0(Np

r+1), χ; Z[χ]) over Z[χ] is

H = Z[χ][T (n)|n= 1, 2, · · · ] ⊂ End(Mk+1(Γ0(Np
r+1), χ)).

For any Z[χ]-algebra A ⊂ C, Hk+1(Γ0(Np
r+1), χ;A) := H ⊗Z[χ] A is actually the A-subalgebra of

End(Mk+1(Γ0(Np
r+1), χ)) generated over A by the T (l)’s. Then we put

Hk+1,χ = Hk+1,χ/W = Hk+1(Γ0(Np
r+1), χ;W ) := H ⊗Z[χ] W

for a p-adic complete discrete valuation ring W ⊂ Cp containing Zp[χ]. Let Λ = Zp[[T ]] (resp.

ΛW = W [[T ]]), and write t = 1 + T ∈ Λ× (as Spf(Λ) = Ĝm with variable t).
We often write our T (l) as U(l) when N is divisible by l. The ordinary part Hk+1,χ/W ⊂

Hk+1,χ/W is then the maximal ring direct summand on which U(p) is invertible. We write e for

the idempotent of Hk+1,χ/W ; so, e is the p-adic limit in Hk+1,χ/W of U(p)n! as n → ∞. We

write the image of the idempotent as Mord
k+1 for modular forms and Sordk+1 for cusp forms. Let

χ1 = the N -part of χ × the tame p-part of χ. Then, by [H86a] and [H86b] (and [GME, §3.2]), we
have a unique ‘big’ Hecke algebra H = Hχ1/W such that

(1) H is free of finite rank over ΛW equipped with T (n) ∈ H for all n,
(2) if k ≥ 1 and ε : Z×

p → µp∞(W ) is a character, H/(t−ε(γ)γk )H ∼= Hk+1,εχk for χk := χ1ω
1−k

(γ = 1 + p ∈ Z×
p ), sending T (n) to T (n), where ω is the Teichmüller character.

The corresponding objects for cusp forms are denoted by the corresponding lower case characters;
so, h = Z[χ][T (n)|n = 1, 2, · · ·] ⊂ End(Sk+1(Γ0(Np

r+1), χ)), hk+1,χ/W = hk+1(Γ0(Np
r+1), χ;W ) :=

h⊗Z[χ] W, the ordinary part hk+1,χ ⊂ hk+1,χ and the “big” cuspidal Hecke algebra h = hχ1(N)/W .
Replacing modular forms by cusp forms (and upper case symbols by lower case symbols), we can
construct the cuspidal Hecke algebra h. Then, similarly to the case of modular forms, we have the
following characterization of the cuspidal Hecke algebra h/W :

(1) h is free of finite rank over ΛW equipped with T (n) ∈ h,
(2) h/(t− ε(γ)γk)h ∼= hk+1,εχk sending T (n) to T (n), if k ≥ 1.

We have a surjective ΛW -algebra homomorphism H � h sending T (n) to T (n).
Write Q for the quotient field of Λ, and fix an algebraic closure Q of Q. A two-dimensional Galois

representation is called odd if its determinant of complex conjugation is equal to −1. We have a

Date: July 6, 2014.
2010 Mathematics Subject Classification. 11F11, 11F25, 11F33, 11F80.

Key words and phrases. p-adic L-function, Hecke algebra, Galois representation, Galois deformation.
The author is partially supported by the NSF grants DMS 0753991 and DMS 0854949.

1



BIG GALOIS REPRESENTATIONS AND p-ADIC L-FUNCTIONS 2

two-dimensional odd semi-simple odd representation ρH of Gal(Q/Q) with coefficients in the total
quotient ring Q(H) of H (see [H86b] and [GME, §4.3]). The total quotient ring Q(H) is the ring of
fractions by the multiplicative set of all non-zero divisors; so, Q(H) = H⊗Λ Q. This representation
preserves an H-lattice L ⊂ Q(H)2 (i.e., an H-submodule of Q(H)2 of finite type which span Q(H)2

over Q(H)), and as a map of Gal(Q/Q) into the profinite group AutH(L), it is continuous. The
representation ρH restricted to the p-decomposition group Dp ∼= Gal(Qp/Qp) (associated to ip) is
isomorphic to an upper triangular representation with unramified rank 1 quotient. Write ρss

H
for the

semi-simplification over Dp. As is well known now (e.g., [GME, §4.3.2]), ρH satisfies, for t = 1 + T ,

(Gal) Tr(ρH(Frobl)) = T (l) (l - Np), ρss
H

([γs,Qp]) ∼
(
ts 0
0 1

)
and ρss

H
([p,Qp]) ∼

( ∗ 0
0 U(p)

)
,

where γs = (1 + p)s ∈ Z×
p for s ∈ Zp and [x,Qp] is the local Artin symbol.

For each prime P ∈ Spec(H), let κ(P ) be the residue field of P . Then Tr(ρH) mod P has values
in H/P , and by the technique of pseudo representations (cf. [MFG, §2.2]), we can construct a unique
semi-simple Galois representation ρP : Gal(Q/Q)→ GL2(κ(P )) such that

Tr(ρP (Frobl)) = (T (l) mod P ) for all prime l - Np.

For any ideal a ⊂ H with reduced H/a, we write ρa =
∏
P ρP : Gal(Q/Q) → GL2(Q(H/a))

for the total quotient ring Q(H/a) of H/a, where P runs over minimal primes of Spec(H/a). If
a = Ker(H→ I) (resp. a = Ker(H→ Tred)) for an irreducible component Spec(I) ⊂ Spec(h) (resp.
a connected component Spec(T) ⊂ Spec(h)), we write ρI (resp. ρT) for ρa, where Tred is T modulo
its nilradical. If T or its irreducible component Spec(I) ⊂ Spec(T) is fixed in the context, we write

ρ : Gal(Q/Q)→ GL2(F) for ρmT
= ρmI

for the maximal ideals mT of T and mI of I.
Let Spec(I) be an irreducible (reduced) component of Spec(H) and write its normalization as

Spec(̃I). We often call I a component of H and regard it as sitting inside Q (when W is finite over
Zp). We denote by Q(I) for the quotient field of I. We call a prime ideal P ⊂ R of a ring R a prime
divisor if Spec(R/P ) has codimension 1 in Spec(R). We call an ideal D of I a divisor if D =

⋂
P P

mP

for finitely many prime divisors P . Write a(n) for the image of T (n) (n prime to Np) in I and a(l)
for the image of U(l) if l|Np. If a prime divisor P of Spec(I) contains (t − ε(γ)γk ) with k ≥ 1, by
(2) we have a Hecke eigenform fP ∈ Mk+1(Γ0(Np

r(P)+1), εχk) such that its eigenvalue for T (n) is

given by aP (n) := (a(n) mod P ) ∈ Qp for all n. A prime divisor P with P ∩ ΛW = (t − ε(γ)γk )

with k ≥ 1 and a character ε : Z×
p → µp∞(W ) is called an arithmetic point (or prime), and we

write εP = ε and k(P ) = k ≥ 1 for an arithmetic P . Thus I gives rise to an analytic family
FI = {fP |arithemtic points P in Spec(I)(Qp)} of slope 0 classical Hecke eigenforms. A component I
(or the associated family) is called cuspidal if Spec(I) ⊂ Spec(h). A cuspidal component I is called
a CM component if there exists a nontrivial character ξ : Gal(Q/Q) → I× such that ρI

∼= ρI ⊗ ξ. If
a cuspidal I is not a CM component, we call it a non CM component.

Put Γ(a) = {x ∈ SL2(Λ)|x ≡ 1 mod a ·M2(Λ)} for an ideal a ⊂ Λ, and write Γ(L) = Γ(a) if

a = (L) (L ∈ Λ). The representation ρI : Gal(Q/Q)→ GL2(Q(I)) leaves stable a Ĩ-lattice L in Q(I)2

with Q · L = Q(I)2. We assume throughout the paper, after extending scalars W ,

(F) the representation ρI has values in GL2 (̃I) (i.e., we assume to be able to find an Ĩ-free L).

If ρ is absolutely irreducible, by the technique of pseudo representation, (F) can be checked to be
true. If I is a unique factorization domain with Spec(I)(W ) 6= ∅, in particular, if I is regular (so far,

there is no known non-regular example of Ĩ), replacing L by its reflexive closure (i.e., the intersection

of all Ĩ-free modules in Q(I)2 containing L), L is free of rank 2 over I. By resolution of singularity of
surfaces (see [L78]), we can find an injective local Λ-algebra homomorphism I ↪→ Ism ⊂ Q(I) for a
regular two dimensional Ism, though Ism is not finite over I. Thus replacing I by Ism (and extending

scalars to achieve Spec(Ism)(W ) 6= ∅), we have a model ρIsm : Gal(Q/Q)→ GL2(I
sm) isomorphic to

ρI over Q(I). See Section 9 for details of these facts. Anyway, we assume (F) in this paper.
Actually we choose L coming from the projective limit (relative to p-power level) of Tate modules

of modular jacobians, and for this choice of L, I-freeness of L is known if T is Gorenstain (which in
turn follows from irreducibility of ρ and the p-distinguished-ness condition (R) below). Thus most

cases, we can choose the scalar extension to Ĩ of the canonical L free over I. Write [ρI] for the
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isomorphism class of ρI over Q(I). Pick and fix a non CM component I of prime-to-p level N , and
assume the following condition (R) throughout the paper

(R) ρ|Dp
∼=
(
ε ∗
0 δ

)
with δ unramified and ε 6= δ.

Theorem I. Suppose p ≥ 3. Then there exist a representation ρ ∈ [ρI] with values in GL2 (̃I)
such that G := Im(ρ) ∩ SL2(Λ) contains Γ(a) for an ideal 0 6= a ⊂ Λ. If c is the Λ-ideal maximal
among a with G ⊃ Γ(a), the ideal cP ⊂ ΛP localized at a prime divisor P of Λ only depends on

the isomorphism class [ρI] as long as ρP is absolutely irreducible for all prime divisors P|P in Ĩ; in
particular, if ρ = ρm for the maximal ideal m of I is absolutely irreducible, the reflexive closure (L)
of c is independent of the choice of ρ with G ⊃ Γ(a) 6= 1.

The reflexive closure c̃ of an ideal c ⊂ Λ means the intersection
⋂

(λ)⊃c(λ) ⊂ Λ of all principal

ideals (λ) containing c which is a principal ideal. It can be also defined as the intersection c̃ =
⋂
P cP

inside Q for P running over all prime divisors of Λ (see [BCM, Chapter 7] for these facts). We write
0 6= L = L(I) ∈ Λ for a generator of the ideal c̃. We call c as above the conductor of ρ (or of G).

We prove the theorem under one of the following conditions:

(s) Im(ρI) and ρI(Dp) are both normalized by an element g ∈ GL2(I) with g := (g mod mI)

having eigenvalues α, β in Fp with α2 6= β
2
;

(u) ρI(Dp) contains a non-trivial unipotent element g ∈ GL2(I);
(v) ρI(Dp) contains a unipotent element g ∈ GL2(I) with g 6≡ 1 mod mI.

Obviously, (v) implies (u); so, we actually assume either (s) or (u). By [Z14], the condition (u) is
always satisfied; so, the theorem is stated only assuming (R) and p > 3.

The reason for assuming the conditions (R) and one of (s) and (u) is technical. These conditions
are used to show in a key lemma Lemma 2.9 that the Lie algebra M0 of Im(ρI) ∩ SL2(Λ) (in the
sense of Pink [P93]; see the following section) is large so that sl2(Λ)/M0 is a Λ-torsion module.

The condition (u) is always satisfied by ρI; it was first proven in [GV04] as Theorem 3 under (R)
and absolute irreducibility of the residual representation ρ over Q[µp]. The two assumptions: (R)
and absolute irreducibility of ρ assumed in [GV04] are now eliminated for the validity of (u) by a
method different from [GV04] (see [H13b] and [Z14]), and (u) holds unconditionally. The condition
(s) is easy to check (for example, it is valid if ε|Ip has order ≥ 3; indeed, by local class field theory,

we view ε|Ip as a character of Z×
p , which has values in F×

p , and hence, if ζ = ε(σ) has order ≥ 3

for σ ∈ Ip, the adjoint action Ad(j) of j = ρ(σ) on sl2(I/mI) has three distinct eigenvalues ζ, 1, ζ−1

in Fp). In the condition (s), we may replace g by limn→∞ gq
n

for a sufficiently large p-power q; so,
we may assume that g has eigenvalues in Zp. This theorem will be proven in Section 3. The proof
is difficult if I 6= Λ, and the easier case of I = Λ is treated in [GME, Theorems 4.3.21 and 4.3.23].
When ρ is absolutely irreducible, we call L = L(I) as in the theorem the global level of ρI or of I.
More generally, when ρP is absolutely irreducible, the localized ideal cP is well determined by ρI (see
Lemma 3.3). When ρP is reducible, there is a way of normalizing cP as we will explain in Section 3.

We believe that the following standard choice Lcan(̃I) of the lattice L satisfies this normalization;

so, we state the result for Lcan(̃I) in this introduction, though such a choice is not necessary. Then
we define (L(I)) =

⋂
P cP using this normalized cP .

To describe this standard example of L stable under the Galois action, we note that ρh was
constructed in [H86b] through the Galois action on the χ1-part J of lim←−n e · (TpJ1(Np

n)⊗Zp W ) for

the p-adic Tate module TpJ1(Np
n) of the jacobian J1(Np

n)/Q of the modular curve X1(Np
n)/Q.

Suppose that I is cuspidal. Let Lcan(̃I) (resp. Lcan(I)) be the image of J ⊗h Ĩ (resp. J ⊗h I) in
J ⊗h Q(I) ∼= Q(I)2 for h = hχ1/Zp

. Consider the following version of (F):

(Fcan) Lcan(̃I) is free of rank 2 over Ĩ.

This condition holds under (R) and absolute irreducibility of ρ (see Section 7 for this fact). Under

the condition (R) (and (Fcan)), the Galois module Lcan(̃I) fits into the following canonical exact

sequence of Dp-modules: 0→ Ĩ→ Lcan(̃I)→ Ĩ→ 0 coming from the connected-étale exact sequence
of the Tate modules e · TpJ1(Np

n), and the assertion (Gal) is realized through this exact sequence.

Thus assuming (R), we take the Galois representation ρI : Gal(Q/Q)→ GL2 (̃I) realized on Lcan(̃I).



BIG GALOIS REPRESENTATIONS AND p-ADIC L-FUNCTIONS 4

If R is a p-profinite local ring (or its localization), as we will describe in Section 10, any Galois
representation ρ : Gal(Q/Q) → GL2(R) ramified at finitely many primes has a well defined prime-
to-p conductor C(ρ). We call I minimal, if C(ρI) is minimal among C(ρI ⊗ ξ) for ξ running all finite

order character of Gal(Q/Q) unramified at p. Since the global level of ρI and ρI ⊗ ξ are equal, to
describe L(I), we may assume that I is minimal and primitive in the sense of [H86a, §3 page 252]
(so, fP ∈ FI is a p-stabilized N -new form). In many cases, we can relate the generator L(I) with
p-adic L-functions. Write ϕ(N) = |(Z/NZ)×|. The following is a summary of determination of L(I):

Theorem II. Suppose p ≥ 5, (Fcan) and (R) and one of the conditions (s) and (v). Take a non
CM minimal primitive cuspidal component I of prime-to-p cube-free level N .

(1) If Im(ρ) contains SL2(Fp) and p ≥ 7, then L(I) = 1.

(2) If the projected image of ρ in PGL2(Fp) is either a tetrahedral, an octahedral or an icosa-
hedral group, then T |L(I)|Tn for an integer n > 0.

(3) Suppose that ρ is absolutely irreducible and ρ ∼= IndQ
M ψ for a quadratic field M and a

character ψ : Gal(Q/M)→ F
×
p . Write C(ψ) for the prime-to-p part of the conductor of ψ.

(a) If there is no other imaginary quadratic field M ′ such that ρ ∼= IndQ
M ′ ϕ for a character

ϕ : Gal(Q/M ′)→ F
×
p and either M is real or p does not split in M , L(I) is a factor of

(tp
m − 1)2 for an integer m ≥ 0.

(b) Suppose p - ϕ(N) and N = C(ρ). If M is an imaginary quadratic field in which p

splits, ψ ramifies at a prime over p and there is no other quadratic field M ′ such that

ρ ∼= IndQ
M ′ ϕ for a character ϕ : Gal(Q/M ′) → F

×
p , then L(I) is a factor of the square

of the product of the (primitive) anticyclotomic Katz p-adic L-functions (cf. [K78])

of prime-to-p conductor C(ψ
−

) whose branch character modulo p is the anticyclotomic

projection ψ
−

of ψ. Here ψ
−

given by σ 7→ ψ(σ)ψ(cσc−1)−1 for complex conjugation c.

(4) Suppose p - ϕ(N) and (Fcan). If ρ ∼= θ⊕ψ (with θ ramified at p and ψ unramified at p) and

there is no quadratic field M ′ such that ρ ∼= IndQ
M ′ ϕ for a character ϕ : Gal(Q/Q) → F

×
p ,

then L(I) is a factor of a product of the Kubota-Leopoldt p-adic L-functions specified in
Definition 4.1 (2).

The product of p-adic L-functions in the theorem will be made precise in Section 8 depending
on ρ. The assertion (1) is a version of a result of Mazur–Wiles in [MW86] and Fischman [F02]
where I = Λ is assumed (see Remark 8.3). The assertion (3b) is the most difficult to prove, and a
sketch and the strategy of the proof are given after Theorem 8.5 before giving its long detailed proof.
Theorem 8.5 gives a result slightly stronger than (3b) (in particular, we do not need to assume that
N is cube-free). The assertion (4) can be proven similarly to (3b), and Ohta’s determination [O03]
of the congruence module between the Eisenstein component and a cuspidal component is crucial.
Some more complicated cases missing from Theorem II are discussed in Section 9.

This type of results, asserting that the image of the modular Galois representation of each non CM
Hecke eigenform contains, up to conjugation, an open subgroup of SL2(Zp) was proven in a paper by
Ribet [R75] (and [R85]) in 1975 and by Momose [Mo81] in 1981. As we will see in Proposition 5.1,
a CM component and a non CM component do not intersect at any of arithmetic points, and
therefore Im(ρP) contains, up to conjugation, an open subgroup of SL2(Zp) for arithmetic points

P ∈ Spec(I)(Qp) as long as I is a non CM component. An investigation of the image for Λ-adic Galois
representations was first done in 1986 by Mazur–Wiles in [MW86] (just after the representation was
constructed in [H86b]). We call a prime divisor P ∈ Spec(I) full (in a weak sense) if Im(ρP) contains,
up to conjugation in GL2(κ(P)) for the residue field κ(P) = Q(I/P) of P, an open subgroup of
either SL2(Zp) or SL2(Fp[[T ]]). Fullness of most primes above (p) ⊂ Λ is treated in [H13a] (see also
[SW99], in particular, results about “nice” primes there). The existence of such a full prime divisor
is a key ingredient of the proof of the above theorems.
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1. Lie algebras of p-profinite subgroups of SL(2). 5
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1. Lie algebras of p-profinite subgroups of SL(2).

If A is a ring of characteristic p, the power series log(1 + X) and exp(X) do not make much
sense to create the logarithm and the exponential map; so, the relation between closed subgroups in
GLn(A) and Lie subalgebras of gln(A) appears not very direct. The principal congruence subgroup

ΓA(a) := SL2(A) ∩ (1 + a · gl2(A)) = {x ∈ SL2(A)|x ≡ 1 mod a}
for an A-ideal a obviously plays an important role in this paper. To study a general p-profinite
subgroup G of SL2(A) for a general p-profinite ring A, we want to have an explicit relation between
p-profinite subgroups G of the form SL2(A)∩(1+X) and a Lie Zp-subalgebra X ⊂ gl2(A). Assuming
p > 2, Pink [P93] found a functorial explicit relation between closed subgroups in SL2(A) and
Lie subalgebras of gl2(A) (valid even for A of characteristic p). We call subgroups of the form
SL2(A) ∩ (1 +X) (for a p-profinite Lie Zp-subalgebra X of gl2(A)) basic subgroups following Pink.

We prepare some notation to quote here the results in [P93]. Let A be a semi-local p-profinite
ring (not necessarily of characteristic p). Since Pink’s result allows semi-local p-profinite algebra,
we do not assume A to be local in the exposition of his result. We assume p > 2. Define maps
Θ : SL2(A)→ sl2(A) and ζ : SL2(A)→ Z(A) for the center Z(A) of the algebra M2(A) by

Θ(x) = x− 1

2
Tr(x) ( 1 0

0 1 ) and ζ(x) =
1

2
(Tr(x) − 2) ( 1 0

0 1 ) .

For each p-profinite subgroup G of SL2(A), define L by the closed additive subgroup of sl2(A)
topologically generated by Θ(x) for all x ∈ G. Then we put C = Tr(L · L). Here L · L is the
closed additive subgroup of M2(A) generated by {xy|x, y ∈ L} for the matrix product xy, similarly
Ln is the closed additive subgroup generated by iterated products (n times) of elements in L. We
then define L1 = L and inductively Ln+1 = [L, Ln]; so, L2 = [L, L], where [L, Ln] is the closed
additive subgroup generated by Lie bracket [x, y] = xy − yx for x ∈ L and y ∈ Ln. Then by [P93,
Proposition 3.1], we have

(1.1) [L, L] ⊂ L, C ·L ⊂ L, L = L1 ⊃ · · · ⊃ Ln ⊃ Ln+1 ⊃ · · · and
⋂

n≥1

Ln =
⋂

n≥1

Ln = 0.

In particular, L is a Lie Zp-subalgebra of sl2(A). Put Mn(G) = C ( 1 0
0 1 ) ⊕ Ln ⊂ M2(A) = gl2(A),

which is a closed Lie Zp-subalgebra by (1.1). We write simply M(G) (resp. M0(G)) for M2(G)
(resp. M2(G) ∩ sl2(A) = [L, L]). Define

Hn = {x ∈ SL2(A)|Θ(x) ∈ Ln, Tr(x)− 2 ∈ C} for n ≥ 1.

If x ∈ Hn, then x = Θ(x) + ζ(x) + ( 1 0
0 1 ); thus, Hn ⊂ SL2(A) ∩ (1 +Mn(G)). If we pick x ∈

SL2(A)∩ (1 +Mn(G)), then x = 1 + c · 1 + y with y ∈ Ln and c ∈ C. Thus Tr(x)− 2 = 2c ∈ C and
Θ(x) = ( 1 0

0 1 ) + c · ( 1 0
0 1 ) + y − 1

2
(2 + 2c) · ( 1 0

0 1 ) = y. This shows

Hn = SL2(A) ∩ (1 +Mn(G)) in particular, H2 = SL2(A) ∩ (1 +M(G)).
Here is a result of Pink (Theorem 3.3 combined with Theorem 2.7 both in [P93]):

Theorem 1.1 (Pink). Let the notation be as above. Suppose p > 2, and let A be a semi-local
p-profinite commutative ring with identity. Take a p-profinite subgroup G ⊂ SL2(A). Then we have
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(1) G is a normal closed subgroup of H1 (defined as above for G),
(2) Hn is a p-profinite subgroup of SL2(A) inductively given by Hn+1 = (H1,Hn) which is the

closed subgroup topologically generated by commutators (x, y) with x ∈ H1 and y ∈ Hn,
(3) {Hn}n≥2 coincides with the descending central series of {Gn}n≥2 of G, where Gn+1 = (G, Gn)

starting with G1 = G.
In particular, we have

(P) The topological commutator subgroup G′ of G is the subgroup given by SL2(A)∩ (1 +M(G))
for the closed additive subgroup M(G) ⊂M2(A) as above.

Put M0
j (G) = Mj(G) ∩ sl2(A). By the above expression, G 7→ Mj(G) (resp. G 7→ M0

j (G)) is
a covariant functor from p-profinite subgroups of SL2(A) into closed Lie Zp-subalgebras of gl2(A)
(resp. sl2(A)). In particular, Mj(G) and M0

j(G) are stable under the adjoint action x 7→ gxg−1

of G. For an A-ideal a, writing Ga = (G mod a) = (G · ΓA(a))/ΓA(a), Mj(Ga) ⊂ gl2(A/a) (resp.

M0
j(Ga) ⊂ sl2(A/a)) is the surjective image of Mj(G) (resp. M0

j (G)) under the reduction map

x 7→ (x mod a). Since H1 is a basic subgroup with H1/G abelian, we call H1 the basic closure of G.
If G is normalized by an element of GL2(A), by construction, the basic closure H1 is also normalized
by the same element. Thus the normalizer of G in GL2(A) is contained in the normalizer of H1 in
GL2(A). By the above theorem, any p-profinite subgroup of SL2(A) is basic up to abelian error.

Lemma 1.2. Let A be an integral domain finite flat either over Fp[[T ]], Λ or Zp with quotient field
Q(A). If a subgroup G ⊂ SL2(A) contains the subgroup ΓA(c) for a non-zero A-ideal c, then αGα−1

for α ∈ GL2(Q(A)) contains ΓA(c′) for another non-zero A-ideal c′ depending on α.

Proof. We give a proof assuming p > 2. Write Γ(c) for ΓA(c). We may suppose that G = Γ(c) for
c ⊂ mA; so, G is p-profinite. Then M(G) ⊃ c2 · L for L = M2(A). Replacing α by ξα for a suitable
ξ ∈ A ∩ Q(A)× for the quotient field Q(A) of A, we may assume that α ∈ M2(A) ∩ GL2(Q(A)).
Then (αLα−1∩L) ⊃ αLαι for αι = det(α)α−1 ∈ M2(A). Since L and αLαι are both free A-module
of rank 4, L/αLαι is a torsion A-module finite type annihilated by a non-zero A-ideal c′′. Then
M(αΓ(c)α−1 ∩ SL2(A)) ⊃ c2 · αLα−1 ⊃ c2c′′L. Thus the ideal cα = c2c′′ does the job. �

Let B/Zp
⊂ GL(2)/Zp

(resp. Z/Zp
) be the upper triangular Borel subgroup (resp. the center of

GL(2)/Zp
) as an algebraic group. Write U/Zp

for the unipotent radical of B/Zp
, and put ZU(A) =

Z(A)U(A) ⊂ GL2(A). Let B/Zp
(resp. U/Zp

) be the Lie algebra of B/Zp
(resp. U/Zp

). We write

B = G2
m n U by the splitting G2

m 3 (a, a′) 7→
(
a 0
0 a′
)
∈ B. Define ts =

∑∞
n=0

(
s
n

)
Tn ∈ Λ.

Lemma 1.3. Suppose p > 2, and let I be a domain finite flat over Λ. Let G ⊂ SL2(I) be a p-profinite
subgroup. Suppose the following two conditions:

(B) The group G contains a subgroup of B(I) ∩ SL2(I) which is, under the projection: B →
B/ZU = Gm, isomorphic to the image of

T =
{
t(s) :=

(
ts/2 0
0 t−s/2

) ∣∣∣s ∈ Zp

}
∼= Γ (t = 1 + T ).

(U) The subgroup U =
{
( 1 u

0 1 )
∣∣u ∈ Λ

}
∩G is non-trivial.

We denote by u the ideal u =
{
u ∈ Λ

∣∣ ( 1 u
0 1 ) ∈ U

}
. Let G′ be the topological commutator subgroup of

G and U ′ = U ∩G′. The group T acts on U and U ′ by the conjugate action. Then we have

(1) The action of Zp[[T ]] on U and U ′ coincides with the action of Λ via the isomorphism
Zp[[T ]] ∼= Λ sending t(1) to t (under the notation in (B)). Under this identification, U/U ′

is torsion of finite type (as a Λ-module) killed by the ideal (T ) of Λ.
(2) If moreover there exists g =

(
a b
0 d

)
∈ B(I) ∩ G whose image in B(I)/ZU(I) is non-trivial,

U/U ′ is killed by ad−1 − 1. If ad−1 − 1 is prime to T , U/U ′ is finite.

Replacing the pair (U, U ′) by (U = G ∩ U(I),U′ = G′ ∩ U(I)), the same assertions (1–2) hold under
the condition U 6= 1.

Proof. Since the proof is the same for (U, U ′) and (U,U′), we give a proof for the pair (U, U ′).
Often we identify u with the Lie subalgebra

{
( 0 b

0 0 )
∣∣b ∈ u

}
in sl2(Λ). Under this identification, by

definition, we have U = 1+u ⊂ G. Since U and G′ are normalized by the adjoint (conjugation) action
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of G∩B(Λ)U(I), T ↪→ B(I)/ZU(I) acts on U and U ′. Then the Zp-module U/U ′ carries a continuous
action of Γ via Γ = {ts|s ∈ Zp} ∼= T . Note that Zp[[Γ]] = Λ. Since the Λ-module structure on U
induced by the adjoint action of T and the one induced by the isomorphism log : U 3 (1+u) 7→ u ∈ u

match, U ∼= u ⊂ sl2(Λ) is a Λ-module of finite type (as Λ is noetherian). Thus U/U ′ is a Λ-module

of finite type embedded in G/G′. Pick τ ∈ B(I)∩G whose image in T is equal to
(
t1/2 0
0 t−1/2

)
. Then

τ − 1 acts on U/U ′ by multiplication by T and kills G/G′. Thus T is in the annihilator Ann(U/U ′)
of U/U ′ as asserted in (1).

If we have further g = ( a ∗
0 d ) ∈ G ∩ B(I) as in (2), by the same argument, U/U ′ is killed by

ad−1− 1 6= 0. Thus U/U ′ is a module over a finite extension Λ[θ] ⊂ I of Λ for θ = ad−1− 1. Taking
a minimal polynomial Φ(X) of θ over Q, we have Λ[θ] ∼= Λ[X]/(Φ(X)); so, Λ[θ] is finite flat over Λ.
If θ is prime to T , U/U ′ is killed by an open ideal (θ, T ) of Λ[θ] ⊂ I. Since U/U ′ is a Λ-module of
finite type, it is a finite Λ-module. �

Here is another easy remark:

Lemma 1.4. Let the notation and the assumption be as in Lemma 1.3. In addition, we assume to

have j =
(
ζ 0
0 ζ′

)
∈ GL2(Zp) such that jGj−1 = G and ζ − ζ′ ∈ Z×

p . Then the group G contains the

subgroup T ; in particular, the group Z(Λ)T ⊂ SL2(Λ) normalizes G.

Proof. Forgetting about the center Z(Λ), we only need to show that T normalizes G. By assumption,

there exists τ ∈ G of the form τ = (
a u
0 a−1 ) for a = t1/2. By computation, for the commutator (τ, j),

we have (τ, j) =
(

1 ua(1−ζζ′−1)
0 1

)
∈ G. Thus U = U(I) ∩ G contains

(
1 ua(1−ζζ′−1)
0 1

)
. Since U is

a Zp-module, we can divide elements in U by the Zp-unit (1 − ζζ′−1); so, U contains ( 1 ua
0 1 ) and

τ−1 ( 1 ua
0 1 ) τ =

(
1 a−1u
0 1

)
=: β ∈ U. Then G contains τβ−1 = t(1) =

(
t1/2 0
0 t−1/2

)
, and G contains

T = {t(1)s|s ∈ Zp} which in particular normalizes G. �

For a prime divisor P of Spec(Λ), we write A0 for the subring Zp ⊂ κ(P ) if κ(P ) is of characteristic
0, and if P = (p), we put A0 = Fp[[T ]] = Λ/P ⊂ κ(P ).

Lemma 1.5. Let the notation and the assumption be as in Lemma 1.3. Put G = G ∩ SL2(Λ)
and let GU be the subgroup of G topologically generated by gUg−1 for all g ∈ G. If there exists a
prime divisor P ∈ Spec(Λ) such that the image of GU in SL2(Λ/P ) contains an open subgroup of
SL2(A0), then we can find a Λ-module L ⊂ M(G) ∩ sl2(Λ) such that sl2(Λ)/L is Λ-torsion with
sl2(ΛP )/LP = 0 after localization and L ⊂ M(GU) ∩ sl2(Λ) ⊂ M(G) ∩ sl2(Λ) ⊂ sl2(Λ). Moreover
GU contains ΓΛ(c) for a non-zero Λ-ideal c = {λ ∈ Λ|λ ·M2(Λ) ⊂M(GU)} prime to P .

Proof. As before, we identify u with the Lie subalgebra
{
( 0 b

0 0 )
∣∣b ∈ u

}
in sl2(Λ); then U = 1 + u.

Let H (resp. H) be the image of a subgroup H (resp. a submodule H) of SL2(Λ) (resp. of
sl2(Λ)) in SL2(Λ/P ) (resp. in sl2(Λ/P )). If G′

U is the topological commutator subgroup of GU ,

its image G
′
U in SL2(Λ/P ) is the topological commutator subgroup of GU . Since GU contains

an open subgroup of SL2(A0), G
′
U contains an open subgroup of SL2(A0). Since G′ ⊃ G′

U , we

find U ′ = G′ ∩ U ⊃ U ′′ := G′
U ∩ U . In any case, we find U = 1 + u 6= 1, where u is the

image of u in sl2(Λ/P ) (so, u 6= 0). By Lemma 1.3, U ′ = U ∩ G′ is non-trivial, and if P - T ,
u′ = {u ∈ sl2(Λ)|1 + u ∈ U ′} is a non-trivial Lie Λ-subalgebra of sl2(Λ) with nontrivial image u′ in

sl2(Λ/P ). Even if P |T , since G
′
U contains an open subgroup of SL2(A0), U

′′ ⊂ U
′

is non-trivial;
so, u′ 6= 0. Let H ⊂ G′ be the subgroup generated by gU ′g−1 for all g ∈ G. Let M = M(GU )
and M = M(GU ). Then we have a natural surjection π : M � M given by x 7→ x mod P for

x ∈ M2(Λ). Let L =
∑
g∈GU

gu′g−1 ⊂ M∩ sl2(Λ) and L =
∑

g∈GU
gu′g−1 ⊂ M ∩ sl2(Λ/P ). As

seen in the proof of Lemma 1.3, u′ is a torsion-free Λ-submodule of sl2(Λ); so, L is a torsion-free

Λ-submodule of sl2(Λ). Note that L is stable under the adjoint action of GU . Since GU contains
an open subgroup of SL2(A0), the adjoint action of GU on L is irreducible; so, L ⊗Λ κ(P ) has

dimension 3 over κ(P ); so, L⊗Λ κ(P ) = sl2(κ(P )). By Nakayama’s lemma, we have LP = sl2(ΛP ).
In particular, sl2(Λ)/L is a Λ-torsion module of finite type. The Lie algebra L = M0 contains L,
and hence L · L ⊃ L · L. For the annihilator a of sl2(Λ)/L, by a simple computation M contains
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L̃ = a2 ( 1 0
0 1 )⊕L ⊂M2(Λ). Since LP = sl(ΛP ), a is prime to P . Thus for the maximal Λ-submodule

M̃ of M, we conclude M̃ ⊃ L̃, and M2(Λ)/M̃ is a torsion Λ-module. Thus the annihilator ideal c

of M2(Λ)/M̃ is prime to P and GU ⊃ ΓΛ(c). �

Question 1.6. Under the conditions (B) and (U) in Lemma 1.3, areM(G) andM(G) Λ-modules?
It is likely to be the case up to finite error, and if they are, our argument in the rest of the paper
could be simplified a lot. They are obviously stable under the adjoint action of T .

2. Fullness of Lie algebra

We start with the following well known fact whose proof is left to the reader:

Lemma 2.1. Let K be a field of characteristic 0. If L is a nontrivial proper Lie subalgebra over K
in sl2(K), then L is a conjugate in sl2(K) of one of the following Lie K-subalgebras:

(1) {x ∈ M |TrM/Q(x) = 0} as an abelian Lie subalgebra for a semi-simple quadratic extension
M of K (Cartan subalgebra).

(2) U/K =
{
( 0 x

0 0 )
∣∣x ∈ K

}
(nilpotent subalgebra).

(3) B/K =
{
( a x

0 −a )
∣∣a, x ∈ K

}
(Borel subalgebra).

Corollary 2.2. Let K 6= F3 be a field of characteristic different from 2 and L/K be a field extension.
Let 0 6= L ⊂ sl2(L) be a vector K-subspace stable under the adjoint action of SL2(K). Then there
exists g ∈ GL2(L) such that gLg−1 ⊃ sl2(K). If L contains some non-zero elements in sl2(K), L

contains sl2(K) without conjugation.

Proof. Put n(X) =
{
( 0 x

0 0 ) ∈ sl2(X)
∣∣x ∈ X

}
for any intermediate extension L/X/K. As K 6= F2

and F3, we have some diagonal matrix g =
(
a 0
0 a−1

)
in SL2(K) with a2 6= a−2. The space n(X) is the

eigenspace in sl2(X) of Ad(g) with eigenvalue a2. Since adjoint action: Y 7→ gY g−1 (Y ∈ sl2(L)) of
g ∈ SL2(K) is absolutely irreducible (as K has characteristic 6= 2), we see that L span sl2(L) over
L, and hence the eigenspace L(a2) in L of Ad(g) with eigenvalue a2 is non-trivial. In particular,
L∩n(L) = L(a2) 6= 0. Let T be the diagonal torus in GL2; so, T (X) =

{
( a 0

0 b ) ∈ GL2(X)
∣∣a, b ∈ K×}.

Note that T (X) acts transitively on n(X) \ {0}. Thus conjugating L by an element of T (L), we
may assume that ( 0 1

0 0 ) ∈ L. Since the adjoint action of SL2(K) on sl2(K) is absolutely irreducible,
L ∩ sl2(K) 6= {0} implies L ⊃ sl2(K), as desired. �

Here is a well known corollary (whose proof can be found in [GME, Corollary 4.3.14]).

Corollary 2.3. If G is a closed subgroup of SL2(Zp) of infinite order, then G has one of the
following four forms

(1) G is an open subgroup of SL2(Zp);
(2) G is an open subgroup of the normalizer of M× ∩ SL2(Qp) for a semi-simple quadratic

extension M/Qp
⊂M2(Qp);

(3) G is SL2(Zp)-conjugate to an open subgroup of the upper triangular Borel subgroup B(Zp) ⊂
SL2(Zp);

(4) G is SL2(Zp)-conjugate to an open subgroup of the upper triangular unipotent subgroup
U(Zp) ⊂ SL2(Zp).

Lemma 2.4. Suppose p > 2 and A be an integral domain finite flat over Fp[[T ]]. If a closed subgroup

G of SL2(A) contains T :=
{(

ts 0
0 t−s

) ∣∣s ∈ Zp
}

and non-trivial upper unipotent and lower unipotent

subgroups, then G contains an open subgroup of SL2(Fp[[T ]]), and if G is p-profinite,M(G) contains
an open submodule of M2(Fp[[T ]]).

Proof. Replacing G by G ∩ ΓA(mA), we may assume that G is p-profinite. Writing K = Fp((T ))
and L = A ⊗Fp[[T ]] K, L is a finite field extension of K. Consider the X-span LX of M0

1(G) for
X = K,L. Then dimL LL = 3; so, LL = sl2(L). Thus up to conjugation, LK contains sl2(K)
by the existence of non-trivial unipotent elements. Thus we may assume that A = Fp[[T ]]. By

conjugation action of T , the unipotent groups U = U(Fp[[T ]]) ∩ G and Ut = tU(Fp[[T ]]) ∩ G are
non-zero Fp[[T ]]-modules, thus [U(Fp[[T ]]) : U ] <∞ and [tU(Fp[[T ]]) : Ut] <∞. Let u (resp. ut) be
the Lie algebra of U (resp. Ut); so, for example, u = {u − 1 ∈ sl2(Fp[[T ]])|u ∈ U}. Thus we find
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that [u, ut] 6= 0 is also an Fp[[T ]]-module inM0(G), and henceM0(G) has rank 3 over Fp[[T ]]. Also
C = Tr(M0(G) · M0(G)) as in Theorem 1.1 contains uut regarding u and ut as an ideal of Fp[[T ]]
by an obvious isomorphism U(Fp[[T ]]) ∼= tU(Fp[[T ]]) ∼= Fp[[T ]]. Then G contains ΓFp[[T ]](uut), and

hence G is open in SL2(Fp[[T ]]). Note that M(G) is well defined containing C · 12 ⊕M0(G) with
rankFp[[T ]]M0(G) = 3 and C 6= 0. This implies thatM(G) is open in M2(Fp[[T ]]). �

Lemma 2.5. Let V be a local Zp-algebra and A be a flat V -algebra. Then for a subgroup B of B(V )

containing
(
δ β
0 δ′

)
with δ − δ′ ∈ V × and a unipotent element ( 1 ε

0 1 ) with ε ∈ V ×, the semi-group

B = {g ∈ B(A)|gBg−1 ⊂ B(V )} is contained in B(V ) modulo the center of GL2(A). If A is reduced,
the same assertion holds replacing {g ∈ B(A)|gBg−1 ⊂ B(V )} by {g ∈ GL2(A)|gBg−1 ⊂ B(V )}.

Proof. Take g =
(
a b
c d

)
∈ GL2(A) satisfying gBg−1 ⊂ B(V ); so, we have

(
a b
c d

)
( 1 ε

0 1 )
(
a b
c d

)−1
= ( ∗ ∗

0 ∗ )

which immediately implies c2 = 0. Thus if A is reduced c = 0, and g ∈ B(A). Thus we may assume
either g =

(
a b
0 d

)
∈ B(A) or that A is reduced to continue. The identity

(
a b
0 d

)
( 1 ε

0 1 )
(
a b
0 d

)−1
=
(

1 (a/d)ε
0 1

)
∈ B(V )

implies d/a, a/d ∈ V ×. Note g = ( a 0
0 d )

(
1 b/a
0 1

)
. The identity for u = b/a

( 1 u
0 1 )

(
δ β
0 δ′

)
( 1 u

0 1 )
−1

=
(
δ u(δ′−δ)+β
0 1

)
∈ B(V )

implies u ∈ V . Thus g = a
(

1 b/a
0 d/a

)
∈ Z(A)B(V ). This finishes the proof. �

Lemma 2.6. Let L/K be a finite field extension and s be a Lie K-subalgebra of sl2(L) containing
U(K). Suppose that we have a diagonal matrix j ∈ GL2(K) such that s is stable under the adjoint
action Ad(j) on sl2(L) and Ad(j) has three distinct eigenvalues on sl2(K). If the L-span sL := L · s
is equal to sl2(L), then s contains sl2(K).

Proof. The nilradical R of s is in the nilradical of sL = sl2(L); so, R = 0, and s is semi-simple.
Thus we can decompose s into a product of simple Lie algebras: s = s1 ⊕ · · · ⊕ sn for K-simple
components sj . Since sm is simple (non-trivial), dimK sm = 3. Thus each sm generates sl2(L)
over L. Suppose thats we have more than one simple components of s. Since [sm, sn] = 0 for
m 6= n, for any s? ∈ s? and any α, β ∈ L, [αsm, βsn] = αβ[sm, sn] = 0. This implies that for
the L-span L · s?, we have [L · sm, L · sn] = 0; so, [sl2(L), sl2(L)] = 0, a contradiction. Thus
we conclude s is simple. The centralizer of j (i.e., the subalgebra fixed by Ad(j)) in s is a Cartan
subalgebra hK split over K (as j is diagonal inGL2(K) with Ad(j) having three distinct eigenvalues),
and h0 = hK ∩ sl2(K) is a split Cartan subalgebra of sl2(K) normalizing U(K) in s. Thus sK
is a split K-simple algebra containing an isomorphic image of sl2(K). Therefore, for a subfield
K′ ⊂ L containing K, s is an inner conjugate of sl2(K

′); i.e., s = g · sl2(K′)g−1 for g ∈ GL2(L).
Since g · sl2(K′)g−1 = s ⊃ h0U(K) ⊂ sl2(K), we have g−1h0U(K)g ⊂ sl2(K

′). We can then
find h1 ∈ SL2(K

′) such that h−1
1 g−1h0U(K)gh1 ⊂ h0U(K′). Pick ( 0 u

0 0 ) ∈ h−1
1 g−1h0U(K)gh1 with

0 6= u ∈ K′. Define h2 = ( u 0
0 1 ). Then, for h = h1h2, h

−1g−1h0U(K)gh ⊂ h0U(K). Then by

Lemma 2.5, gh ∈ K′×B(K). Note that gh · sl2(K′)(gh)−1 = g · sl2(K′)g−1; so, we may assume that
g ∈ B(K); so, in particular, s ⊃ sl2(K). This finishes the proof. �

Lemma 2.7. Let V be a p-profinite discrete valuation ring with quotient field K. If a closed subgroup
H ⊂ SL2(V )m has open image in each factor of SL2(V ), a conjugate in GL2(K)m of H contains
an open subgroup of SL2(V ) diagonally embedded in SL2(V )m.

Proof. The p-profinite property of V implies that V has finite residue field. We may assume that H
is p-profinite. Since the topological commutator subgroup of H still has open image in each factor
of SL2(V ) (cf. [GME, Lemma 4.3.8]), replacing H by its commutator, we may assume that H is
basic. The result in Theorem 1.1 can be applied to the semi-local ring A = Vm. Consider the closed
Lie Zp-subalgebraM1(H) of gl2(A) associated to H and its subalgebraM0

1(H) =M1(H)∩ sl2(A).
Write M for the V -span of M0

1(H). This Lie algebra M is stable under the adjoint action of H .
Write Mj (resp. Hj) for the projection to the j-th factor sl2(V ) (resp. SL2(V )) of M (resp. H).
Then Mj is the V -span ofM0

1(Hj). SinceM0
1(Hj)∩ n(K) for the upper nilpotent Lie algebra n(X)
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as in the proof of Corollary 2.2 is an open ideal of V , by the absolute irreducibility of the adjoint
action of Hj on Mj ,M0

1(Hj) is an open Lie Zp-subalgebra of Mj; i.e., [Mj :M0
1(Hj)] <∞. Then,

by our assumption and Corollary 2.2, Mj for each j has rank 3 over V . We proceed by induction on
m. If the intersection of M with one factor sl2(V ), say the first one, is non-trivial, the intersection is
stable under the adjoint action of M and H . Then the intersection projected to the first component
has to have an open image in the first component sl2(V ) as sl2(K) is a simple Lie algebra. Thus
the intersection is either trivial or contains an open subalgebra of sl2(V ). If it contains an open
subalgebra, we can project H and M to the complementary direct summand, and by induction, we
get the job done. Thus we may assume that any intersection of M with a direct factor sl2(V ) is
trivial. Thus the projection to the complementary direct summand sl2(V )m−1 is an injection. By
induction assumption, conjugating H by an element in B(K)m−1 , we may assume that the image of
M in sl2(V )m−1 is contained in the diagonal image ∆(sl2(V )) of sl2(V ). Thus we are reduced to the
case where m = 2 regarding M ⊂ sl2(V ) ×∆(sl2(V )) ∼= sl2(V )2. Then K ·M ⊂ sl2(K)2 is a graph
of an isomorphism L : sl2(K) → sl2(K) of Lie K-algebras. As is well known, such an isomorphism
is inner given by a conjugation by an element of GL2(K). This finishes the proof. �

Corollary 2.8. Let V be a p-profinite discrete valuation ring with quotient field K, and let A0 = Zp
if K has characteristic 0 and A0 = Fp[[T ]] ⊂ V if K has characteristic p > 0 for an element T ∈ V
analytically independent over Fp. If a closed subgroup H ⊂ SL2(V )m has image in each factor of
SL2(V ) containing an open subgroup of SL2(A0) up to conjugation in GL2(K), then a conjugate in
GL2(K)m of H contains an open subgroup of SL2(A0) diagonally embedded in SL2(V )m.

Proof. If a p-profinite subgroup G of SL2(V ) contains up to conjugation an open subgroup of
SL2(A0), we have K ·M0(G) = sl2(K) as the adjoint action of G on the both side of the identity is
absolutely irreducible; so, V · M0(G) is an open Lie subalgebra of sl2(V ). We apply the argument
which proves Lemma 2.7 to the Lie algebra V · M0(H) which has projection to each factor sl2(V )
with open image. Then after conjugation, V · M0(H) contains the diagonal image of an open Lie
V -subalgebra of sl2(V ). Thus M0(H) must contain an open Lie V -subalgebra of sl2(A0), which
implies that H contains an open subgroup of SL2(A0) diagonally embedded into SL2(V )m. �

Recall the quotient field Q of Λ. As before, we fix a domain I finite flat over Λ. For g ∈ GL2(I)
and x ∈ sl2(I), we write Ad(g)(x) = gxg−1 (the adjoint action of g). Hereafter we assume p > 2.
The following lemma will be applied to G = Im(ρI) ∩ ΓΛ(mΛ) to show that Im(ρI) for a non CM
component I contains a congruence subgroup ΓΛ(c). A main idea is to reduce the problem to openness
of SL2(A0)∩ Im(ρP I) in SL2(A0) for a prime divisor P ∈ Spec(Λ). The proof is onerous if I 6= Λ as
I/P I may not be even a reduced ring. We use Lemma 2.7 and Lemma 2.8 at Step (c) in the proof
(if I 6= Λ) to reduce this problem to the containment of an open subgroup of SL2(A0) in Im(ρP) for
prime divisors P|P of I (which is shown by Ribet in our application when P is arithmetic).

Lemma 2.9. Let G = G ∩ SL2(Λ) for a p-profinite subgroup G of SL2(I) satisfying the condition
(B) of Lemma 1.3. Let P be a prime divisor of Λ. Suppose that I is an integrally closed domain flat
over Λ and one of the following conditions on existence of elements j, υ in GL2(I):

(1) There exists j ∈ B(I) with jGj−1 = G such that the three eigenvalues of Ad(j) are in Zp
distinct modulo mI;

(2) There exist j ∈ B(I) with jGj−1 = G and υ ∈ G ∩ U(I) such that the two eigenvalues of j
are in Zp distinct modulo mI and that υ is non-trivial modulo mI;

(3) There exist j ∈ B(I) with jGj−1 = G and υ ∈ G ∩ U(I) such that the two eigenvalues of j
are in Zp distinct modulo mI and that υ is non-trivial modulo P for all prime ideals P|P .

If the image GP of G in SL2(I/P) for every prime divisor P|P in I contains, up to conjugation,
an open subgroup of SL2(A0), then there exist a nonzero ideal c in Λ prime to P and α ∈ B(IP )

such that α ·Gα−1 ⊃ ΓΛ(c). In particular, the image αGPα
−1 of αGα−1 in SL2(IP /P IP ) contains

an open subgroup of SL2(A0), and replacing G by α · Gα−1, the subgroups U = G ∩ U(Λ) and
Ut = G ∩ tU(Λ) for the opposite unipotent subgroup tU are both non-trivial with non-zero image in
GL2(Λ/P ). If the assumption (2) holds, we can choose α ∈ B(I).
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Proof. Replacing j by limn→∞ jp
n

, we may assume that j has finite order with two eigenvalues in

Zp distinct modulo mΛ; and hence is semi-simple. Write j =
(
ζ ∗
0 ζ′

)
∈ B(I). Conjugating G by

α0 =
(

1 ∗/(ζ−ζ′)
0 1

)
∈ U(I), we assume that j =

(
ζ 0
0 ζ′

)
normalizes α0Gα−1

0 ⊂ GL2(Λ). We replace G

by α0Gα
−1
0 . By Lemma 1.4, we have the group T contained in G. Since α0 commutes with upper

unipotent element, this dose not affect υ in the condition (2) or (3). Write υ = ( 1 u
0 1 ). We have

(2.1) u ∈ I× under (2), and u ∈ I×P under (3).

Conjugating by α1 =
(
u−1 0
0 1

)
, under either (2) or (3), we have υ = ( 1 1

0 1 ) ∈ G. Since (t(s), υ) =

t(s)υt(s)−1υ−1 =
(

1 ts−1
0 1

)
for t(s) in (B) of Lemma 1.3, in either case, we have U(Λ) ⊂ G.

First, we assume I = Λ and (1) and prove the lemma. Thus GP contains an open subgroup of

SL2(A0). We have the adjoint operator Ad(j) acting on M2(I), M = M(G) and M = M(GP).

Write three eigenvalues of Ad(j) as a = ζζ′−1
, 1 and a−1. Then for X = M2(I),M andM, we have

a decomposition X = X[a]⊕X[1]⊕X[a−1] into the direct sum of eigenspaces X[λ] with eigenvalue
λ. The reduction map M[λ] →M[λ] modulo Q is a surjective map for any prime Q ∈ Spec(I). If

GP contains an open subgroup of SL2(A0), we find that M[λ] is non-trivial for all eigenvalues λ,

and hence M[λ] 6= 0 surjects down to M[λ]. Since M[a] =M∩ U(I), we find U = 1 +M[a] ⊂ G′

maps onto U = 1+M[a] ⊂ G
′
P. SimilarlyUt = 1+M[a−1] ⊂ G′ maps onto U t = 1+M[a−1] ⊂ G

′
P.

Since GP contains an open subgroup of SL2(A0), the two eigenspaces M[a] and M[a−1] are both

non-trivial; so, U 6= 1 and U t 6= 1. Since u = {b ∈ I| ( 1 b
0 1 ) ∈ U} and ut = {c ∈ I| ( 1 0

c 1 ) ∈ Ut} are

non-zero I-ideals, U 6= 1 and U t 6= 1 implies u and ut is prime to P. We often identify u (resp. ut)
with the corresponding Lie algebra {( 0 b

0 0 )
∣∣b ∈ u} = U(I)∩M1(G) (resp. tU(I)∩M1(G)). Therefore

GP contains open subgroups U of U(I/P) and U t of tU(I/P). This implies that GP contains an

open subgroup H of SL2(I/P) as U and U t generate an open subgroup of SL2(I/P). Indeed, for
b ∈ u and c ∈ ut, taking X = ( 0 b

0 0 ) and Y = ( 0 0
c 0 ), we have inM(H) the following element

[X, Y ] = XY − Y X =
(
bc 0
0 −bc

)
.

Similarly, by Theorem 1.1,M(H) contains Tr(( 0 a
0 0 ) ( 0 0

b 0 )) = ab as a central element; so, it contains

uutM2(I); i.e, GP contains an open subgroup ΓI(uut)/ΓI(uutP ) in SL2(I/P). Then for the closed

subgroup GU ⊂ G topologically generated by conjugates gUg−1 for all g ∈ G, GU contains an open
subgroup of SL2(A0) by Corollary 2.3 and Lemma 2.4. By Lemma 1.5, we get the desired assertion.

Since the two conditions (2) and (3) are similar, the proof is basically the same, though we need
to localize the argument at P under (3). As is clear from the above proof under (1), we only need to
prove P - uut. We give a proof under I = Λ and (2). Since the reduction mapM[1]→M[1] modulo
P is onto, G has an element g ∈ B(I) with eigenvalues z, z′ with z 6≡ z′ mod P. By Lemma 1.3 (2),
U/U ′ is killed by (z′z−1 − 1, T ), and we find c ∈ I ∩ I×P in the annihilator of U/U ′. Let

M0 :=M∩ (U(I) ⊕ tU(I)) and M0 :=M∩ (U(I/P)⊕ tU(I/P)).

Then, under the reduction map modulo P,M0 surjects down toM0 which has non-trivial intersec-
tion tU(I/P). Thus we have an element (a, b) ∈M0 with a ∈ U(I) and b ∈ tU(I) with b mod P 6= 0.
Since G ⊃ U(Λ), we have (ca, 0) ∈ M0; so, (0, cb) = (ca, cb)− (ca, 0) ∈ M0. Thus we find that Ut
and U t cannot be trivial. Then by the same argument as above, we conclude the assertion. Under
(3), we go exactly the same way, replacing I and Λ in the above argument by IP and ΛP .

Now we assume (1) and that I ) Λ. We proceed in steps: First we prove

(a) Conjugating G by an element in B(IP ), we achieve that G
′
P ∩ SL2(A0) (for the topological

commutator subgroup G
′
P of GP) is open in SL2(A0) for all prime divisor P|P in I.

Since GP (up to conjugation) contains an open subgroup of SL2(A0) for each P|P , its derived group

G
′
P contains an open subgroup of a conjugate of SL2(A0). Thus the κ(P)-span of M0

=M0(GP)
has dimension 3 (by the irreducibility of the adjoint action of (an open subgroup of) SL2(A0). Thus
a-eigenspace M[a] = U(κ(P)) ∩M under the action of Ad(j) is non-trivial. Taking 0 6= uP ∈ I/P

such that
(

0 uP

0 0

)
∈ M[a] and putting αP =

(
u−1

P
0

0 1

)
, we have U(A0) ⊂ M(αPGPα

−1
P ). By the
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approximation theorem (e.g., [BCM, VII.2.4]) applied to the Dedekind ring IP , we find α ∈ B(IP )
such that α mod P = αP for all P|P ; so, replacing G by αGα−1, we start with G with GP

containing U(A0) for all P|P . Let Q0 := Q(A0). Consider the Q0-span sP of M0(GP). Then
κ(P) ·sP = sl2(κ(P)) as the adjoint action of SL2(A0) (more precisely of its conjugate) is absolutely
irreducible. Then by Lemma 2.6 applied to L = κ(P) and K = Q0, sP contains sl2(Q0), which
implies the claim.

Next we show, for the topological commutator subgroup G′ of G,

(b) Conjugating G by an element in B(IP ), we achieve U = U(Λ)∩G 6= 0 and U ′ = U(Λ)∩G′ 6= 0.

To see this, we use the same symbol introduced at the beginning of this proof. In particular,

j =
(
ζ 0
0 ζ′

)
∈ B(I) and GP (resp. G

′
P ) is the image of G (resp. G′) in SL2(I/P I). Since GP (and

hence G
′
P) for each P|P contains an open subgroup of SL2(A0), we find the image M(GP)[λ] of

M[λ] in gl2(I/P) is non-trivial for all eigenvalues λ of Ad(j) and all P|P , we conclude, as before,

(1) M[λ] 6= 0 and M(GP)[λ] 6= 0 for all P|P ,
(2) the I-ideal a generated by n = {a ∈ I| ( 0 a

0 0 ) ∈ M[a]} is prime to P (⇒ U 6= 0),
(3) the I-ideal at generated by nt = {a ∈ I| ( 0 0

b 0 ) ∈M[a−1]} is prime to P (⇒ Ut 6= 0).

By (1), we can pick u ∈ n prime to P such that (u mod P) ∈ A0 for all P|P . Conjugating G by

α =
(
u−1 0
0 1

)
∈ B(IP ) with image α ∈ B(Q(A0)), we may assume that u = n ∩ Λ = Λ and αG

′
Pα

−1

contains an open subgroup of SL2(A0) for all P|P . Since α is diagonal, j still normalize G and G′.
Just to have u 6= 0, we only need to choose any 0 6= u ∈ Q(I)n; so, we can assume that u is prime to
any given finite set of primes. We now claim

(c) G
′
P (and hence GP ) contains an open subgroup of SL2(A0) regarding A0 ⊂ I/P I.

To see this, recall M0(G) = M(G) ∩ sl2(A) for a p-profinite subgroup G of SL2(A). Write M0 =

M0(G) and M0
=M0(GP ). Replacing I by the integral closure of I in the Galois closure of Q(I)

over Q, we may assume that Q(I) is a Galois extension of Q. Then P =
∏

P∈Σ Pe for the finite set Σ

of primes P in I over P . Identify κ(P) with a finite extension k of κ := κ(P ) for all P|P . Since GP

contains an open subgroup of SL2(A0) for every P ∈ Σ, by Corollary 2.8, the image G√
P of G in

SL2(IP /
√
P IP ) =

∏
P|P SL2(k) contains an open subgroup H of SL2(A0) diagonally embedded in∏

P|P SL2(k), where
√
P =

∏
P∈Σ P (the radical of P in I). Then H acts on κ ·M0 by the adjoint

action. Since U(Λ) ⊂ ΛP · M0, under the action of the group algebra κ[H ], U(κ) ⊂ M0
generates

an irreducible subspace equal to sl2(κ) (since U(κ) ⊂ sl2(κ) is the highest weight root space and

the adjoint square is absolutely irreducible as p > 2). Therefore κ · M0(GP ) contains sl2(κ), which

implies that G
′
P contains an open subgroup of SL2(A0) by Lemma 2.4 and Corollary 2.3.

Next we look into the A-span sA := A · M0 of M0 for a subalgebra A of Q(I), which is a Lie
A-subalgebra of sl2(Q(I)). Let u =M0[a] ∩ sl2(Λ) and ut =M0[a−1] ∩ sl2(Λ). We claim

(d) sQ = Q · M0 contains sl2(Q), dimQQ · u = dimQQ · ut = 1 and P - u.

To see this, pick a prime factor P|P of P in I. Taking A = IP, the image sA of sA in sl2(κ(P))
contains a non-trivial upper nilpotent algebra uP which is the image of the Lie algebra of U . Since

the image GP of G in SL2(κ(P)) contains an open subgroup of SL2(A0), sA = sl2(κ(P)), which
implies sA/PsA = sl2(κ(P)). From Nakayama’s lemma, we deduce sIP

= sl2(IP). Thus sQ spans
over Q(I) the entire sl2(Q(I)). Again applying Lemma 2.6 for sQ, K = Q and L = Q(I), we get
sQ ⊃ sl2(Q). This proves that dimQQ · u = dimQQ · ut = 1. In particular, U = 1 + u ⊂ G and
Ut = 1 + ut ⊂ G are non-trivial unipotent subgroup. Regarding u and ut as ideals of Λ, we find
G ⊃ ΓΛ(uut). By (c), the image u in sl2(Λ/P ) is non-trivial; so, P - u.

Therefore, to finish the proof under (1) and I 6= Λ, we need to prove that

(e) P - ut.

Let H = G
′
P ∩SL2(A0), which is an open subgroup of SL2(A0). Put H = π−1(H) for the projection

π : G′
� G

′
P . Note thatH is still normalized by j. For the order I′ = Λ+P I ⊂ I, H ⊂ GL2(I

′). Note
that P I′ is still a prime in I′ with residue field κ(P ). In the above argument, we replace G by H , I by
I′ and sQ by s = ΛP · M0. Then s is a Lie ΛP -subalgebra of Q-simple Lie algebra sQ. We consider
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the adjoint action of GP , which is now an open subgroup of SL2(A0). By our replacement of I by
I′, P is a prime in I′ with κ = κ(P ) = κ(P I). Consider the image sP of s in sl2(I/P I). Since sP is
generated by κ · u under the action of the group algebra κ[GP ], noting GP is now an open subgroup

of SL2(A0), we have sP = sl2(κ). Thus GP acts on sP = sl2(κ) by the adjoint representation
Ad(κ). Therefore its a−1-eigenspace sP [a−1] of Ad(j) is non-trivial in κ[G] · u = sl2(κ). This shows
ΛP [G] · u = sl2(κ). By Nakayama’s lemma, we conclude IP [G] · u = sl2(IP ). Since ΛP [G] · u spans
sl2(IP ) stable under the action of G, it contains sl2(ΛP ). Thus s ⊃ ΛP [G] · u ⊃ sl2(ΛP ), and

tU(ΛP ) ⊃ ΛP · ut = s ∩ tU(ΛP ) ⊃ sl2(ΛP ) ∩ tU(ΛP ) = tU(ΛP ).

Thus ΛP · ut = tU(ΛP ), and we conclude ut 6= 0; so, P - ut.
We now assume (2) or (3) in the lemma and I 6= Λ. As we have seen, u = {b ∈ Λ| ( 1 b

0 1 ) ∈ G} has
non-trivial image u in sl2(I/P) for all primes P|P . We have shown above, from the non-triviality of
u, sIP = sl2(IP ). After reaching this point, by the same argument as above, we conclude ut 6= 0; so,
we get the desired assertion. �

Remark 2.10. We insert here another shorter proof of the above lemma under (1) assuming an extra
assumption P - (p). We first replace I by the integral closure of I in the Galois closure of Q(I) over
Q. Write g = Gal(Q(I)/Q) for the finite Galois group. Let H be as in Step (c) in the above proof.

We then replace G by G = {h ∈ G|π(h) ∈ H} for the reduction map π : GL2(IP )→ GL2(IP /P IP ).
We now replace I by Λ + P I. By this, we lose normality of I but IP becomes local with only one
maximal ideal P IP satisfying κ(P ) = κ(P I) and M(GP ) ⊂ gl2(Zp) invariant under g. Recall

M0 =M∩ (U(I) ⊕ tU(I)).

As before, we find IP · M0 = sl2(IP ), and IP · M0 = U(IP ) ⊕ tU(IP ). Thus g acts on IP · M0 and
IP · M0. The g-cohomology sequence attached to the exact sequence

0→ P IP · M0 → IP ·M0 → κ(P ) · M0 → 0

gives a short exact sequence for M =M0

(∗) 0→ H0(g, P IP ·M)→ H0(g, IP ·M)→ κ(P ) ·M → 0

since H1(g, P IP · M0) = 0 (as P IP · M0 is a Qp-vector space). Similarly, g acts on IP · M0

and we have a short exact sequence (∗) for M = M0. Since M0 is a Λ-module, the quotient
X := H0(g, IP · M0)/M0 is a Λ-module of finite type. The quotient Y := H0(g, IP · M0)/M0

containsX as a direct summand (i.e., Y = X⊕Z with Ad(j) acting trivially on Z), and on Y the open
subgroup GP of SL2(Zp) acts by the adjoint action. Consider the ΛP -span ΛP ·Y = (ΛP ·X)⊕(ΛP ·Z).

Since H0(g,ΛP · M[a]) = U(ΛP ) = H0(g,U(IP )), the GP -module Y := Y ⊗ΛP κ(P ) does not have
any highest weight vector with respect to B(κ(P )) ∩ GP ; so, Y = 0. By Nakayama’s lemma, we
have Y = 0; so, we get ΛP ·X = 0. Thus H0(g, IP · M[a−1]) surjects down to tU(κ(P )) under the
reduction map modulo P ; i.e., ut =M[a−1] has nontrivial image in tU(κ(P )). In particular, P - uut.

Remark 2.11. In Step (b) in the above proof, conjugation by α =
(
u−1 0
0 1

)
brings G into a subgroup

αGα−1 containing ΓΛ(c) for its conductor c 6= 0. To prove this fact, we only needed to make u 6= 0.
As remarked in the proof, allowing u to be another non-zero element u′ in Q(I) · n, we achieve

u 6= 0; so, we get another conductor c′ using this u′ and α′ =
(
u−1 0
0 1

)
; i.e., α′Gα′−1 ⊃ ΓΛ(c′)

maximally. For any other prime divisor P ′ 6= P , as long as ρP′ is irreducible for all P′|P ′ (and

α′Gα′−1 ⊂ GL2(IP ′ )), we will prove cP ′ = c′P ′ in Lemma 3.3.

Theorem 2.12. Suppose p > 2 and that I is integrally closed. Let G be a p-profinite subgroup of
SL2(I) satisfying the condition (B) of Lemma 1.3 and one of the three conditions (1–3) of Lemma 2.9.

Take a prime divisor P of Λ. Suppose that the projected image GP ↪→ SL2(I/P) of G contains an
open subgroup of SL2(A0) for all prime factors P|P in I. Then there exists α ∈ B(IP ) such that,
writing Gα = αGα−1 and Gα = for Gα ∩ SL2(Λ),

(1) the image M0(Gα) in sl2(Λ) spans over Q the entire Lie algebra sl2(Q).
(2) there exist a unique non-zero ideal cα of Λ prime to P (dependent on α) maximal among

ideals a ⊂ Λ such that Gα ⊃ ΓΛ(a) (⇔ Gα ⊃ ΓΛ(a)).
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(3) the ideal
⋂

(λ)⊃cα
(λ) (the intersection of all principal ideals containing cα) is a principal

ideal (Lα), and ΓΛ(Lα)/ΓΛ(cα) is finite.

The above ideal cα will be called the conductor of Gα or Gα. The assertion (1) follows from the
above Lemma 2.9. The other two assertions are covered by [GME, Theorem 4.3.21].

Remark 2.13. When G is the largest p-profinite subgroup of Im(ρI) ∩ SL2(I), there should be a
canonical Λ-subalgebra I0 ⊂ I finite over Λ such that Gα for a suitable α ∈ B(IP ) contains ΓI0 (cα)
for an ideal cα 6= 0 of I0. The author hopes to be able to come back to this problem later.

3. Global level of ρI

Take an irreducible non CM component Spec(I) of Spec(h) with its normalization Spec(̃I). Assume

the conditions (R) and (F) in the introduction for ρI. Under (F), we consider ρI : Gal(Q/Q) →
GL2 (̃I) ⊂ GL2(A) having values in GL2(A) for an Ĩ-subalgebra A of Q, and to indicate its coefficients
explicitly, we write ρA for it. We state a condition which is a version of (Gal).

(GalA) Up to isomorphism over A, ρA is upper triangular over Dp, ρA([γs,Qp]) ∼=
(
ts ∗
0 1

)
(t = 1+T )

and ρA([p,Qp]) ∼=
( ∗ ∗

0 a(p)

)
for the image a(p) of U(p) in I, simultaneously.

The conditions (R), (F) and (Gal) (that is, (GalQ(I))) combined implies (GaleI). Indeed, by (F),

choosing σ ∈ Dp with ρ(σ) having distinct eigenvalues modulo meI, we can split Ĩ2 into the direct

sum of each eigenspace of ρ(σ). Each eigenspace is Ĩ-free (by Ĩ-flatness ⇒ Ĩ-freeness), and hence

(GaleI) is satisfied. The condition (GaleI) is what we need, though often we take ρI realized on Lcan(̃I)
as a standard choice. If ρ is absolutely irreducible, the isomorphism class of ρeI is unique over Ĩ (even

over I), and we do not need to take the specific one realized over Lcan(̃I). Even if ρ is not absolutely

irreducible, there is no compelling reason for us to take Lcan(̃I). We make this choice often to fix

our idea, though we will state the result without assuming that ρI is realized on Lcan(̃I).
Here is a heuristic reason for our making this choice (when ρ is reducible). Pick an Eisenstein

prime divisor P ∈ Spec(̃I) (i.e., ρP is reducible). If e is the maximal exponent such that ρeI mod Pe

is a direct sum of two characters, by a trick of Ribet [R76] of changing lattice applied to ρeIP
(i.e.,

changing the isomorphism class of ρeIP
over ĨP in the “isogeny” class), we may increase the level of

ρeI from Pe to P2e at P , still keeping the condition (GaleI). This new ρeI modulo P (not the semi-

simplified ρP) is non-semi-simple (and hence P2e is the deepest possible level at P). If this is the
case, via Wiles’ argument through µ-deprived quotients, P2e would be a factor of the characteristic
power series of the corresponding Iwasawa module, and hence the level P2e would be a factor of
the corresponding Kubota–Leopoldt p-adic L function by the solution of the main conjecture by
Mazur–Wiles. Anyway, the original level Pe divides the Kubota–Leopoldt p-adic L function, and

the assertion of divisibility holds for the starting lattice. Thus our choice of Lcan(̃I) is not essential.
Ohta’s point in his proof of the main conjecture in [O00, §3.3] under some assumptions (which
developed a seed idea of Harder–Pink) is that the proof can be done without using Ribet trick; i.e.,

Lcan(̃I) does create fully non-splitting extension modulo P. If this holds for all our cases of cube-free

N , the choice of Lcan(̃I) produces highest possible divisibility for the component I and justifies our
choice.

In the isomorphism class [ρI] over I, we have ρI satisfying (GalI) if ρ is absolutely irreducible. In

the reducible case, ρeIP
realized on Lcan(̃I)P satisfies (GaleIP

) for any prime divisor P of Ĩ. We put

G = Im(ρI) ∩ ΓeI(meI), which satisfies the condition (B) of Lemma 1.3 by (GalA) for A as above.
Now we state one more fundamental property of ρI:

(Det) det(ρI)(σ) = tlogp(N(σ))/ logp(γ)χ1(σ) for all σ ∈ Gal(Q/Q),

where χ is the Neben character as in the introduction and N : Gal(Q/Q) → Z×
p is the p-adic

cyclotomic character (see the second edition of [GME, Theorem 4.3.1] for this fact).
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Lemma 3.1. Assume (GaleI). Then for each prime divisor P of Ĩ, the image of Im(ρI) ∩ SL2 (̃I)

in SL2 (̃I/P) is an open subgroup of Im(ρP) ∩ SL2 (̃I/P). In particular, the reduction map: G =
Im(ρI) ∩ ΓeI(meI)→ Im(ρP) ∩ ΓeI/P(meI/P) given by x 7→ (x mod P) has finite cokernel.

Proof. Let H := {g ∈ Im(ρI)| det(g) ∈ Γ and (g mod meI) ∈ U(F)} for F = Ĩ/meI and S = H∩SL2 (̃I)
for Γ = {ts} ⊂ Λ×. By (GaleI), we find τ ∈ ρI(Dp) ∩ H such that τ = ( t ∗

0 1 ). By (Det), the

group H is an open subgroup of Im(ρI). Thus we prove the image SP of S in SL2 (̃I/P) is open in

Im(ρP)∩SL2 (̃I/P). Let HP be the image of H inGL2 (̃I/P). Since H is open in Im(ρI), HP is open in

Im(ρP). Put S
′
P = HP ∩SL2 (̃I/P). Since HP is open in Im(ρP), S

′
P is open in Im(ρP)∩SL2 (̃I/P).

On the other hand, set T ′ = {τ s|s ∈ Zp}. We have H = T ′ n S since T ′ projects down (under the

determinant map) isomorphically to Γ. In the same way, for the image T ′
P of T ′ in GL2(I/P), we

have HP = T ′
P n S

′
P. For g in HP, lifting g to H, det g ∈ ΓP, so taking s ∈ Zp with “τ s = det(g)”,

we have g = τ sg1 with g1 = τ−sg ∈ G. Then g = τ sg1 for g1 = (g1 mod P) and τ s = (τ s mod P).

Thus we have SP = S
′
P. Then the assertion is clear from this identity. �

Lemma 3.2. Take a non CM component I. Let P ∈ Spec(Λ) be an arithmetic point. Suppose
(GalIP ) for ρI. If one of the three conditions (1–3) of Lemma 2.9 is satisfied for G and P , there
exists a representation ρ ∼= ρI (over IP ) such that the projected image Im(ρP I) in GL2(IP /P IP )
contains an open subgroup of SL2(Zp) and Im(ρ) still satisfies the condition (B) of Lemma 1.3.

For each arithmetic point P ∈ Spec(Λ), IP is étale over ΛP ; so, ĨP = IP .

Proof. We pick a prime divisor P of Ĩ over P , and consider the Hecke eigenform fP associated to

P; so, fP|T (l) = aP(l)fP for primes l, where aP(l) = (T (l) mod P) ∈ Qp. Let f◦P be the new form
in the automorphic representation generated by fP. By Proposition 5.1, f◦P does not have complex

multiplication. Then by a result of Ribet [R85], the Galois representation ρP associated to the non
CM new form f◦P has image containing an open subgroup of SL2(Zp), up to conjugation by an

element in B(κ(P)) (because of the Iwasawa decomposition of GL(2)). Conjugating ρP by an upper
triangular matrix, we may assume that Im(ρP) contains an open subgroup of SL2(Zp) (and the
condition (B) in Lemma 1.3 is intact). To show the lemma, we may replace G by an open subgroup
of G as long as the replacement still satisfies one of the three conditions (1–3) of Lemma 2.9. We

may thus replace G by S in the proof of Lemma 3.1. Hence the reduction map S→ SP is surjective,

and SP is open in Im(ρP). Thus SP ∩SL2(Zp) is an open subgroup of SL2(Zp). This fullness of ρP

holds for all prime divisor P|P in Ĩ. Then the result follows from Lemma 2.9 applied to this S. �

By Theorem 2.12 combined with the above lemma, we can choose a representative ρI in its
isomorphism class over Q(I) so that we have a nontrivial conductor c with G ⊃ ΓΛ(c) and an
effective divisor (L) ⊂ Spec(Λ) such that (ΓΛ(L) : ΓΛ(c)) is finite. This proves Theorem I in the
introduction except for the uniqueness of (L) depending only on the isomorphism class of ρI in

GL2 (̃I) for the normalization Ĩ of I. In the rest of this section, we discuss the uniqueness of cP
(under an appropriate modification of ρI if ρ is reducible). Then we define L := L(I) as a generator
of
⋂
P cP for P running over all prime divisors of Λ.

Lemma 3.3. Let the notation be as above and P be a prime divisor of Λ. Take a non CM

component I of h with normalization Ĩ, and suppose to have an associated Galois representation

ρI : Gal(Q/Q) → GL2 (̃I) whose image contains ΓΛ(a) for a non-zero Λ-ideal a. Let c be the con-

ductor of the intersection Im(ρI) ∩ SL2(Λ). Assume that ρI leaves an ĨP -lattice LP ⊂ Q(I)2 stable.
Then the localization cP depends only on LP up to scalars. If ρP is absolutely irreducible for all

prime divisors P ∈ Spec(̃I) over P , then cP is independent of the choice of LP .

The point of this lemma is that whatever choice of u ∈ GL2(Q(I)) with uLP = LP , as long
as Im(u · ρIu

−1) has nontrivial conductor, its localization at P is equal to cP for the conductor c

of the original choice ρI. This lemma proves the uniqueness of (L) in Theorem I under absolute
irreducibility of ρ (and finishes the proof of Theorem I). In this lemma, only assumptions are (F)
and the existence of a (no condition like (GalA) is assumed).
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Since the lemma concerns only the intersection of Im(ρI) with SL2(Λ), without losing generality,

we may regard ρI having values in a larger Λ-subalgebra in Q than Ĩ. Replacing Ĩ by the integral

closure of Λ in the Galois closure in Q of Q(I) over Q, we assume that Ĩ is a Galois covering of Λ.

Proof. Write cP = Pm in the discrete valuation ring ΛP . We study dependence on LP . Write

G = Im(ρI) ∩ SL2(Λ), where ρI is chosen in the isomorphism class of ρeIP
over ĨP so that G has

nontrivial conductor c. This is just a choice of a starting lattice L, and we want to first prove the
ideal cP = cP (L) := cΛP (for localization ΛP of Λ at P ) is equal to cP (L′) for any other choice

L′ = zL for a scalar matrix z ∈ GL2(Q(̃I)). Identifying LP = Ĩ2P and writing L0
P = Λ2

P ⊂ LP , we

find LP = L0
P ⊗ΛP ĨP , and L0

P is stable under G.

We have another ρ′I : Gal(Q/Q) → GL2 (̃IP ) realized on L′
P with nontrivial conductor c(L′);

so, writing Z for the center of the algebraic group GL(2), we find h ∈ Z(Q(̃I))GL2 (̃IP ) such that
h(L′

P ) = LP and hρ′Ih
−1 = ρI. We put H = Im(ρ′I) ∩ SL2(Λ). Then we have the conductor ideal

c′ 6= 0 of H . Thus G ∩ H ⊃ Γ(c ∩ c′) and c ∩ c′ 6= 0. This shows ρI and ρ′I are both absolutely

irreducible over G ∩H . For σ ∈ Gal(Q(̃I)/Q) and g ∈ G ∩H , we have

hσρ′I(g)h
−σ = (hρ′I(g)h

−1)σ = ρI(g)
σ = ρI(g) = hρ′I(g)h

−1.

Thus h−1hσ commutes with ρI|G∩H . By absolute irreducibility of ρI|G∩H , h−1hσ is a scalar zσ ∈
Q(̃I)×. Thus σ 7→ zσ is a 1-cocycle of H with values in Q(̃I)×. By Hilbert’s theorem 90, zσ = ζ−1ζσ

for ζ ∈ Q(̃I)× independent of σ. Then replacing h by hζ−1, we may assume that h ∈ GL2(Q).

Note that h = zu with u ∈ GL2 (̃IP ). Since h ∈ GL2(Q), the elementary divisor z of h can be
chosen in GL2(Q); so, we may assume that z is a scalar matrix in GL2(Q); so, u ∈ GL2(ΛP ). Thus
G = h ·Hh−1 ⊂ SL2(ΛP ), and Γ(c) ⊂ G ⊃ hΓ(c′)h−1 = zΓ(c′)z−1 = Γ(c′). Since z is a scalar, this
implies cP = c′P and hence (L)P is independent of choice of LP up to scalars.

If ρP is absolutely irreducible for all P|P , the P -adic completion L̂P =
∏

P|P L̂P is unique up

to scalars by a result of Serre/Carayol [C94], where L̂P is the P-adic completion of LP . So the
independence of (L)P on L follows. �

Corollary 3.4. Let I be a non CM component and pick ρI with values in GL2(̃I). Let P be a prime
divisor of Λ, and assume (GaleI). Suppose one of the following three conditions:

(1) We have σ ∈ Dp such that Ad(ρ(σ)) has three distinct eigenvalues in Fp;
(2) We have σ, υ ∈ Dp such that ρ(σ) has two distinct eigenvalues in Fp and ρ(υ) is a nontrivial

unipotent element in SL2(F);
(3) We have σ, υ ∈ Dp such that ρ(σ) has two distinct eigenvalues in Fp and ρP(υ) is a nontrivial

unipotent element in SL2(κ(P)) for all prime divisors P|P of Ĩ.

Assume that Im(ρI) has conductor c. Then P - cP for a prime divisor P of Spec(Λ) if and only if

GP for all prime divisors P|P in Ĩ contains an open subgroup of SL2(A0), up to conjugation.

Proof. We may assume that ρ(σ) and ρI(υ) are upper triangular by (GaleI). We replace G by its open

p-profinite subgroup {g ∈ G|(g mod mI) ∈ U (̃I/meI)}. Then G is p-profinite, and all the assumptions
are intact. In particular, it is still normalized by ρ(σ) in the assumptions (1–3) and contains ρ(υ) for
υ in the assumption (2) and (3). By this modification, the assumptions of Lemma 2.9 is satisfied.
Indeed, we may take j = limn→∞ ρ(σ)p

n

, and the unipotent part of ρ(υ) (which is found in G by a
similar argument proving Lemma 1.4) does the job for υ in Lemma 2.9 (2-3). Thus we can apply

Lemma 2.9 in this setting. The direction (⇒) is plain; so, we assume that GP contains an open

subgroup of SL2(A0) for all P|P . Then by Lemma 3.2, GP contains an open subgroup of SL2(A0).
Then we find α ∈ B(IP ) such that for ρ′ := αρIα

−1, Im(ρ′) has conductor c′ prime to P . Since ρI

and ρ′ are equivalent under GL2(IP ), by the above lemma, we find cP = c′P . Thus we get P - c. �

When ρP is reducible for some P|P , we have ρ ∼=
(
θ 0
0 ψ

)
for a character ψ unramified at p. In

this case, we need to worry if we can define an optimal level L(I). Our idea is to take ρI among its
isogeny class with the deepest level at P. As already explained, this choice should be given by the

representation realized by Lcan ⊗I ĨP. We call a prime divisor P of I reducible if ρP is reducible.
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Lemma 3.5. Let I be a non-CM component with normalization Ĩ and put G = SL2 (̃I) ∩ Im(ρI).
Suppose one of the conditions (1–3) in Corollary 3.4 and (R) and (F) for ρI. Suppose that there
is no quadratic field M/Q such that ρ is isomorphic to an induced representation from Gal(Q/M).

Let P be a prime divisor of Λ with a reducible prime divisor P of Ĩ above P , and assume (GaleIP
).

Then we can find α ∈ B(Q(I)) such that αGα−1 ∩ U(Λ) is equal to ( 1 u
0 1 ) for a Λ-ideal u prime

to P and αGα−1 ⊂ SL2 (̃IP ). Moreover, defining cP by a ΛP -ideal given by ΛP ∩ ĨP · n(α)
t for

n
(α)
t = {u ∈ ĨP | ( 1 0

u 1 ) ∈ αGα−1}, the ΛP -ideal cP ⊂ ΛP is independent of the choice of α.

Under the circumstances in the lemma, for each prime divisor P over which we have no reducible
prime divisor P|P of I, we put cP = ΛP . Then, abusing the language slightly, we set (L(I)) to be
the principal ideal

⋂
P cP . Non-existence of quadratic fields M as in the lemma is equivalent to the

fact that θ
−1
ψ is not a quadratic character (as we will see later in the proof of Theorem 8.8), and

if θ
−1
ψ|Ip has order ≥ 3, plainly the condition (1) of Corollary 3.4 is satisfied.

Proof. We may replace G by {g ∈ Im(ρI)∩ SL2 (̃I)|(g mod meI) ∈ U (̃I/meI)}. Then G is a p-profinite

subgroup of SL2 (̃I). We proceed as in the proof of Lemma 2.9 looking into bothM(G) andM1(G)
described above Theorem 1.1. Pick another prime divisor P ∈ Spec(Λ) such that the image of
ρPI = (ρI mod PI) contains an open subgroup of SL2(Zp) (any arithmetic prime does the job

by Lemma 3.2). Then the derived group G
′
P of the image GP in SL2 (̃I/P Ĩ) of G contains an

open subgroups of SL2(Zp). In the same manner as in the proof of Lemma 2.9, we find that

U := G∩U (̃I) contains the non-trivial image of U′ = G′ ∩U (̃I) in U (̃IP/P ĨP ), and for the Λ-module

n′ = {u ∈ Ĩ| ( 1 u
0 1 ) ∈ G}, the ĨP -ideal ĨP · n′ is prime to P. Then picking b ∈ n′ with non-trivial

image in ĨP/P ĨP , we find β =
(
b−1 0
0 1

)
∈ B(̃IP ) such that βGβ−1 ∩ U(Λ) contains U with U 6= 1,

and βGβ−1 has conductor cβ 6= 0. Put n′
t = {u ∈ Q(I)| ( 1 0

u 1 ) ∈ βGβ−1} ⊂ Ĩ.

We now work over the ring D = ĨP ∩ ĨP ⊂ Q(I). The ring D is semi-local of dimension 1 whose
localizations are all discrete valuation ring, hence it is a principal ideal domain (cf. [BCM, VII.3.6]).

Let n0 = {u ∈ Ĩ| ( 1 u
0 1 ) ∈ G}. Then we find a ∈ D with D · n0 = (a). We put α =

(
a−1 0
0 1

)
∈ B(Q(I)).

Let N = I ·nt for nt = {u ∈ Q(I)| ( 1 0
u 1 ) ∈ αGα−1}, and put n = {u ∈ Q(I)| ( 1 u

0 1 ) ∈ αGα−1} which is
contained inD because D ·n0 = (a). In any case, αGα−1 has conductor cα 6= 0. If P′|P and Im(ρP′ )

contains an open subgroup of SL2(A0) (for A0 with respect to κ(P′)), then a ∈ Ĩ×P′ and nP′ = ĨP′ .

If ρP′ is absolutely irreducible but not full, the only possibility is ρP
∼= IndQ

M λ (by Lemma 2.1 or

Lemma 8.4), where M is a quadratic field and λ : Gal(Q/M)→ κ(P′)× is a character. Then ρ must
be an induced representation from Gal(Q/M), which is prohibited by our assumption. Thus the
conjugation by α has the following effect for P|P and P′|P :

• for P′ with irreducible ρP′ , we have nP′ = ĨP′ ,

• for P with reducible ρP, it maximizes nP to nP = ĨP for P, and u becomes prime to P ,

• for P with reducible ρP, it minimizes nt,P = ĨP · nt.
Thus u, n, nt ⊂ D with Du = D, and we have still αGα−1 in SL2(D) ⊂ SL2 (̃IP ). Therefore
G := αGα−1 ∩ SL2(Λ) has the maximal upper unipotent subgroup of the form

(3.1) U(u) =
{
( 1 b

0 1 )
∣∣b ∈ u

}

for an ideal u ⊂ Λ prime to P . We put Cα = (I · nt) ∩ Λ for nt defined for this αGα−1.

We want to show that Cα,P := ĨP · Cα is independent of the choice of a and P. Choose another
point P ′ such that the image of ρP′I = (ρI mod P ′I) contains an open subgroup of SL2(Zp). Put

D′ = ĨP ∩ ĨP′ ∩ ĨP , and choose a generator (b) = D′ · n. Then for α′ =
(
b−1 0
0 1

)
, α′α−1 ∈ B(̃IP ) as

aĨP = ĨP · n = b̃IP . Since α′α−1 ∈ B(̃IP ) is diagonal, we find Cα,P = Cα′,P . Thus cP = Cα,P is
independent of the choice of (a,P). For any other prime divisor P ′ with absolutely irreducible ρP′

for all P′|P ′, we choose γ ∈ B(̃IP ′ ) so that γGγ−1 contains ΓΛ(a) 6= 1. Let cγ be he conductor ideal
of γGγ−1 . Then, as we have seen, under non-existence of the quadratic field M , Im(ρP′ ) contains
an open subgroup of SL2(A0) for all P′|P ′, and by Lemma 2.9, cγ,P ′ = ΛP ′ . Thus our definition of
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cP ′ = ΛP ′ is legitimate, and cP ′ = cγ,P ′ = ΛP ′ . Then (L(I)) is the principal ideal
⋂
P ′ cP ′ , which is

thus independent of our choice of the pair (a,P). �

In this reducible case, assuming that there is no quadratic field M/Q such that ρ is isomorphic

to an induced representation from Gal(Q/M), we define (L(I)) as in the above proof.

Corollary 3.6. Let the notation and the assumption be as in Lemma 3.5. Normalize ρI as in
Lemma 3.5. Let P ∈ Spec(Λ) be a prime divisor prime to (p) such that ρP is reducible for some

prime divisor P|P of Ĩ. Then we have

(1) For c defined after Lemma 3.5, we have cP = ΛP · ut, where ut = {c ∈ Λ| ( 1 0
c 1 ) ∈ Im(ρI)}.

(2) For the conductor c′ of G, we have cP = c′P .

(3) The localization cP is equal to (
⋂

P|P aP) ∩ ΛP for the minimal ĨP-ideal aP such that the

reduction (ρI mod aP) has values in B(̃IP/aP) (up to conjugation).

Proof. We first prove (1) and (3). By the proof of the above lemma, cP = (̃IP · nt) ∩ ΛP , which is

equal to (ΛP · nt) ∩ ΛP since nt is a Λ-module. Thus ĨP cP ⊂
⋂

P|P aP. Let ρi = (ρI mod i) for

an ideal i of ĨP. Suppose that aP ) cP = ĨPcP , for i = aPP, consider ρi. Note that G acts on

sP = ĨP · M0(G) ⊂ s′P = ĨP · M0
1(G) by adjoint action. Consider the image sb of sP in sl2 (̃IP/b)

for an ĨP-ideal b. Then we have an exact sequence of ĨP[G̃]-modules 0 → V → si → saP
→ 0

for G̃ = Im(ρ′I). Then V is a κ(P) vector space of dimension at most 3. If V is made up of

upper triangular matrices, si ⊂ B(̃IP/i), and ρi has values in B(̃IP/i), a contradiction to the

minimality of aP. Thus we have 0 6= X = ( 0 0
v 0 ) ∈ V ∩ tU(̃IP/i). We also have Y = ( 0 1

0 0 ) ∈ n.

Then 0 6= [X, Y ] =
(
v 0
0 −v

)
. This shows that dimκ(P) V = 3. By Nakayama’s lemma, we find

V = Ker(sP → saP
) = aP · sl2 (̃IP). This shows aP = ĨPnt ⊃ ĨPut for ut = nt ∩ Λ.

To show aP = ĨPut, replace Q(I) by its Galois closure over Q and Ĩ by the integral closure in

the Galois closure. Thus Ĩ/Λ is a Galois covering with finite Galois group g. Then aP = Pε(P).
We take ε = max(ε(P))P|P and write P ε = Pε ∩ Λ which is independent of the choice of P. Let

P εĨP = Pe. Replace G by {g ∈ G|(g mod P ε) ∈ B(̃IP /P
εĨP )). Then by the above argument, for

the kernel V = Ker(sP ε → sP ε) is given by P ε · sl2 (̃IP ). Thus nt has v with non-zero image in

Pe/Pe+1 for all P|P . By Nakayama’s lemma again, we have V = ĨP v = P ε · tU(̃IP ); so, ĨP v is a

g-module, and ut ⊂ H0(g, ĨPv) =: u′t. We have an exact sequence 0→ PV → V → V → 0. Taking
g-invariant, we have another exact sequence 0 → H0(g, PV ) → H0(g, V ) → H0(g, V ) → 0 as V

and V is a Qp-vector space. This shows ĨP u′t = P εĨP . Thus u′t ĨP ∩ ΛP = nt ĨP ∩ ΛP , which implies

u′t = ĨP nt ∩ ΛP = ΛPut, by definition. Then we have cP = ΛPut = P εΛP . By our construction, we

get cP = P εĨP =
⋂

P|P aP ∩ ΛP , proving (1) and (3).

We prove (2). Since we normalized G by conjugating by α as in the proof of Lemma 3.5, by (3.1),
for G := G ∩SL2(Λ), we have G ∩U(Λ) = U(u) =

{
( 1 b

0 1 )
∣∣b ∈ u

}
for an ideal u ⊂ Λ prime to P . By

a simple computation, for c ∈ ut, we have

( 1 b
0 1 ) ( 1 0

c 1 ) =
(

1+bc b
c 1

)

(
1+bc b
c 1

) (
1 −(1+bc)−1b
0 1

)
=
(

1+bc 0
c 1−bc(1+bc)−1

)

(
1 0

−c(1+bc)−1 1

)(
1+bc 0
c 1−bc(1+bc)−1

)
=
(

1+bc 0
0 (1+bc)−1

)
.

(3.2)

Thus M1(G) contains A :=
{(

a b
c −a

) ∣∣a ∈ (p) ∩ uut, b ∈ (p) ∩ u, c ∈ ut
}
. This shows the existence of

c′′ with c′′P = ut,P = cP such that ΓΛ(c′′) ⊂ G. Thus c′′ ⊂ c′. By (1) and (3), it is clear to have
c′′P ⊃ c′P . This finishes the proof of (2). �

4. Eisenstein components

We now describe explicitly the congruence between the Eisenstein component and the cuspidal
component (a description of Eisenstein ideal in the big Hecke algebra) via the theory of Λ-adic form.
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We first define the Eisenstein component of the space of Λ-adic forms. Let M(N, χ1; ΛW ) (resp.
S(N, χ1; ΛW )) be the space of p-ordinary ΛW -adic modular forms (resp. p-ordinary ΛW -adic cusp
forms). ThusM(N, χ1; ΛW ) (resp. S(N, χ1; ΛW )) is a collection of all formal q-expansions F (q) =∑∞

n=0 a(n, F )(T )qn ∈ ΛW [[q]] such that fP =
∑∞

n=0(a(n, F ) mod P )qn gives rise to a modular form

in Mord
k+1(Γ0(Np

r(P)+1), εPχk(P)) (resp. Sordk+1(Γ0(Np
r(P)+1), εPχk(P))) for all arithmetic points P ,

where pr(P) is the order of εP . Again F 7→ fP induces an isomorphism

M(N, χ1; ΛW )⊗ΛW ΛW /P ∼=Mord
k+1(Γ0(Np

r(P)+1), χkεP ;W [εP ])

for all arithmetic points (see [GME] Theorem 3.2.15 and Corollary 3.2.18 or [LFE, §7.3]). This
implies that M(N, χ1; ΛW ) and S(N, χ1; ΛW ) are free of finite rank over ΛW , and the ΛW -module
M(N, χ1; ΛW ) (resp. S(N, χ1; ΛW )) is naturally a faithful module over H (resp. h). The above
specialization map is compatible with the Hecke operator action. Recall the quotient field Q of Λ,
and take an algebraic closure Q of Q. We can extend scalars to an extension A/ΛW inside Q to
define S(N, χ1;A) = S(N, χ1; ΛW ) ⊗ΛW A and M(N, χ1;A) = M(N, χ1; ΛW ) ⊗ΛW A. If A = I
is finite over ΛW , associating the family {fP}P∈Spec(I) to a form F ∈ M(N, χ1; I), we may regard
these as spaces of “analytic families of slope 0 of modular forms” with coefficients in I (we also call
them the space of I-adic p-ordinary cusp forms and the space of I-adic p-ordinary modular forms,
respectively). See [LFE, Chapter 7], [GME, Chapter 3] and [H86a] for these facts.

Let QW = Q(ΛW ) (and regard QW as a subfield of Q when W is finite over Zp). Then we have

M(N, χ1;QW ) = S(N, χ1;QW ) ⊕ E(N, χ1;QW )

as modules over H. The space E(N, χ1;QW ) is spanned by Λ-adic Eisenstein series. Assuming
that N is cube free, we make explicit the Eisenstein series: For any character ψ : (Z/M1Z)× →
W×, θ : (Z/M2Z)× →W× with ψθ = χ1, M1M2|Np, p|M2 and p - M1, there exists a unique Λ-adic
Eisenstein series in M(N, χ1;QW ) defined by its q-expansion:

a(θ, ψ)(T ) +

∞∑

n=1


 ∑

0<d|n,p-d

θ(d)ψ(
n

d
)〈d〉(T )


 qn,

where 〈d〉(T ) = tlogp(d)/ logp(γ), a(θ, ψ) = 0 if ψ is non-trivial, and otherwise, writing 1M for the
trivial character modulo M , a(θ, 1M1) = 1

2G(T ) ∈ QW with

G(γk − 1) = (1− θk+1(p)p
k)L(M1)(−k, θk+1) for all 0 ≤ k ∈ Z.

As a convention, we put θ(d) = 0 if d has a nontrivial common factor with M2 and that ψ(d) = 0
if d has a nontrivial common factor with M1, and also θk is the character of (Z/M2pZ)× given by
θk = θω1−k. We define L(M1)(s, θk+1) =

∑∞
n=1 θk+1(n)n−s for this possibly imprimitive θk+1. The

existence of the above Eisenstein series is proven under M1M2|Np (cf. [H86a, Theorem 7.2] or [O03,
§1.4]). Counting number of pairs (θ, ψ), we prove that they span over QW a Hecke stable subspace
E(N, χ1;QW ) inM(N, χ1;QW ) complementary to S(N, χ1;QW ) if N is cube free (e.g., [H86b, §5]).

Our next goal is to extend Ohta’s construction of Eisenstein series to imprimitive ones assuming
that N is cube-free. In this way, we explicitly make a canonical Hecke eigenbasis of the Eisenstein
component, which enables us to split Ohta’s residue exact sequence (4.1) in Proposition 4.2 and us
to compute the characteristic power series of the Eisenstein congruence module in Corollary 4.3.

Let us prepare some notation to state Ohta’s exact sequence. For a profinite group G, we write
W [[G]] = lim←−HW [G/H ] for the continuous group algebra, where H runs over open subgroups of G.

In particular, for the multiplicative group Γ = 1 + pZp ⊂ Z×
p , we can identify W [[Γ]] with ΛW by

sending γ ∈ Γ to t. Let Cr = Cr(N) be the set of all cusps of Xr := X1(Np
r+1)(C), and consider the

formal linear span W [Cr] = {∑s∈Cr
ass|as ∈ W}. Write simply Γr := Γ1(Np

r+1). Since the Hecke

correspondence Tr,s(α) ⊂ X1(Np
r)×X1(Np

s) associated to the double coset ΓsαΓr for α ∈ GL2(Q)
(with det(α) > 0) gives rise to a correspondence on Cr ×Cs for r, s ≥ 0, the Hecke correspondences
acts on W [Cr]. In particular, W [Cr] is equipped with the action of T (l), T (l, l) in [IAT, Chapter 3]
and U(q) (q|Np), 〈z〉 = zp · [ΓrσzΓr ] for z = (zp, zN) ∈ Z×

p × (Z/NZ)× with zp ∈ Z×
p , where

σz ∈ SL2(Z) with σz ≡ ( ∗ 0
0 z ) mod Npr. The coset [q] = [Γ(Npr)

(
q 0
0 1

)
Γ1(Np

r/q)] for a prime q|N
gives rise to a linear map [q] : W [Cr(N)] →W [Cr(N/q)].
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These operators are computed explicitly, choosing a standard representative set ANpr/ ∼ (see
below for ANpr ) for the cusps Cr(N) := Γ1(Np

r)\P1(Q) ⊂ Xr(C) in [O03, §2.1], where the action
of T (l) (l - Np) is denoted by T ∗(l) and U(q) (q|Np) is denoted by T ∗(q) in Ohta’s paper. The
covering map Xs � Xr for s > r induces a projection πs,r : W [Cs] � W [Cr], and we define
W [[C∞(N)]] := lim←−rW [Cr(N)]. Since Hecke operators T (l), l · T (l, l) = 〈l〉 for l - Np, U(q), 〈z〉 and

[q] are compatible with the projection πs,r, these operators act on W [[C∞(N)]]. We let the group
Z×
p × (Z/NZ)× act on W [[C∞]] by the character l 7→ l · T (l, l) for primes l diagonally embedded

in Z×
p × (Z/NZ)×. Thus W [[C∞(N)]] is a module over W [[Z×

p × (Z/NZ)×]] = lim←−rW [(Z/NprZ)×]

via the action of 〈z〉 and hence is a module over ΛW = W [[Γ]] as Γ ⊂ Z×
p . Then we confirm

T (l), T (l, l), U(q) ∈ EndW [[Γ]](W [[C∞(N)]]) and that [q] : W [[C∞(N)]]→W [[C∞(N/q)]] are W [[Γ]]-

linear maps. Then the p-adic projector e = limn→∞ U(p)n! is well defined onW [Cr] and on W [[C∞]].
Recalling the identification W [[Γ]] with ΛW = W [[T ]] by γ = 1 + p 7→ t, we endow e ·W [[C∞]] with
a ΛW -module structure. On e ·W [[C∞]], Hecke operators acts ΛW -linearly. As proved in [O99,
Proposition 4.3.14], e ·W [[C∞]] is free of finite rank over ΛW (and the rank is given explicitly there).
Ohta’s choice of the action of Z×

p ×(Z/NZ)× is one time twist of our action by the p-adic cyclotomic
character; so, the definition of E(θ, ψ) looks a bit different from ours, but our definition is equivalent
to that of [O03] with this twist. Supposing that p - ϕ(N) = |(Z/NZ)×|, we can decompose

e ·W [[C∞]] =
⊕

ψ

e ·W [[C∞]][ψ],

where e ·W [[C∞]][ψ] is the ψ-eigenspace of a character ψ : (µp−1 × (Z/NZ)×) → W× regarding
(µp−1 × (Z/NZ)×) ⊂ Z×

p × (Z/NZ)×. Then from a result of Ohta [O03, (2.4.6)], assuming p ≥ 5,
for a prime divisor P ∈ Spec(ΛW ) prime to (ϕ(N)) = ϕ(N)ΛW , we deduce a P -localized version of
the canonical exact sequence of Hecke equivariant maps in [O03, (2.4.6)]:

(4.1) 0→ S(N, χ1; ΛW )P →M(N, χ1; ΛW )P
Res−−→ e ·W [[C∞]][χ1]P → 0,

where the last map Res is canonical and called the residue map in [O03]. This sequence is valid
without localization if p - ϕ(N). Thus as Hecke modules, e ·W [[C∞]][χ1]⊗ΛW Q ∼= E(N, χ1;Q).

We extend this definition of e ·W [[C∞]]. Take a prime q outside pN and consider the C-points of
the elliptic Shimura curve X(N ; qj) = GL2(Q)\(GL2(A

(∞)) × (C − R))/∆(Nqj) and its connected

component X(N ; qj) = SL2(Q)\(SL2(A
(∞)) ×H)/∆(Nqj) ∩ SL2(A

(∞)), where

∆(Nqj) = Γ̂1(N) ∩ Γ̂(qj), Γ̂(qj) =
{
x ∈ GL2(Ẑ)

∣∣x ≡ 1 mod qjM2(Ẑ)
}
,

Γ̂1(N) =
{
x ∈ GL2(Ẑ)

∣∣x ≡ ( ∗ ∗
0 1 ) mod NM2(Ẑ)

}
.

(4.2)

Note that X(N ; qj) is isomorphic to a disjoint union of copies of X(N ; qj) indexed by (Z/qjZ)×.
We write C(N ; qj) (resp. C(N ; qj)) be the set of cusps of X(N ; qj) (resp. X(N ; qj)). Then we have
C(Npr; qj) ∼= {(AN/ ∼) ×Aqj}/{±1}, where

AN =

{(
x

y

)
∈ (Z/NZ)2

∣∣x(Z/NZ) + y(Z/NZ) = Z/NZ

}

with
(
x
y

)
∼
(
x′

y′

)
⇔ y = y′ and x ≡ x′ mod y(Z/NZ). If {±1} acts freely on AN , we have

C(N ; qj) ∼= ((AN/ ∼) ×Aqj )/{±1} ∼= ((AN/ ∼)/{±1})× Aqj .

Replacing the auxiliary level N by Npr for sufficiently large r (noting p ≥ 5), we may assume that
{±1} acts freely on ANpr . Thus for r� 0, we have

C(Npr ; qj) ∼=
⊔

(Z/qjZ)×

((ANpr/ ∼)× Aqj )/{±1} ∼=
⊔

(Z/qjZ)×

((ANpr/ ∼)/{±1} ×Aqj ).

As before (see [O03, §2.1]), GL2(Zq) acts on Aqj by natural left multiplication on column vectors.
Then u ∈ GL2(Zq) acts on

⊔
(Z/qjZ)× Aqj via this multiplication but also permuting indices in

(Z/qjZ)× via multiplication by det(u). The set C(Npr ; qj) of cusps inherits the GL2(Zq)-action
from the curve X(Npr ; qj), and this action is compatible with the action (including permutation
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of the components) on
⊔

(Z/qjZ)× Aqj . Consider W [[C(Np∞; qj)]] = lim←−rW [C(Npr ; qj)], which

is naturally a ΛW -module in the same manner as for W [[C∞(N)]] through the action of Z×
p on

(ANpr/ ∼). Then we define Vq = lim−→j
W [[C(Np∞; qj)]], where we regard

W [[C(Np∞; qj)]] =
⊕

(Z/qjZ)×

W [[C∞(N)]][Aqj ]

as a space of W [[C∞]]-valued functions on
⊔

(Z/qjZ)× Aqj , and by the pull-back of the projection⊔
(Z/qj+1Z)× Aqj+1 �

⊔
(Z/qjZ)× Aqj , we have taken the inductive limit. The idempotent e is well

defined on Vq, and we have e · Vq = lim−→j
e ·W [[C(Np∞; qj)]].

On the pro-curve X(Npr; q∞) = lim←−j X(Npr; qj) ∼= GL2(Q)\(GL2(A
(∞))× (C−R))/∆(Nq∞) for

∆(Nq∞) =
⋂
j ∆(Nqj) = {x ∈ ∆(N)|xq = 1}, GL2(Qq) acts by right multiplication, which induces

the (correspondence) action of GL2(Qq) on the cusps and induces a left action of GL2(Qq) on Vq.
This GL2(Qq)-action induces the action of the maximal open compact subgroup GL2(Zq) already
described on

⊔
(Z/qj Z)× Aqj . Plainly Vq is a smooth representation of GL2(Qq) with coefficients in

ΛW . At each finite q-level, e ·W [[C(Np∞; qj)]] is free of finite rank over ΛW as proved by Ohta in
[O99, §4.3]. Though the curve X1(Np

r) is specifically dealt with in [O99, §4.3], the argument for

X(Npr; qj) is the same, or actually for a suitable choice of g ∈ GL2(Qq) (such that g−1Γ̂(qj)qg ⊃
Γ̂1(q

2j)q for the principal congruence subgroup Γ̂(qj)q ⊂ GL2(Zq)), the right multiplication by

g induces a Γ-equivariant covering X1(Np
rq2j)

g−→ X(Npr ; qj)◦ for any geometrically connected
component X(Npr; qj)◦; so, Ohta’s result actually implies this finiteness. We have

H0(Γ̂(qj)q, e · Vq) = e ·W [[C(Np∞; qj)]],

which is free of finite rank over ΛW . Thus e · Vq ⊗ΛW QW is a finitely generated admissible smooth
representation of GL2(Qq), and e · Vq is a ΛW -lattice stable under the GL2(Qq)-action.

Over the pairs of characters (θ, ψ) defined modulo M1 and M2 respectively, we confirm that
E(N, χ1;Q) is a direct sum of Hecke eigenspaces spanned by E(θ, ψ). Let P ∈ Spec(ΛW ) be a
prime divisor. Assuming p - ϕ(N) if P is above (p) ⊂ Λ, it is easy to see that systems of the
Hecke eigenvalues of E(θ, ψ) are distinct modulo the prime divisor P . Thus e ·W [[C∞]][χ1]P =⊕

(θ,ψ) ΛW,P e(θ, ψ) for an eigen basis e(θ, ψ) with the same eigenvalues as E(θ, ψ). Ohta showed

(4.3) Res(E(θ, ψ)) = A(T ; θ, ψ)e(θ, ψ) for A(T ; θ, ψ) ∈ ΛW ,

where A(T ; θ, ψ) ∈ ΛW is given as follows ([O03, 2.4.10]). Taking the power series G(T ; ξ) ∈ ΛW so
that G(γs− 1; ξ) = Lp(−s, ξω) (γ = 1 + p) for the Kubota–Leopoldt p-adic L-function Lp(s, ξ) with
a primitive even Dirichlet character ξ, A(T ; θ, ψ) is given by, up to units in ΛW ,

(4.4)

{
T ′ ·G(T ; θψ−1ω)

∏
l|N{ω(l)l−1(〈l〉(T ) − θψ−1ω(l)l−1)} if (θ, ψ) = (ω−1

M2
, 1M1),

G(T ; θψ−1ω)
∏
l|N,l-C(θψ−1){ω(l)l−1(〈l〉(T ) − θψ−1ω(l)l−1)} otherwise,

where T ′ = t − γ−1 and C(ξ) is the conductor of the Dirichlet character ξ. Here ψM1 is a Dirichlet
character modulo M1. In the exceptional case (θ, ψ) = (ω−1, 11) (which is equivalent to the case of
(ω−2, 11) in Ohta’s paper), as is well known, the Eisenstein ideal is trivial and A(T ;ω−1, 11) ∈ Λ×.

Definition 4.1. (1) Let LN,χ1 be the product
∏

(θ,ψ),θψ=χ1
A(T ; θ, ψ) for the pairs (θ, ψ) run-

ning over all characters with M1M2|Np except for the pair induced by (ω−1, 11).
(2) Put θ = θ mod mW and ψ = ψ mod mW . Put L(θ, ψ) :=

∏
(θ,ψ)A(T ; θ, ψ) in I, where

(θ, ψ) runs over pairs of characters defined modulo M1p and M2, respectively, with M1M2|N
having reduction (θ, ψ) modulo p as characters of Z×

p × (Z/NZ)×.

Letting σ ∈ Dp act on W [[T ]] by (
∑

n anT
n)σ =

∑
n a

σ
nT

n, we know that A(T ; θ, ψ)σ =
A(T ; θσ , ψσ); so, LN,χ1 is Galois invariant, and hence LN,χ1 ∈ Λ = Zp[[T ]]. The following propo-
sition is basically proven in [O03, Theorem 1.5.5]. Since in the statement in [O03], he assumes
N |C(θ)C(ψ), we give a proof under cube-freeness of N via the theory of admissible representation
of GL2(Qq).
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Proposition 4.2. Let the notation be as above. Suppose p ≥ 5 and that N is cube free. Let P be a
prime divisor of ΛW prime to (LN,χ1) ⊂ ΛW and ϕ(N)ΛW . After tensoring the localization ΛW,P
at the prime P , Ohta’s exact sequence (4.1) is split as a sequence of HP -modules.

Proof. By assumption, if (θ, ψ) 6= (ω−1, 11), P - A(T ; θ, ψ) in W [[T ]]. Thus A(T ; θ, ψ) ∈ Λ×
W,P . So,

if N = 1, we can define Hecke equivariant section: e ·W [[C∞]][χ1] → M(N, χ1; ΛW ) by e(θ, ψ) 7→
E(θ, ψ) for (θ, ψ) 6= (ω−1, 11), and e(ω−1, 11) 7→ t · E(ω−1, 11) otherwise (t′ = t − γ−1). This gives
rise to a section over ΛW,P of HP -modules.

We proceed by induction on the number of prime factors of N . Suppose we have a section:

e ·W [[C∞(N/q)]]P →M(N/q, χ1; ΛW,P )

forM(N/q, χ1; ΛW,P ) =M(N/q, χ1; ΛW )⊗ΛW ΛW,P . Take (θ, ψ) with M1M2|N/q. We claim that

(C) the space V spanned by e(θ, ψ)|[q] and e(θ, ψ) in W [[C∞(N)]]P has rank 2 over ΛW,P , and
is a direct summand of e ·W [[C∞(N)]]P .

To prove this claim (C), we use the admissible representation (e · Vq) ⊗Λ Q of GL2(Qq) defined

for the prime to q-part N (q) of N (in place of N) whose detailed description is given just before
stating the proposition. Then e(θ, ψ) generates a principal series representation πq ⊂ e ·Vq ⊗ΛW QW
isomorphic to π(θq , ψ̂q) over QW , where ψ̂q : Q×

q → Λ× is the unramified character sending the prime
q to ψ(q)〈q〉, and θq is just the θ|Q×

q
regarding θ as an idele character. Then by the well known theory

of admissible representations if κ(P ) has characteristic 0 and by Vigneras’ modulo p representation
theory of admissible representations (see [V89, Theorem 3]) if P |(p), an old-new congruence at q

occurs only when the ratio (ψ̂q/θq)(q) is congruent to q±1 modulo P (for the maximal ideal P of

ΛW,P ). This cannot happen if P is over (p) because 〈q〉 = ζtlogp(q)/ logp(γ) for a root of unity ζ and

ts ≡ (1 + T p
m

)u = 1 + uT p
m

+ · · · mod p if s = pmu with u ∈ Z×
p .

If κ(P ) has characteristic 0, regarding P ∈ HomZp-alg(I,Qp), we have P (t) = u with |u− 1|p < 1.

Then P (ψ̂qθ
−1
q (q)− q±1) = ψθ−1(q)ulogp(q)/ logp(γ)− q±1 = 0 implies u = γ±1ζ for ζ ∈ µp∞(Qp). We

have P = (t − γ±1ζ); so, ψθ−1ω∓1(q)q±1ζ′ − q±1 = 0 for another p-power root of unity ζ′; hence,
µp∞ 3 ζ′ = θψ−1ω±1(q). Since P - (〈q〉(T )−θψ−1ω(l)q−1) (which is a factor of LN,χ1), we find that
P = (t− ζ′γ). Since P is now an arithmetic prime of weight 2 and N is cube-free, we know that H

and H2,ε are reduced algebras by [H13a] Corollaries 1.2 and 1.3 (in [H13a], only the cuspidal Hecke
algebra is dealt with, but the proof is the same for H). Thus HP is an algebra direct sum of the
Eisenstein part and the cuspidal part; so, the exact sequence has to split.

Thus hereafter, we may assume that (ψ̂q/θq)(q) 6≡ q±1 mod P. By the well known theory of ad-
missible representations if κ(P ) has characteristic 0 and by Vigneras’ modulo p representation theory

of admissible representations (see [V89, Theorem 3]) if P |(p), π(θq , ψ̂q) mod PΛW,P is irreducible.
The vectors e(θ, ψ) and e(θ, ψ)|[q] modulo PΛW,P in the irreducible πq := (πq mod PΛW,P ) are
linearly independent. This shows the above claim (C).

To make a section, first assume that q is prime to N/q. Letting (θ1, ψ) be the pair with θ1 which
is θ regarded as a character modulo M1q, we have e(θ1, ψ) = e(θ, ψ)− θq(q)e(θ, ψ)|[q] up to units in

ΛW,P by the argument in the previous section. Similarly e(θ, ψ1) = e(θ, ψ) − ψ̂q(q)e(θ, ψ)|[q] for ψ1

which is ψ regarded as a character modulo M1q. Then

Res(E(θ1, ψ)) = Res(E(θ, ψ) − θq(q)E(θ, ψ)|[q]) = Res(E(θ, ψ)) − θq(q)Res(E(θ, ψ))|[q],
Res(E(θ, ψ1)) = Res(E(θ, ψ) − ψ̂q(q)E(θ, ψ)|[q]) = Res(E(θ, ψ)) − ψ̂q(q)Res(E(θ, ψ))|[q].

Thus the section of level N/q extends to the level N .
Note that N is cube-free. Thus the remaining case is when q2|N . If C(θ) and C(ψ) are both

prime to q, by the irreducibility of πq, e(θ, ψ), e(θ, ψ)|[q] and e(θ, ψ)|[q]2 span a three-dimensional
subspace in πq . Thus we have e(θ1 , ψ1) = e(θ, ψ1) − θ(q)e(θ, ψ1) which does not vanish in πq.
Then e(θ1 , ψ1) 7→ E(θ1 , ψ1) gives a section on (θ1, ψ1)-eigenspace. If q|C(θ) but q - C(ψ), we define

e(θ1 , ψ) = e(θ, ψ1) − θ(q)e(θ, ψ1), and if q - C(θ) but q|C(ψ), e(θ, ψ1) = e(θ, ψ1) − ψ̂(q)e(θ, ψ1), and
the same argument works well. If q|C(θ) and q|C(ψ) but one of the characters is imprimitive at
another prime q′, we apply our argument to q′ in place of q, and we get the section. The case where
N |C(θ)C(ψ) is covered by Ohta’s result explained at the beginning of the proof. �
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Let E be the image of H in EndΛ(E(N, χ1; ΛW )) and define CE = h ⊗H E ∼= (h ⊕ E)/H (the
Eisenstein congruence module). As long as p - ϕ(N) and θ ramifies at p, ρm

∼= θ⊕ψ and (M1,M2) de-

termine a unique maximal ideal m = m(θ, ψ;M1,M2) of H (and E). Since (θ, ψ;M1,M2) determines

(θ, ψ;M1,M2) uniquely, we have Em = ΛW (as (θ, ψ) determines (θ, ψ) by p - ϕ(N)).

Corollary 4.3. If p - 6ϕ(N), N is cube-free and θ ramifies at p, then we have CharΛW (Cm) =

(A(T ; θ, ψ)) in ΛW for the localization CEm
of CE at m = m(θ, ψ;M1,M2), where A(T ; θ, ψ) is

defined for θ1 mod M1p and ψ mod M2.

Proof. We have a pairing H×M(N, χ1; ΛW ) given by (h, f) = a(1, f |h). If we define

M̃(N, χ1; ΛW ) = {f ∈M(N, χ1;QW )|a(n, f) ∈ ΛW for all n > 0}.

Then as is well known (see [H86a, §2]), this pairing H × M̃(N, χ1; ΛW ) is perfect; i.e., as ΛW -

modules, HomΛW (H,ΛW ) ∼= M̃(N, χ1; ΛW ) and HomΛW (M̃(N, χ1; ΛW ),ΛW ) ∼= H by sending the
linear form:

∑
n a(n, F )qn 7→ a(n, F ) (indexed by n) to the Hecke operator T (n). However, by

definition, M̃(N, χ1; ΛW )/M(N, χ1; ΛW ) ↪→ QW /ΛW by f 7→ a(0, f), and the inclusion f 7→ a(0, f)
is Γ-equivariant. The group Γ acts on the constant term by the character: Γ 3 z 7→ z−1 ∈ W×

(as by our choice of the action, weight 1 corresponds to the trivial action). This shows that after
inverting T ′ = t− γ−1 , the pairing is perfect between M(N, χ1;A) and H⊗ΛW A over the principal
ideal domain A := ΛW [ 1

T ′ϕ(N) ]. The ΛW -perfectness of the pairing on h × S(N, χ1; ΛW ) holds in

the same way as in the case of H without inverting T (or ϕ(N)). We have an integral H-linear map
I : e·W [[C∞]][χ1]→M(N, χ1; ΛW ) given by I(e(θ, ψ)) = E(θ, ψ) if (θ, ψ) is not induced by (ω−1, 11)
and I(e(θ, ψ)) = T ′E(θ, ψ) otherwise. Let m = m(θ, ψ;M1,M2), regard it as a maximal ideal of H,
and assume θψ−1(p) 6= 1. By [O03, Lemma 1.4.9], the multiplicity of the Hecke eigenvalues of
E(θ, ψ) is equal to 1 even modulo mΛ. Thus after localization at m,

W [[C∞]]m[
1

ϕ(N)
] ∼= W [[T ]][

1

ϕ(N)
]e(θ, ψ) ∼= Em[

1

ϕ(N)
]

as Hm-modules. Then we have

Res ◦ I(e ·W [[C∞]]m[
1

ϕ(N)
]) ∼=

W [[T ]][ 1
ϕ(N) ]

A(T ; θ, ψ)W [[T ]][ 1
ϕ(N)

]
e(θ, ψ) =: CEm

.

Putting S = S(N, χ1;QW ) ∩M(N, χ1;A) and E = E(N, χ1;QW ) ∩M(N, χ1;A) in M(N, χ1;QW ),
we have the following exact sequence of Hm-modules:

(4.5) 0→ Em ⊕ Sm →M(N, χ1; ΛW )m → C → 0 with C ∼= CEm
as Hm-modules.

Defining an A-dual module M∗ by M∗ = HomA(M,QW/A) for any torsion A–module M of finite
type, we have M ∼= M∗ (non-canonically) as A-modules, by the following lemma applied to the prin-
cipal ideal domainA. Noting that Hm⊗ΛWA (resp. (hm⊕Em)⊗ΛW A) is the A-dual ofM(N, χ1;A)m

(resp. Sm ⊕ Em) and again applying the following lemma to the exact sequence (4.5) tensored A
over ΛW , we have an Hm-linear isomorphism (CEm

)∗ ∼= CEm
⊗ΛW A; so, we get CharΛW (CEm

) =
CharΛW (CEm

) = (A(T ; θ, ψ)) inA. Since non-divisibilityT ′ - CharΛW (CEm
)CharΛW (CEm

) is known,
we have CharΛW (CEm

) = CharΛW (CEm
) = (A(T ; θ, ψ)) in ΛW as desired if p - ϕ(N). �

Lemma 4.4. Let A be a principal ideal domain with quotient field K. For each A-module M , we
define M∗ = HomA(M,K/A) and M∨ = HomA(M,A). For an exact sequence 0→M → N → T →
0 of A-free modules M and N of finite rank with A-torsion quotient T , we have a canonical exact
sequence of A-modules 0→ N∨ →M∨ → T ∗ → 0 and an isomorphism T ∗ ∼= T as A-modules.

Proof. Since A is a principal ideal domain, we have the following facts:

(1) M 7→M∗ is a perfect duality with M ∼= (M∗)∗ canonically for A-modules of finite type,
(2) if an A-module T is torsion of finite type, T ∼= T ∗ as A-modules non-canonically,
(3) if an A-module T is torsion of finite type, Ext1A(K/A, T ) ∼= T .
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By perfect duality, we have an exact sequence 0 → L∗ → N∗ → T ∗ → 0 of A-modules. Applying
the covariant functor X 7→ HomA(K/A,X) to this exact sequence and noting isomorphisms

HomA(K/A,M∗) ∼= HomA(K/A,HomA(M,K/A)) ∼= HomA(M ⊗A K/A,K/A) ∼= M∨

and Ext1A(K/A, T ∗) ∼= T ∗, we get the exact sequence 0→ N∨ →M∨ → T ∗ → 0. �

5. CM components

We study when a CM component of Spec(h) is a Gorenstein ring. The result is used to determine
the characteristic ideal of the congruence module of the CM component and other non-CM compo-
nents. The characteristic ideal is expected to give the level of non-CM components in the connected
component containing the CM component. We first quote the following fact from [H13a, Section 3]
(or [H11a] (CM1–3) in Section 1):

Proposition 5.1. Let Spec(J) be a reduced irreducible component of Spec(h) as in the introduction.

Write J̃ for the integral closure of J in its quotient field. The following five conditions are equivalent:

(CM1) F is a CM family with ρJ
∼= ρJ ⊗

(
M/Q

)
for a quadratic field M with discriminant D;

(CM2) The prime p splits in M , and we have ρJ
∼= IndQ

M ΨJ for a character ΨJ : Gal(Q/M)→ J̃×

with prime-to-p conductor C = C(ΨJ) unramified outside Cp. We have D ·N(C)|N ;

(CM3) For all arithmetic points P of Spec(J)(Qp), fP is a binary Hecke eigen theta series of the
norm form of an imaginary quadratic extension M/Q with prime-to-p conductor N(C)D;

(CM4) For some arithmetic point P of Spec(J)(Qp), fP is a binary Hecke eigen theta series of the
norm form of an imaginary quadratic extension M/Q with prime-to-p conductor N(C)D;

(CM5) For some arithmetic prime P , ρP is an induced representation of a character of Gal(Q/M)
with prime-to-p conductor C, where M is a quadratic extension of Q.

A binary Hecke eigen theta series of the norm form of an imaginary M is called a CM theta series.
See Section 10 for a description of the prime-to-p conductor of Galois representations. We write

C(ξ) (resp. C(ρ)) for the prime-to-p conductor of a Galois character ξ (resp. a two dimensional
Galois representation ρ). We say a Hecke eigenform f has conductor C(f) if the automorphic
representation generated by f has conductor C(f); so, f itself could be an old form. Recall that the
prime-to-p part C of this conductor C(f) is equal to the prime-to-p conductor C(ρf ) of the p-adic
Galois representation associated to f . We say that J has CM (or is a CM component) by M if one
of the above equivalent conditions is satisfied by an imaginary quadratic field M . In the rest of this
section, we fix a CM component J of h having CM by an imaginary quadratic field M . For ΨJ as in

(CM2) and a complex conjugation c ∈ Gal(Q/Q), we put

ψ = (ΨJ mod mJ), ψ
c
(σ) = ψ(cσc−1), ψ

−
= ψ/ψ

c
,

C = C(ρJ) = C(IndQ
M ΨJ) = N(C(ΨJ))D, C = C(ΨJ), c = C(ψ

−
), c′ = C ∩ C

(5.1)

for C = Cc, where N(a) is the norm of a fractional ideal a of M and C(ΨJ) is the prime-to-p
conductor. Then c = c, and c is a factor of c′ but may not be equal to c′.

Let Spec(hMcm) be the minimal closed subscheme of Spec(h) containing all reduced irreducible
components having CM by a fixed imaginary quadratic field M . We take the connected component
Spec(T) of Spec(h) containing Spec(J). Let Spec(Tcm) be the union of all reduced CM components
inside Spec(T). Note that Spec(Tcm) could contain components having CM by different imaginary
quadratic fields. We would like to know when Tcm is a Gorenstein ring or more strongly a local
complete intersection. This can be answered by proving Tcm is isomorphic to the continuous group
algebra W [[Zp]] for an appropriate ray class group Zp of M (see Lemma 5.5). Such an identification
could fail if either Spec(Tcm) intersects with Spec(hMcm) and Spec(hKcm) for different fields K and
M or Spec(Tcm) contains a union of two copies of Spec(W [[Zp]]); i.e., new and old (or old and old)
CM components coming from a primitive CM component. Here the word “primitive” is used in the
sense of [H86a] page 252 in §3. Thus we look for sufficient conditions to preclude these bad cases in
terms of level and the prime-to-p conductor of ρ. We start with a result simple but crucial for the
Gorenstein-ness of the CM local ring given in Proposition 5.7:



BIG GALOIS REPRESENTATIONS AND p-ADIC L-FUNCTIONS 25

Proposition 5.2. Let A be a p-profinite local integral domain for p > 2. Let M and K be two
distinct quadratic fields in Q. Suppose that we have continuous characters ϕ : Gal(Q/M) → A×

and φ : Gal(Q/K)→ A× with absolutely irreducible IndQ
M ϕ over Q(A) such that IndQ

M ϕ ∼= IndQ
K φ.

Write ϕσ for the character Gal(Q/M) 3 τ 7→ ϕ(στσ−1) for σ ∈ Gal(Q/Q) inducing the generator

of Gal(M/Q). If the representations IndQ
M ϕ ∼= IndQ

K φ are ordinary at p, then we have

(1) ϕ and φ are both of finite order,

(2) We have ϕσ =
(
MK/M

)
ϕ; so, ϕ− given by ϕ(ϕσ)−1 =: ϕ1−σ is equal to

(
MK/M

)
.

(3) If p does not ramify in MK/Q, ϕ and φ are both unramified at p.
(4) If ϕ ramifies at a prime factor of p, then p splits in M , ϕ is unramified at another prime

factor of p, p ramifies in K and φ is unramified at p.
(5) If K is real and IndQ

M ϕ is odd, M is imaginary and φ ramifies at exactly one real place.

Conversely, if ϕ− has order 2 and M is imaginary, we have two quadratic fields K,K′ distinct from
M with KM = K′M and finite order characters φ, φ′ such that IndQ

M ϕ ∼= IndQ
K φ
∼= IndQ

K′ φ′.

Here the word “ordinary” means that the representation restricted to a decomposition group at
p is isomorphic to an upper triangular representation with an unramified 1-dimensional quotient. In
our case, the restriction of, say, IndQ

M ϕ to a decomposition group at p is the direct sum ϕ⊕ϕσ (for

σ as in (2)) or 1 ⊕
(
M/Q

)
for the identity character 1. Then ordinarity implies that ϕ is at least

unramified at one prime in M over p.

Proof. Suppose IndQ
M ϕ ∼= IndQ

K φ. We first prove the assertion (2). Let N be the prime-to-p Artin

conductor of IndQ
M ϕ. For any prime l outside Np inert in K and split in M (such primes have

positive density), we have

0 = Tr(IndQ
K φ(Frobl)) = Tr(IndQ

M ϕ(Frobl)) = ϕ(l) + ϕ(lσ)

for σ ∈ Gal(Q/Q) inducing a generator of Gal(M/Q). Thus we have ϕ−(Frobl) = −1 if l is inert
in K and split in M (note here that −1 6= 1 because p > 2). For any other primes q outside Np
inert in K and split in M , ϕ−(Frobl) = −1 = ϕ−(Frobq). Since FroblFrob

−1
q fix MK, by moving

q, Chebotarev density tells us that ϕ− factors through Gal(MK/M). Since IndQ
M ϕ is absolutely

irreducible, we have ϕ 6= ϕσ (i.e., ϕ− 6= 1). Thus we conclude ϕ =
(
MK/M

)
ϕσ . This proves (2).

We now deal with the assertions (3) and (4). By the remark preceding this proof, we may assume
that ϕ is unramified at one prime factor pσ of p. If there is only one prime factor in M over p, this
forces ϕσ to be unramified at p. If there are two factors of p in M , either ϕ is unramified also at p

or K ramifies at p by (2). If K ramifies at p, there is only one prime factor in K over p, this forces

φ to be unramified at p. Thus if MK/Q is unramified at p,
(
MK/M

)
is unramified at p, and ϕ and

φ are both unramified at p. This proves (3) and (4).
To show (1), first suppose that ϕ ramifies at a prime factor p|p. Thus p ramifies in K and splits

in M . Then
(
MK/M

)
ramifies at two primes p and pσ, and therefore ϕ has to be unramified at pσ.

In short, ϕ ramifies at p and unramified at pσ . Since p ramifies in K, ordinarity of IndQ
K φ forces φ

to be unramified at p; so, φ factors through a finite ray class group ClK(f′) for an ideal f′ prime to

p. Thus IndQ
M ϕ ∼= IndQ

K φ has finite image; so, ϕ has finite order.
Next suppose that ϕ is unramified at p. Then ϕ factors through the finite ray class group ClM (f)

of M modulo f for the prime-to-p conductor f of ϕ. Now IndQ
M ϕ has finite image, and we conclude

that φ is of finite order (this proves (1)).

To prove (5), now assume that M is imaginary and write c ∈ Gal(Q/Q) for complex conjugation.

Since IndQ
M ϕ is automatically odd (as M is imaginary), we have Tr(IndQ

M ϕ(c)) = 0. Regard φ as

an idele character of K×
A . Then

0 = Tr(IndQ
M ϕ(c)) = Tr(IndQ

K φ(c)) =

{
φ(−1∞) + φ(−1∞′) if K is real,

0 otherwise,
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where ∞ is an infinite place of K and ∞′ is the other, and 1∞′ is the identity of the ∞′-component
K×

∞′ = R ⊂ K×
A . Thus φ ramifies at exactly one infinite place of K if K is real. Since IndQ

M ϕ is
odd, we see that φ ramifies at exactly one infinite place of K if K is real. If M and K are both real,

ϕσ/ϕ =
(
MK/M

)
is unramified at the two infinite places; so, either ϕ ramifies at the two infinite

places or unramified at the two infinite places; so, this is impossible (finishing the proof of (5)).
Suppose now that ϕ− has order 2 and that M is imaginary, to prove the converse. Then the

splitting field of ϕ− is a quadratic extension L/M . Since (ϕ−)σ = (ϕ−)−1 = ϕ−, Lσ = L; so, L/Q

is an abelian extension of degree 4. This also shows that IndQ
M ϕ− is reducible: IndQ

M ϕ− = η ⊕ ξ
for two characters η, ξ : Gal(Q/Q) with η/ξ =

(
M/Q

)
. Since M is imaginary, for any complex

conjugation c, η(c) =
(
M/Q
c

)
ξ(c) = −ξ(c). Since ξ(c) and η(c) are ±1, we conclude one of them is

−1, say, η(c) = −1. If one of ξ and η has order 4, the other also has order 4. Since ξ2 = η2 is an even
character, its splitting fieldK ⊂ L is a real quadratic field; so, M 6= K and L = MK, a contradiction
(as Gal(L/Q) has to be cyclic of order 4). Thus L is not a cyclic extension; so, again it is a composite

of two distinct quadratic fields M and K. Thus ξ and η have order 2. Write ρ := IndQ
M ϕ. As is

well known, we have Ad(ρ) ∼= IndQ
M ϕ−⊕

(
M/Q

)
and EndQ(A)(ρ) ∼= Ad(ρ)⊕1 ∼= η⊕ ξ⊕

(
M/Q

)
⊕1

for the trivial representation 1. Therefore we find ρ ⊗ ξ ∼= ρ and ρ ⊗ η ∼= η. Thus for the fixed
field K? of Ker(?) for ? = ξ, η, we have L = MKη = KηKξ = KξM , and there exists characters

φ? : Gal(Q/K?)→ Q(A)× such that ρ ∼= IndQ
Kη

φη ∼= IndQ
Kξ
φξ (e.g., [MFG, Lemma 2.15]). Then by

(1), φ? has finite order, and we take K = Kη (resp. K′ = Kξ) and φ = φη (resp. φ′ = φξ). �

Corollary 5.3. Suppose p > 2. Let M and K be distinct imaginary quadratic fields in which p
splits. If P ∈ Spec(hMcm) ∩ Spec(hKcm) is a prime divisor, we have P ∩ Zp[[T ]] = (T ).

Proof. Since ρP has to be induced from M and K, we have IndQ
M ϕ ∼= IndQ

K φ. Since p has to be
split both in K and M , φ and ϕ are unramified at p by Proposition 5.2 (3), and by (Gal), regarding
[γ,Qp] ∈ Ip ⊂ Gal(Q/M), we have t = ϕ([γ,Qp]) = 1; so, T = 0 in h/P ; i.e, T ∈ P . �

Let TP be the localization of T at a prime divisor P ∈ Spec(T) and write ρTP for ρa for
a = Ker(T → TredP ). Let u(q) for primes q|Np be the image of U(q) in TP . Similarly, we write

a(l) ∈ J for the image of T (l) or U(l) in J. We have κ := det(ρTP ) : Gal(Q/Q) → W [[T ]]. By

[GME, Proposition 4.3.1], we have det(ρTP )([u,Q]) = χ1(u)t
logp(up)/ logp(γ) for u ∈ Ẑ×. Consider the

projection 〈·〉 : Im(det(ρTP )) � Im(det(ρTP ))p for the maximal p-profinite subgroup Im(det(ρTP ))p

of Im(det(ρTP )), and put 〈κ〉 = 〈·〉 ◦ κ; so, κ = χ1〈κ〉. We define ρ′TP
= ρTP ⊗

√
〈κ〉−1

, where the

square root is supposed to have values in the p-profinite part Im(det(ρTP ))p. Note that
√
〈κ〉 has

values in W [[T ]]× and that ρ′TP
has values in GL2(TP ), since p > 2. We prepare

Lemma 5.4. Let the notation be as above (in particular, P is a prime divisor of T). Suppose p > 2.
Put χ(p) = χ|(Z/NZ)× for the prime to p-part of χ. Assume that W is sufficiently large valuation ring
finite flat over Zp. Let T′

P be the subring of TP generated by {Tr(ρTP (σ))}σ∈Gal(Q/Q) over W [[T ]]P .

Then T′
P is generated by {Tr(ρ′TP

(σ))}σ∈Gal(Q/Q) over W [[T ]]P . Further suppose that the prime-to-p

conductor of ρTP coincides with the prime-to-p conductor C(ρP ) of ρP . If N = C(ρP ), we have

(1) TP is reduced, and if C(ρ) = N , T is reduced.
(2) The total quotient rings Q(TP ) and Q(T′

P ) coincide.
(3) If κ(P ) has characteristic 0 or p - ϕ(N), TP = T′

P [u(p)] under absolute irreducibility of ρP .
(4) If ρP is absolute irreducible, we have TP = T′

P under one of the following conditions:

(a) κ(P ) has characteristic 0 and u(p)2 6≡ χ(p)(p) mod P ,
(b) κ(P ) has characteristic 0 and T 6∈ P ,
(c) χ1|Z×

p
is non-trivial.

Later we compute the congruence module of a CM component of the ring T′ in terms of anticy-
clotomic Katz p-adic L-functions. The relation between T and T′ is clarified by this lemma.
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Proof. For a continuous representation ρ : Gal(Q/Q)→ GL2(R) with a p-profinite local W -algebra
R, let ξ be the unique square root character of Gal(Q/Q) with values in 1 + mR of the projection of
det(ρ) to 1+mR. Let Rt (resp. R′

t) be the subring ofR generated topologically overW by the value of
Tr(ρ) (resp. Tr(ρ⊗ξ−1)). The subring Rt contains 2 det(ρ(σ)) = Tr(ρ(σ))2−Tr(ρ(σ2)). Since p > 2,
we have det(ρ(σ)) ∈ Rt. Thus Rt contains the values of ξ, and hence R′

t ⊂ Rt. If further R′
t contains

the value of ξ, we have R′
t ⊃ Rt as Tr(ρ⊗ξ−1) = ξ−1Tr(ρ). Since W [[T ]] contains the value of

√
〈κ〉,

the subrings of TP generated over W [[T ]]P by {Tr(ρTP (σ))}σ∈Gal(Q/Q) and {Tr(ρ′TP
(σ))}σ∈Gal(Q/Q)

are the same. This shows that T′
P is generated by {Tr(ρ′TP

(σ))}σ∈Gal(Q/Q) over W [[T ]]P .

Since the argument proving (1) is identical for T and TP , we give here the one for TP . Since
N = C(ρP )|C(ρT)|N by Lemma 10.2 (1) and (4), we conclude C(ρP ) = C(ρT) = N . For any prime
P ′ ∈ Spec(TP ), P ′ ⊃ P , and we have N = C(ρP )|C(ρP ′ )|N ; so, C(ρP ′ ) = N . Since the nilradical
of T comes from q-old forms for q|N (i.e., the nilradical acts faithfully on the space of q-old forms
for q|N ; see [H86a, Corollary 3.3]), it has to be trivial. Thus we conclude the assertion (1) for TP .

We now look into the subring T′
P of TP generated by {Tr(ρTP (σ))}σ∈Gal(Q/Q) over W [[T ]]P

more carefully. Since T′
P contains the value Tr(ρTP ) at the l-Frobenius element for all primes

l - Np, by Chebotarev density theorem, Tr(ρTP ) has values in T′
P . Thus, we have a representation

ρ̃ : Gal(Q/Q) → GL2(Q(T′
P )) with Tr(ρ̃) = Tr(ρTP ) by the theory of pseudo representation. The

projection of this representation to each simple factor of Q(T′
P ) is absolutely irreducible. Since

u(q) = 0 or a unit in each irreducible component of Spec(T) (because of [MFM, Theorem 4.6.17]),
u(q) = 0 or a unit in the entire T. Thus, as for (2), (3) and (4), we may assume that u(q) ∈
T×. Under this assumption, for an arithmetic P ′ ∈ Spec(T), H0(Iq , ρP ′ ) ∼= κ(P ′) (cf. [GME,

Theorem 4.2.7]). Thus H0(Iq , Q(T′red)) ∼= Q(T′red), which implies H0(Iq , Q(T′
P )) ∼= Q(T′

P ). Take

an element φq ∈ Gal(Q/Q) which induces [q,Qq] on the maximal abelian extension Qab
q of Qq . Since

u(q) is the eigenvalue of ρ̃(φq) on H0(Iq, Q(T′
P )) ∼= Q(T′

P ), we have u(q) ∈ Q(T′
P ). This proves (2).

Hereafter we assume absolute irreducibility of ρP . Then we have ρ̃ with values in GL2(T
′
P ),

and we take a T′
P–free lattice L(ρ̃) ⊂ Q(T′

P )2 stable under ρ̃. By definition, TP is generated
over W [[T ]]P by the image t(l) of T (l) for l - Np and the image u(q) of U(q) for q|Np. Since
t(l) = Tr(ρTP (Frobl)) = Tr(ρ̃(Frobl)), by Chebotarev density, to show (3) and (4), we need to see if
u(q) is contained in T′

P . We may assume that u(q) ∈ T×
P ; then, under the assumption N = C(ρP ),

we have H0(Iq , ρTP ) has rank 1 on which φq acts by u(q) (e.g. [GME] Theorem 4.2.7 (2–3)).
Suppose q 6= p, and take any arithmetic prime P ′ of Spec(T). Then, because of u(q) ∈ T×,

the local p-component of the automorphic representation πP ′ generated by fP ′ is either a Steinberg
representation or in the principal series of the form π(α, β) with β unramified at q. In the Steinberg
case, as u(q) 6≡ 0 mod P ′, χ1 is unramified at q, and the q divides N exactly once. Then for any
other arithmetic point P ′′ of Spec(T), πP ′′ is Steinberg at q and we have the identity Cq(ρP ′′ ) = q.
We conclude that either the local component of πP ′′ at p is Steinberg for all arithmetic P ′′ ∈ Spec(T)
(Steinberg case) or in principal series for all arithmetic P ′′ ∈ Spec(T) (Principal case).

In the Steinberg case, we write ρT|Dq
∼= ( ε ∗

0 δ ) with ε/δ = Nq for the cyclotomic character Nq :

Gal(Qq/Qq)→ Z×
p ; so, we have κ = Nqδ2 and ε/δ(φq) = q 6= 1. Let A := ρ̃(φq)〈κ〉−1/2(φq). Taking

W so that it contains
√
q, the operator A has two distinct eigenvalues a =

√
q−1, b =

√
q in W×.

Note that a 6≡ b mod P (by the assumption that either κ(P ) has characteristic 0 or p - ϕ(N)). In
the principal case, since u(q) 6= 0, we may write ρT|Dq

∼= ( ε 0
0 δ ) with unramified δ, and ε|Iq = χ1

is non-trivial with conductor Cq(χ1) dividing exactly N (by Lemma 10.2 (2) combined with [GME,
Theorem 4.2.7 (3)]). Thus we can find σ ∈ Iq such that ρ̃(σ) has two eigenvalues a = 1, b in W×.
Again we may assume a 6≡ b mod P by our assumption. Put A := ρ̃(σ) in the principal series case.
Write ρ′′ for ρ̃ ⊗ 〈κ〉−1/2 in the Steinberg case and for ρ̃ in the principal case. Now we argue in
the two cases (the Steinberg case and the principal series case) at the same time. Take a T′

P -free
ρ′′-stable T′

P -lattice L(ρ′′) ⊂ ρ′′. The matrix A acts on L(ρ′′) by two distinct eigenvalues a, b in
W× with a 6≡ b mod P . By adding “[a]”, we indicate the a-eigenspace of the operator A; so,
L(ρ′′)[a] ∼= T′

P
∼= L(ρ′′)[b]. Then on the a-eigenspace L(ρ′′)[a] ∼= T′

P , φq acts by u(q)〈κ〉−1/2(φq) in
the Steinberg case and by u(q) in the principal series case, and hence u(q) ∈ T′

P . This shows (3).
It remains to prove (4). By (3), we have TP = T′

P [u(p)]. Let T′ ⊂ T′
P be the p-profinite ring

generated by the trace of ρTP over W [[T ]]. Now we have det(ρTP )([p,Qp]) = χ(p)(p) ∈ W ⊂ T′
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as det(ρTP )(χ(p))−1 factors through Gal(Q[µp∞ ]/Q) in which [p,Qp] = 1. Thus we have a :=

Tr(ρTP (φp)) = u(p) + u(p)−1χ(p)(p) ∈ T′ ⊂ T′
P , and u(p) satisfies X2 − aX + χ(p)(p) = 0. We

conclude u(p) ∈ T′
P if a2 − 4χ(p)(p) = (u(p) − u(p)−1χ(p)(p))2 is nonzero and a square in T′

P . By

[H11b], u(p) is transcendental over W , and hence a2 − 4χ(p)(p) 6= 0 always.
First assume a2 − 4χ(p)(p) 6≡ 0 mod P and κ(P ) has characteristic 0. Since u(p) ∈ Q(T′

P ),

u(p) is in the integral closure T̃′
P of T′

P in Q(T′
P ). Since T̃′

P/T
′
P is a torsion T′

P -module of finite

type, the support of T̃′
P /T

′
P in Spec(T′

P ) is made up of only finitely many closed points. Thus by

extending scalars, we may assume that T̃′
P/P̃

′ = K for K = Q(W ) for all maximal ideals P̃ ′ of T̃′
P

in the support of T̃′
P/T

′
P . In other words, for any prime P̃ ′ ⊂ T̃′

P over P ′, T̃′
P /P̃

′ = T′
P/P

′ = K,

and in particular, κ(P ) = κ(P̃ ). Let α be the image of u(p) − u(p)−1χ(p)(p) in κ(P ). By our
assumption, α ∈ W ⊂ κ(P ). Then regard α ∈ W ⊂ T′ and consider α−2(u(p) − u(p)−1χ(p)(p))2 =
α−2(a2 − 4χ(p)(p)) ∈ T′, which is in 1 + (P ∩ T′). Since p > 2, 1 + (P ∩ T′) is p-profinite, and

(1 + (P ∩ T′))2 = 1 + (P ∩ T′). Thus a2 − 4χ(p)(p) is a square in T′
P , which implies u(p) ∈ T′

P .

Now assume that a2 − 4χ(p)(p) ≡ 0 mod P . If T 6∈ P , by (Gal), we find σ ∈ Ip such that the
eigenvalue of ρ̃(σ) is 1 and z ∈W× with z 6≡ 1 mod P . Then if W is sufficiently large containing z
mod P in κ(P ), we can split the ρ̃-representation module (T′

P )2 into the product of two eigenspaces
of ρ̃(σ). We have eigenspace decomposition L(ρ̃) = L(ρ̃)[1]⊕L(ρ̃)[z] under ρ̃(σ). Then u(p) acts on
L(ρ̃)[1] = H0(Ip, L(ρ̃)) ∼= T′

P as a T′
P -linear operator (the action of Frobp); so, u(p) ∈ T′

P .
If χ1|Z×

p
is non-trivial, we can find again σ ∈ Ip such that the eigenvalue of ρ̃(σ) is a = 1 and

b ∈ W× with a 6≡ b mod P . Then under the notation introduced in the proof for q 6= p, we have
L(ρ̃)[a] ∼= T′

P
∼= L(ρ̃)[b]. Since u(p) is the eigenvalue of Frobp on L(ρ′)[a], we get u(p) ∈ T′

P . This
finishes the proof of the last assertion (4). �

We will identify in Section 7 the characteristic ideal of the congruence module between the CM
component Spec(Tcm) ⊂ Spec(T) and its complement with the ideal generated by the anticyclo-
tomic Katz measure in [K78] and [HT93] (interpolating anticyclotomic Hecke L-values). Since the
anticyclotomic Katz measure is a measure on the anticyclotomic class group, we need to relate class
group Z := ClM (Cp∞) and its anticyclotomic counter part Cl−M (c′p∞) (c′ = C ∩ C). This is what
we do now. Consider the ray class group ClM (Cpr) modulo Cpr , and put

(5.2) Z = lim←−
r

ClM (Cpr), and Z = lim←−
r

ClM (c′pr).

On Z, complex conjugation c acts as an involution.
Let Zp (resp. Zp) be the Sylow p-part of Z (resp. Z). We have a natural inclusion (O×

p ×O×
p

)/O×

into Z. Let Z− = Z/Z1+c (the maximal quotient on which c acts by −1). We have the projections

π : Z � Z and π− : Z→ Z−.

The projection π− induces an isogeny Z1−c = {zz−c|z ∈ Z} → Z− whose kernel and cokernel
are killed by 2. In particular, assuming p > 2, π− induces an isomorphism between the maximal p-
profinite subgroups Z−

p ⊂ Z− and Z1−c
p ⊂ Z1−c; namely, we have π− : Z1−c

p
∼= Z−

p if p > 2. Similarly,

π induces π : Z1−c
p
∼= Zp if p > 2. Assume now p > 2. Thus we have ι : Zp ∼= Z−

p by first lifting

z ∈ Zp to z̃ ∈ Z1−c
p and taking its square root and then project down to π−(z̃1/2). The isomorphism

ι identifies the maximal torsion free quotients of the two groups Zp and Z−
p which we write as ΓM .

This ι also induces W -algebra isomorphism W [[Zp]] ∼= W [[Z−
p ]] which is again written by ι. Then

we have Z = Z(p) × Zp with finite group Z(p) of order prime to p. Identify Zp = Gal(Mp/M) (resp.

Z(p) = Gal(M
(p)
Z /M)) for an abelian extension Mp/M (resp. M

(p)
Z /M) by the Artin symbol.

Lemma 5.5. The algebra W [[Zp]] is a local complete intersection and hence Gorenstein over ΛW .

Proof. The natural map Γ ⊂ Z×
p → Z induces a W [[Γ]]-algebra structure on W [[Zp]]. Identifying

W [[Γ]] with ΛW by γ 7→ t, we regard W [[Zp]] as a ΛW -algebra. Writing Zp/Γ as a product of cyclic
groups C1 × · · · × Cr with |Cj| = qj for a p-power qj and picking zj ∈ Zp whose image generates
Cj, we have z

qj

j ∈ Γ which we regard as an element [z
qj

j ] of Γ ⊂ W [[Γ]] = ΛW . Then we have an

isomorphism ΛW [T1, . . . , Tr]/((1+Tj)
qj − [z

qj

j ])j for the polynomial ring ΛW [T1, . . . , Tr] and its ideal
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((1 + Tj)
qj − [z

qj

j ])j generated by (1 + Tj)
qj − [z

qj

j ] ∈ ΛW [T1, . . . , Tr] for j = 1, 2, . . . , r. This shows

that W [[Zp]] is a p-profinite local complete intersection over the regular ring ΛW (and is hence a
Gorenstein ΛW -algebra; see [CRT, Theorem 21.3]). �

We regard W [[Z−
p ]] as a ΛW -algebra by the isomorphism ι. Let T be a connected component of

h containing a CM component J with C(ρJ) = N . Recall the character ΨJ : Gal(Q/M) → J̃× as

in (CM2) in Proposition 5.1. By class field theory, we may regard ΨJ as a character ΨJ : Z → J̃×.

Taking W sufficiently large so that W = J̃ ∩ Qp. Then ΨJ|Z(p) has values in W× ⊂ J̃×. Define

ΨT : Gal(Q/M) → W [[Zp]]
× by a homomorphism given by ΨT(σ) = ΨJ(σ|M(p)

Z

)σ|Mp ∈ W [[Zp]],

where we regard ΨJ(σ|M(p)
Z

) ∈ W ⊂ W [[Zp]]. Define Ψ′
T : Gal(Q/M) → W [[Z−

p ]] by Ψ′
T = ι ◦ ΨT.

By Lemma 5.4 combined with [H86a, §7] (or [LFE, §7.6]), there exist algebra homomorphisms

Θ : T → W [[Zp]] and Θ− : T → W [[Z−
p ]] given by Θ(Tr(ρT(Frobl)) = Tr(IndQ

M ΨT(Frobl)) and

Θ−(Tr(ρ′T(Frobl)) = Tr(IndQ
M Ψ′

T(Frobl)) for all primes l - N(C)p, where ρ′T = ρT ⊗
√
〈κ〉−1

as in
Lemma 5.4. The above identities uniquely determines these homomorphisms by Lemma 5.4 (2). We
check that Θ (and hence Θ−) is a ΛW -algebra homomorphism. We summarize what we remarked:

Lemma 5.6. Let the notation be as above, and assume p > 2. Then

(1) Θ− ◦ ρ′T ∼= IndQ
M Ψ′

T over Q(T).
(2) ι : Zp ∼= Z−

p canonically,

(3) If N = C(ρJ) for a CM component J, the following diagram of ΛW -algebras is commutative:

T
Θ−−−−→ W [[Zp]]

‖
y

yι

T −−−−→
Θ−

W [[Z−
p ]].

Proof. Only fact we need to verify is the identity: ρ′T
∼= IndQ

M Ψ′
T over Q(T). Let 〈Ψ′〉 be the pro-

jection of Ψ′
T to the p-profinite part of the image Im(Ψ′

T). Since ρT|Gal(Q/M) = IndQ
M ΨT|Gal(Q/M) =

Ψ ⊕ Ψc, we have κ := det(ρT) = det(IndQ
M ΨT) = Ψ1+c over Gal(Q/M), where Ψ1+c(σ) =

Ψ(σcσc−1). Thus 〈κ〉|Gal(Q/M) is equal to 〈ΨT〉1+c. Since ρ′T = ρT ⊗
√
〈κ〉−1

, we have Θ− ◦ ρ′T ∼=
IndQ

M (ΨT〈ΨT〉−(1+c)/2) = IndQ
M (ψT · 〈ΨT〉(1−c)/2), where ψT = ΨT/〈ΨT〉 (the prime-to-p part of ΨT).

By the construction of ι and the definition Ψ′
T = ι ◦ΨT, we confirm Ψ′

T = ψT · 〈ΨT〉(1−c)/2. �

Fix a CM irreducible component Spec(J) of Spec(h), and let Spec(T) be the connected compo-
nent of Spec(h) containing Spec(J). Let C be the prime-to-p conductor of the associated character
ΨJ. Regard the character ΨJ as Zp-algebra homomorphism of Zp[[Z]] into J. Then the algebra

homomorphism ΨJ restricted to Zp[Z
(p)] has values in J∩Qp that is a discrete valuation ring finite

flat over Zp. By extending scalars, we assume Qp ∩ J = W .

Proposition 5.7. Let J be a CM component Spec(J) ⊂ Spec(Tcm), and let ψ = ΨJ mod mJ.
Assume p > 2 and the following two conditions:

(i) ψ
−

has order > 2, and ψ is ramified at p (and unramified at pc) with C = C(ψ
−

),

(ii) C(ρ) = N for ρ = ρJ mod mJ = IndQ
M ψ.

Then we have

(1) T is a Gorenstein ring, and Tcm is a local complete intersection canonically isomorphic to
W [[Zp]] for the maximal p-profinite quotient Zp of Z = lim←−n ClM (Cpn).

(2) Writing ρTcm
∼= IndQ

M ψ (resp. ρ = IndQ
M ψ) for a character ψ : Gal(Q/M) → W [[Zp]]

×

(resp. ψ : Gal(Q/M)→ (W/mW )×), the ring Tcm with universal character ψ is isomorphic

to the universal deformation ring of ψ over W for characters unramified outside Cp.

(3) Each CM component J of T is canonically isomorphic to W [[ΓM ]] and hence J̃ = J, where
ΓM is the maximal torsion-free quotient of Z.
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Proof. If ρ = IndQ
M ψ, ρ determines the pair of characters {ψ, ψc}. By (i) (and Proposition 5.2), ρ is

absolutely irreducible and is not isomorphic to any induced representations from any other quadratic
field. Since C(ρ) = N(C(ψ))D, N = C(ρ) and N = N(C)D implies C(ψ) = C.

Let (R, ψ̃ : Gal(Q/M)→ R×) be the universal couple with the universal character unramified out-

side pC deforming ψ over W . This couple (R, ψ̃) is characterized by the following universal property:

For any local pro-artinian W -algebra A with residue field F and any character ϕ : Gal(Q/M)→ A×

unramified outside pC with ϕ mod mA = ψ (for the maximal ideal mA of A), there exists a unique

W -algebra homomorphism ι : R→ A such that ϕ = ι ◦ ψ̃. Such a pair (A, ϕ) is called a deformation

of ψ (see [M89] for general theory of Galois deformation).
We now show R ∼= W [[Zp]] by class field theory. To see this, we pick a deformation ϕ :

Gal(Q/M) → A× of ψ unramified outside pC; thus, A is a local aritinian W -algebra sharing the
residue field F with W and ϕ mod mA = ψ for the maximal ideal mA of A. Let ψ be the Teichmüller
lift of ψ; so, ϕ′ = ϕψ−1 has p-power order. For a prime l|C, by class field theory, the image Iabl

of the inertia group Il ⊂ Gal(Q/M) in the Galois group of the maximal abelian extension of M
over M is isomorphic to the multiplicative group O×

l of the l-adic integer ring of Ml. Since ϕ′

has p-power order and p 6= l, ϕ′ must be trivial on 1 + lOl ⊂ O×
l . Thus l-conductor of ϕ′ is at

most l, and hence ϕ = ϕ′ψ factors through Z. Thus ϕ′ factors through the maximal p-profinite
quotient Zp and extends to a unique W -algebra homomorphism ι = ιϕ : W [[Zp]] → A such that
ι|Zp = ϕ′. Since Zp is the maximal p-profinite quotient of Z, by class field theory, we have the

corresponding subfield M̃ of the ray class field modulo p∞C such that Gal(M̃/M) ∼= Zp by Artin

symbol. Writing the inclusion Zp ⊂ W [[Zp]] as γ 7→ [γ] and identifying Gal(M̃/M) = Zp, define a

character ψ : Gal(Q/M)→W [[Zp]] by ψ(σ) = ψ(σ)[σ|fM ]. Then by our construction ι ◦ψ = ϕ; so,

(W [[Zp]],ψ) satisfies the universal property of (R, ψ̃) for deformations ϕ of ψ.

For an ideal a of T, write ρa = ρT mod a by abusing the symbol slightly. If ρa
∼= IndQ

M ψ′ for a

character ψ′ : Gal(Q/M) → A× for a local ring A containing T/a, ψ′ has values in (T/a)× (by (i)
and Hensel’s lemma). Then we have C(ρ)|C(ρa)|C(ρT) = C(ρJ) = C(ρ) by (ii). Thus C(ρ) = C(ρa).
Write C′ for the prime-to-p conductor of ψ′. Then N(C′)D = C(ρa) = C(ρ) = N(C)D. One of ψ′ or
ψ′c must be a deformation of ψ, and one of them ramifies at p. Let ψ′ be the character ramifying
at p. Then ramification of ψ′ at p forces ψ′ ≡ ψ mod m, as ψ is the unique choice ramifying at p.
Then we find C = C(ψ)|C′; so, C = C′. Thus ψ′ factors through Z. By Proposition 5.2, (i) implies
that the local ring of T contains CM components of a single imaginary quadratic field M deforming
ψ. This shows that the reduced part Tredcm of Tcm is the surjective image of W [[Zp]] for a canonical

morphism π : W [[Zp]]→ Tredcm with IndQ
M (π ◦ψ) ∼= ρTred

cm
. Since N = C(ρ), T kills any old forms of

level N and hence T is reduced (by Lemma 5.4 (1)). Thus Spec(Tcm) is reduced, and hence Tcm is
the surjective image of W [[Zp]] under π.

Pick an irreducible component Spec(J) ⊂ Spec(W [[Zp]]). Then we have a continuous character

ΨJ : Gal(Q/M) → J× with ΨJ ≡ ψ mod mJ such that ρJ
∼= IndQ

M ΨJ. From C = C(ψ)|C(ΨJ)|C, we

conclude C(ΨJ) = C. Thus ramification of ΨJ is completely determined by ψ; so, we have W [[T ]]-
algebra homomorphism Θ : T → J associated to ΨJ. Since Θ gives rise to a CM component, it
factors through Tcm and makes the following diagram commutative:

Tcm
Θ−−−−→ J

x ‖
x

W [[Zp]] −−−−→ J.

Thus W [[Zp]]→ Tcm is nontrivial over all irreducible components of Spec(W [[Zp]]); so, it is injective,

and ρTcm
∼= IndQ

M ψ. This proves the assertion (2).
By Lemma 5.5, Tcm ∼= W [[Zp]] is a complete intersection. Each irreducible component of

Spec(W [[Zp]]) is given by Spec(W [[ΓM ]]), and hence any CM component of T is canonically iso-

morphic to W [[ΓM ]]. Since W [[ΓM]] is integrally closed, we have J̃ = J. This proves (3).
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Taking inertia group Ip = Ip, Gorenstein-ness of T follows from Theorem 7.1 in the following

section as ρ is absolutely irreducible and ρ|Ip
∼= ψ|Ip

⊕ψc|Ip
with ψ ramified at p and ψ

c
unramified

at p. This finishes the proof of (1). �

6. p-Adic Hecke L-functions

In this section, we assume that W contains a Witt vector ring W (Fp) for an algebraic closure Fp
of Fp; so, F = Fp in this section. We recall Katz’s theory in [K78] (and [HT93]) of p-adic L-function.

We fix a prime-to-p conductor ideal C of an imaginary quadratic field M ⊂ Q in which p splits into
(p) = pp (p = pc for the generator c of Gal(M/Q)) for p =

{
α ∈ O

∣∣|ip(α)|p < 1
}
. We write the

embedding M ⊂ Q as i : M ↪→ Q.
Let λ : M×

A /M
× → C× be a type A0 Hecke character (of conductor C(λ)|Cp∞). Then λ has

values in Q on the finite part M×
A(∞) of M×

A . For the ray-class group Z modulo Cp∞ of M , write

λ̂ : Z→ Q
×
p for the p–adic avatar of λ. Let −D be the discriminant of M so that M = Q[

√
−D], and

put 2δ =
√
−D. The alternating form (x, y) = TrM/Q(xyc/

√
−D) induces the principal polarization

on the elliptic curve E(O) defined overW = i−1
p (W ) with complex multiplication by O with complex

uniformization E(O)(C) ∼= C/O. A choice of Néron differential on E(O)/W produces its complex
period and p-adic period (Ω∞,Ωp) ∈ (C××W×). Katz constructed in [K78] (see also [HT93] where
the case C 6= 1 is treated) a measure ϕ with values in W on the ray-class group Z modulo Cp∞

characterized by the following formula:

(6.1) i−1
p

(∫
Z
λ̂dϕ

Ωk+2κ
p

)
= (O× : Z×)

c(λ)πκL(0, λ)

Im(δ)κΩk+2κ
∞

(1− λ(p))(1 − λ(p)N(p)−1)
∏

L|C
(1− λ(L)) ∈ W

for all Hecke characters λ modulo Cp∞. Here L(s, λ) is the primitive complex L-function of λ, and
we use the convention that λ(L) = 0 for a prime L (of M) is L divides the conductor of λ, and
if L is prime to the conductor of λ, λ(L) is the value of the primitive character associated to λ.
Here the infinity type of λ is ki + κ(i − c) for an integer k and κ with integer κ satisfying either
k > 0 and κ ≥ 0 or k ≤ 1 and κ ≥ 1− k, c(λ) 6= 0 is a simple algebraic constant involving the root
number of λ and the value of its Γ-factor as specified in [HT93, Theorem 4.1]. Identifying W [[Z]]
with the measure algebra under convolution product, we may regard ϕ ∈W [[Z]]. Strictly speaking,
the measure ϕ slightly depends on a choice of F in the following decomposition:

Definition 6.1. We decompose C into a product FFcI such that I is a product of inert and ramified
primes over Q and FFc for a product of primes split over Q with F ⊂ Fcc and F + Fc = O.

By the interpolation formula (6.1) and the description of c(λ) in [HT93, Theorem 4.1], the measure
is independent of F up to units in W [[Z]].

Fix a CM component J of hMcm. Since we work under the assumptions of Proposition 5.7, we

have J̃ = J. Then the associated character ΨJ has values in J×. Take its anticyclotomic projection
Ψ−

J , and write C for the conductor of Ψ−
J , we may regard Ψ−

J as a character Ψ−
J : Z− → J×,

which induces W -algebra homomorphism Ψ−
J : W [[Z−]] → J. We then write Lp(Ψ

−
J ) ∈ J for the

image under Ψ−
J : W [[Z−]] → J of ϕ− = π−

∗ (ϕ). Decompose Z− = ∆− × Γ−
M for the maximal

finite subgroup ∆− and the maximal torsion-free quotient Γ−
M . Via ι : Zp ∼= Z−

p , we identify

ΓM = Γ−
M . By this projection Ψ−

J : W [[Z−]]→ J, we identify J = W [[Γ−
M ]] = W [[ΓM]], and in this

sense, Lp(Ψ
−
J ) is a branch of the anticyclotomic Katz measure π−

∗ (ϕ) = ϕ− ∈ W [[Z−]]. We have

a canonical decomposition Z− = Z
(p)
− × Z−

p for the maximal finite subgroup Z
(p)
− of order prime

to p. If we fix a character ψ
−

: Z− → F×, its Teichmüller lift ψ− : Z− → W× factors through

Z
(p)
− . So we have a ψ−-projection π−

ψ−
: W [[Z−]] → W [[Z−

p ]] sending (z(p), zp) ∈ Z− ⊂ W [[Z−]]×

to ψ−(z(p))zp ∈ W [[Z−
p ]]. We put L−(ψ

−
) = π−

ψ− ◦ ϕ− = π−
ψ−,∗ϕ

− ∈ W [[Z−
p ]]

∼−−→
ι−1

W [[Zp]]. The

projection of L−(ψ−) to each irreducible component J of TMcm
∼= W [[Z−

p ]] gives rise to Lp(Ψ
−
J ) ∈ J.
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7. Congruence modules

Let Spec(T) be a reduced connected component of Spec(h). Write ρT : Gal(Q/Q)→ GL2(Q(T))
for the Galois representation associated to this component. We quote the following result from
[H13a, Theorem 4.1], which is essentially proven in [MW86] Proposition 2 in §9:

Theorem 7.1. Let P be a prime ideal in Spec(T). If ρP is absolutely irreducible and ρP|Ip
∼= ( δ ∗

0 1 )

with δ 6= 1 for the inertia group Ip ⊂ Gal(Q/Q) at p, then the localization TP is a Gorenstein ring.

Let J be as in the introduction (the ordinary part of the projective limit of the Tate modules
of modular jacobians) on which h acts, and write J(T) = T · J . Then the connected–étale exact
sequence produces the following commutative diagram of exact rows:

J(T)◦
↪→−−−−→ J(T)

�−−−−→ J(T)et

o
y ‖

y o
y

T −−−−→
↪→

J(T) −−−−→
�

HomΛ(J(T),Λ).

Here the vertical arrows are isomorphism of T-modules. This is shown in [H86b] under the condition
(R) in the introduction and in [O03] without assuming (R). Thus Gorenstein-ness of TP implies
freeness of J(T)P over TP. In particular, if (R) is satisfied and ρ = ρm is absolutely irreducible,
Lcan(I) = J(T)⊗T I is free of rank 2 as claimed in the introduction (so, in this case, (Fcan) holds).

Let Spec(J) ⊂ Spec(hMcm) be a CM irreducible component and Spec(T) be the connected com-
ponent of Spec(h) with Spec(J) ⊂ Spec(T). Assume that Spec(T) is reduced, and write ρ = ρmT

:

Gal(Q/Q) → GL2(F) for the mod p representation of the component T. Then ρ ∼= IndQ
M ψ for a

character ψ : Gal(Q/M)→ F×. Let ψ be the Teichmüller lift of ψ. Write C = C(ΨJ) for the prime-

to-p conductor of the associated character ΨJ : Gal(Q/M)→ J̃×; so we assume ψ = (ΨJ mod mJ).
Write Spec(TMcm) = Spec(hMcm)∩Spec(T); so, Spec(TMcm) is the minimal closed subscheme in Spec(T)
containing all components with CM by M . We have therefore the projection maps

T � TMcm � J

where all rings involved are Gorenstein rings if ρ is absolutely irreducible and ψ
−

has order > 2 and
is ramified at p (see Proposition 5.7). Recall S which is the set of split prime factors q in M of N
but q - N(C(Ψ−

J ))). Consider

(7.1) E1,N =
∏

q∈S

{
(1− Ψ−

J (q)N(q)−1)(1− Ψ−
J (q)N(q)−1)

}
∈ J and E1,N = 1 if S = ∅.

Note here that E1,N is the product of Euler factor at q ∈ ΣC of Lp(Ψ
−
J ).

Hereafter in this section, we assume that W ⊃W (Fp) to have L−
p (ψ

−
) ∈W [[Z−

p ]] as in Section 6.

Theorem 7.2. Let the notation be as above. Suppose W ⊃ W (Fp), p ≥ 5, that Spec(T) contains

a non-CM minimal primitive component Spec(I) and that ρ ∼= IndQ
M ψ for an imaginary quadratic

field M in which p splits. Suppose further that ψ
−

has order > 2, ψ ramifies at p, and one of the
following conditions:

(a) p - ϕ(N) and C(ρ) = N ;
(b) E1,N 6∈ mJ and p - Φ(N) for the Euler function Φ of M (i.e., Φ(N) = N2

∏
q|N (1 − 1

N(q) )

for primes q in M).

Then TMcm is canonically isomorphic to W [[Z−
p ]] for the p-profinite part Z−

p of the anticyclotomic

ray class group of conductor C(ψ
−

)p∞. Writing L−(ψ
−

) ∈ W (Fp)[[Z
−
p ]] for the anticyclotomic

Katz measure of modulo p branch character ψ
−

and Spec(T⊥
cm) for the complement of Spec(TMcm) in

Spec(T), we have TMcm ⊗T T⊥
cm
∼= W [[Z−

p ]]/L−(ψ
−

)W [[Z−
p ]].

Remark 7.3. We explain why we need to assume (a) or (b) in the above theorem. Since C(ρ)|N , by
the existence of the Teichmüller lift of ψ and Galois deformation theory explained in Proposition 5.7



BIG GALOIS REPRESENTATIONS AND p-ADIC L-FUNCTIONS 33

(2), TMcm is non-trivial. Taking a component J of TMcm, the main reason for assuming (a) or (b) is to
guarantee that ρJ|Gal(Qq/Q) is minimal at primes q|N split in M and that J is primitive. In addition,

the condition E1,N 6∈ mJ in (b) (which is automatically satisfied under (a) as E1,N = 1 in that case)
is to guarantee that ρI′ |Iq is never reducible indecomposable for any irreducible component Spec(I′)
of Spec(T), where Iq ⊂ Gal(Qq/Qq) is the inertia group.

Let us prove this fact. If ρP for P ∈ Spec(I′) is reducible indecomposable, as is well known

(see Lemma 10.1 (4)), ρP |Gal(Qq/Qq) is isomorphic to
(
ηN ∗
0 η

)
for the p-adic cyclotomic character N

acting on µp∞ (unramified at q). The character η restricted to Iq is of finite order (see Section 10). If

η is ramified at q and η|Iq 6≡ 1 mod mI′ , lifting η mod mI′ to a non-trivial character η of Gal(Q/Q)

with values in T/mT only ramified at q, the semi-simplification of ρ⊗ η−1 is unramified; so, ρI⊗ η̃−1

has less conductor than ρI for the Teichmüller lift η̃ of η. By the minimality of I, this cannot happen;
so, we conclude η|Iq ≡ 1 mod mI′ . By local class field theory, we may regard η|Iq as a character of

Z×
q . Thus η|Iq 6= 1 but η|Iq = 1 implies q ≡ 1 mod p, a contradiction against p - ϕ(N). Hence η is

unramified. The q-factor or q-factor of E1,N is congruent to 1− (ηN/η)(Frobq)q−1 = 0 modulo mJ.
Since ρI ≡ ρJ mod mT, we have E1,N ≡ 0 mod mJ (contradicting against E1,N 6∈ mJ). Thus ρP |Iq

for every prime P ∈ Spec(T) is semi-simple for all primes q|N .
Once semi-simplicity of ρP |Iq is proven for all q|N , we can apply results in Section 10, and the

following conditions for primes q|N are equivalent:

(1) ρI|Gal(Qq/Qq) is absolutely irreducible.

(2) ρ|Gal(Qq/Qq) is absolutely irreducible.

Indeed, by Lemma 10.3 (2), under p - ϕ(N), (1) ⇔ (2) as ρ = ρI mod mI. Moreover from the
minimality and primitiveness of ρI, by Lemma 10.3 (4), under p - Φ(N), C(ρ) = C(ρI) = N ; thus
(b) ⇒ (a). If N = C(ρ), by Lemma 5.4 (1), T is reduced. Hence T is reduced under (a) or (b).
Then the following condition is equivalent to (1) (or (2)):

(3) ρJ|Gal(Qq/Qq) is absolutely irreducible.

Since N = C(ρ)|C(ρJ) = N , we conclude N = C(ρJ). Therefore, ρ and ρJ must be minimal at
prime q splits in M and J is a primitive component. Then by Lemma 7.9 and Remark 7.8 below, the
characteristic power series of the congruence module of T with respect to λ : T→ J can be computed
exactly as a product of a certain ray class number of M and the Katz p-adic Lp(ΨJ), which is a key
to reach the conclusion of the theorem.

We prepare some notation, four lemmas and a proposition for the proof of the theorem. The
proof of the theorem will be given at the end of this section. For simplicity, we write the sequence

T � TMcm � J as R
θ−→ S

µ−→ A and we put λ = µ ◦ θ : R → A. Under the assumption of the theorem
(and Remark 7.3),R, S, A are all Gorenstein rings (by Proposition 5.7). Thus we suppose Gorenstein-
ness of R, S and A in this section. We write B = Λ. Since T is reduced, the total quotient ring
Q(R) of R is a product of fields, and we have Q(R) = QS⊕Q(S) for the complementary semi-simple
algebra QS . Let RS be the projection of R in QS . We have the following (unique) decomposition

(1) Spec(R) = Spec(RS) ∪ Spec(S), union of closed subschemes inducing R ↪→ (RS ⊕ S) with
Λ-torsion module C0(θ, S) := (RS ⊕ S)/R.

Similarly, we have Q(S) = QA ⊕Q(A) and Q(R) = Q′
A ⊕ Q(A) as algebra direct sums. Write SA

(resp. RA) for the projected image of S (resp. R) in QA (resp. Q′
A). Then we have

(2) Spec(S) = Spec(SA) ∪ Spec(A), union of closed subschemes inducing S ↪→ (SA ⊕ A) with
Λ-torsion module C0(µ, A) := (SA ⊕ A)/S.

(3) Spec(R) = Spec(RA) ∪ Spec(A), union of closed subschemes inducing R ↪→ (RA ⊕ A) with
Λ-torsion module C0(λ, A) := (RA ⊕ A)/R.

Since T is reduced, S is a reduced algebra, and by Gorenstein-ness, we have

(7.2) HomB(R,B) ∼= R, HomB(S,B) ∼= S and HomB(A,B) ∼= A as R-modules.

Write πS : R � RS and π : R → S for the two projections and (·, ·)R : R × R → B and (·, ·)S :
S × S → B for the pairing giving the self-duality (7.2). We recall [H86c, Lemma 1.6]:
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Lemma 7.4. The S-ideal b := Ker(πS : R→ RS) is principal (and is S-free of rank 1).

By [H88, Lemma 6.3] (or [MFG, §5.3.3]), we get the following isomorphisms of R-modules:

(7.3) C0(λ;A) ∼= RA ⊗R A, C0(θ;S) ∼= RS ⊗R S and C0(µ;A) ∼= SA ⊗S A.
Recall the following fact first proved in [H88, Theorem 6.6]:

Lemma 7.5. We have the following exact sequence of R-modules:

0→ C0(µ;A)→ C0(λ;A)→ C0(θ;S) ⊗S A→ 0.

By (7.3), the three congruence modules C0(µ;A), C0(λ;A), C0(θ;S) ⊗R A are residue rings of R;
so, cyclic A-modules. Moreover they are the ring A modulo principal ideals. Write their generators
as Acλ = A∩R ⊂ (RA ⊕A), Acµ = A∩ S ⊂ (SA ⊕A) and Scθ = S ∩R ⊂ (RS ⊕ S). Thus we have
C0(λ;A) = A/cλA, C0(µ;A) = A/cµA and C0(θ;S) ⊗S A = A/cθA for the image cθ ∈ A of cθ ∈ S.
By the above lemma, we conclude the following result:

Corollary 7.6. We have cθ · cµ = cλ up to units in A.

We have a natural morphism (Z/(C ∩ Z))× → ClM (C) sending ideal (n) for an integer n prime
to C to its class in ClM(C), and we write h−(C) for the order of cokernel of this map. Write l(l) for
the residual characteristic of l. By a simple computation, we have

Lemma 7.7. Write C for C(ΨJ). Then the ratio

h−(C)

h(M) ·∏l|C,l: inert prime
(l(l) + 1)

∏
l|C,l: split prime with l(l)|C(l(l) − 1)

is prime to p (if p - |O×|/2 for the integer ring O of M), where h(M) is the class number of M .
Thus if J is minimal primitive, h−(C) is equal, up to units in W , to

hi(M/Q) = h(M)
∏

l|C,l: inert prime

(l(l) + 1).

Since ρJ is minimal at primes q|N split inM (see Remark 7.3), the q-part Cq(ΨJ) is minimal among

Cq(ΨJξ) for all finite order characters ξ of Gal(Qq/Qq); in particular, Fc = O (by Lemma 10.4).
Thus no rational prime split in M divides C.

Remark 7.8. The number hi(M/Q) is defined in [H09, §1], and hi(M/Q)Lp(Ψ
−
J ) (for the element

Lp(Ψ
−
J ) ∈ W (Fp)[[ΓM ]] giving the Katz p-adic L-function of Ψ−

J ) is computed to be a factor of the

characteristic power series cλ in [H09, Corollary 3.8] (or (A) in [H09, §1]) assuming p ≥ 5 and

(1) primitiveness of J (i.e., N = N(C(ΨJ))D)
(2) local minimality at q of ρJ as long as ρJ|Gal(Qq/Qq) is reducible.

The reducibility of ρJ|Gal(Qq/Qq) in (2) is equivalent to the fact that the automorphic representation

generated by fP ∈ FJ is in the principal series at q, and in this way, the result is stated in [H09].

Lemma 7.9. Let the notation and the assumption be as in Theorem 7.2. Then we have cµ =
h−(C) = hi(M/Q) up to units in J. Here C is the prime-to-p conductor of ΨJ in (CM2).

Proof. As explained in Remark 7.3, we have C(ρ) = N under the assumptions of Theorem 7.2.
If C(ρ) = N = C(ρJ), by Proposition 5.7, without localization, R = T, S = Tcm and A = J
are Gorenstein rings. Since S is isomorphic to the group algebra W [[Zp]] by Proposition 5.7, the
assertion follows from Lemma 1.9 and Lemma 1.11 in [H86c]. �

Recall the anticyclotomic Katz p-adic L-function Lp(Ψ
−
J ) as in Section 6. Identifying J with

W [[ΓM ]], Ψ−
J : Z− → ΓM induces a surjective algebra homomorphism W [[Z−

p ]]→ J and Lp(Ψ
−
J ) is

the image of the measure L−(ψ
−

) in Theorem 7.2. We regard Lp(Ψ
−
J ) ∈ J.

Proposition 7.10. Under the assumption of Theorem 7.2, we have cλ = h−(C)Lp(Ψ
−
J ) up to units

in J for the prime-to-p conductor C of ΨJ in (CM2).

This is where we need the assumption p ≥ 5 in Theorem 7.2.
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Proof. The fixed field M̃/M of Ker(Ψ−) for Ψ = ΨJ has Galois group Gal(M̃/M) ∼= Im(Ψ−). The

maximal torsion-free quotient ΓM of Gal(M̃/M) is a Zp-free module of rank 1. Fix a decomposition

Gal(M̃/M) = ∆ × ΓM for the maximal finite subgroup ∆ of Gal(M̃/M). By Proposition 5.7, the
character Ψ− induces an algebra isomorphism Ψ−

∗ : W [[ΓM ]] ∼= J. Then the maximal p-abelian

extension L/M̃ unramified outside p has Galois group X which is naturally a W [[Gal(M̃/M)]]-
module (in the standard manner of Iwasawa’s theory). Let ψ− := Ψ−|∆ (which has values in W×),
and put X(ψ−) = X⊗W [∆],ψ−

∗

W which is the maximal quotient of X on which ∆ acts by ψ−. Thus

X(ψ−) is naturally an J-module via Ψ−
∗ , and it is known to be a torsion J-module of finite type. Let

F−(ψ−) be the Iwasawa power series in J of X(ψ−); i.e., the characteristic power series of X(ψ−)
as a torsion J-module of finite type (see [MFG, page 291] for the characteristic power series). By the
proof of the main conjecture over M by K. Rubin [Ru88] or the proof of its anticyclotomic version
by Tilouine/Mazur ([T89] and [MT90]), we know F−(ψ−) = Lp(Ψ

−
J ) up to units in J. By [H09,

Corollary 3.8] (see also Remark 7.8), if p ≥ 5 (and N = N(C)D which follows from the assumption
of Theorem 7.2 as explained in Remark 7.3), we have h−(C)Lp(Ψ

−
J )|cλ. By [MT90] (and [HT94,

Corollary 3.3.7]), we also know cλ|h−(C)F−(ψ−). Combining all of these, we conclude the equality
of the proposition. Since the residual representation ρ is absolutely irreducible, actually, the above
identity is proven in [H09] without using the solution of the main conjecture (and in this way, the
anticyclotomic main conjecture is proven in [H09] for general CM fields). �

Proof of Theorem 7.2. As explained in Remark 7.3, we have C = N(C)D = C(ρJ) = C(ρ) always
under the assumption of the theorem. Then by Proposition 5.7, T, Tcm and J are all Gorenstein.
By Corollary 7.6, we find that cθ = cλ/cµ. By Proposition 7.10, cθ = Lp(Ψ

−
J ) up to units in J. Since

L−(ψ
−

) has image in J given by Lp(Ψ
−
J ) for all irreducible components Spec(J) ⊂ Spec(W [[Zp]])

with ρJ
∼= IndQ

M ΨJ. Thus we conclude cθ = L−(ψ
−

) up to units, proving (1). �

8. Level and p-adic L-functions

Throughout this section we assume the condition (R) and one of the conditions (s) and (v) above
Theorem I in the introduction, although in some cases, the conditions follows from the specification
of ρ. Also, as before, we take the base valuation ring W sufficiently large so that each irreducible
component Spec(I) of Spec(h) is geometrically irreducible over the quotient field Q(W ) of W .

Our proof heavily relies on Lemma 2.9; so, we first verify the assumptions of Lemma 2.9 under
(R) and one of (s) and (v). When the condition (s) is satisfied, we replace g in (s) by j = limn→∞ gp

n

and conjugating G by an element in B(I), we assume that j =
(
ζ 0
0 ζ′

)
with ζ, ζ′ ∈ µp−1. If only (v)

is satisfied, we take σ ∈ Dp such that ρ(σ) with distinct two eigenvalues as in the condition (R),

and put j = limn→∞ gq
n

for q = |F|; so, again we have j =
(
ζ 0
0 ζ′

)
with ζ, ζ′ ∈ µq−1 normalizing G

and ρI(Dp). Hereafter, we exclusively use the symbol j to denote the above element in Im(ρI).

Lemma 8.1. Let G = Im(ρI) ∩ ΓI(meI) for an irreducible component Spec(I) of Spec(h), and write

GP for the image of G in SL2 (̃I/P) for each prime divisor P ∈ Spec(̃I). Then the κ(P)-span sP of

M0
n(GP) =Mn(GP)∩ sl2 (̃I/P) is equal to sl2(κ(P)) for some n > 0 if and only if GP contains an

open subgroup of SL2(A0). Here we recall that A0 = Zp or Fp[[T ]].

Proof. By (R) and one of (s) and (v), Mn(G) ∩ U(I) surjects down to Mn(GP) ∩ U(κ(P)) for all
n > 0. Since the proof is the same for any n > 0, we just assume that n = 1. Let P = P ∩ Λ. Note

that n =M1(GP)∩U(κ(P)) and nt =M1(GP)∩ tU(κ(P)) are Λ/P -modules inside sl2 (̃I/P). Thus
either n = 0 or n is Λ/P -torsion-free of positive rank.

Suppose sP = sl2(κ(P)). Then n 6= 0 and nt 6= 0. This implies that [n, nt] 6= 0 is a non-

trivial torsion-free Λ/P -module of positive rank, and Ad(j) acts trivially on [n, nt]. Thus M0
1(GP)

must contain an open Lie-subalgebra of sl2(A0) (see Section 2, Corollary 2.3 and Lemma 2.4); so,
sP = sl2(κ(P)). Since

[M0
1(GP),M0

1(GP)] ⊂M0(GP),
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M0(GP) (and actually M0
n(GP) for each n > 0) span sl2(κ(P)) over κ(P). Then the intersection

G
′
P = SL2(κ(P)) ∩ (1 +M(GP)) contains an open subgroup of SL2(A0). The converse is plain as

sl2(A0) contains a basis of sl2(κ(P)) over κ(P). �

Hereafter, suppose that I is a non-CM component of h. Let Spec(T) ⊂ Spec(h) be a connected

component containing Spec(I). Let ρT : Gal(Q/Q)→ GL2(Q(T)) be the associated Galois represen-
tation. We write ρ = ρmT

: Gal(Q/Q) → GL2(F) with F = T/mT associated to the maximal ideal
mT of T. We would like to relate the global level L = L(I) of ρI (defined in Section 3) with a certain
p-adic L-function. By a result of Ribet [R85] combined with Proposition 5.1 in the text, Im(ρP)
contains an open subgroup of SL2(Zp) up to conjugation. Then by Theorem 2.12, we can pick a

representation ρ ∈ [ρI] with values in GL2(̃I) such that Im(ρ) ⊃ Γ(c) with nontrivial c. If ρ is abso-
lutely irreducible, by Theorem 2.12, the global level L = L(I) described just above Lemma 3.3 is well
defined. If ρ is reducible, assuming the assumption of Lemma 3.5, we pick ρ in the I-isomorphism
class made out of Lcan(I) and define L(I) as described after the statement of Lemma 3.5 before its
proof. We start with a version of results in [MW86, §10] and A. Fischman [F02]:

Theorem 8.2. Suppose Im(ρ) contains SL2(Fp) for p ≥ 7. Then the global level L = L(I) of ρI for
every irreducible component Spec(I) of Spec(T) is equal to 1.

The assertion (1) in Theorem II in the introduction follows from this theorem. By the theory of
pseudo representation, we can find a unique ρT with values in GL2(T) up to isomorphism. Thus we
could assume that ρI has values in GL2(I), though we do not do this.

Proof. Similarly to the proof of Lemma 3.1, writing g for the image of g ∈ Im(ρI) in GL2 (̃I/meI), let

K := {g ∈ Im(ρI)| det(g) ∈ Γ} ,L = {g ∈ K|g ∈ U(F)} and H = {g ∈ K|g = 1}
for Γ = {ts|s ∈ Zp} ⊂ Λ×. By the existence of j, similarly to the proof of Lemma 1.4, from (Gal),
we find τ ∈ ρI(Dp) ∩ H such that τ = ( t 0

0 1 ). Then by (Det) in Section 3, the three sets Im(ρI)/K,
Im(ρI)/L and Im(ρI)/H are finite sets. Then for T ′ = {τ s|s ∈ Zp}, we have H = T ′ n G for

G = H ∩ SL2 (̃I), K = T ′ n K1 for K1 = K ∩ SL2 (̃I) and L = T ′ n L1 for L1 = L ∩ SL2 (̃I) (see the

proof of Lemma 3.1). Similarly, for the image T ′
a (resp. Ha, Ka, La, L

1

a, Ga and K
1

a) of T ′ (resp.

H, K, L, L1, G and K1) in GL2 (̃I/a) for any Ĩ-ideal a, we have Ha = T ′
a n Ga, La = T ′

a n L
1

a and

Ka = T ′
a n K

1

a. Thus the reduction maps G→ Ga, L1 → L
1

a and K1 → K
1

a given by g 7→ (g mod a)

are all surjective. In particular, by our assumption, K
1

:= K
1

meI

contains SL2(Fp).

We prove P - L(I) for all prime divisors of Λ, which shows L(I) = 1. Take a prime divisor P

of Ĩ above P . Suppose that K
1

P is a finite group. This is equivalent to assuming GP is finite since

K1/G ∼= K/H ↪→ Im(ρI)/H is finite. Thus K
1

P is a finite group whose image modulo meI containing
SL2(Fp). By the classification of finite subgroups of PGL2(K) for a characteristic 0 field K, if
p ≥ 7 and κ(P ) has characteristic 0, there is no finite subgroup of SL2(κ(P)) whose image in
SL2(F) contains SL2(Fp). This point is also plain if p ≥ 7 as SL2(Fp) with p ≥ 7 does not have

2-dimensional representations over K (see [Sc07, page 128]). We conclude that GP is infinite if

p ≥ 7 and κ(P ) has characteristic 0. If κ(P ) has characteristic p, L
1

P is still infinite. To see this,

note that L
1

meI

contains U(Fp); so, L
1

P contains an element whose reduction modulo meI/P is non-zero

unipotent. Such an element under conjugation by T ′
P produces infinitely many elements. Then the

open subgroup GP of L
1

P has infinitely many elements. ThereforeM0
1(GP) is an infinite Lie algebra.

Let s̃P be the Lie subalgebra of sl2(̃I/P) generated byM0
1(GP) over Ĩ/P. Since GP is infinite, s̃P

is nontrivial. Since p ≥ 5, the adjoint representation of SL2(Fp) on sl2(Fp) is absolutely irreducible.

Thus the quotient s̃P/meI · s̃P = s̃P ⊗eI F (F = Ĩ/meI) is isomorphic to a three dimensional irreducible

subspace in sl2(F) over F under the adjoint action of K1. By Nakayama’s lemma, s̃P has at least rank

3 over Ĩ/P; so, the κ(P)-span sP := κ(P) · s̃P is equal to sl2(κ(P)). By Lemma 8.1, GP contains
an open subgroup of SL2(A0) in SL2(κ(P)). Hence, by Theorem 2.12 (2) and Corollary 3.4, we
conclude P - (L(I)). �
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Remark 8.3. In the setting of the above theorem, assume p = 5. Again by Schur, the unique
absolutely irreducible 2-dimensional representation over Q5 of SL2(F5) can be only defined over

the integer ring of the field Q5[
√

5]. Since we have Λ/P ∼= Z5[µ5] for P = ( t
5−1
T

) ⊂ Λ, we have
a subgroup H in SL2(Λ/P ) whose reduction modulo the maximal ideal is isomorphic to SL2(F5).
Therefore G = {x ∈ SL2(Λ)|x mod P ∈ H} has (G mod m) = SL2(F5) but the level of G is P .

We now deal with the case where the image of ρ does not contain SL2(Fp). We start with the
case of dihedral image of ρ. Let κ be a local field. Write O for the maximal compact subring of κ.
Let ρ : Gal(Q/Q) → GL2(O) be a continuous Galois representation and put G = Im(ρ) ∩ ΓO(mO).
We write s for the κ-span of the Lie algebra M0

1(G) =M1(G) ∩ sl2(G).

Lemma 8.4. Let the notation be as above. Suppose either that s is a Cartan subalgebra of sl(2)
or that Im(ρ) modulo center is a finite dihedral group. If ρ is absolutely irreducible, there exists a

quadratic field M/Q and a character θ : Gal(Q/M) → κ× such that ρ ∼= IndQ
M θ and θc 6= θ, where

c ∈ Gal(Q/Q) restricted to M is the generator of Gal(M/Q) and θc(σ) = θ(cσc−1).

This follows from Lemma 2.1 if κ has characteristic 0. We give here a different proof.

Proof. In any case, the group Im(ρ) is in the normalizer of a Cartan subalgebra H (H = s if s is a
Cartan subalgebra). By extending scalars κ, we may assume that H is a split Cartan subalgebra.
Then, we can find an open normal subgroup H ⊂ Gal(Q/Q) such that ρ|H is isomorphic to the
direct sum of two abelian characters. Set ρH = ρ|H ; then, ρH is completely reducible. Write
ρH =

(
θ 0
0 δ

)
. Since ρ extends ρH , g 7→ ρhH(g) := ρH(hgh−1) = ρ(h)ρH(g)ρ(h)−1 is equivalent to ρH

for all h ∈ Gal(Q/Q). Thus Gal(Q/Q) acts on {δ, θ} by inner conjugation. Indeed,

(8.1)
(
θh 0
0 δh

)
∼= ρ(h)

(
θ 0
0 δ

)
ρ(h)−1.

Let ∆ ⊂ Gal(Q/Q) be the stabilizer of δ. Then M = Q
∆

is at most a quadratic extension of Q. If

M = Q and W is sufficiently large, the two characters extend to δ, θ : Gal(Q/Q)→ I× (e.g. [GME,
§5.1.1] or [MFG, §4.3.5]), and ρss = δ⊕ θ, which cannot happen as ρ is absolutely irreducible. Then

[Gal(Q/Q) : ∆] = 2 and by Frobenius reciprocity, ρ ∼= IndQ
M δ ∼= IndQ

M θ for the quadratic extension

M = Q
∆

of Q. We have therefore ρ|∆ = θ ⊕ θc, and irreducibility of ρ implies θ 6= θc. �

For a character ϕ of Gal(Q/M) with an imaginary quadratic field M , we recall its anti-cyclotomic
projection ϕ− given by σ 7→ ϕ(σ)ϕ(cσc−1)−1. Let I be a minimal primitive non CM component of

h with ρ ∼= IndQ
M ψ for an imaginary quadratic field M in which p splits into pp and a character

ψ : Gal(Q/M) → Fp unramified at p. Under the assumption (a) or (b) in Theorem 7.2, TMcm is
nontrivial. Pick one such CM component J of TMcm, and write C for the prime-to-p conductor of ΨJ.

Let c′ = C ∩ C, and write c for the prime-to-p conductor of ψ
−

(so, c|c′). Assuming W ⊃ W (Fp),

we recall the anticyclotomic Katz measure L−(ψ
−

) ∈ W [[Z−
p ]] as in Theorem 7.2. The natural

inclusion Z×
p ↪→ Op induces Γ ↪→ ΓM ∼= Γ−

M ⊂ Z−
p , and hence W [[Z−

p ]] is naturally a ΛW -algebra for

ΛW = W [[T ]] = W [[Γ]]. Since W [[Z−
p ]] is free of finite rank r over ΛW for the index r = (Z−

p : Γ),

we have a regular representation Φ of W [[Z−
p ]] into the r × r matrix algebra Mr(ΛW ), and for

α ∈W [[Z−
p ]], we define its norm NW [[Z−

p ]]/ΛW
(α) = det(Φ(α)). Define L−

ψ
= NW [[Z−

p ]]/ΛW
(L−(ψ

−
)).

This is the element we meant in Theorem II by the product of anticyclotomic Katz L-functions with
a given mod p branch character. We also recall that we defined in (7.1) an element E1,N ∈ J.

Theorem 8.5. Let the notation be as above; in particular, let I be a minimal primitive non CM
component with ρ ∼= IndQ

M ψ for an imaginary quadratic field M as above. Take a large W ⊃W (Fp)
so that each irreducible component of Spec(T) is geometrically irreducible. Assume p ≥ 5, and

suppose further that ψ
−

has order > 2, ψ ramifies at p, and one of the following conditions:

(a) p - ϕ(N) and C(ρ) = N ;
(b) p - Φ(N) for the Euler function Φ of M and E1,N 6∈ mJ for E1,N in (7.1).
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Then for the product L−
ψ

− = NW [[Z−

p ]]/ΛW
(L−(ψ

−
)), the global level L(I) of a non-CM component I

of T is a factor of (L−
ψ

−)2 in ΛW . If L−
ψ

− is a non unit in ΛW , for any prime divisor P of L−
ψ

−,

there exists a non CM component Spec(I) ⊂ Spec(T) such that PΛ|L(I) for PΛ = P ∩ Λ.

The assumption (a) is the one made in Theorem II (3b) in the introduction, and therefore, this
theorem proves the assertion (3b) of Theorem II (where cube-freeness of N is assumed but it is not
necessary in this residually induced case; see Remark 7.3). An important feature of this theorem
is that only (the p-adic L-function part of) the congruence ideal between CM and a given non-CM
component I shows up as the level of ρI. Therefore congruence between non-CM components and I
does not have direct involvement to the level L(I).

Here are a sketch of the proof and a summary of how we use the listed assumptions in the proof.
Since ψ ramifies at p, by Theorem 7.1, Lcan(I) ∼= I2; so, ρI realized on Lcan(I) has values in GL2(I).

Thus we do not need to take Ĩ, and we work with I instead of Ĩ. Since C(ρ)|N , by Proposition 5.7,

TMcm is non-trivial. The condition that ψ
−

has order > 2 ramified at p is equivalent to the fact that

ρ is not isomorphic to IndQ
M ′ ψ

′
for any quadratic fields M ′ other than M (Proposition 5.2); thus,

we have Tcm = TMcm. As seen in Proposition 5.7, we have Tcm = TMcm
∼= W [[Zp]] for the p-profinite

part of the class group Z = CLM (Cp∞). Note that W [[Zp]] ∼= W [[Z−
p ]] canonically by Lemma 5.6.

The assumption (a) or (b) is used to identify Tcm (or its localization) with (possibly a localization
of) the group algebra W [[Zp]] ∼= W [[Z−

p ]] that enables us to identify the congruence power series

of J inside Spec(Tcm) with the class number h−(C) and that in Spec(T) with h−(C)Lp(Ψ
−
J ) (see

the later half of Section 7). In other words, the congruence between CM and non-CM components

only involves prime factors of L−(ψ
−

) (which is basically the product of Lp(Ψ
−
J ) over irreducible

components Spec(J) of Spec(Tcm)).
To make this fact more precise, write an irreducible component of Spec(Tcm) as Spec(J). If Z−

p

is pro-cyclic, W [[Z−
p ]] is an integral domain and hence J ∼= W [[Zp]] = Tcm. Note that non-pro-

cyclicity of Z−
p implies p|h−(C) (but not necessarily the converse). Thus the congruence between

Tcm = J and the non CM component I is given simply by the anticyclotomic Katz p-adic L-function

Lp(Ψ
−
J ) = L−(ψ

−
) when Zp is pro-cyclic. The complete-intersection property of Tcm ∼= W [[Zp]]

proved in Lemma 5.5 will be used to compute the congruence between the non CM component I
and Tcm when Zp is not pro-cyclic. Roughly speaking, by Theorem 7.2, the complete intersection
property of W [[Zp]] ∼= Tcm tells us that the congruence between Tcm and its complement T⊥

cm

is just made of the anticyclotomic Katz p-adic L-function, though the congruence between J and
its complement J⊥ involves h−(C) in addition to (the product of) the anticyclotomic Katz p-adic

L-function L−(ψ
−

). As in Remark 7.3,

(1) minimality of I implies minimality of ρJ at primes q in N where ρJ|Gal(Qq/Qq) is reducible.

(2) the condition (b) actually implies (a), and T is reduced by Lemma 5.4 (1).
(3) any CM component J of TMcm is primitive.

In the computation of congruence modules (in Theorem 7.2) between J and its complement J⊥ and
between Tcm and T⊥

cm (i.e., determination of Spec(J) ∩ Spec(J⊥) and Spec(Tcm) ∩ Spec(T⊥
cm)), we

needed these properties (see Remark 7.8 for the necessity of these properties). Then by the relation
in Corollary 7.6, we computed in Theorem 7.2 the characteristic element of C := Tcm ⊗T T⊥

cm

in Tcm = W [[Z−
p ]] as the Katz measure without the class number factor. Hence, we are able to

prove, by Galois deformation theory, that any (non CM) component I in T⊥
cm has some points P

having ρP isomorphic to an induced representation from M (i.e., P |L(I)) if and only if P is in
Spec(Tcm) ∩ Spec(T⊥

cm) (i.e., P is a factor of the Katz p-adic L-function L−
ψ

−).

Now, for simplicity, suppose I = Λ. Then ρP = (ρI mod P ) is isomorphic to an induced repre-

sentation IndQ
M θ; thus, the adjoint square Ad(ρP ) of ρP is isomorphic to a reducible representation(

M/Q
)
⊕ IndQ

M θ− with IndQ
M θ− absolutely irreducible. In this sketch, suppose further for sim-

plicity that P is exactly the annihilator AnnIP in IP of the IP -part C ⊗T IP of the congruence
module C (in other words, C ⊗T IP ∼= IP /P IP ). Then we show that the P -localized Lie algebra of
M0

1(Im(ρI) ∩ ΓI(P
2)) has three independent generators over IP ; so, L(I)IP |P 2IP .
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Recall our simplifying assumption I = Λ. Writing V = Λ2
P for the space of ρI and

sl(V ) = {x ∈ EndΛ(V )|Tr(x) = 0},
the ΛP -span sP ofM0

1(G) =M1(G)∩sl(V ) (forG = Im(ρI)∩ΓΛ(mΛ)) is a Lie ΛP -subalgebra of sl(V )
stable under the adjoint action. Define Galois modules VP (m) := (sP ∩Pmsl(V ))/(sP ∩Pm+1sl(V ))
(for m ≥ 1) under the adjoint action. Note that IP = ΛP is a discrete valuation ring. Choosing
a generator $ of P and dividing X ∈ sP ∩ Pmsl(V ) by $m, this Galois module VP (m) can be
also embedded into sl(V/PV ) = sl2(κ(P )) as a Galois module. Note that sl(V/PV ) ∼= Ad(ρP ) ∼=(
M/Q

)
⊕ IndQ

M θ− under the adjoint action of the Galois group. Thus, if non-trivial, dimκ(P) VP (m)

is either 1, 2 or 3, and we have three possibilities of the isomorphism class of the Galois module VP (1)

under the adjoint action of ρI: (i) Ad(ρP ), (ii)
(
M/Q

)
or (iii) IndQ

M θ−. Indeed, by definition, VP (1)

has a Galois equivariant embedding into sl2(κ(P )) = Ad(ρP ). Since Ad(ρP ) ∼=
(
M/Q

)
⊕ IndQ

M θ− as

Galois modules, we have only three possibilities as above. In Case (i), plainly AnnΛP = PΛP and
PΛP = L(Λ)ΛP , and we are done.

Note that G := Im(ρI)∩ ΓI(mI) is p-profinite and does not contain any order 2 element (complex
conjugation). Therefore, we can take a basis of V so that the image of G in GL2(I/P ) is diagonal
with respect to this basis. In other words, taking j = ρ(σ) for σ ∈ Dp satisfying the condition (1) of
Lemma 2.9, the chosen basis is an eigenbasis with respect to j = ρ(σ). If we are in Case (ii), the image
GP2 of G in GL2(Λ/P

2) is diagonal, which implies that ρI mod P 2 is an induced representation
from M . By Galois deformation theory, we conclude P 2IP ⊃ AnnIP = P IP , a contradiction. In
Case (iii), VP (1) has to contain an anti-diagonal element non-trivial modulo P 2 (and hence, nilpotent
elements non-trivial modulo P 2). Thus with respect to our chosen basis, taking an a-eigenvector,
writing three (distinct) eigenvalues of Ad(j) as a, 1, a−1, we have X = ( 0 u

0 0 ) ∈ (sP ∩ P sl(V )) with
u 6≡ 0 mod P 2 and taking a−1-eigenvector, Y = ( 0 0

v 0 ) ∈ (sP ∩ P sl(V )) with v 6≡ 0 mod P 2. Then
[X, Y ] produces an Ad(j)-fixed vector in sP ∩ P 2sl(V ) non-trivial modulo P 3. Thus sP ∩ P 2sl(V )
has rank 3 over IP , and hence P 2IP = L(I)IP , and we are done. If PmIP = AnnIP with m > 1,
then basically replacing P in the above argument by Pm (P 2 by Pm+1 and VP (1) by VP (m)), we
get the result. Note that Spec(I/AnnI) = Spec(Tcm) ∩ Spec(I) for the annihilator AnnI of C; so, it
is the congruence ideal between Spec(I) and all other CM components.

We have shown locally, in case (i) the congruence ideal is equal to the level ideal (L(I)), and in
Case (iii), the square of the congruence ideal is equal to the level ideal. Case (ii) does not occur.
As suggested by the referee, we note that the cohomological congruence ideal is actually the square
of the congruence ideal of the Hecke algebra (as the étale cohomology group of modular curves is
free of rank 2 over the Hecke algebra under an appropriate Gorenstein condition). We now give a
detailed proof for general I ⊃ Λ.

Proof. As explained above in the sketch, we have Tcm = TMcm is nontrivial. Since I is a non-CM
component of T, we have T 6= Tcm. Since ρ is absolutely irreducible, under (R), T is Gorenstein, and
hence ρT realized on Lcan(T) has values in GL2(T); so, ρI realized on Lcan(I) has values in GL2(I)
and ρI|Dp ⊂ B(I) with (Gal) satisfied (thus (Fcan) is satisfied). Let G = Im(ρI) ∩ ΓI(mI), and write
ρP = (ρI mod P) for a prime P ∈ Spec(I).

Pick now a prime divisor P ∈ Spec(Λ) and a prime divisor P ∈ Spec(I) above P . We consider
the Lie algebra sP of GP = (G mod P); i.e., we write sP for the κ(P)-span ofM0

1(GP). There are
the following five possibilities:

(O) sP = 0.
(C) sP is a Cartan subalgebra H,
(N) sP is a nonzero nilpotent subalgebra
(B) sP is a Borel subalgebra,
(F) sP = sl2(κ(P)),

If we are in Case (F) for all P|P , by Lemma 3.1 combined with Lemma 8.1, GP contains an open
subgroup of SL2(A0) for all P|P , and we have P - L(I) by Theorem 2.12 (2) and Corollary 3.4. If

we are in Case (N) or (B) for some prime P, the group GP := Im(ρP) normalizes sP. Since the
normalizer of a (non-trivial) nilpotent or a Borel subalgebra is a Borel subgroup, ρP has values in
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a Borel subgroup; so, ρP is reducible, which is impossible by the absolute irreducibility of ρ. Thus
Cases (B) and (N) do not occur for any P|P .

In the cases (O) and (C), we first show that ρP
∼= IndQ

M θ for a character θ : Gal(Q/M)→ (I/P)×.

Suppose first that we have some P|P in Case (O). Then the basic closure of GP is contained in

the center; so, GP ⊂ {±1}. Since p > 2, we have GP = 1. Therefore under the notation in the

proof of Lemma 8.1, we have HP = T ′
P n GP = T ′

P. Since Im(ρ) is dihedral modulo center, taking
j ∈ Im(ρI) defined just before stating Lemma 8.1, it contains an element j′ of order 2 such that

j′jj′−1
=
(
ζ′ 0
0 ζ

)
(i.e., conjugation by j′ interchanges the two distinct eigenvalues of j). This j′ can

be lifted to an element (still denoted by j′) in Im(ρI) keeping property of interchanging the two
distinct eigenvalues of j (e.g., [CGP, §IV.3] or [TGP, §IV.7]). Then it interchanges the eigenvalues

of elements in T ′
P; so, we have j′T ′

Pj
′−1 ⊂ HP = T ′

P, which implies T ′
P = 1. Thus we conclude

P|T and HP = 1. Therefore Im(ρP) is isomorphically projected onto Im(ρ), and hence we must

have ρP = IndQ
M θ for a character θ : Gal(Q/M)→ (I/P)×.

Now we suppose that we have some P|P in the remaining case (C). Since ρ is absolutely irre-

ducible, ρP is absolutely irreducible. Then, by Lemma 8.4, ρP
∼= IndQ

K θ for a quadratic extension

K/Q and a character θ of Gal(Q/K). Since ρP is ordinary and ψ ramifies at p, (p) must splits in
K/Q as (p) = ppc. Then we may assume that θ is ramified at p and unramified at pc. By Proposi-

tion 5.2, K must be M , and ramification at p forces θ mod mI = ψ. By (Gal), if P 6= (T ) or ψ
−

is
ramified at p, θ is ramified over a decomposition group Dp at p, and the other θc is unramified at
the decomposition group.

Hereafter we treat the two cases (O) and (C) at the same time writing ρP
∼= IndQ

M θ. By
primitiveness, FI is a family of N -new forms. Thus we have C(ρP) = N = N(C)D for C = C(ΨJ)
(see Remark 7.3). We may also assume that W and I have the same residue field F. As before,
let Z = lim←−n ClM (Cpn) and Zp be the maximal p-profinite quotient of Z. By Proposition 5.7

(2), there exist a character θ : Gal(Q/M) → W [[Zp]]
× unramified outside Cp and a canonical

isomorphism Tcm ∼= W [[Zp]] such that ρTcm
∼= IndQ

M θ. Moreover, identifying Tcm = W [[Zp]],
(Tcm, θ) is the universal couple over W among deformations of θ mod mI. Thus the character

θ : Gal(Q/M)→ T×
cm satisfies

(8.2) θ = θ mod P′ for a prime P′ ∈ Spec(Tcm).

In other words, taking ι : Tcm → κ(P) such that ι◦θ = θ, we have P′ = Ker(ι) for P′ in (8.2). Since
N = N(C)D, the identification Tcm = W [[Zp]] gives rise to the algebra homomorphism T→W [[Zp]]
described in Lemma 5.6, which was written as Θ there.

We write ρ′ for ρTcm , ρ′P′ for ρ′ mod P′. Then we have the identity of Galois representations

ρP
∼= ρ′P′ = IndQ

M θP′ . This implies

(8.3) Tr(ρP(Frobl)) = Tr(ρ′P′(Frobl)) for all l prime to Np.

Let T′ ⊂ T be the Λ-subalgebra generated by the image of T (l) for all l prime to Np. The identity
(8.3) implies P′ ∩ T′ = P ∩ T′; i.e., the image of Spec(Tcm) and Spec(I) in Spec(T′) intersects at
P ∩ T′. We now show that Spec(I) and Spec(Tcm) intersect at the unique prime divisor P = P′

above P ∩ T′ in Spec(T). Since ψ
−

ramifies at p, we may assume that ψ is unramified at pc.
Then χ1|Z×

p
= ψ|O×

pc
(identifying Zp = Op), which is non-trivial. As remarked in the sketch,

C(ρP) = C(ρP′ ) = C(ρ) = N . Since ψ is ramified at p, χ1|Ip mod mW = ψ|Ip is non-trivial. Thus
the assumptions of Lemma 5.4 are met, and we conclude T′

P = TP. Thus Spec(Tcm) and Spec(I)

intersects at P′ = P in Spec(I) ∩ Spec(Tcm).

By Proposition 5.2 (2), that the order of ψ
−

is greater than 2 implies TMcm = Tcm. Write

Spec(T) = Spec(T⊥
cm) ∪ Spec(Tcm)

for the complementary union of irreducible components Spec(T⊥
cm) ⊂ Spec(T). Note that

Spec(IP ) ∩ Spec(Tcm,P ) = Spec(IP ⊗T Tcm,P ) ⊂ Spec(T⊥
cm,P ⊗T Tcm,P ).
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By Theorem 7.2, identifying Tcm with W [[Z−
p ]], we have closed immersions

Spec(Tcm,P/L
−(ψ

−
)Tcm,P) ⊂ Spec(T⊥

cm,P ⊗T Tcm,P ) ⊃ Spec(IP ⊗T Tcm,P),

and we have, inside Spec(T⊥
cm,P ⊗T Tcm,P ),

(8.4) Spec(IP ⊗T Tcm,P) ⊂ Spec(Tcm,P/L
−(ψ

−
)Tcm,P).

Let

b := AnnTcm,P (IP ⊗T Tcm,P ) ⊂ Tcm,P and a := AnnIP
(IP ⊗T Tcm,P ) ⊂ IP,

where AnnA(X) is the annihilator in the ring A of an A-module X. Put ρb = (ρTcm mod b) and
ρa = (ρI mod a). Thus Tr(ρb) = Tr(ρa), which implies ρb

∼= ρa (by a result of Carayol–Serre;
e.g., [MFG, Proposition 2.13]). Since the right-hand-side ρb is an induced representation from M ,
the image Im(ρa)|Gal(Q/M) (of the right-hand-side) is in the diagonal subgroup of GL2(I/aI). Thus

(L(I))P IP ⊂ a. By (8.4), a is a factor of L−
ψ

−ΛW,P . This a depends on P, and a ∩ Λ is a power of

P . We fix P|P such that a ∩ Λ is the smallest. We would like to show (a ∩ ΛP )2 ⊂ (L(I))P .
Suppose (L(I))P ( a. Let sP = IP · M0

1(G). We consider the adjoint action of Gal(Q/Q) on

V := (sP ∩ a · sl2(IP))/(sP ∩ a′ · sl2(IP))

for a′ := aP ⊃ (L(I))P . Then the adjoint Gal(Q/Q)-module V is isomorphic to a factor of Ad(ρP) ∼=(
M/Q

)
⊕ IndQ

M θ−. Since ψ
−

is non-trivial, θ− with θ− ≡ ψ− mod mI is non-trivial, and hence

IndQ
M θ− is absolutely irreducible. If V contains the two irreducible factors, we have dimκ(P) V = 3

and hence by Nakayama’s lemma, we have (sP ∩ a · sl2(IP)) = a · sl2(IP); so, (L(I))P = a, a
contradiction (against (L(I))P ( a). In other words, we have (L(I))P ( a⇔ V does not contain the
two irreducible factors.

If V is made up of
(
M/Q

)
, the Lie algebra V and hence sP/(sP ∩ a′ · sl2(IP)) acts trivially on

(I/a′)2; so, the image of G in SL2(I/a
′) is in the split diagonal torus. This implies ρa′ |Gal(Q/M) =

θ′ ⊕ θ′′ with θ′ ∼= ψ mod mI. By Frobenius reciprocity law (cf. [GME, §5.1.1]), we conclude

ρa′
∼= IndQ

M θ′. This is impossible, as a is the minimal IP-ideal so that ρa is an induced representation
from M .

We deal with the remaining case where V contains only IndQ
M θ−. We pick again the element

j = ρ(σ) and j′ as specified at the beginning of the proof. As explained before starting the proof, we
may assume that j′ = ρI(c). By the adjoint action, j acts on S := sP ∩ a · sl2(IP) and on V . Thus
V = V [a]⊕V [1]⊕V [a−1] and S = S[a]⊕S[1]⊕S[a−1] for the three eigenvalues a, 1, a−1 of Ad(j).

Since the Galois action on V [1] factors through
(
M/Q

)
, we conclude V [1] = 0. We also know that

j′ interchanges V [a] and V [a−1] (and S[a] and S[a−1]) isomorphically. Thus V [a] ∼= V [a−1] 6= 0
and SP[?] surjects down to V [?] for ? = a, 1, a−1. Then S contains matrices X := ( 0 u

0 0 ) ∈ S[a]

and Y := ( 0 0
v 0 ) ∈ S[a−1] whose image X (resp. Y ) in V are nontrivial in V [a] (resp. V [a−1]); i.e.,

0 6= X ∈ V [a] and 0 6= Y ∈ V [a−1]. This X is inM[a] and Y is inM[a−1] in the proof of Lemma 2.9.
In other words, for the Λ-module n = {x ∈ I| ( 0 x

0 0 ) ∈M(G)} and its opposite nt introduced in the
proof of Lemma 2.9, a = IPn = IPnt. Then

0 6= [X, Y ] =
(
uv 0
0 −uv

)
∈ (sP ∩ a2 · sl2(IP))/(sP ∩ a2P · sl2(IP)) =: V ′.

The Lie algebra V ′ also has non-trivial image of λX and λY for any generator λ of a. This shows
dimκ(P) V

′ = 3, and by Nakayama’s lemma sP ∩ a2 · sl2(IP) = a2 · sl2(IP). Thus a2 = IPnnt and
uut ⊂ (L(I)), where as before we put u = n ∩ Λ and ut = nt ∩ Λ. If I = Λ, u = n and ut = nt, this
finishes the proof as we described already.

If I ) Λ, we therefore need to show IPu ∩ ΛP = IPut ∩ ΛP = a ∩ ΛP . Recall we have chosen P

so that aP ∩ Λ = ΛW,P n ∩ Λ (i.e., P has been chosen so that aP ∩ Λ is the highest power of P ).
Take ε ∈ IP ∩ I×P so that εuIP ∩ ΛP = a ∩ ΛP . Conjugating G by α = ( ε 0

0 1 ), we may assume that

uP = ΛP ∩ nP = aP ∩ ΛP . Since Im(ρI) surjects down to a dihedral group H := Im(ρ), in this case
the condition (v) is not satisfied (as Im(ρ) does not contain nontrivial unipotent elements); so, we are
assuming (s) (which is satisfied if ψ−|Dp has order ≥ 3). Note that D := ρ(Dp) ∩GL2(Fp) is made



BIG GALOIS REPRESENTATIONS AND p-ADIC L-FUNCTIONS 42

of diagonal matrices of order prime to p. Taking their Teichmüller lifts, we can lift D isomorphically

onto D̃ ⊂ GL2(Zp). By our construction, D̃ is in the image of Dp. We can liftH isomorphically onto

a dihedral subgroup H̃ ⊂ Im(ρI) so that D̃ ⊂ H̃ (e.g., Exercise 1 of § IV.3 in [CGP] or [TGP, §IV.7]).
Then, as explained in the proof of Corollary 3.4, j ∈ GL2(I) in the condition (1) of Lemma 2.9 is

chosen in D̃. Thus we have c ∈ Gal(Q/Q) whose restriction to M is the complex conjugation such

that j′ = ρI(c) ∈ H̃ . Then j′jj′−1
=
(
ζ′ 0
0 ζ

)
if j =

(
ζ 0
0 ζ′

)
; i.e., the conjugation of j′ interchanges

the two eigenvalues. By Lemma 1.4, we have T ′ =
{(

ts 0
0 1

) ∣∣s ∈ Zp
}
⊂ ρI(Dp) ⊂ Im(ρI), and

j′T ′j′−1
=
{(

1 0
0 t−s

) ∣∣s ∈ Zp
}
⊂ ρI(cDpc

−1). We have chosen an eigen basis of Ĩ2 of j to write the
matrix form of ρI. Then to have c with ΓΛ(c) inside Im(ρI), we change the basis v of the ζ-eigenspace
of j multiplying by an element in I prime to P . Since j′ = ρI(c) interchanges the two eigenspaces

of j, we choose the basis of the other ζ′-eigenspace to be given by ρI(c)v. Then this j′ and D̃

generates the dihedral subgroup of H̃ ⊂ GL2(Zp) ∩ Im(ρI) lifting H isomorphically, and j′ is equal

to ( 0 1
1 0 ) ∈ Im(ρI)∩GL2(Λ). Hence we may assume Y = j′Xj′−1

, which implies (a∩ΛP )2 ⊂ (L(I))P .

Note that CharΛW (W [[Z−
p ]]/L−(ψ

−
)W [[Z−

p ]]) is given by NW [[Z−

p ]]/ΛW
(L−(ψ

−
)) = L−

ψ
−
. Con-

versely if we start with P |L−
ψ

− , by Theorem 7.2, the intersection scheme Spec(T⊥
cm,P ⊗T Tcm,P ) is

non-empty containing a prime divisor; so, we can find an irreducible component Spec(I) of Spec(T⊥
cm)

such that ρP is isomorphic to IndQ
M λ for a character λ. This implies P |L(I). �

Here is the result in the residually dihedral case not included in the above theorem.

Theorem 8.6. If ρ is absolutely irreducible with ρ ∼= IndQ
M ψ for a quadratic field M and a character

ψ : Gal(Q/M)→ Fp with ψ
−

having order > 2, then for any non CM component I of T, we have

(1) If M is real and p splits into pp in M , writing 1 + pm+1Zp with m ≥ 0 for the kernel of the

natural map Γ→ ClM (p∞), then L(I) ⊃ (tp
m − 1)2,

(2) If p does not split in M , then L(I) ⊃ (T 2).

This theorem settles the case (3a) of Theorem II in the introduction. Note also that ψ
−

having
order > 2 implies |F| ≥ 4.

Proof. Let P be a prime divisor of Λ, and write P any prime divisor of I above P . Let c be the
prime-to-p conductor of ψ. By the same argument as in the proof of the above Theorem 8.5, if
P |L(I), we have either sP = 0 or sP is a Cartan subalgebra or sP = sl(2). If sP = sl(2) for all P|P ,
then P - L(I) by Lemma 8.1, Theorem 2.12 and Corollary 3.4 combined. If sP 6= sl(2), by the same

argument as in the proof of Theorem 8.5, ρP = IndQ
M θ for a character θ. Then for the prime-to-p

conductor C of θ, we may assume that θ : Z → κ(P ), where Z = lim←−nClM (Cp∞). If M is real, Z is

a finite group, and θ([γ,Qp]
pm

) = 1, where we identify the inertia groups Ip and Ip and [γ,Qp] ∈ Ip.
This implies P |(tpm − 1) by (Gal).

If p is non-split, θ has to be unramified at p as θ or θc is unramified at p (note, by (s), that θ−|Dp

has to have order ≥ 3). Then θ([γ,Qp]) = 1, which implies P |(T ) by (Gal). Write Z for the class
group ClM (C) of M .

To show L(I)|(tpm − 1)2 for some m ≥ 0, we deal with the two cases at the same time. Let Zp be
the p-part of Z; so, Z = Zp × Z′ for Z′ of prime-to-p order. Pick a prime P of I for which ρP is an
induced representation from M . Let a be the minimal ideal of IP such that ρa = (ρI mod a) is an

induced representation from M . Then ρa
∼= IndQ

M λ and λ can be identified with a character of Z
by class field theory. Thus we have a W -algebra homomorphism W [Z] → IP/a by the universality
of the group algebra. This factors through a local ring of W [Z] isomorphic to W [Zp]. Since I is
generated topologically by Tr(ρI) over Q(W ) and ψ− has order > 3, IP/aIP is generated by the

values of λ. Thus IP/a is reduced; so, a is square-free, a ∩ Λ ⊃ (tp
m − 1), and (a ∩ ΛP ) ⊃ (L(I))P .

Then by the same argument as in the proof of Theorem 8.5, we conclude (L(I))P ⊃ (a ∩ Λ)2. �

Assume that ρ is absolutely irreducible whose projective image in PGL2(F) is one of the following
three type of groups: a tetrahedral group, a octahedral group or an icosahedral group. These groups
cannot be a quotient of a Borel subgroup or a unipotent group or a dihedral group, if sP 6= sl(2),
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we have sP = 0. Again under the notation of the proof of Lemma 3.1, HP = T ′
P n GP = T ′

P as

GP = 1. Then we have ρ(σ) whose projective image does not commute with the image of j, and we

find j′ ∈ Im(ρP) having the same effect on j projecting down to ρ(σ). Then j′T ′
Pj

′−1
= HP = T ′

P,

which implies T ′
P = 1; so, P|T . Thus we get the following theorem which settles the case (2) of

Theorem II in the introduction.

Theorem 8.7. Assume that ρ is absolutely irreducible whose projective image is one of the following
three type of groups: a tetrahedral group, an octahedral group or an icosahedral group. Then if Spec(I)
is an irreducible component of Spec(T), we have T |L(I)|Tn for sufficiently large n > 0.

It is interesting to determine the minimal integer n depending on I. The following theorem settles
the last remaining case (4) of Theorem II.

Theorem 8.8. Suppose p ≥ 5, p - ϕ(N) and that N is cube-free. Assume that ρ is reducible whose
semi-simplification is a direct sum of two characters θ and ψ with θ ramified at p and ψ unramified
at p and that θ/ψ has order > 2. Let Spec(I) be an irreducible component of Spec(T). Then L(I)

is a factor of L(θ, ψ) given in Definition 4.1 (2). Moreover for any prime divisor P of L(θ, ψ), if
p - ϕ(N), there exists an irreducible non-CM component Spec(I) ⊂ Spec(T) such that P |L(I).

The strategy of proving this theorem is similar to the one we took for Theorem 8.5 replacing CM
components by Eisenstein components in Spec(H). As we computed the ideal of the intersection

Spec(CEm
) = Spec(hm) ∩ Spec(Em) for m := m(θ, ψ;M1,M2) in Corollary 4.3, the argument goes

through. Note here T = hm.

Proof. Let the notation be as in the proof of Theorem 8.5. In particular, P is a prime divisor of
Spec(Λ) and P is a prime divisor of Spec(I) above P . Again there are the following five possibilities:
(O) sP = 0; (C) sP is a Cartan subalgebra H; (N) sP is a nilpotent subalgebra; (B) sP is a Borel
subalgebra; (F) sP = sl2(κ(P)).

We can forget about the case (F) for all P|P as P - L(I) in Case (F). An induced representation

IndQ
M λ for a quadratic extension M/Q is reducible only when λ− is trivial, and if λ− = 1, λ extends

to a character λ̃ of Gal(Q/Q) and we have IndQ
M λ = λ̃⊕ λ̃

(
M/Q

)
. By the assumption that θ/ψ has

order ≥ 3, we find that ρP
∼= IndQ

M λ is impossible (so, the assumption of Lemma 3.5 is satisfied,
and we have (L(I)) well defined). In particular, any component of Spec(T) does not have CM. Thus

if sP 6= sl(2) or sP 6= 0, we have ρP
∼=
(
θP ∗
0 ψP

)
with θP mod mT = θ and ψP mod mT = ψ with

ψP unramified at p as θ ramifies at p. If sP = 0, again we have HP = T ′
P, which is normalized

by Im(ρP); so, if P - T , ρP is reducible. If P|T and sP = 0, we have HP = 1 and hence, Im(ρP)
surjects down onto Im(ρ) with finite kernel K (the possible error term K is in the diagonal torus,

which comes from the difference of det(T ′
P) and the p-profinite part of Im(det(ρP))). This implies

ρP is reducible. Thus P is an Eisenstein ideal.
We now specify the Λ-adic Eisenstein component with which Spec(I) intersects at P. Write

ρssP =
(
θP 0
0 ψP

)
.

The prime-to-p conductor of ρssP is the product C(θP)C(ψP) of the prime-to-p conductors C(θP)

and C(ψP). Thus we have C(θP)C(ψP)|N . By (Gal), we may assume that ψP is unramified at p.
Thus ψP only (possibly) ramifies at prime factors of N prime to p. By class field theory, the image
of the inertia group Il at l in the abelianization of the decomposition group Dl at l is isomorphic
to the almost l-profinite group Z×

l . Thus ψP|Il with values in an almost p-profinite subgroup of
κ(P)× has to be of finite order. Then by global class field theory, ψP is of finite order. If κ(P)

has characteristic p, ψP has values in F
×
p (so, ψP = ψ), and we have a unique Teichmüller lift

ψ : Gal(Q/Q) → W× of ψP = ψ. If κ(P) has characteristic 0, we put ψ = ψP. We may assume
that ψ has values in W×, extending scalars if necessary. Now we consider the strict ray class group
ClQ(Npn) and Y = lim←−nClQ(Npn) ∼= Z×

p ×(Z/NZ)×. By class field theory, for the maximal ray class

field Q[µNp∞ ]/Q moduloNp∞, we have a canonical isomorphism Gal(Q[µNp∞ ]/Q) ∼= Y . We identify
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these two groups. Write Yp for the Sylow p-profinite subgroup of Y ; so, Y = Y (p) × Yp canonically

for the finite group Y (p) of order prime to p. We consider the group algebra W [[Yp]] and for u ∈ Y ,
we write [up] for the group element in Yp ⊂ W [[Yp]]

× represented by the projection of u in Yp. By
the same deformation argument proving Proposition 5.7 (2) (and used in the proof of Theorem 8.5),

for the Teichmüller lift θ0 : Gal(Q/Q) → W× of θ = θP mod mI, if p - ϕ(N), (W [[Yp]], θ) for
θ([u,Qp]) = θ0(u)[up] ∈W [[Yp]] for u ∈ Y is the universal couple among all deformations

(A, ε : Gal(Q/Q)→ A×)

of (F, θ0 mod mW ) with prime-to-p conductor C(ε)|N .

Let Yt be the maximal torsion subgroup of Yp. We may assume that any character: Yt×Y (p) → Q
×
p

actually has values in W× by extending scalars if necessary. The maximal torsion free quotient of
Yp is canonically isomorphic to Γ, and we have a non-canonical decomposition Y = Yt × Γ with
the p-group Yt. We identify W [[Γ]] with W [[T ]] by γ 7→ t = 1 + T . Since W [[Yp]] = W [Yt][[Γ]],
geometrically irreducible components of Spec(W [[Yp]]) are indexed by characters θ : Yt → W× so
that the component is given by the W -algebra projection θ∗ : W [[Yp]] � W [[T ]] sending y ∈ Yt to
θ(y) and γ to t. We call this component the θ-component. Take θ such that θ∗ ◦ θ mod P = θP in
I. By (Gal), we have θ∗ ◦θ(Frobl) = θ(Frobl)〈l〉 for all primes l outside Np. Since θP gives rise to a
point P′ of an irreducible component Spec(W [[T ]]) of the universal deformation space Spec(W [[Yp]])
so that θP ≡ θ∗ ◦ θ mod P′ (with P′ = P∩W [[T ]]). Consider the Λ-adic Eisenstein series E(θ, ψ).
By our construction, ρP is isomorphic to ψ⊕(θ∗◦θ) mod P′. Then in a way similar to the CM case,
we can find a possibly “old” Eisenstein component I′ with Galois representation ψ ⊕ (θ∗ ◦ θ) which
intersects with I at P . Indeed, again by l|C := C(ψP)C(θP)⇔ l|N , mismatch of dimH0(Il, ρP) and
dimH0(Il, ρI) could occur only when l|(N/C) and l|C(ξ) but l - C(η) for {ξ, η} = {ψP, θP}. Writing
Ξ(η) for the set of primes l|(N/C) with the above divisibility/non-divisibility property, we consider
the imprimitive characters ψ′ (resp. θ′) induced by ψ (resp. θ) modulo M1 := C(ψ)

∏
l∈Ξ(ψ) l (resp.

M2 := p · C(θ)
∏
l∈Ξ(θ) l). The Eisenstein series E(θ′, ψ′) has congruence modulo P with the I-adic

form. Therefore I/(L(I))I is a surjective image of the Λ-submodule CEm
⊗T I of the Eisenstein

congruence module CEm
(for m = m(θ, ψ;M1,M2)) defined just above Corollary 4.3. Therefore

(L(I))P ⊂ (L(θ, ψ))P . Let aP = AnnIP
(CEm

⊗T I). Then aP is the minimal ideal so that ρP is

isomorphic to representation into B(IP/a) and is a factor of L(θ, ψ). If P |(p), we know by [H13a,
Theorem 6.2], ρP is irreducible if p - ϕ(N); so, there is no reducible prime P|(p). Thus we may

assume that P - (p). Then by Corollary 3.6, cP =
⋂

P|P aP ∩ ΛW,P ; so, cP |L(θ, ψ).

The existence of I with P|L(I) for P |L(θ, ψ) follows from the definition of CE. Indeed, there exist
(θ, ψ;M1,M2) with P |A(T ; θ.ψ) and at least one component Spec(I) containing P ∈ Spec(CEm

) for
this choice of (θ, ψ;M1,M2). As already remarked, any component of Spec(T) is not of CM type. �

Here is a summarizing remark.

Remark 8.9. The proof of Theorems 8.5 and 8.8 is separated into two parts. The first part is to
prove that the congruence ideal between a non-CM component and abelian components (i.e., either
Eisenstein or CM components) is (essentially) equal to the level ideal. This is the principal work
done in this paper. The second part is to identify the level as a factor of an appropriate p-adic
L-function by the help of a proven main conjecture and Galois deformation theory.

9. Mixed cases

Pick a minimal primitive irreducible component Spec(I) of Spec(h). Let Spec(T) be the connected

component of Spec(h) containing Spec(I). We consider an Ĩ-lattice L in Q(I)2 stable under ρI. Take

its reflexive closure L̃, which remains stable under ρI. For any 0 6= a ∈ Ĩ, the multiple aL̃ remains

Ĩ-reflexive. By [BCM] VII.4.2 Proposition 7, the set of associated primes of L̃/aL̃ is made of prime

divisors. Thus, if Ĩ/aĨ = W , L̃/aL̃ has to be a free W -module, since W is a discrete valuation ring.

Then we must have rankW L̃/aL̃ = 2, which implies that, by Nakayama’s lemma, L̃ is free of rank

2 over Ĩ. Thus if Ĩ is a unique factorization domain, the condition (F) in the introduction holds.
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By resolution of singularity (see [L78]), we have a complete regular local ring Ism ⊂ Q(I) contain-
ing I. The non-flat locus of π in Spec(I) is at most of codimension 2 (so, its support is the unique
closed point m of Spec(I)). Writing E for the set of prime divisors of Ism above the maximal ideal
of I (those of exceptional divisors over the singular point mI ∈ Spec(I)), the set of prime divisors of
I is in bijection to prime divisors of Ism outside E as Spec(I) \ {mI} ∼= Spec(Ism) \ E. Since Ism is
regular, it is a unique factorization domain (see [CRT, Theorem 20.3]). Thus by the above argument,
extending scalars W so that Spec(Ism)(W ) 6= ∅, the reflexive Ism-closure L of Ism · Lcan(I) ⊂ Q(I)2

is free of rank 2 over Ism and is stable under ρI. We write ρIsm : Gal(Q/Q) → GL2(I
sm) for the

Galois representation realized on L. Though for simplicity, we assume the condition (Fcan) in this
section, the divisibility conjecture we make should hold for Ism ignoring primes in E taking ρIsm in
place of ρI without assuming (Fcan).

Throughout this section we assume (R) and (Fcan) in addition to p ≥ 5 and that N is cube-free.
Then by Theorem I, we have the conductor c of Im(ρI)∩SL2(Λ). Here Im(ρI) is taken in GL2(Q(I)).
In order to determine the global level exactly, we need to know the characteristic power series of
the congruence module between the CM part and the non CM part and also the Eisenstein and
non Eisenstein parts of Spec(T). A key ingredient of solving this question is Gorenstein-ness of each
part (cf. Theorem 7.2). If different CM components or/and Eisenstein components are mixed, it
is difficult to prove Gorenstein-ness of CM/Eisenstein part. Writing ρ for ρmT

, let us describe this

problem in more details. By Proposition 5.2, if ρ ∼= IndQ
M ϕ ∼= IndQ

K φ for two distinct bimaginary

quadratic fields, for the unique real quadratic fieldK′, there exists a mod p character φ
′
of Gal(Q/K′)

such that ρ ∼= IndQ
K′ φ

′
. We separate our argument into the following five mixed cases which cover

all possible cases (p-splitting imaginary quadratic fields involved) by Proposition 5.2:

(EIS) ρ = θ ⊕ ψ with both θ and ψ unramified at p with ψ/θ has order > 2.

(UCM) absolutely irreducible ρ ∼= IndQ
M ψ for an imaginary quadratic fields M with ψ unramified

at p and ψ
−

has order > 2.

(SCM) absolutely irreducible ρ ∼= IndQ
M ϕ ∼= IndQ

K φ
∼= IndQ

K′ φ
′
for two p-splitting distinct imaginary

quadratic fields M and K; so, ϕ− =
(
MK/M

)
, φ− =

(
MK/K

)
and φ′− =

(
MK/K′

)
.

(HCM) absolutely irreducible ρ ∼= IndQ
M ϕ ∼= IndQ

K φ
∼= IndQ

K′ φ
′
for an imaginary quadratic fieldM in

which p splits and an imaginary quadratic field K in which p is not split; so, ϕ− =
(
MK/M

)
,

φ− =
(
MK/K

)
and φ′− =

(
MK/K′

)
.

(ECM) ρ = θ ⊕ ψ ∼= IndQ
M ϕ for a quadratic field M ; so, ψ/θ =

(
M/Q

)
.

The five cases are disjoint, and M in Case (ECM) is imaginary as ψ/θ is an odd character. Except
for the case (ECM), we have well defined L(I) (see Section 3). The difficulty of determining all
possible cases of sP 6= sl2 in these cases comes from the fact that some primes P with sP 6= sl2 could

be a prime of congruence between components of U(p)-deprived Hecke algebra h(p) ⊂ h generated
by T (l) (l - Np) and U(q) for q 6= p over Λ. In order to determine exact level L(I), we need to show

that the local component T(p) of h(p) involved is Gorenstein up to finite error (which is not known
and perhaps not expected in general either).

The Katz measure µ on Z actually depends on the choice of p-adic CM type of the imaginary
quadratic field M (i.e., a choice of (M, p) and (M, p)). Our choice is (M, p) for p corresponding

to ip : Q ↪→ Qp. If we change (M, p) by (M, p), we get another measure, µ∗. The two measures

are related by a functional equation (e.g., [H10, Introduction]). We write (L−
ψ−)∗ for the product

of the Katz p-adic L-function with modulo p branch character ψ− with respect to (M, p). We may
conjecture the following outcome in the above cases:

Conjecture 9.1. For the non CM component Spec(I) ⊂ Spec(T) and a positive integer m� 0,

• in Case (EIS), L(I) is a factor of L(θ, ψ) · L(ψ, θ);
• in Case (UCM), L(I) is a factor of (L−

ψ
− · (L−

ψ
−◦c

)∗)2;

• in Case (SCM), L(I) is a factor of (L−
ϕ− ·L−

φ
− · (L−

ϕ−◦c)
∗ · (L−

φ
−◦c

)∗(tp
m − 1))2;
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• in Case (HCM), L(I) is a factor of




(L−
ϕ−

)2 · (tpm − 1)2 if ϕ− is ramified at p,
(
L−
ϕ− · (L−

ϕ−◦c)
∗ · (tpm − 1)

)2

if ϕ− is unramified at p

for a sufficiently large integer m > 0;
• in Case (ECM), further suppose that θψ has prime-to-p conductor N . For prime divisor
P ∈ Spec(Λ) not under the intersection of a CM and an Eisenstein component, we can
define local conductor cP as in Section 3. For P under the intersection of a CM and an

Eisenstein component, in the isomorphism class of ρeI realized on Lcan(̃IP ) over ĨP , we can
find ρ with maximal possible local conductor cP . Then we have (L(I)) = Λ ∩ ⋂P cP is a

factor of L(θ, ψ) · L(θ, ψ) · (L−
ϕ− · (L−

ϕ−◦c)
∗)2.

To explain our reasoning supporting this conjecture, we pick Case (SCM). Then Spec(T) could
contain two CM components Spec(TKcm) and Spec(TMcm). After inverting T , by Corollary 5.3, the
connected component S of Spec(T[ 1

T ]) containing Spec(I[ 1
T ]) can have non-trivial intersection with

Spec(TMcm) for one choice M . There is a possible contribution from non CM component whose

specialization at some P |(tpm − 1) is an induced representation IndQ
K′ φ′ for the real quadratic field

K′ ⊂ KM . Then our argument proving Theorem 8.5 relative to an irreducible component J of TMcm
should go through after inverting (tp

m − 1) for a sufficiently large m. Thus, outside an exceptional
divisor (containing (tp

m − 1) and the zero divisor of E1,N for M and for K), the conjecture follows.
The real challenge would be the analysis at primes inside the exceptional divisor. All other cases
should be similar in the sense that the conjecture is provable outside an exceptional divisor.

10. Prime-to-p conductor of p-adic Galois representation

We summarize facts on ramification at a prime q 6= p of p-adic Galois representations we have
used. Let R be a p-profinite local ring. Let M ⊂ Q be a finite extension of Q with integer ring

O, and put Ô(p) =
∏
l6=p(O ⊗Z Zl). For any continuous character ψ : M×\M×

A → R× unramified

outside Np, the restriction ψ : (Ô(p))× → R× has to be a finite order character, as ψ is ramified
only at finitely many primes and R× is an almost p-profinite group. Thus we have an integral ideal

C(ψ) maximal among ideals a prime to p with (1 + aÔ(p)) ∩ (Ô(p))× ⊂ Ker(ψ). We call C(ψ) the
prime-to-p conductor of ψ. By local class field theory, a continuous character: Gal(Q/M)→ R× can
be viewed as an idele character ψ, and hence the definition of C(ψ) applies also to Galois characters.
For σ ∈ Gal(Q/Q) acting nontrivially on M leaving it stable, we define ψσ : Gal(Q/M) → R×

by ψσ(τ ) = ψ(στσ−1). The idele character corresponding to the Galois character ψσ is given by
composing ψ with the action of σ on M×

A . For a rational prime q 6= p, the q-primary part Cq(ψ) of
C(ψ) is called the q-conductor of ψ. Obviously, Cq(ψ) only depends on ψ restricted to the inertia
group at q, and therefore, Cq(ψ) is well defined for any finite order character ψ of the inertia group.
If M = Q, often we identify the ideal Cq(ψ) = (qe) with the positive integer qe.

Recall the exact sequence 1 → Iwq → Iq → Itq → 0 of the wild inertia group Iwq and the tame

inertia group Itq
∼= Ẑ(q) which is an abelian group (e.g., [MFG, §3.2.5]).

Lemma 10.1. Let ρ : Gal(Qq/Qq) → GL2(R) be a continuous representation for a reduced p-
profinite noetherian local ring R. Put ρP = (ρ mod P ) for P ∈ Spec(R). Suppose q 6= p.

(1) Unless ρp|Iq is reducible indecomposable for some minimal prime p of R, ρ|Iq has finite
image.

(2) If there exists a prime ideal P0 of the p-profinite ring R such that ρP0 is absolutely irreducible
over Iwq , then for all prime ideal P of R, ρP = (ρ mod P ) is absolutely irreducible over Iwq .

(3) Suppose that R is an integral domain. If ρ|Iw
q

is reducible and ρ is absolutely irreducible,

then ρ ∼= Ind
Qq

K ξ for a character ξ of Gal(Qq/Qq) of a quadratic extension K/Qq.

(4) If R is an integral domain and ρ|Iq is reducible indecomposable, we have ρ ∼=
(

Nη ∗
0 η

)
with

η|Iq having finite order, where N is the unramified cyclotomic character acting on µp∞.



BIG GALOIS REPRESENTATIONS AND p-ADIC L-FUNCTIONS 47

Proof. We first prove (1). Since R ↪→ ⊕pR/p for finitely many minimal ideal p, replacing R by
R/p, we may assume that R is an integral domain. Since ρ|Iw

q
has finite image (factoring through

GL2(R/mR) and Iq = Itq n Iwq , by restricting ρ to Gal(Qq/K) for a finite extension K/Qq, we may

assume that ρ|Gal(Qq/K) is reducible to prove (1). Let IwK = Iwq ∩Gal(Qq/K) and ItK be the image

of IK = Iq ∩ Gal(Qq/K) in Itq . Then 1 → IwK → IK → ItK → 1 is exact. Since ρ(IwK) cannot
contain non-trivial unipotent element as q 6= p, ρ|Iw

K
= η⊕ ξ for two finite order characters factoring

through (R/mR)×. Since ItK is cyclic, by [MFG, Corollary 4.37], either ρM := ρ|Gal(Qq/M)
∼= ξ̃ ⊕ η̃

for extensions ξ̃ and η̃ of ξ and η to Gal(Qq/M) for an extension M/K with [M : K] ≤ 2 or ρ(IK )
contains non-trivial unipotent element of p-power order, which is excluded by our assumption; thus

ρM ∼= ξ̃ ⊕ η̃. Replacing M by its finite extension, we may assume that ξ̃ and η̃ factor through
ItM on which an element φ ∈ Gal(Qq/M) surjecting down to the Frobenius element over M acts

by φσφ−1 = σQ for a q-power Q. Defining the inner conjugate ξφ by ξφ(σ) = ξ(φσφ−1), we have
η̃φ = η̃Q = η̃. This implies η̃ is of finite order; so, ρ|Iq has finite image. This proves (1).

By p-profiniteness of R, the residue field R/mR is finite for the maximal ideal mR of R. Since
ΓR(mR) is p-profinite, q 6= p implies that ρ|Iw

q
factors through GL2(R/mR). If ρ0|Iw

q
is absolutely

irreducible, then ρ|Iw
q

is absolutely irreducible for ρ = ρ mod mR. Then ρP |Iw
q

is absolutely irre-

ducible for all P ∈ Spec(R). This proves (2).

We prove (4). Write ρ|Iq
∼=
(
ξ u
0 η

)
. Then ρφ|Iq

∼=
(
ξφ uφ

0 ηφ

)
∼= ρ|Iq for a Frobenius φ ∈ Gal(Qq/Qq).

By indecomposability, we have ηφ = ηq = η over Iq; so, η|Iq is of finite order, and uφ = qu, which

shows η/ξ = N for the cyclotomic character N giving the action of Gal(Qq/Qq) on µp∞ ; so, N is
unramified, and we get the desired result.

To prove (3), assume reducibility of ρ|Iw
q

. Since q 6= p, ρ|Iw
q
∼= ξ ⊕ η. Then we have

ρ(σ)
(
ξ 0
0 η

)
ρ(σ)−1 = ρσ ∼=

(
ξσ 0
0 ησ

)

for each σ ∈ Gal(Qq/Qq). If ξσ = ξ for all σ ∈ Gal(Qq/Qq), absolutely irreducible ρ commutes
with ρ(Iwq ); so, we conclude ξ = η. We call this case Case Z. If ξσ ∼= η 6= ξ, then its stabilizer is

Gal(Qq/K) for a quadratic extension K/Qq. We call this case Case D.
In Case D, by [LRF] Proposition 24 in §8.1 (whose proof does not require p 6= 0 in R as long as

ρ|Iw
q

is semi-simple), ρ ∼= IndQ
K ξ̃ for a character ξ̃ of Gal(Qq/K) extending ξ as asserted.

Suppose that we are in Case Z. Then ρ(Iwq ) is in the center of ρ(Iq). Since Itq is abelian

and ρ(Iq) = ρ(Iwq ) o ρ(Itq), ρ(Iq) is an abelian group. Thus ρ|Iq is reducible. By (4), we have

ρ|Iq = ξ ⊕ η. Then Gal(Qq/Qq) acts on ξ and η by inner conjugation. If the stabilizer of ξ is a

proper subgroup of Gal(Qq/Qq), we find a quadratic extension K/Qq such that ρ is an induced
representation as asserted. If the stabilizer is the entire group, ξ = η and ρ(Iq) is in the center of
Im(ρ). Since Im(ρ) = ρ(Iq) o 〈ρ(φ)〉 for an element φ giving the Frobenius automorphism of the
maximal unramified extension of Qq, Im(ρ) is abelian, contradicting the absolute irreducibility of ρ.
This finishes the proof of (3). �

Suppose that R is an integral domain. We recall the conductor Cq(ρ) of a two-dimensional Galois

representation ρ : Gal(Qq/Qq) → GL2(R) for a prime q 6= p (e.g., [GME, Theorem 5.1.9]). It only

depends on the restriction of ρ to the inertia group Iq ⊂ Gal(Qq/Qq). Regarding ρ having values
in GL2(Q(R)) for the quotient field Q(R) of R, we define Cq(ρ) = qe as follows. Let Qur

q be the
maximal unramified extension of Qq and K with integer ring V be the splitting field of ρ|Iq . We put

Ii = {σ ∈ Gal(K/Qur
q )|σ(x) ≡ x mod mi+1

V }.

Then we define

e =

∞∑

i=0

1

[I0 : Ii]
(2− dimQ(R)H

0(Ii, ρ)).
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If P1 ⊃ P2 are two primes of R, dimκ(P1)H
0(Ii, ρP1) ≥ dimκ(P2)H

0(Ii, ρP2); so, Cq(ρP1 ) ≤ Cq(ρP2 )
for ρPj = ρ mod Pj. If R is not an integral domain, we define

Cq(ρ) = SupP∈Spec(R) Cq(ρP ).

Here are some explicit identification of Cq(ρ) (given in [GME, Theorem 5.1.9]) when R is an inte-
gral domain. This covers all cases used in the proof of Theorem 8.5 (as ρ is an induced representation
in Theorem 8.5). If ρ|Iq is isomorphic to a representation

( η ∗
0 η

)
over Q(R), we have

Cq(ρ) =

{
q if η is unramified and ρ is indecomposable,

Cq(η)
2 if η is ramified.

If ρP ∼= α ⊕ β for two characters α, β : Gal(Qq/Qq) → R×, the characters α|Iq and β|Iq are of
finite order. We then have Cq(ρ) = Cq(α)Cq(β). If ρ is absolutely irreducible and it has of the

form ρ ∼= Ind
Iq

H ξ for an open subgroup H of Iq of index 2, writing (qe) for the discriminant of the

quadratic extension Q
H

q /Q
Iq

q , we have Cq(ρ) = qe+f , where (qf) is the norm relative to Q
H

q /Q
Iq

q of
the conductor Cq(ξ) of ξ.

For an automorphic representation π generated by a holomorphic Hecke eigenform f , we have its
p-adic Galois representation ρf = ρπ (e.g., [GME, §4.2]). Then Cq(ρf ) coincides with the q-part of
the conductor Cq(π) of π in the sense of [AAG, Theorem 4.24] (see also [C86] for Cq(ρf ) = Cq(π)).

Lemma 10.2. Suppose that R is a reduced p-profinite local ring. Let ρ : Gal(Qq/Qq)→ GL2(R) be
a continuous representation. Then

(1) For any prime ideal P of R containing a minimal prime p, we have Cq(ρP ) ≤ Cq(ρ).
(2) Suppose that R is an integral domain in which p 6= 0. Then unless ρ|Iq is reducible in-

decomposable, for any point P ∈ Spec(R[ 1
p
]), Cq(ρP ) is independent of P , in particular,

Cq(ρP ) = Cq(ρ).
(3) Suppose that Spec(R) = Spec(I) ∪ Spec(J) for two irreducible components Spec(I) and

Spec(J). If Spec(I[ 1p ])∩ Spec(J [ 1p ]) contain a prime P0 and ρp|Iq is not reducible indecom-

posable for the two minimal prime ideals p of R, Cq(ρP ) is independent of P ∈ Spec(R[ 1
p
]),

in particular, Cq(ρP ) = Cq(ρ).
(4) If P is a prime ideal of R with κ(P ) having characteristic 0 and ρp|Iq is not reducible

indecomposable for the each minimal prime ideal p of RP , then Cq(ρP ′ ) = Cq(ρP ) for any
prime ideal P ′ of the localization RP .

Proof. The first assertion follows directly from the definition, and the third is the special case of
the second. For the assertions (2) and (3), we note that ρ|Iq has finite image under the assumption.
If R is an integral domain and p 6∈ P for P ∈ Spec(R), 1 + PR = R ∩ (1 + PRP ) is a torsion-free
group; so, ρP (Iq) ∼= ρ(Iq). In particular, we have, for any subgroup I ⊂ Iq , dimQ(R)H

0(I, ρ) =

dimκ(P) H
0(I, ρP ), which implies Cq(ρ) = Cq(ρP ), proving (2).

As for (3), writing I = R/p and J = R/q, by (2), Cq(ρP ) is constant for all P ∈ Spec(I[ 1p ]) and

Cq(ρQ) is independent of Q ∈ Spec(J [ 1p ]). We have Cq(ρP ) = Cq(ρp) = Cq(ρP0 ) = Cq(ρq) = Cq(ρQ).

The assertion (4) follows from (3). Note that RP [ 1p ] = RP as κ(P ) has characteristic 0. For any

two irreducible components Spec(I) = Spec(RP /p) and Spec(J) = Spec(RP /q) of Spec(RP ), we
have P ∈ Spec(I) ∩ Spec(J); so, Cq(ρp) = Cq(ρq) = Cq(ρP ). For any P ′, taking a minimal prime
ideal q contained in P ′, we get Cq(ρP ′ ) = Cq(ρq) = Cq(ρP ). This finishes the proof. �

We call a representation ρ : Gal(Qq/Qq) minimal if Cq(ρ ⊗ χ) ≥ Cq(ρ) for any finite order

character χ of Gal(Qq/Qq).

Lemma 10.3. Let R be a p-profinite noetherian integral domain and ρ : Gal(Qq/Qq)→ GL2(R) be
a semi-simple representation. Let ρ = (ρ mod mR).

(1) If ρ|Iq
∼= ξ ⊕ η for two characters ξ and η of Iq, then ρ|Iq

∼= ξ ⊕ η for two characters ξ and

η. If further ρ is minimal and one of ξ and η extends to Gal(Qq/Qq), one of ξ and η is
unramified, and ρ is minimal.
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(2) Suppose that ρ ∼= ξ ⊕ η for two characters ξ and η of Gal(Qq/Qq). If ρ is absolutely

irreducible, q ≡ 1 mod p. If further ρ is minimal, ρ and ξ are unramified at q (so, ρ is
minimal), and ξ/η has order 2.

(3) Suppose that ρ ∼= ξ ⊕ η for two characters ξ and η of Gal(Qq/Qq). If ρ is reducible minimal
isomorphic to ξ ⊕ η, one of ξ and η is unramified, and ρ is minimal. If ρ is unramified but
ρ is ramified, we have again q ≡ 1 mod p.

(4) Assume that p 6= 0 in R. Suppose that either ρ ∼= η ⊕ ξ or ρ ∼= Ind
Qq

K ξ for a quadratic
extension K/Qq. If Cq(ρ) < Cq(ρ) and ρ is minimal, we have qj ≡ 1 mod p, where j = 1

if ρ ∼= η ⊕ ξ or K is ramified and j = 2 if K is unramified.

Proof. We first prove the assertion (1). If ρ|Iq is absolutely irreducible, by Lemma 10.1 (3), we have

either (i) ρ|Iw
q

is absolutely irreducible or (ii) ρ ∼= Ind
Qq

K ξ for a character ξ and a ramified quadratic

extension K/Qq. Case (i) does not occur as ρ|Iw
q

factors through ρ. Suppose that we are in Case

(ii) and that ρ|Iq is absolutely irreducible. Then we have ξ1−σ ≡ 1 mod mR for σ ∈ Iq non-trivial

over K, as ρ|Iq is reducible. Then by local class field theory, ξ1−σ can be regarded as a character of

O× for the integer ring O of K. By irreducibility of ρ|Iq , ξ
1−σ 6= 1 with ξ1−σ ≡ 1 mod mR. Thus

ξ1−σ has p-power order. Since O× is a q-profinite group times F×
q (as K is ramified over Qq), ξ

1−σ

factors through F×
q . Any character of O× factoring through F×

q is σ-invariant; so, ξ1−σ|Iq = 1. Thus

IndQ
K ξ|Iq is reducible, a contradiction. Thus ρ|Iq

∼= ξ ⊕ η. If one of ξ and η extends to Gal(Qq/Qq),

the two characters extend to Gal(Qq/Qq) as det(ρ) is a character of Gal(Qq/Qq). Then we must
have ρ = ξ⊕ η for suitable choice of extensions. By the minimality, one of η and ξ is unramified; so,
one of ξ and η is unramified. This implies that ρ is minimal as well. This finishes the proof of (1).

We now prove (2). By (1), ρ|Iq
∼= ξ⊕ η with ξ = ξ mod mR. Since ρ is absolutely irreducible, by

Lemma 10.1 (3), we have ρ ∼= Ind
Qq

K ξ for a character ξ of Gal(Qq/K) extending the character ξ of

Iq ∩Gal(Qq/K) for a quadratic extension K/Qq . If K/Qq is ramified, ξσ = ξ for σ ∈ Iq non-trivial

on K; so, ρ is reducible, a contradiction. Thus K/Qq is unramified. Take φ ∈ Gal(Qq/Qq) giving

rise to q-th power Frobenius modulo q. Then φ is nontrivial on K, we have ξ1−φ ≡ 1 mod mR and

ξ/η =
(
K/Qq

)
as ρ ∼= ξ⊕ η. Thus ξ1−φ is a p-power order character. Note that ξ|Iq has finite order.

Write ξ|Iq = ξpξ
(p) so that ξp has p-power order and ξ(p) has order prime to p. Then ξ1−φp = ξ1−φ

and (ξ(p))1−φ = 1, since ξ1−φ has p-power order. Thus ξ(p) extends to a finite order character Ξ of

Gal(Qq/Qq). Then ρ ⊗ Ξ−1 has less conductor than ρ. Since ρ ⊗ Ξ−1 is absolutely irreducible, it
is ramified; so, ξp is non-trivial. Since φ acts on Itq by the cyclotomic character (e.g., [MFG, page

123]), we have ξφ−1
p = ξq−1

p = 1 which implies q ≡ 1 mod p. By minimality of ρ, we conclude

Ξ|Iq = ξ(p) = 1, and ξ|Iq has order p-power. Thus ξ|Iq = 1 and hence, ρ = 1 ⊕
(
K/Qq

)
, which is

unramified, and ξ/η =
(
K/Qq

)
has order 2. This finishes the proof of (2).

We prove (3). If ρ is reducible, by semi-simplicity of ρ, we have ρ ∼= ξ ⊕ η. By minimality of ρ,
one of ξ and η is unramified, and hence ρ is minimal. If further ρ is unramified while ρ is ramified,
one of the characters ξ and η non-trivial on Iq become trivial modulo mR; so, q ≡ 1 mod p.

To see (4), we note that under p - (q − 1) and minimality of ρ, ρ is absolutely irreducible if and

only if ρ is absolutely irreducible by (2). If ρ ∼= η ⊕ ξ and ρ = ξ ⊕ η with η = (η mod mR), for

the Teichmüller lift ξ̃ of ξ and η̃ of η, Cq(ρ) > Cq(ρ) implies that one of ξξ̃−1 and ηη̃−1, say ξξ̃−1,

is non-trivial over Itq of p-power order. Then 1 = (ξξ̃−1)1−φ = (ξξ̃−1)1−q implies q ≡ 1 mod p.

Now suppose that ρ ∼= Ind
Qq

K ξ is absolutely irreducible. Then for ξ = (ξ mod mR), ξ
1−σ 6= 1 for

σ ∈ Gal(Qq/Qq) non-trivial on the quadratic extension K. If K is ramified, again Cq(ρ) > Cq(ρ)

implies 1 = (ξξ̃−1)1−φ = (ξξ̃−1)1−q as we can choose the Frobenius φ inducing identity on K. If K

is unramified, by the same argument, q2 ≡ 1 mod p as the Frobenius over K acts on Itq by σ 7→ σq
2

.

By Lemma 10.1 (3), the remaining case is when ρ|Iw
q

is irreducible but ρ is not induced. Since

ρ|Iw
q

factors through ρ which is induced, ρ(Iwq ) is a dihedral group (as ρ|Iw
q

is irreducible). Since 2

is a factor of the order of the dihedral group ρ(Iwq ), we conclude q = 2. Since ρ(Iwq ) is dihedral,
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ρ|Iw
2

∼= Ind
Iw
2

I ξ for an index 2 subgroup I of Iw2 . By [W74], the image G of Im(ρ) in PGL2(R) is
isomorphic either to S4 or A4. We have an isomorphism S4/V ∼= S3 for the unique (2, 2)-subgroup
V . Let L be the extension of Q2 such that Gal(L/Qq) ∼= G by ρ. Then L has subfield M with

Gal(L/M) = V . By [K80, §5.1], we have ρ|Gal(Q2/M)
∼= IndML′ ξ for any of three quadratic extensions

L′ of M in L. Since p 6= 2, V ∩ G has to injects into G. Thus G has to be isomorphic to S4 or A4,
a contradiction, since G is dihedral. Therefore, this case cannot happen, hence we get (4). �

For a global representation ρ : Gal(Q/Q) → GL2(R), assuming that ρ only ramifies at finitely
many places (so, Cq(ρ|Gal(Qq)/Qq)) = 1 for almost all q 6= p), we define its prime-to-p conductor by

C(ρ) =
∏
q 6=p Cq(ρ|Gal(Qq)/Qq)). All Galois representations we studied in this paper ramify only at

finitely many primes; so, it has well defined conductor. A global Galois representation ρ as above is
called minimal if C(ρ) is minimal among C(ρ⊗ ξ) for all finite order Galois character ξ.

Lemma 10.4. Let R be a p-profinite integral domain and Ψ : Gal(Q/M)→ R× be a character with

prime-to-p conductor C for an imaginary quadratic field M . If IndQ
M Ψ is minimal at primes q split

in M , we have Fc = O for the decomposition C = FFcI in Definition 6.1.

Proof. If Fc 6= O, we have a rational prime q such that (q)|FFc. Since F + Fc = O and F ⊂ Fcc, we
can split (q) = QQc in M so that Q|F. Then identifying Iq with IQc , we may regard Ψ|IQc as a
character of Iq . Since the image of Iq in Gal(Qab

q /Qq) for the maximal abelian extension Qab
q /Qq

is isomorphic to Gal(Qq[µq∞ ]/Qq) ∼= Z×
q , we have a global Galois character ξ : Gal(Q/Q) → R×

unramified outside q and ξ|Iq = Ψ|Iq . Then we have, for q-primary parts,

Cq((IndQ
M Ψ) ⊗ ξ−1) ⊃ Fq ) (FFc)q = Cq(IndQ

M Ψ)

contradicting against minimality of IndQ
M Ψ. �
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pales”, Publication IHES 71 (1990), 65–103.

[MW86] B. Mazur, and A. Wiles, On p-adic analytic families of Galois representations. Compositio Math. 59

(1986), 231–264.

[Mo81] F. Momose, On the l-adic representations attached to modular forms. J. Fac. Sci. Univ. Tokyo Sect. IA
Math. 28 (1981), 89-109.

[O99] M. Ohta, Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves, Comp.
Math. 115 (1999) 241301.

[O00] M. Ohta, Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math.
Ann. 318 (2000), 557-583.

[O03] M. Ohta, Congruence modules related to Eisenstein series. Annales scientifiques de l’École Normale
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