BIG GALOIS REPRESENTATIONS AND p-ADIC L-FUNCTIONS

HARUZO HIDA

ABSTRACT. Letp > 5 be a prime. If an irreducible component of the spectrum of the ‘big’ ordinary
Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the
image of its Galois representation contains, up to finite error, a principal congruence subgroup
T'(L) of SL2(Zp[[T]]) for a principal ideal (L) # 0 of Zp[[T]] for the canonical “weight” variable
t=14+T. If L € A*, the power series L is proven to be a factor of the Kubota-Leopoldt p-adic
L-function or of the square of the anticyclotomic Katz p-adic L-function or a power of (tpm —1).

Throughout the paper, we fix a prime p > 3, field embeddings C & Q & @p Cc C, and
a positive integer N prime to p. Let y be a Dirichlet character modulo Np™*!'. Consider the
space of modular forms M1 (To(Np™1), x) with (p ¥ N,r > 0) (containing Eisenstein series)
and cusp forms Si41(To(Np"™),x). Here x is the Neben-typus. Let Z[x] C Q and Zy[x] C Q,
be the rings generated by the values x over Z and Z,, respectively. The Hecke algebra H =
Hi1(To(Np™1), x; Z[x]) over Z[x] is

H =Z[\][T(n)ln=1,2,--] € End(Mp11(To(Np™), X))

For any Z[x]-algebra A C C, Hy1(Dg (NpTJrl), x;A) = H ®Z[x] A is actually the A-subalgebra of
End(Mp11(To(Np™t1), x)) generated over A by the T'(I)’s. Then we put
His1x = Heg1yw = Hepr(Do(Np™ 1), x; W) := H @zpg W
for a p-adic complete discrete valuation ring W C C, containing Z,[x]. Let A = Z,[[T]] (resp.
Aw = WI][T]]), and write t =14+ T € A* (as Spf(A) = G,,, with variable t).
We often write our T'(I) as U(l) when N is divisible by [. The ordinary part Hy i, /w C
Hj, 11, w is then the maximal ring direct summand on which U(p) is invertible. We write e for

n!

the idempotent of Hy i1, /w; so, e is the p-adic limit in Hj4q ,/w of U(p)™ as n — oco. We

write the image of the idempotent as ./\/lz’jrd1 for modular forms and S,‘c’idl for cusp forms. Let
X1 = the N-part of x x the tame p-part of x. Then, by [H86a] and [H86b] (and [GME, §3.2]), we

have a unique ‘big” Hecke algebra H = H,, s such that

(1) H is free of finite rank over Ay equipped with T'(n) € H for all n,
(2) ifk > 1ande: Z; — ppe (W) is a character, H/(t—e(v)7")H = Hy 41 0y, for xi := xiw* %
(v =1+p€Z)), sending T(n) to T'(n), where w is the Teichmiiller character.

The corresponding objects for cusp forms are denoted by the corresponding lower case characters;
s0, h = ZDJ[T(m)|n = 1,2, -] € End(Ses1 (Lo (Np™+1), X)) hicy1/w = b1 (To(Npr 1), 3 W) o=
h ®z(y) W, the ordinary part hyy1, C hry1,, and the “big” cuspidal Hecke algebra h = h,, (N) /.
Replacing modular forms by cusp forms (and upper case symbols by lower case symbols), we can
construct the cuspidal Hecke algebra h. Then, similarly to the case of modular forms, we have the
following characterization of the cuspidal Hecke algebra h /y:

(1) h is free of finite rank over Ay equipped with T'(n) € h,
(2) h/(t —e(7)7*)h 2 hy 41 ¢y, sending T(n) to T(n), if k > 1.
We have a surjective Ap-algebra homomorphism H — h sending T'(n) to T'(n).
Write @ for the quotient field of A, and fix an algebraic closure Q of ). A two-dimensional Galois
representation is called odd if its determinant of complex conjugation is equal to —1. We have a
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two-dimensional odd semi-simple odd representation pg of Gal(Q/Q) with coefficients in the total
quotient ring Q(H) of H (see [H86b] and [GME, §4.3]). The total quotient ring Q(H) is the ring of
fractions by the multiplicative set of all non-zero divisors; so, Q(H) = H®x @. This representation
preserves an H-lattice £ C Q(H)? (i.e., an H-submodule of Q(H)? of finite type which span Q(H)?
over Q(H)), and as a map of Gal(Q/Q) into the profinite group Autg (L), it is continuous. The
representation py restricted to the p-decomposition group D, = Gal(Q,/Q,) (associated to iy) is
isomorphic to an upper triangular representation with unramified rank 1 quotient. Write p§j for the
semi-simplification over D,,. As is well known now (e.g., [GME, §4.3.2]), py satisfies, for t =1+ T,

(Gal) Tr(pr (Froby)) = T(1) (14 Np), p([v*, Qo)) ~ (5 9) and pi([p, Q) ~ (5 vy ) -

where 7* = (1 +p)* € Z) for s € Z), and [z, Q] is the local Artin symbol.

For each prime P € Spec(H), let x(P) be the residue field of P. Then Tr(pr) mod P has values
in H/ P, and by the technique of pseudo representations (cf. [MFG, §2.2]), we can construct a unique
semi-simple Galois representation pp : Gal(Q/Q) — GLa(k(P)) such that

Tr(pp (Frob))) = (T(l) mod P) for all prime I { Np.

For any ideal a € H with reduced H/a, we write p, = [[pppr : Gal(Q/Q) — GL2(Q(H/a))
for the total quotient ring Q(H/a) of H/a, where P runs over minimal primes of Spec(H/a). If
a = Ker(H — 1) (resp. a = Ker(H — T"°?)) for an irreducible component Spec(I) C Spec(h) (resp.
a connected component Spec(T) C Spec(h)), we write py (resp. pr) for p,, where T™*? is T modulo
its nilradical. If T or its irreducible component Spec(I) C Spec(T) is fixed in the context, we write
p: Gal(Q/Q) — GLy(F) for pmy = pm, for the maximal ideals my of T and my of I

Let Spec(I) be an irreducible (reduced) component of Spec(H) and write its normalization as
Spec(I). We often call I a component of H and regard it as sitting inside Q (when W is finite over
Zy). We denote by Q(I) for the quotient field of I. We call a prime ideal P C R of aring R a prime
divisor if Spec(R/P) has codimension 1 in Spec(R). We call an ideal ® of I a divisorif © =\, P™"
for finitely many prime divisors P. Write a(n) for the image of T'(n) (n prime to Np) in I and a(()
for the image of U(l) if I|Np. If a prime divisor P of Spec(I) contains (t — e(vy)y*) with k > 1, by
(2) we have a Hecke eigenform fp € My 1(Do(Np"(P)F1) exy) such that its eigenvalue for T'(n) is
given by ap(n) := (a(n) mod P) € Q, for all n. A prime divisor P with PN Ay = (t — e(y)7*)
with £ > 1 and a character € : Z; — jipeo (W) is called an arithmetic point (or prime), and we
write ep = ¢ and k(P) = k > 1 for an arithmetic P. Thus I gives rise to an analytic family
Fi1 = {fp|arithemtic points P in Spec(I)(Q,)} of slope 0 classical Hecke eigenforms. A component I
(or the associated family) is called cuspidal if Spec(I) C Spec(h). A cuspidal component I is called
a CM component if there exists a nontrivial character £ : Gal(Q/Q) — I* such that py = py® &. If
a cuspidal I is not a CM component, we call it a non CM component.

Put T'(a) = {z € SL2(A)|z =1 mod a- Ma(A)} for an ideal a C A, and write I'(L) = T'(a) if
a= (L) (L € A). The representation p; : Gal(Q/Q) — GL2(Q(I)) leaves stable a I-lattice £ in Q(I)?
with Q - £ = Q(I)2. We assume throughout the paper, after extending scalars W,

(F) the representation py has values in GLy(I) (i.e., we assume to be able to find an I-free £).

If p is absolutely irreducible, by the technique of pseudo representation, (F) can be checked to be
true. If T is a unique factorization domain with Spec(I)(W) # 0, in particular, if I is regular (so far,
there is no known non-regular example of N), replacing £ by its reflexive closure (i.e., the intersection
of all I-free modules in Q(I? containing £), L is free of rank 2 over I. By resolution of singularity of
surfaces (see [L78]), we can find an injective local A-algebra homomorphism I — I*™ C Q(I) for a
regular two dimensional 1™ though I*™ is not finite over I. Thus replacing I by I*™ (and extending
scalars to achieve Spec(I*™)(W) # 0)), we have a model prem : Gal(Q/Q) — G Lo(I°™) isomorphic to
pr over Q(I). See Section 9 for details of these facts. Anyway, we assume (F) in this paper.

Actually we choose £ coming from the projective limit (relative to p-power level) of Tate modules
of modular jacobians, and for this choice of £, I-freeness of £ is known if T is Gorenstain (which in
turn follows from irreducibility of p and the p-distinguished-ness condition (R) below). Thus most

cases, we can choose the scalar extension to I of the canonical £ free over I. Write [pg] for the
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isomorphism class of p; over Q(I). Pick and fix a non CM component I of prime-to-p level N, and
assume the following condition (R) throughout the paper

(R) plp, = (g %) with 0 unramified and € # 0.

Theorem 1. Suppose p > 3. Then there exist a representation p € [p1] with values in GLQ(E)
such that G := Im(p) N SLa(A) contains T'(a) for an ideal 0 # a C A. If ¢ is the A-ideal mazimal
among a with G D T'(a), the ideal cp C Ap localized at a prime divisor P of A only depends on
the isomorphism class [p1] as long as pyp is absolutely irreducible for all prime divisors B|P in i; in
particular, if p = pm for the mazimal ideal m of T is absolutely irreducible, the reflexive closure (L)
of ¢ is independent of the choice of p with G D T'(a) # 1.

The reflexive closure ¢ of an ideal ¢ C A means the intersection [1y)5.(A) C A of all principal
ideals (\) containing ¢ which is a principal ideal. It can be also defined as the intersection ¢ = () ¢p
inside @ for P running over all prime divisors of A (see [BCM, Chapter 7] for these facts). We write
0# L = L(I) € A for a generator of the ideal ¢. We call ¢ as above the conductor of p (or of G).

We prove the theorem under one of the following conditions:

(s) Im(pr) and pr(D,) are both normalized by an element g € GLy(I) with § := (¢ mod my)
having eigenvalues @, (3 in F,, with a2 # 52;

(u) pr(Dp) contains a non-trivial unipotent element g € G Lo (I);

(v) pr(Dp) contains a unipotent element g € GLo(I) with g #1 mod my.

Obviously, (v) implies (u); so, we actually assume either (s) or (u). By [Z14], the condition (u) is
always satisfied; so, the theorem is stated only assuming (R) and p > 3.

The reason for assuming the conditions (R) and one of (s) and (u) is technical. These conditions
are used to show in a key lemma Lemma 2.9 that the Lie algebra M? of Im(py) N SLa(A) (in the
sense of Pink [P93]; see the following section) is large so that sla(A)/ MO is a A-torsion module.

The condition (u) is always satisfied by pr; it was first proven in [GV04] as Theorem 3 under (R)
and absolute irreducibility of the residual representation p over Q[up]. The two assumptions: (R)
and absolute irreducibility of p assumed in [GV04] are now eliminated for the validity of (u) by a
method different from [GV04] (see [H13b] and [Z14]), and (u) holds unconditionally. The condition
(s) is easy to check (for example, it is valid if €7, has order > 3; indeed, by local class field theory,
we view €1, as a character of Z), which has values in F{, and hence, if ( = €(0) has order > 3
for o € I, the adjoint action Ad(j) of j = p(c) on slz(I/my) has three distinct eigenvalues ¢, 1,( ™"
in F,,). In the condition (s), we may replace g by lim, o, g¢" for a sufficiently large p-power g; so,
we may assume that g has eigenvalues in Z,. This theorem will be proven in Section 3. The proof
is difficult if T # A, and the easier case of I = A is treated in [GME, Theorems 4.3.21 and 4.3.23].
When 7 is absolutely irreducible, we call L = L(I) as in the theorem the global level of p; or of L.
More generally, when pp is absolutely irreducible, the localized ideal ¢p is well determined by py (see
Lemma 3.3). When pp is reducible, there is a way of normalizing cp as we will explain in Section 3.
We believe that the following standard choice Ecan(i) of the lattice £ satisfies this normalization;
so, we state the result for Ecan(i) in this introduction, though such a choice is not necessary. Then
we define (L(I)) = ()p cp using this normalized cp.

To describe this standard example of L stable under the Galois action, we note that p, was
constructed in [H86b] through the Galois action on the x1-part J of lim e (T),J1(Np") ®z, W) for
the p-adic Tate module T}, J1(Np™) of the jacobian Ji(Np™),q of the modular curve X;(Np") q.

Suppose that I is cuspidal. Let Lean(I) (resp. Lean(I)) be the image of J @y I (resp. J ®p I) in
J @n Q(I) = Q(I)? for h = hy, /7 . Consider the following version of (F):

(Fean) Ecan(i) is free of rank 2 over L.
This condition holds under (R) and absolute irreducibility of 7 (see Section 7 for this fact). Under
the condition (R) (and (Fean)), the Galois module L.q,(I) fits into the following canonical exact

sequence of Dp-modules: 0 — I — L (I) — I — 0 coming from the connected-étale exact sequence
of the Tate modules e - T,,J1(Np™), and the assertion (Gal) is realized through this exact sequence.

Thus assuming (R), we take the Galois representation py : Gal(Q/Q) — GLy(I) realized on Lqn(I).
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If R is a p-profinite local ring (or its localization), as we will describe in Section 10, any Galois
representation p : Gal(Q/Q) — GLz(R) ramified at finitely many primes has a well defined prime-
to-p conductor C(p). We call I minimal, if C(py) is minimal among C(p; ® £) for £ running all finite
order character of Gal(Q/Q) unramified at p. Since the global level of p; and py ® £ are equal, to
describe L(I), we may assume that I is minimal and primitive in the sense of [H86a, §3 page 252]
(so, fp € Fr is a p-stabilized N-new form). In many cases, we can relate the generator L(I) with
p-adic L-functions. Write ¢(N) = [(Z/NZ)*|. The following is a summary of determination of L(I):

Theorem II. Suppose p > 5, (Fean) and (R) and one of the conditions (s) and (v). Take a non
CM minimal primitive cuspidal component I of prime-to-p cube-free level N.

(1) If Im(p) contains SLy(Fp) and p > 7, then L(I) = 1.
(2) If the projected image of p in PGLo(F,) is either a tetrahedral, an octahedral or an icosa-
hedral group, then T|L(I)|T™ for an integer n > 0.
(3) Suppose that p is absolutely irreducible and p = Ind%@ for a quadratic field M and a
character v : Gal(Q/M) — F:. Write €(1)) for the prime-to-p part of the conductor of 1.
(a) If there is no other imaginary quadratic field M’ such that p = Ind%, © for a character
7 : Gal(Q/M') — F: and either M is real or p does not split in M, L(I) is a factor of
(t*" — 1) for an integer m > 0.
(b) Suppose p 1 ¢(N) and N = C(p). If M is an imaginary quadratic field in which p
splits, 1 ramifies at a prime over p and there is no other quadratic field M’ such that
P Ind%, B for a character @ : Gal(Q/M') — F:, then L(I) is a factor of the square
of the product of the (primitive) anticyclotomic Katz p-adic L-functions (cf. [K78])

of prime-to-p conductor €(1p ) whose branch character modulo p is the anticyclotomic

projection ) of 1. Heret) given by o — (o)(coc™ )™ for complex conjugation c.

(4) Suppose pt @(N) and (Fean). If p= 0D (with @ ramified at p and 1 unramified at p) and

there is no quadratic field M’ such that p = Ind%, B for a character B : Gal(Q/Q) — FPX,

then L(I) is a factor of a product of the Kubota-Leopoldt p-adic L-functions specified in
Definition 4.1 (2).

The product of p-adic L-functions in the theorem will be made precise in Section 8 depending
on p. The assertion (1) is a version of a result of Mazur-Wiles in [MW86] and Fischman [F02]
where I = A is assumed (see Remark 8.3). The assertion (3b) is the most difficult to prove, and a
sketch and the strategy of the proof are given after Theorem 8.5 before giving its long detailed proof.
Theorem 8.5 gives a result slightly stronger than (3b) (in particular, we do not need to assume that
N is cube-free). The assertion (4) can be proven similarly to (3b), and Ohta’s determination [O03]
of the congruence module between the Eisenstein component and a cuspidal component is crucial.
Some more complicated cases missing from Theorem II are discussed in Section 9.

This type of results, asserting that the image of the modular Galois representation of each non CM
Hecke eigenform contains, up to conjugation, an open subgroup of SLs(Z,) was proven in a paper by
Ribet [R75] (and [R85]) in 1975 and by Momose [Mo81] in 1981. As we will see in Proposition 5.1,
a CM component and a non CM component do not intersect at any of arithmetic points, and
therefore Im(pg) contains, up to conjugation, an open subgroup of SL3(Z,) for arithmetic points
P € Spec(I)(Q,) as long as I is a non CM component. An investigation of the image for A-adic Galois
representations was first done in 1986 by Mazur—Wiles in [MW86] (just after the representation was
constructed in [H86b]). We call a prime divisor B € Spec(I) full (in a weak sense) if Im(pg ) contains,
up to conjugation in GLy(k(P)) for the residue field x(P) = Q(I/P) of P, an open subgroup of
either SLy(Zy) or SLo(Fp[[T]]). Fullness of most primes above (p) C A is treated in [H13a] (see also
[SW99], in particular, results about “nice” primes there). The existence of such a full prime divisor
is a key ingredient of the proof of the above theorems.

CONTENTS
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1. LIE ALGEBRAS OF p-PROFINITE SUBGROUPS OF SL(2).

If A is a ring of characteristic p, the power series log(1 + X) and exp(X) do not make much
sense to create the logarithm and the exponential map; so, the relation between closed subgroups in
GL,(A) and Lie subalgebras of gl,,(A) appears not very direct. The principal congruence subgroup

Ta(a) :=SLa(A)N(1+a-gla(A) ={x € SLa(A)|Jx =1 mod a}

for an A-ideal a obviously plays an important role in this paper. To study a general p-profinite
subgroup G of SLs(A) for a general p-profinite ring A, we want to have an explicit relation between
p-profinite subgroups G of the form SL;(A)N(1+X) and a Lie Z,-subalgebra X C gla(A). Assuming
p > 2, Pink [P93] found a functorial explicit relation between closed subgroups in SLs(A) and
Lie subalgebras of gla(A) (valid even for A of characteristic p). We call subgroups of the form
SLy(A)N (1 + X) (for a p-profinite Lie Z,-subalgebra X of gla(A)) basic subgroups following Pink.

We prepare some notation to quote here the results in [P93]. Let A be a semi-local p-profinite
ring (not necessarily of characteristic p). Since Pink’s result allows semi-local p-profinite algebra,

we do not assume A to be local in the exposition of his result. We assume p > 2. Define maps
O :SLy(A) — sla(A) and ¢ : SL2(A) — Z(A) for the center Z(A) of the algebra Mz(A) by

Or) = — 5Tr(@) (39) and ((x) = 5(Te(x) ~2) (41).

For each p-profinite subgroup G of SLy(A), define L by the closed additive subgroup of sly(A)
topologically generated by ©(x) for all z € G. Then we put C = Tr(L - L). Here L - L is the
closed additive subgroup of Ma(A) generated by {zy|z,y € L} for the matrix product xy, similarly
L™ is the closed additive subgroup generated by iterated products (n times) of elements in L. We
then define Ly = L and inductively L,41 = [L, Ly,]; so, Lo = [L, L], where [L, L,] is the closed
additive subgroup generated by Lie bracket [x,y] = 2y — yx for x € L and y € L,,. Then by [P93,
Proposition 3.1], we have

(11)  [LL]CL C-LCL L=L D> DLyDLy D and [|L,=[)L"=0.
n>1 n>1

In particular, L is a Lie Z,-subalgebra of sly(A). Put M, (G) = C(§9) & L, C Ma(A) = gla(A),
which is a closed Lie Z,-subalgebra by (1.1). We write simply M(G) (resp. MY(G)) for M2 (G)
(resp. M3(G) Nsla(A) =L, L]). Define

H, = {x € SLy(A)|O(z) € Ly, Tr(z) —2 € C} forn>1.

If © € Hy, then z = O(z) + ((x) + (§9); thus, H, C SLa(A) N (1 4+ M, (G)). If we pick z €
SLy(A)N(14+ M, (G)), then z =1+ ¢-1+y withy € L,, and ¢ € C. Thus Tr(xz) —2 = 2c € C and
@(x):((1)?)+c~(5?)+y—%(2+20)-(5?):y. This shows

H, = SLa(A)N (14 M, (G)) in particular, Ho = SL2(A) N (1 + M(G)).
Here is a result of Pink (Theorem 3.3 combined with Theorem 2.7 both in [P93]):

Theorem 1.1 (Pink). Let the notation be as above. Suppose p > 2, and let A be a semi-local
p-profinite commutative ring with identity. Take a p-profinite subgroup G C SLo(A). Then we have
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(1) G is a normal closed subgroup of Hy (defined as above for G),

(2) H, is a p-profinite subgroup of SLa(A) inductively given by Hyp+1 = (Hi1, Hy,) which is the
closed subgroup topologically generated by commutators (x,y) with x € Hy and y € Hy,

(3) {Hn}n>2 coincides with the descending central series of {Gp}n>2 of G, where G 11 = (G, Gy)
starting with G = G.

In particular, we have

(P) The topological commutator subgroup G' of G is the subgroup given by SLa(A) N (1+ M(G))

for the closed additive subgroup M(G) C M2(A) as above.

Put M%(G) = M,(G) Nsly(A). By the above expression, G — M;(G) (resp. G — MY(G)) is
a covariant functor from p-profinite subgroups of SLs(A) into closed Lie Z,-subalgebras of glz(A)
(resp. sla(A)). In particular, M;(G) and MY(G) are stable under the adjoint action z — grg™!
of G. For an A-ideal a, writing G, = (G mod a) = (G -Ta(a))/Ta(a), M;(Ga) C gl2(A/a) (resp.
MI(Ga) C sla(A/a)) is the surjective image of M,;(G) (resp. MJ(G)) under the reduction map
2+ (x mod a). Since H; is a basic subgroup with H;/G abelian, we call H; the basic closure of G.
If G is normalized by an element of GL2(A), by construction, the basic closure H; is also normalized
by the same element. Thus the normalizer of G in GL3(A) is contained in the normalizer of H; in
GLy(A). By the above theorem, any p-profinite subgroup of SLs(A) is basic up to abelian error.

Lemma 1.2. Let A be an integral domain finite flat either over Fy[[T]], A or Z, with quotient field
Q(A). If a subgroup G C SLa(A) contains the subgroup T a(c) for a non-zero A-ideal ¢, then aGa™!
for a € GL2(Q(A)) contains T o(c") for another non-zero A-ideal ¢’ depending on .

Proof. We give a proof assuming p > 2. Write I'(c) for I'4(c). We may suppose that G = T'(¢c) for
¢ C my; so, G is p-profinite. Then M(G) D ¢% - £ for £ = M3(A). Replacing a by o for a suitable
&€ ANQ(A)* for the quotient field Q(A) of A, we may assume that o € Ma(A) N GL2(Q(A)).
Then (afa™1NL) D ala for a* = det(a)a™t € My(A). Since £ and aLa’ are both free A-module
of rank 4, £/afa’ is a torsion A-module finite type annihilated by a non-zero A-ideal ¢””. Then
M(al(c)a™t NSLa(A)) D ? - alat D c2”’L. Thus the ideal ¢, = ¢’ does the job. O

Let Bz, C GL(2)z, (resp. Z/z,) be the upper triangular Borel subgroup (resp. the center of
GL(2)/z,) as an algebraic group. Write U,z for the unipotent radical of B,z,, and put ZU(A) =
Z(AU(A) C GLy(A). Let Bz, (resp. Uz, ) be the Lie algebra of Bz, (resp. Uz, ). We write
B = G2, x U by the splitting G2, 3 (a,a') — (& %) € B. Define t* =3/ (3)T™ € A.

Lemma 1.3. Suppose p > 2, and let1 be a domain finite flat over A. Let G C SLo(I) be a p-profinite
subgroup. Suppose the following two conditions:
(B) The group G contains a subgroup of B(I) N SLo(I) which is, under the projection: B —
B/ZU = Gy, isomorphic to the image of

T = {t(s) = (t50/2 Fg/z)
(U) The subgroup U = {(§ %) |u € A} NG is non-trivial.

We denote by u the ideal u = {u € A’ (gv) e U} . Let G’ be the topological commutator subgroup of
G and U' =UNG'. The group T acts on U and U’ by the conjugate action. Then we have
(1) The action of Zp[[T]] on U and U’ coincides with the action of A via the isomorphism
Zy[[T]] =2 A sending t(1) to t (under the notation in (B)). Under this identification, U/U’
is torsion of finite type (as a A-module) killed by the ideal (T) of A.
(2) If moreover there exists g = (&%) € B(I) NG whose image in B(I)/ZU(I) is non-trivial,
U/U' is killed by ad=' — 1. If ad=' — 1 is prime to T, U/U’ is finite.
Replacing the pair (U,U’") by (U=GNUI),U =G NnU)), the same assertions (1-2) hold under
the condition U # 1.

sezp}zr (t=1+T).

Proof. Since the proof is the same for (U,U’) and (U,U’), we give a proof for the pair (U,U’).
Often we identify u with the Lie subalgebra {(§5) ’b € u} in sl3(A). Under this identification, by
definition, we have U = 14u C G. Since U and G’ are normalized by the adjoint (conjugation) action
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of GNB(A)U(D), T — B(I)/ZU(I) acts on U and U’. Then the Z,-module U/U’ carries a continuous
action of T' via I' = {t°|s € Z,} = T. Note that Z,[[I']] = A. Since the A-module structure on U
induced by the adjoint action of 7 and the one induced by the isomorphism log: U 3 (14u) — u € u
match, U 2 u C sly(A) is a A-module of finite type (as A is noetherian). Thus U/U’ is a A-module

of finite type embedded in G/G’. Pick 7 € B(I) NG whose image in 7 is equal to (tlo/z 172 ) Then

7 — 1 acts on U/U’ by multiplication by T and kills G/G’. Thus T is in the annihilator Ann(U/U")
of U/U’ as asserted in (1).

If we have further ¢ = (§ ;) € G N B(I) as in (2), by the same argument, U/U’ is killed by
ad=t —1# 0. Thus U/U’ is a module over a finite extension A[f] C I of A for § = ad~* — 1. Taking
a minimal polynomial ®(X) of § over @, we have A[f] = A[X]/(®(X)); so, A[f] is finite flat over A.
If 6 is prime to T', U/U’ is killed by an open ideal (6, T) of A[f] C I. Since U/U’ is a A-module of
finite type, it is a finite A-module. O

Here is another easy remark:

Lemma 1.4. Let the notation and the assumption be as in Lemma 1.3. In addition, we assume to
have j = (C 0) € GLy(Zy) such that jGj=' = G and ¢ — ' € Z). Then the group G contains the
subgroup T ; in particular, the group Z(A)T C SLay(A) normalizes G.

Proof. Forgetting about the center Z(A), we only need to show that 7 normalizes G. By assumption,
there exists 7 € G of the form 7 = ({ ,%1) for a = t'/2. By computation, for the commutator (7, j),

we have (1,j) = ((1) ““(1*1«/71)) € G. Thus U = U(I) NG contains ((1) ““(1*144/71)). Since U is
a Zp-module, we can divide elements in U by the Z,-unit (1 — ¢¢’™Y); so, U contains ($4e) and

T )T = (} a'u) = B € U. Then G contains 7471 = #(1) = (tlo/z tff/z), and G contains

T = {t(1)®|s € Z,} which in particular normalizes G. O

For a prime divisor P of Spec(A), we write Ag for the subring Z,, C x(P) if k(P) is of characteristic
0, and if P = (p), we put A9 =TF,[[T]] = A/P C k(P).

Lemma 1.5. Let the notation and the assumption be as in Lemma 1.3. Put G = G N SLy(A)
and let Gy be the subgroup of G topologically generated by gUg™! for all g € G. If there exists a
prime divisor P € Spec(A) such that the image of Gy in SLa(A/P) contains an open subgroup of
SLy(Ap), then we can find a A-module £ C M(G) N sla(A) such that sla(A)/L is A-torsion with
slo(Ap)/Lp = 0 after localization and £ C M(Gy) Nsla(A) C M(G) Nsla(A) C sla(A). Moreover
Gy contains T'x(¢c) for a non-zero A-ideal ¢ = {\ € A[\- My(A) C M(GU)} prime to P.

Proof. As before, we identify u with the Lie subalgebra {(3}) ’b €u} in slp(A); then U = 1+ u.
Let H (resp. 9) be the image of a subgroup H (resp. a submodule §) of SLy(A) (resp. of
slo(A)) in SLa(A/P) (resp. in slp(A/P)). If Gy, is the topological commutator subgroup of Gy,
its image @/U in SLy(A/P) is the topological commutator subgroup of Gy. Since Gy contains
an open subgroup of SLs(Ap), @/U contains an open subgroup of SLy(Ag). Since G' O Gy,
find U = G'NU D U"” := Gy NU. In any case, we find U = 1+ 1 # 1, where 1 is the
1mage of u in sly(A/P) (so, & # 0). By Lemma 1.3, U’ = U N G’ is non-trivial, and if P { T,
w = {u € sla(A)|[1 +u € U’} is a non-trivial Lie A-subalgebra of slz(A) with nontrivial image U’ in
(A/ P). Even if P|T, since GU contains an open subgroup of SLy(Ag), U C U is non-trivial;
so, W # 0. Let H C G’ be the subgroup generated by gU’g~! for all g € G. Let M = M(GU)
and M = M(Gy). Then we have a natural surjection 7 : M — M glven by  — z mod P for
x € Ma(A). Let £ =73 5, 9wW'g™" C MNsly(A) and £ =3 5, gu'g" C MNsly(A/P). A
seen in the proof of Lemma 1.3, v’ is a torsion-free A-submodule of sl2(A); so, £ is a torsion- free
A-submodule of sl(A). Note that £ is stable under the adjoint action of Gyy. Since Gy contains
an open subgroup of SLy(Ap), the adjoint action of Gy on £ is irreducible; so, £ ®5 k(P) has
dimension 3 over k(P); so, £ @ k(P) = sla(k(P)). By Nakayama’s lemma, we have £p = sla(Ap).
In particular, sly(A)/£ is a A-torsion module of finite type. The Lie algebra L = M contains £,
and hence L - L D £- £. For the annihilator a of sla(A)/£, by a simple computation M contains
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L=a2(}9)®LC My(A). Since £p = sl(Ap), a is prime to P. Thus for the maximal A-submodule
M of M, we conclude M D L, and My(A)/M is a torsion A-module. Thus the annihilator ideal ¢
of M3(A)/M is prime to P and Gy D T'a(c). O

Question 1.6. Under the conditions (B) and (U) in Lemma 1.3, are M(G) and M(G) A-modules?
It is likely to be the case up to finite error, and if they are, our argument in the rest of the paper
could be simplified a lot. They are obviously stable under the adjoint action of T .

2. FULLNESS OF LIE ALGEBRA
We start with the following well known fact whose proof is left to the reader:

Lemma 2.1. Let K be a field of characteristic 0. If £ is a nontrivial proper Lie subalgebra over K
in slo(K), then £ is a conjugate in slo(K) of one of the following Lie K -subalgebras:
(1) {z € M|Trpr/q(x) = 0} as an abelian Lie subalgebra for a semi-simple quadratic extension
M of K (Cartan subalgebra).
(2) 4k ={(38) |x € K} (nilpotent subalgebra).
(3) B,k ={(§ %) |a,z € K} (Borel subalgebra).

Corollary 2.2. Let K # F3 be a field of characteristic different from 2 and L/ K be a field extension.
Let 0 # £ C sla(L) be a vector K-subspace stable under the adjoint action of SLy(K). Then there
exists g € GLa(L) such that g€g—1 D slo(K). If £ contains some non-zero elements in sla(K), £
contains sla(K) without conjugation.

Proof. Put n(X) = {(§§) €slo(X)|z € X} for any intermediate extension L/X/K. As K # F,
and F3, we have some diagonal matrix g = (& %) in SLy(K) with a? # a~2. The space n(X) is the
eigenspace in sly(X) of Ad(g) with eigenvalue a?. Since adjoint action: Y + gY g1 (Y € sly(L)) of
g € SLy(K) is absolutely irreducible (as K has characteristic # 2), we see that £ span sla(L) over
L, and hence the eigenspace £(a?) in £ of Ad(g) with eigenvalue a? is non-trivial. In particular,
£nn(L) = £(a®) # 0. Let T be the diagonal torus in G Ly; so, T(X) = {(&9) € GLa(X)|a,b € K*}.
Note that T'(X) acts transitively on n(X) \ {0}. Thus conjugating £ by an element of T(L), we
may assume that (§¢) € £. Since the adjoint action of SLy(K) on sly(K) is absolutely irreducible,
£Nsly(K) # {0} implies £ D sly(K), as desired. O

Here is a well known corollary (whose proof can be found in [GME, Corollary 4.3.14]).

Corollary 2.3. If G is a closed subgroup of SLo(Zy) of infinite order, then G has one of the
following four forms
(1) G is an open subgroup of SLs(Z,);
(2) G is an open subgroup of the normalizer of M* N SLy(Q,) for a semi-simple quadratic
extension Mg, C M2(Qy);
(3) G is SLa(Zp)-conjugate to an open subgroup of the upper triangular Borel subgroup B(Z,) C
SLQ(Z;D);
(4) G is SLa(Zy)-conjugate to an open subgroup of the upper triangular unipotent subgroup
U(Zyp) C SLa(Zy).

Lemma 2.4. Suppose p > 2 and A be an integral domain finite flat over F,[[T]]. If a closed subgroup
G of SLy(A) contains T := {(tos tQS) ’s € Zp} and non-trivial upper unipotent and lower unipotent
subgroups, then G contains an open subgroup of SLa(F,[[T]]), and if G is p-profinite, M(G) contains

an open submodule of My (F,[[T17]).

Proof. Replacing G by G NTa(ma), we may assume that G is p-profinite. Writing K = F,((T))
and L = A @, 7)) K, L is a finite field extension of K. Consider the X-span £x of M{(G) for
X = K,L. Then dimy, £, = 3; so, £, = slo(L). Thus up to conjugation, £x contains sly(K)
by the existence of non-trivial unipotent elements. Thus we may assume that A = F,[[T]]. By
conjugation action of T, the unipotent groups U = U(F,[[T]]) N G and U; = *U(F,[[T]]) N G are
non-zero F,[[T]]-modules, thus [U(F,[[T]]) : U] < oo and ['U(F,[[T]]) : U] < co. Let u (resp. u;) be
the Lie algebra of U (resp. Uy); so, for example, u = {u — 1 € slo(F,[[T]])|u € U}. Thus we find
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that [u,us] # 0 is also an F,[[T]]-module in M°(G), and hence M°(G) has rank 3 over F,[[T]]. Also
C = Tr(M°%G) - M°(G)) as in Theorem 1.1 contains uu; regarding u and u; as an ideal of F,[[T]]
by an obvious isomorphism U(F, [[T]]) = *U(F,[[T]]) = F,[[T]]. Then G contains T'g, 7 (uu;), and
hence G is open in SLs(F,[[T]]). Note that M(G) is well defined containing C - 15 & M°(G) with

rankp 7)) M"(G) = 3 and C # 0. This implies that M(G) is open in My (F,[[T]]). O
Lemma 2.5. Let V be a local Zy-algebra and A be o flat V -algebra. Then for a subgroup B of B(V')
containing (g ?,) with § — &' € V* and a unipotent element (§§) with e € V*, the semi-group

B ={g <€ B(A)|gBg~* Cc B(V)} is contained in B(V') modulo the center of GLay(A). If A is reduced,
the same assertion holds replacing {g € B(A)|gBg~! € B(V)} by {g € GLy(A)|gBg~ c B(V)}.

Proof. Take g = (2%) € GL2(A) satisfying gBg~" C B(V); so, we have (¢4) (§5) (@ Z)fl =(5)
which immediately implies ¢> = 0. Thus if A is reduced ¢ = 0, and g € B(A). Thus we may assume
either g = (& Y) € B(A) or that A is reduced to continue. The identity

—1 a
(62) 6D (§a) = (5"7) € BV)
implies d/a,a/d € V*. Note g = (2 9) (}%/*). The identity for u = b/a

01
u u -1 — u I
G0 (52) @D = (5= e B)
impliesu € V. Thus g = a ((1) Z;Z) € Z(A)B(V). This finishes the proof. O

Lemma 2.6. Let L/K be a finite field extension and s be a Lie K-subalgebra of slo(L) containing
M(K). Suppose that we have a diagonal matriz j € GL2(K) such that s is stable under the adjoint
action Ad(j) on sla(L) and Ad(j) has three distinct eigenvalues on sla(K). If the L-span sp, := L- s
is equal to slo(L), then s contains sly(K).

Proof. The nilradical R of s is in the nilradical of s;, = sl3(L); so, R = 0, and s is semi-simple.
Thus we can decompose s into a product of simple Lie algebras: s = s1 & --- & s, for K-simple
components 5;. Since s,, is simple (non-trivial), dimg s, = 3. Thus each s,, generates sly(L)
over L. Suppose thats we have more than one simple components of s. Since [s,,,5,] = 0 for
m # n, for any s, € s¢ and any «, 8 € L, [asm, BSn] = afB[sm,sn] = 0. This implies that for
the L-span L - s7, we have [L - 6, L - s,] = 0; so, [sla(L),sl2(L)] = 0, a contradiction. Thus
we conclude s is simple. The centralizer of j (i.e., the subalgebra fixed by Ad(j)) in s is a Cartan
subalgebra b split over K (as j is diagonal in GLy(K) with Ad(j) having three distinct eigenvalues),
and ho = hg N sla(K) is a split Cartan subalgebra of sly(K) normalizing U(K) in s. Thus sk
is a split K-simple algebra containing an isomorphic image of sly(K). Therefore, for a subfield
K’ C L containing K, s is an inner conjugate of sly(K'); i.e., s = g - slo(K')g™! for g € GLa(L).
Since g - sla(K')g™! = 5 D hod(K) C sly(K), we have g thol(K)g C sla(K'). We can then
find hy € SLy(K’) such that hy g hotl(K)ghi C hol(K'). Pick (§%) € hi'g thoth(K)ghi with
0 # u € K'. Define hy = (49). Then, for h = hiha, h='g ' hotl(K)gh C hoU(K). Then by
Lemma 2.5, gh € K'*B(K). Note that gh - sla(K')(gh)™' = g -sla(K’)g™'; so, we may assume that
g € B(K); so, in particular, s D sl (K). This finishes the proof. O

Lemma 2.7. Let V' be a p-profinite discrete valuation ring with quotient field K. If a closed subgroup
H C SLy (V)™ has open image in each factor of SLa(V'), a conjugate in GLa(K)™ of H contains
an open subgroup of SLa(V') diagonally embedded in SLa(V)™.

Proof. The p-profinite property of V' implies that V has finite residue field. We may assume that H
is p-profinite. Since the topological commutator subgroup of H still has open image in each factor
of SLy(V) (cf. [GME, Lemma 4.3.8]), replacing H by its commutator, we may assume that H is
basic. The result in Theorem 1.1 can be applied to the semi-local ring A = V™. Consider the closed
Lie Z,-subalgebra M (H) of gl2(A) associated to H and its subalgebra MY(H) = My (H) Nsl2(A).
Write 9 for the V-span of M{(H). This Lie algebra 9 is stable under the adjoint action of H.
Write 9, (resp. Hj) for the projection to the j-th factor sla(V) (resp. SL2(V)) of 9 (resp. H).
Then 9M; is the V-span of MY{(H;). Since MY (H;)Nn(K) for the upper nilpotent Lie algebra n(X)



BIG GALOIS REPRESENTATIONS AND p-ADIC L-FUNCTIONS 10

as in the proof of Corollary 2.2 is an open ideal of V', by the absolute irreducibility of the adjoint
action of H; on 9;, MY(H;) is an open Lie Z,-subalgebra of 9;; i.e., [M; : MY(H;)] < co. Then,
by our assumption and Corollary 2.2, 91; for each j has rank 3 over V. We proceed by induction on
m. If the intersection of 9 with one factor slo(V'), say the first one, is non-trivial, the intersection is
stable under the adjoint action of 9 and H. Then the intersection projected to the first component
has to have an open image in the first component sly(V') as sly(K) is a simple Lie algebra. Thus
the intersection is either trivial or contains an open subalgebra of sly(V'). If it contains an open
subalgebra, we can project H and 991 to the complementary direct summand, and by induction, we
get the job done. Thus we may assume that any intersection of 9t with a direct factor slo(V) is
trivial. Thus the projection to the complementary direct summand slz(V)™~! is an injection. By
induction assumption, conjugating H by an element in B(K)™~!, we may assume that the image of
9 in slz (V)™ is contained in the diagonal image A(sla(V)) of sl2(V). Thus we are reduced to the
case where m = 2 regarding 9 C sl(V) x A(slz(V)) 2 sla(V)2. Then K - M C sla(K)? is a graph
of an isomorphism L : sly(K) — slao(K) of Lie K-algebras. As is well known, such an isomorphism
is inner given by a conjugation by an element of GLo(K). This finishes the proof. d

Corollary 2.8. Let V be a p-profinite discrete valuation ring with quotient field K, and let Ay = Z,
if K has characteristic 0 and Ay = Fp[[T]] C V if K has characteristic p > 0 for an element T € V
analytically independent over F,. If a closed subgroup H C SLy(V)™ has image in each factor of
SLo (V) containing an open subgroup of SLa(Ag) up to conjugation in GL2(K), then a conjugate in
GL2(K)™ of H contains an open subgroup of SLa(Ag) diagonally embedded in SLy(V)™.

Proof. If a p-profinite subgroup G of SLo(V) contains up to conjugation an open subgroup of
SLy(Ap), we have K - M%(G) = sl2(K) as the adjoint action of G on the both side of the identity is
absolutely irreducible; so, V - MY(G) is an open Lie subalgebra of sl3(V). We apply the argument
which proves Lemma 2.7 to the Lie algebra V - M°(H) which has projection to each factor sla(V)
with open image. Then after conjugation, V - M°(H) contains the diagonal image of an open Lie
V-subalgebra of sla(V). Thus M°(H) must contain an open Lie V-subalgebra of sly(Ap), which
implies that H contains an open subgroup of SLs(Ay) diagonally embedded into SLz(V)™. O

Recall the quotient field @ of A. As before, we fix a domain I finite flat over A. For g € GLo(I)
and z € sly(I), we write Ad(g)(z) = gzg~! (the adjoint action of g). Hereafter we assume p > 2.
The following lemma will be applied to G = Im(pp) N Ta(ma) to show that Im(pr) for a non CM
component [ contains a congruence subgroup I'y(¢). A main idea is to reduce the problem to openness
of SLa(Ap) NIm(ppr) in SLa(Ap) for a prime divisor P € Spec(A). The proof is onerous if I # A as
I/PI may not be even a reduced ring. We use Lemma 2.7 and Lemma 2.8 at Step (c) in the proof
(if I # A) to reduce this problem to the containment of an open subgroup of SLs(A¢) in Im(pgp) for
prime divisors | P of I (which is shown by Ribet in our application when P is arithmetic).

Lemma 2.9. Let G = GN SLa(A) for a p-profinite subgroup G of SLa(I) satisfying the condition
(B) of Lemma 1.3. Let P be a prime divisor of A. Suppose that 1 is an integrally closed domain flat
over A and one of the following conditions on existence of elements j,v in GLo(I):

(1) There exists j € B(I) with jGj~' = G such that the three eigenvalues of Ad(j) are in Z,
distinct modulo my;

(2) There exist j € B(I) with jGj= = G and v € GNU(IL) such that the two eigenvalues of j
are in Zy distinct modulo my and that v is non-trivial modulo my;

(3) There exist j € B(I) with jGj= = G and v € GNU(I) such that the two eigenvalues of j
are in Z, distinct modulo my and that v is non-trivial modulo B for all prime ideals B|P.

If the image Gy of G in SLy(I/B) for every prime divisor B|P in I contains, up to conjugation,
an open subgroup of SLa(Ayg), then there exist a nonzero ideal ¢ in A prime to P and a € B(Ip)
such that - Ga=! D Tx(c). In particular, the image aGpa ' of aGa™! in SLy(Ip/Plp) contains
an open subgroup of SLa(Ag), and replacing G by o - Ga™t, the subgroups U = G NU(A) and
Ui = GNU(A) for the opposite unipotent subgroup U are both non-trivial with non-zero image in
GL2(A/P). If the assumption (2) holds, we can choose o € B(I).
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Proof. Replacing j by lim,, . j*" , we may assume that j has finite order with two eigenvalues in

Z,, distinct modulo my; and hence is semi-simple. Write j = (g C*/) € B(I). Conjugating G by

ap = ((1) */(C;C/)) € U(I), we assume that j = (g 2) normalizes agGay ' C GLy(A). We replace G

by agGay ! By Lemma 1.4, we have the group 7 contained in G. Since ag commutes with upper
unipotent element, this dose not affect v in the condition (2) or (3). Write v = ({ }). We have

(2.1) w e I* under (2), and u € I} under (3).

Conjugating by a; = (¥;"9), under either (2) or (3), we have v = (§}) € G. Since (t(s),v) =
t(s)vt(s)"to~t = (3 ") for t(s) in (B) of Lemma 1.3, in either case, we have U(A) C G.

First, we assume I = A and (1) and prove the lemma. Thus Gy contains an open subgroup of
SLsy(Ap). We have the adjoint operator Ad(j) acting on Ma(I), M = M(G) and M = M(Ggy).
Write three eigenvalues of Ad(j) as a = ¢¢'~', 1 and a~!. Then for X = My(I), M and M, we have
a decomposition X = X[a] ® X[1] ® X[a™!] into the direct sum of eigenspaces X[\ with eigenvalue
A. The reduction map M[\] — M[)] modulo 9 is a surjective map for any prime Q € Spec(I). If
G contains an open subgroup of SLa(Ag), we find that M[)] is non-trivial for all eigenvalues ),
and hence M[\] # 0 surjects down to M[)]. Since M[a] = M N Y(T), we find U = 1 + M[a] C G’
maps onto U = 1+ M(a] C @;3. Similarly U; = 1+ MJ[a~!] C G’ maps onto U; = 1+ Mla~ 1] C @;3.
Since Gy contains an open subgroup of SLs(Ap), the two eigenspaces M[a] and M[a~!] are both
non-trivial; so, U # 1 and Uy # 1. Sinceu={b€ 1| (}?) € U} and w, = {c € [| (L) € U;} are
non-zero I-ideals, U # 1 and U; # 1 1mphes u and u; is prime to PB. We often identify u (resp. u;)
with the corresponding Lie algebra {(J§) [b € u} = U(I)N M1 (G) (resp. 'U(I)N M1 (G)). Therefore
Gg contains open subgroups U of U (H/ ‘]3) and Uy of ‘U(I/B). This implies that Gg contains an
open subgroup H of SLy(I/B) as U and U; generate an open subgroup of SLy(I/9). Indeed, for
beuand c €y, taking X = (§8) and Y = (2§), we have in M(H) the following element

[X.Y]=XY -YX =(%).

Similarly, by Theorem 1.1, M(H) contains Tr((3 &) (9 0)) = ab as a central element; so, it contains
uu; M (I); i.e, Gy contains an open subgroup I'y(uu;)/Ty(uu; P) in SLa(I/%B). Then for the closed
subgroup Gy C G topologically generated by conjugates gUg~! for all g € G, Gy contains an open
subgroup of SLa(Ag) by Corollary 2.3 and Lemma 2.4. By Lemma 1.5, we get the desired assertion.

Since the two conditions (2) and (3) are similar, the proof is basically the same, though we need
to localize the argument at P under (3). As is clear from the above proof under (1), we only need to
prove P {uu;. We give a proof under I = A and (2). Since the reduction map M|[1] — M]1] modulo
B is onto, G has an element g € B(I) with eigenvalues z, 2’ with z # 2/ mod 8. By Lemma 1.3 (2),
U/U’ is killed by (227t —1,T), and we find c € I N I in the annihilator of U/U". Let

Mo =M N (WD) & "U(I) and Mo := M N (UI/P) & "UIL/R)).

Then, under the reduction map modulo P, M surjects down to My which has non-trivial intersec-
tion ‘“U(I/9P). Thus we have an element (a,b) € Mg with a € Y(I) and b € “U(I) with b mod P # 0.
Since G D U(A), we have (ca,0) € My; so, (0,cb) = (ca, cb) — (ca,0) € My. Thus we find that Uy
and U; cannot be trivial. Then by the same argument as above, we conclude the assertion. Under
(3), we go exactly the same way, replacing I and A in the above argument by Ip and Ap.

Now we assume (1) and that I 2 A. We proceed in steps: First we prove

(a) Conjugating G by an element in B(Ip), we achieve that @;3 N SLy(Ag) (for the topological
commutator subgroup @;3 of Gsp) is open in SLa(Ay) for all prime divisor B|P in L.
Since Gy (up to conjugation) contains an open subgroup of SLs(A) for each P| P, its denved group

Gm contains an open subgroup of a conjugate of SL2(Ap). Thus the x()-span of M = M(Ggy)
has dimension 3 (by the irreducibility of the adjoint action of (an open subgroup of) SLs(Ag). Thus
a-eigenspace M[a] = U(k(P)) N M under the action of Ad(j) is non-trivial. Taking 0 # uyp € I/

such that (8 “6”) € M(a] and putting agp = (“0; 2), we have 4U(A4g) C M(am@maq}l). By the



BIG GALOIS REPRESENTATIONS AND p-ADIC L-FUNCTIONS 12

approximation theorem (e.g., [BCM, VII.2.4]) applied to the Dedekind ring Ip, we find o € B(Ip)
such that o mod P = agp for all PB|P; so, replacing G by aGa~!, we start with G with Gg
containing U(Ag) for all P|P. Let Qo := Q(Ay). Consider the Qo-span sy of M°(Gg). Then
K(P) -5p = sla(k(P)) as the adjoint action of SLs(Ap) (more precisely of its conjugate) is absolutely
irreducible. Then by Lemma 2.6 applied to L = x() and K = Qo, &y contains sl2(Qo), which
implies the claim.
Next we show, for the topological commutator subgroup G’ of G,

(b) Conjugating G by an element in B(Ip), we achieve U = U(A)NG # 0 and U’ = U(A)NG' # 0.
To see this, we use the same symbol introduced at the beginning of this proof. In particular,
j = (g é)/) € B(I) and Gp (resp. @;3) is the image of G (resp. G') in SLo(I/PI). Since Gy (and

hence @;3) for each 9P| P contains an open subgroup of SLs(Ap), we find the image M(Gg)[A] of
M()] in gl (I/9) is non-trivial for all eigenvalues A of Ad(j) and all | P, we conclude, as before,

(1) M[A] # 0 and M(Gg)[A] # O for all P|P,

(2) the I-ideal a generated by n = {a € I| (§ &) € M|a]} is prime to P (= U # 0),

(3) the I-ideal a; generated by n; = {a € I| (99) € M[a~']} is prime to P (= Uy # 0).
By (1), we can pick u € n prime to P such that (v mod B) € Ag for all P|P. Conjugating G by
a= (“81 0) € B(Ip) with image @ € B(Q(Ap)), we may assume that u =nNA = A and 6@;3671
contains an open subgroup of SLy(Ag) for all P|P. Since « is diagonal, j still normalize G and G'.
Just to have u # 0, we only need to choose any 0 # u € Q(I)n; so, we can assume that u is prime to
any given finite set of primes. We now claim

(¢) @;3 (and hence G p) contains an open subgroup of SLs(Ag) regarding Ag C I/PIL
To see this, recall M°(G) = M(G) Nsly(A) for a p-profinite subgroup G of SLy(A). Write M? =
M (G) and M = MO (Gp). Replacing I by the integral closure of I in the Galois closure of Q(I)
over ), we may assume that Q(I) is a Galois extension of ). Then P = Hm ey B¢ for the finite set_ by
of primes P in I over P. Identify x(3) with a finite extension k of k := (P) for all P|P. Since Gy
contains an open subgroup of SLy(Ag) for every P € ¥, by Corollary 2.8, the image G v7 of G in
SLy(Ip/v/Plp) = [ p SL2(k) contains an open subgroup H of SLy(Ao) diagonally embedded in
[Ty p SL2(k), where VP = [Ipes B (the radical of P in I). Then H acts on & - M°O by the adjoint

action. Since Y(A) C Ap - M? under the action of the group algebra k[H], t(x) C M generates
an irreducible subspace equal to sla(x) (since (k) C sla(k) is the highest weight root space and
the adjoint square is absolutely irreducible as p > 2). Therefore - M°(Gp) contains sly(x), which
implies that @;3 contains an open subgroup of SLy(A4g) by Lemma 2.4 and Corollary 2.3.

Next we look into the A-span s4 := A - MY of M? for a subalgebra A of Q(I), which is a Lie
A-subalgebra of sl2(Q(I)). Let u = MO[a] Nsla(A) and uy = M°[a=t] Nslz(A). We claim

(d) sg = Q- MY contains sl2(Q), dimg @ -u=dimg @ -u; =1 and P fu.

To see this, pick a prime factor P|P of P in I. Taking A = Iy, the image 54 of 54 in sly(x(P))
contains a non-trivial upper nilpotent algebra ug which is the image of the Lie algebra of U. Since
the image Gy of G in SL2(k(*B)) contains an open subgroup of SLz(Ap), 54 = sla(k(B)), which
implies s4/Psa = sl2(k(P)). From Nakayama’s lemma, we deduce sy, = slz(Iy). Thus sg spans
over Q(I) the entire slo(Q(I)). Again applying Lemma 2.6 for sg, K = @ and L = Q(I), we get
sg D sla(Q). This proves that dimg @ - u = dimg @ - u, = 1. In particular, U = 1+ u C G and
Ui = 1+ u; C G are non-trivial unipotent subgroup. Regarding u and u; as ideals of A, we find
G D T'A(uwy). By (c), the image Ut in slo(A/P) is non-trivial; so, P {u.

Therefore, to finish the proof under (1) and I # A, we need to prove that

(e) Ptuy.

Let H = @;3 NSLa(Ap), which is an open subgroup of SLa(Ag). Put H = 7~ 1(H) for the projection
m: G — @;3. Note that H is still normalized by j. For the order I' = A+PI C I, H C GL2(I'). Note
that PI is still a prime in I’ with residue field x(P). In the above argument, we replace G by H, I by
I’ and sg by s = Ap - M°. Then s is a Lie Ap-subalgebra of Q-simple Lie algebra sg. We consider
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the adjoint action of Gp, which is now an open subgroup of SLy(Ag). By our replacement of I by
I'; P is a prime in I’ with k = k(P) = k(PI). Consider the image p of s in sly(I/PI). Since 5p is
generated by -1 under the action of the group algebra x[Gp], noting G p is now an open subgroup
of SLy(Ap), we have 5p = sly(k). Thus Gp acts on 5p = sly(x) by the adjoint representation
Ad(k). Therefore its a~!-eigenspace 5p[a~!] of Ad(j) is non-trivial in k[G] - & = sla(x). This shows
Ap[G] -u = sly(k). By Nakayama’s lemma, we conclude Ip[G] - u = sl3(Ip). Since Ap[G] - u spans
slo(Ip) stable under the action of G, it contains sly(Ap). Thus s D Ap[G] - u D sla(Ap), and

tﬂ(Ap) DAp-up =50 tﬂ(Ap) Dsla(Ap)N tﬂ(Ap) = tﬂ(Ap).

Thus Ap - u; = 8U(Ap), and we conclude 1y # 0; so, P u.

We now assume (2) or (3) in the lemma and I # A. As we have seen, u = {b € A|(} %) € G} has
non-trivial image U in sly(I/P) for all primes P|P. We have shown above, from the non-triviality of
u, 55, = slo(Ip). After reaching this point, by the same argument as above, we conclude u; # 0; so,
we get the desired assertion. O

Remark 2.10. We insert here another shorter proof of the above lemma under (1) assuming an extra
assumption P { (p). We first replace I by the integral closure of I in the Galois closure of Q(I) over
Q. Write g = Gal(Q(I)/Q) for the finite Galois group. Let H be as in Step (c) in the above proof.
We then replace G by G = {h € G|r(h) € H} for the reduction map 7 : GLa(Ip) — GLa(Ip/Plp).
We now replace I by A + PI. By this, we lose normality of I but Ip becomes local with only one
maximal ideal Plp satisfying x(P) = x(PI) and M(Gp) C gl2(Z,) invariant under g. Recall

Mo = M N (L) @ LU(T)).

As before, we find Ip - M? = sl(Ip), and Ip - Mo = U(Ip) & 84(Ip). Thus g acts on Ip - M° and
Ip - My. The g-cohomology sequence attached to the exact sequence

0 — Plp- My —Ip- My — k(P)- My —0
gives a short exact sequence for M = Mg
(%) 0 — Hg, Plp- M) — H%g,Ip-M) — x(P)-M — 0

since H'(g, Plp - Mg) = 0 (as Plp - My is a Qp,-vector space). Similarly, g acts on Ip - M°
and we have a short exact sequence (x) for M = MY. Since My is a A-module, the quotient
X = H%g,Ip - My)/M, is a A-module of finite type. The quotient Y := H(g,1p - M)/ M°
contains X as a direct summand (i.e., Y = X®Z with Ad(j) acting trivially on Z), and on Y the open
subgroup Gp of SLs(Z,) acts by the adjoint action. Consider the Ap-span Ap-Y = (Ap-X)®(Ap-Z).
Since H%(g, Ap - M[a]) = U(Ap) = H(g,4(Ip)), the Gp-module Y := Y ®,, k(P) does not have
any highest weight vector with respect to B(k(P)) N Gp; so, Y = 0. By Nakayama’s lemma, we
have Y = 0; so, we get Ap - X = 0. Thus H%(g,Ip - M[a"}]) surjects down to '8(x(P)) under the
reduction map modulo P; i.e., u; = M[a~!] has nontrivial image in '(x(P)). In particular, P { uw,.

Remark 2.11. In Step (b) in the above proof, conjugation by o = (“81 flJ) brings G into a subgroup
aGa~! containing T'z(c) for its conductor ¢ # 0. To prove this fact, we only needed to make u # 0.
As remarked in the proof, allowing u to be another non-zero element w’ in Q(I) - n, we achieve
u # 0; so, we get another conductor ¢’ using this v’ and o/ = (“81 fl)); ie, o/Ga/™" D Ta(d)
maximally. For any other prime divisor P’ # P, as long as pg- is irreducible for all '|P’ (and

o/Ga’ ™! € GLy(Ipr)), we will prove cpr = ¢/, in Lemma 3.3.

Theorem 2.12. Suppose p > 2 and that I is integrally closed. Let G be a p-profinite subgroup of
SLy(I) satisfying the condition (B) of Lemma 1.3 and one of the three conditions (1-3) of Lemma 2.9.
Take a prime divisor P of A. Suppose that the projected image @m — SLy(I/P) of G contains an
open subgroup of SLa(Ao) for all prime factors B|P in 1. Then there exists o € B(Ip) such that,
writing G, = aGa™! and G4 = for G, N SLay(A),

(1) the image M°(Gy) in sla(A) spans over Q the entire Lie algebra sl2(Q).

(2) there exist a unique non-zero ideal ¢, of A prime to P (dependent on o) mazimal among

ideals a C A such that G4 D T'p(a) (& Go D T'a(a)).
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(3) the ideal (((y)5c,(A) (the intersection of all principal ideals containing ¢o) is a principal
ideal (Ly), and Ta(Ly)/TA(ca) is finite.

The above ideal ¢, will be called the conductor of G, or G,. The assertion (1) follows from the
above Lemma 2.9. The other two assertions are covered by [GME, Theorem 4.3.21].

Remark 2.13. When G is the largest p-profinite subgroup of Im(pr) N SLz2(I), there should be a
canonical A-subalgebra Iy C I finite over A such that G, for a suitable o € B(Ip) contains I'1,(¢q)
for an ideal ¢, # 0 of Iy. The author hopes to be able to come back to this problem later.

3. GLOBAL LEVEL OF pj

Take an irreducible non CM component Spec(I) of Spec(h) with its normalization Spec(I). Assume
the conditions (R) and (F) in the introduction for p;. Under (F), we consider p; : Gal(Q/Q) —
GLy(I) C GLy(A) having values in GLy(A) for an I-subalgebra A of Q, and to indicate its coefficients
explicitly, we write ps for it. We state a condition which is a version of (Gal).

~

(Gala) Up to isomorphism over A, pa is upper triangular over Dy, pa([v*, Qp)) = (% 1) (t=1+T)
and pa([p, Qp)) = (6 a(p) ) for the image a(p) of U(p) in L, simultaneously.

The conditions (R), (F) and (Gal) (that is, (Galg)) combined implies (Galy). Indeed, by (F),

choosing o € D, with p(c) having distinct eigenvalues modulo my, we can split T2 into the direct

sum of each eigenspace of p(o). Each eigenspace is I-free (by I-flatness = I-freeness), and hence

(Gal) is satisfied. The condition (Gal) is what we need, though often we take pr realized on Lqn ()

as a standard choice. If p is absolutely irreducible, the isomorphism class of py is unique over I (even

over I), and we do not need to take the specific one realized over L4, (I). Even if p is not absolutely
irreducible, there is no compelling reason for us to take L.qn (ﬁ) We make this choice often to fix
our idea, though we will state the result without assuming that py is realized on Leqs, (ﬁ)

Here is a heuristic reason for our making this choice (when 7 is reducible). Pick an Eisenstein

prime divisor P € Spec(I) (i.e., pyp is reducible). If e is the maximal exponent such that py mod *
is a direct sum of two characters, by a trick of Ribet [R76] of changing lattice applied to Py (i.e.,

changing the isomorphism class of Py, over iq_g in the “isogeny” class), we may increase the level of

pr from B¢ to P2¢ at P, still keeping the condition (Galy). This new p; modulo B (not the semi-
simplified pg) is non-semi-simple (and hence P2¢ is the deepest possible level at ). If this is the
case, via Wiles” argument through pu-deprived quotients, B¢ would be a factor of the characteristic
power series of the corresponding Iwasawa module, and hence the level 32¢ would be a factor of
the corresponding Kubota—Leopoldt p-adic L function by the solution of the main conjecture by
Mazur-Wiles. Anyway, the original level 3¢ divides the Kubota—Leopoldt p-adic L function, and
the assertion of divisibility holds for the starting lattice. Thus our choice of L4, (ﬁ) is not essential.
Ohta’s point in his proof of the main conjecture in [O00, §3.3] under some assumptions (which
developed a seed idea of Harder—Pink) is that the proof can be done without using Ribet trick; i.e.,

Lcan(I) does create fully non-splitting extension modulo 9B. If this holds for all our cases of cube-free
N, the choice of L .4, (i) produces highest possible divisibility for the component I and justifies our
choice.

In the isomorphism class [pj] over I, we have py satisfying (Galy) if p is absolutely irreducible. In
the reducible case, py,  realized on Lean (i)‘ﬁ satisfies (Galﬁm) for any prime divisor B of I. We put
G = Im(pr) NT(mg), which satisfies the condition (B) of Lemma 1.3 by (Gal4) for A as above.

Now we state one more fundamental property of pr:
(Det) det(pr)(0) = t1°8 W@/ 108,y (5) for all o € Gal(Q/Q),

where x is the Neben character as in the introduction and N : Gal(Q/Q) — Z) is the p-adic
cyclotomic character (see the second edition of [GME, Theorem 4.3.1] for this fact).
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Lemma 3.1. Assume (Galy). Then for each prime divisor of I, the image of Im(pr) N SLo(I)

in SLa(I/P) is an open subgroup of Im(pyp) N SL2(I/P). In particular, the reduction map: G =
Im(pr) N y(my) — Im(pgp) N Fﬁ/m(mﬁ/m) given by © — (z mod PB) has finite cokernel.

Proof. Let H := {g € Im(pr)| det(g) € T and (g mod ms) € U(F)} for F =T /ms and S = HN S Ly ()
for T = {t°} € A*. By (Gak), we find 7 € pi(D,) NH such that 7 = (§ 7). By (Det), the
group H is an open subgroup of Im(py). Thus we prove the image Sg of S in SLs (I/P) is open in
Im(pg)NSL2(1/9P). Let Hy be the image of H in G Lo (I/B). Since H is open in Im(py), Hgyp is open in
Im(pyp). Put g:p = Hyp N SLy(1/9P). Since Hy is open in Im(pyp), g:p is open in Im(pg ) N.SLo (I/9).
On the other hand, set 7/ = {r°|s € Z,}. We have H = 7"’ x S since 7’ projects down (under the
. . . . = .
deteremant_lflap) _isomorphlcall_y to I'. In the same way, for the image 7 g of 7" in G'Lo(I/B), we
have Hyp = 7 g5 X Sg;. For g in Hig, lifting g to H, det g € I'y, so taking s € Z,, with “7° = det(g)”,
we have g = 7%¢g; with g1 = 77°g € G. Then g =7°g; for g; = (g1 mod P) and 7° = (7°* mod ‘P).
Thus we have Sq = Sﬁp, Then the assertion is clear from this identity. O

Lemma 3.2. Take a non CM component 1. Let P € Spec(A) be an arithmetic point. Suppose
(Galy,) for pi. If one of the three conditions (1-3) of Lemma 2.9 is satisfied for G and P, there
exists a representation p = pp (over Ip) such that the projected image Im(ppr) in GL2(Ip/Plp)
contains an open subgroup of SLa(Zy) and Im(p) still satisfies the condition (B) of Lemma 1.3.

For each arithmetic point P € Spec(A), Ip is étale over Ap; so, Ip = Ip.

Proof. We pick a prime divisor B of T over P , and consider the Hecke eigenform fy associated to
PB; so, fu|T(l) = ap(l) fp for primes I, where agp(l) = (T(I) mod P) € Q,. Let [ be the new form
in the automorphic representation generated by fg. By Proposition 5.1, f§ does not have complex
multiplication. Then by a result of Ribet [R85], the Galois representation pyp associated to the non
CM new form fy has image containing an open subgroup of SL3(Z,), up to conjugation by an
element in B(k(P)) (because of the Iwasawa decomposition of GL(2)). Conjugating py by an upper
triangular matrix, we may assume that Im(pg) contains an open subgroup of SLs(Z,) (and the
condition (B) in Lemma 1.3 is intact). To show the lemma, we may replace G by an open subgroup
of G as long as the replacement still satisfies one of the three conditions (1-3) of Lemma 2.9. We
may thus replace G by S in the proof of Lemma 3.1. Hence the reduction map S — g‘ﬁ is surjective,
and Sy is open in Im(pg ). Thus Sg N SL2(Z,) is an open subgroup of SLs(Z,). This fullness of pyp
holds for all prime divisor | P in I. Then the result follows from Lemma 2.9 applied to this S. O

By Theorem 2.12 combined with the above lemma, we can choose a representative pp in its
isomorphism class over Q(I) so that we have a nontrivial conductor ¢ with G O T'a(c) and an
effective divisor (L) C Spec(A) such that (Ta(L) : T'a(c)) is finite. This proves Theorem I in the
introduction except for the uniqueness of (L) depending only on the isomorphism class of pj in
GL, (ﬁ) for the normalization I of I. In the rest of this section, we discuss the uniqueness of ¢p
(under an appropriate modification of py if p is reducible). Then we define L := L(I) as a generator
of (\p cp for P running over all prime divisors of A.

Lemma 3.3. Let the notation be as above and P be a prime divisor of A. Take a non CM
component 1 of h with normalization i, and suppose to have an associated Galois representation
p1 : Gal(Q/Q) — GLy(I) whose image contains T (a) for a non-zero A-ideal a. Let ¢ be the con-
ductor of the intersection Im(py) N SLy(A). Assume that py leaves an Lp-lattice Lp C Q(I)? stable.
Then the localization cp depends only on Lp up to scalars. If pyp is absolutely irreducible for all

prime divisors B € Spec(l) over P, then cp is independent of the choice of Lp.

The point of this lemma is that whatever choice of u € GL2(Q(I)) with uLp = Lp, as long
as Im(u - pyu™!) has nontrivial conductor, its localization at P is equal to c¢p for the conductor ¢
of the original choice p;. This lemma proves the uniqueness of (L) in Theorem I under absolute
irreducibility of p (and finishes the proof of Theorem I). In this lemma, only assumptions are (F)
and the existence of a (no condition like (Galy) is assumed).
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Since the lemma concerns only the intersection of Im(py) with SLo(A), without losing generality,
we may regard pr having values in a larger A-subalgebra in @ than L. _Replacing I by the integral
closure of A in the Galois closure in @ of Q(I) over @, we assume that I is a Galois covering of A.

Proof. Write ¢cp = P™ in the discrete valuation ring Ap. We study dependence on Lp. Write
G = Im(pr) N SL2(A), where py is chosen in the isomorphism class of p; ~over Ip so that G has
nontrivial conductor c¢. This is just a choice of a starting lattice £, and we want to first prove the
ideal ¢p = ¢p(L) := cAp (for localization Ap of A at P) is equal to ¢p(L’) for any other choice
L' = zL for a scalar matrix z € GLy(Q(I)). Identifying £p = I2, and writing £, = A% C Lp, we
find Lp = L) @4, Ip, and L} is stable under G.

We have another pf : Gal(Q/Q) — GLy(Ip) realized on L's with nontrivial conductor ¢(L');
so, writing Z for the center of the algebraic group GL(2), we find h € Z(Q(I))GL2(Ip) such that
h(L%) = Lp and hpjh™t = pr. We put H = Im(p}) N SL2(A). Then we have the conductor ideal
¢ #0of H Thus GNH DT (cN¢)and cNc # 0. This shows pr and p} are both absolutely

irreducible over GN H. For o € Gal(Q(I)/Q) and g € GN H, we have

he pi(g)h ™7 = (hpi(9)h™ 1) = pr(9)” = pi(g) = hpi(g)h™".
Thus h~1h® commutes with pr|gng. By absolute irreducibility of prlgng, h=the is a scalar z, €

Q(I)*. Thus o — z, is a 1-cocycle of H with values in Q(I)*. By Hilbert’s theorem 90, z, = (~1¢°

for ¢ € Q(I)* independent of o. Then replacing h by h(™!, we may assume that h € GLo(Q).
Note that h = zu with u € GLy(Ip). Since h € GLy(Q), the elementary divisor z of h can be
chosen in GL2(Q); so, we may assume that z is a scalar matrix in GL2(Q); so, u € GLy(Ap). Thus
G=h-Hh™' C SLy(Ap), and T'(c) C G D hI'(¢)h~t = 2I'(¢')2~ = I'(¢). Since z is a scalar, this
implies ¢cp = ¢/, and hence (L)p is independent of choice of Lp up to scalars.

If py is absolutely irreducible for all 3| P, the P-adic completion L p = H‘BI P,Egp is unique up

to scalars by a result of Serre/Carayol [C94], where Egp is the P-adic completion of Lp. So the
independence of (L)p on L follows. O

Corollary 3.4. Let I be a non CM component and pick py with values in GL2(I). Let P be a prime
divisor of A, and assume (Galz). Suppose one of the following three conditions:

(1) We have o € Dy, such that Ad(p(o)) has three distinct eigenvalues in Fp;
(2) We have o,v € D,, such that p(c) has two distinct eigenvalues in F), and p(v) is a nontrivial
unipotent element in SLo(F);
(3) We have o,v € Dy, such that p(o) has two distinct eigenvalues inFp, and pg(v) is a nontrivial
unipotent element in SLy(k()) for all prime divisors PB|P of L.
Assume that ITm(pp) has conductor ¢. Then P 1 cp for a prime divisor P of Spec(A) if and only if
@m for all prime divisors B| P in T contains an open subgroup of SLa(Ap), up to conjugation.
Proof. We may assume that p(o) and pr(v) are upper triangular by (Galy). We replace G by its open

p-profinite subgroup {g € G|(g mod my) € U(I/myz)}. Then G is p-profinite, and all the assumptions
are intact. In particular, it is still normalized by p(¢) in the assumptions (1-3) and contains p(v) for
v in the assumption (2) and (3). By this modification, the assumptions of Lemma 2.9 is satisfied.
Indeed, we may take j = lim,, ., p(c)?", and the unipotent part of p(v) (which is found in G by a
similar argument proving Lemma 1.4) does the job for v in Lemma 2.9 (2-3). Thus we can apply
Lemma 2.9 in this setting. The direction (=) is plain; so, we assume that @‘B contains an open
subgroup of SLa(Ap) for all B|P. Then by Lemma 3.2, Gp contains an open subgroup of SLy(4y).
Then we find o € B(Ip) such that for p’ := apja™!, Im(p') has conductor ¢’ prime to P. Since py
and p’ are equivalent under GLo(Ip), by the above lemma, we find ¢p = ¢/5. Thus we get P{c. O
60
0
this case, we need to worry if we can define an optimal level L(I). Our idea is to take p; among its
isogeny class with the deepest level at B. As already explained, this choice should be given by the
representation realized by Lcqn ®1 i‘ﬁ- We call a prime divisor ‘B of I reducible if pyp is reducible.

When pg is reducible for some B|P, we have 5 = ( ) for a character 1) unramified at p. In
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Lemma 3.5. Let I be a non-CM component with normalization 1 and put G = SLy(I) N Im(py).
Suppose one of the conditions (1-3) in Corollary 3.4 and (R) and (F) for pr. Suppose that there
is no quadratic field Mg such that p is isomorphic to an induced representation from Gal(Q/M).
Let P be a prime divisor of A with a reducible prime divisor 3 ofi above P, and assume (Ga1~ ).
Then we can find o € B(Q(L)) such that aGa~* NU(A) is equal to (§¥) for a A-ideal u pmme
to P and aGa™' C SLQ(EP). Moreover, defining cp by a Ap-ideal given by Ap N Ip - nt @) for
nﬁ“’ ={ueclp|(L9) € aGat}, the Ap-ideal cp C Ap is independent of the choice of a.

Under the circumstances in the lemma, for each prime divisor P over which we have no reducible
prime divisor B|P of I, we put ¢cp = Ap. Then, abusing the language slightly, we set (L(I)) to be
the principal ideal (), ¢p. Non-existence of quadratic fields M as in the lemma is equivalent to the
fact that ?715 is not a quadratic character (as we will see later in the proof of Theorem 8.8), and

if 971@| 1, has order > 3, plainly the condition (1) of Corollary 3.4 is satisfied.

Proof. We may replace G by {g € Im(pr) N SLs(I)|(g mod my) € Z/{(i/mi)} Then G is a p-profinite

subgroup of SLy(I). We proceed as in the proof of Lemma 2.9 looking into both M(G) and M (G)
described above Theorem 1.1. Pick another prime divisor P € Spec(A) such that the image of
pp1 = (pr mod PI) contains an open subgroup of SLs(Z,) (any arithmetic prime does the job
by Lemma 3.2). Then the derived group @;; of the image Gp in SLy(I/PI) of G contains an
open subgroups of SLy(Zy,). In the same manner as in the proof of Lemma 2.9, we find that
U := GNU(I) contains the non-trivial image of U’ = G’ NU(I) in U(Ip/Plp), and for the A-module
W = {u el (3v) € G}, the Tp-ideal Ip - v’ is prime to P. Then picking b € n’ with non-trivial
image in ip/Pip, we find 8 = (bgl (1)) € B(ﬁp) such that BGB~' NU(A) contains U with U # 1,
and SGB~! has conductor ¢g # 0. Put ny = {u e Q)| (19)ye gGp~ 1} c L

We now work over the ring D = Ip NIp C Q(I). The ring D is semi-local of dimension 1 whose
localizations are all discrete valuation ring, hence it is a principal ideal domain (cf. [BCM VII.3.6]).
Let ng = {u €] (§4) € G}. Then we find a € D with D -ng = (a). We put o = (9, "0) e B(Q(I)).
Let M=1-n; forny = {u e Q)| (1Y) € aGa~'}, and put n={ue Q) (%) € aGa~'} which is
contained in D because D-ng = (a). In any case, aGa ™! has conductor ¢, # 0 If ‘13 |P and Im(py)
contains an open subgroup of SLy(Ay) (for Ag with respect to x(P’)), then a € ]IX/ and ng = L.
If py is absolutely irreducible but not full, the only possibility is pg = Ind A (by Lemma 2.1 or
Lemma 8.4), where M is a quadratic field and \ : Gal(Q/M) — x(P')* is a character. Then p must
be an induced representation from Gal(Q/M), which is prohibited by our assumption. Thus the
conjugation by « has the following effect for B|P and '|P:

o for P’ with irreducible pg:, we have ng :im/,
o for P with reducible pg, it maximizes nyp to np = Iy for B, and u becomes prime to P,
o for P with reducible pg, it minimizes ny g = Ly - ny.

Thus u,n,n, C D with Du = D, and we have still aGa~* in SLy(D) C SLy(Ip). Therefore
G := aGa~' N SLy(A) has the maximal upper unipotent subgroup of the form

(3.1) Uw) ={(§4)[beu}

for an ideal u C A prime to P. We put €, = (I-n;) N A for n; defined for this aGa ™!
We want to show that €, p :=Ip - €, is independent of the choice of a and P. Choose another
point P’ such that the image of pp1 = (pr mod P’I) contains an open subgroup of SLQ( ) Put

D' =1p NIp NIp, and choose a generator (b) = D' -n. Then for o’ = (¢,'9), o/a™t € B(p) as

alp = Ip -n = blp. Since a’a~! € B(Hp) is diagonal, we find €, p = €/ p. Thus ¢cp = €, p is
independent of the choice of (a,P). For any other prime divisor P’ with absolutely irreducible pg-
for all B'| P’, we choose y € B(Ip:) so that Gy~ contains T's (a) # 1. Let ¢y be he conductor ideal
of yGy~1. Then, as we have seen, under non-existence of the quadratic field M, Im(pgp+) contains
an open subgroup of SLa(Ay) for all P’'|P’, and by Lemma 2.9, ¢y pr = Ap,. Thus our definition of
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cpr = Aps is legitimate, and ¢pr = ¢, pr = Ap/. Then (L(I)) is the principal ideal (\p, ¢ps, which is
thus independent of our choice of the pair (a, P). O

In this reducible case, assuming that there is no quadratic field M/Q such that p is isomorphic
to an induced representation from Gal(Q/M ), we define (L(I)) as in the above proof.

Corollary 3.6. Let the notation and the assumption be as in Lemma 3.5. Normalize pr as in
Lemma 3.5. Let P € Spec(A) be a prime divisor prime to (p) such that py is reducible for some

prime divisor | P ofi. Then we have
(1) For ¢ defined after Lemma 3.5, we have cp = Ap - u;, where wy = {c € A|(L9) € Im(pr)}.
(2) For the conductor ¢ of G, we have ¢cp = p.
(3) The localization cp is equal to (g pagp) N Ap for the minimal Iy-ideal ag such that the

reduction (pr mod ay) has values in B(ly /ap) (up to conjugation,).

Proof. We first prove (1) and (3). By the proof of the above lemma, ¢p = (Ip - ny) N Ap, which is
equal to (Ap -ny) N Ap since n; is a A-module. Thus iptp - m‘BIP ap. Let pi = (pr mod i) for
an ideal i of i‘ﬁ- Suppose that ap 2 cp = iqgtp, for i = apPB, consider p;. Note that G acts on
Sy = iqg -MO(G) C sy = iqg - MY(G) by adjoint action. Consider the image 5p of sg in sly (ﬁm/b)
for an iq_g—ideal b. Then we have an exact sequence of iqg[@]—modules 0=V =5 — 54 — 0
for G = Im(p}). Then V is a s(P) vector space of dimension at most 3. If V is made up of
upper triangular matrices, 5 C %(ﬁm/i), and p; has values in B(ﬁm /i), a contradiction to the
minimality of ag. Thus we have 0 # X = (29) € V n‘U(Typ/i). We also have Y = (34) € n.
Then 0 # [X,Y] = (8 Pv). This shows that dimn(m)v = 3. By Nakayama’s lemma, we find

V = Ker(sp — 5qq) = ap -5[2@43). This shows agp = Ipny D Ipu, for uy =n, NA.

To show ap = Ipw,, replace Q(I) by its Galois closure over () and T by the integral closure in

the Galois closure. Thus I/A is a Galois covering with finite Galois group g. Then agp = peCF).,
We take ¢ = max(e(*B))p|p and write P¢ = PB° N A which is independent of the choice of B. Let

Pfiqg = ¢, Replace G by {g € G|(g mod P%) € B(Ip/PLp)). Then by the above argument, for
the kernel V' = Ker(spe — &pe<) is given by P¢ '5[2(ﬁp). Thus n; has v with non-zero image in
P /Pt for all P|P. By Nakayama’s lemma again, we have V = Ipv = P - t4U(Ip); so, Ipv is a
g-module, and u, C H%(g,Ipv) =: u,. We have an exact sequence 0 — PV — V — V — 0. Taking
g-invariant, we have another exact sequence 0 — H%(g, PV) — H%(g,V) — H%g,V) — 0 as V
and V is a Qp-vector space. This shows ipllé = P<lp. Thus uﬁp NAp =nlpNA p, which implies
u, = ipﬂt N Ap = Apuy, by definition. Then we have cp = Apu, = P°Ap. By our construction, we
get cp = Plp = (g p @p N Ap, proving (1) and (3).

We prove (2). Since we normalized G by conjugating by « as in the proof of Lemma 3.5, by (3.1),
for G := GNSLy(A), we have GNUA) = U(u) = {(§}) |b € u} for an ideal u C A prime to P. By
a simple computation, for ¢ € u;, we have

(69 (9= (1)
c _ )1t o 1+be 0
(32) (1+cb ll)) (é (1+l1) ) b) - ( c lfbc(1+bc)7l)

1 0 1+bc 0 _ ( 1+4bc 0
(7c(1+bc)*1 1) ( c lfbc(lerc)*l) - ( 0 (1+bc)*1) .

Thus M;(G) contains 2 := {(2 %)) ’a € (p) Nuu,b € (p) Nu,c € wy ). This shows the existence of

¢’ with ¢4, = u, p = ¢p such that Ta(¢”) € G. Thus ¢” C ¢/. By (1) and (3), it is clear to have
¢, O /5. This finishes the proof of (2). O

4. EISENSTEIN COMPONENTS

We now describe explicitly the congruence between the Eisenstein component and the cuspidal
component (a description of Eisenstein ideal in the big Hecke algebra) via the theory of A-adic form.
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We first define the Eisenstein component of the space of A-adic forms. Let M (N, x1; Aw) (resp.
S(N, x1; Aw)) be the space of p-ordinary Ay -adic modular forms (resp. p-ordinary Ay-adic cusp
forms). Thus M(N, x1; Aw) (resp. S(N, x1;Aw)) is a collection of all formal g-expansions F(q) =
S ga(n, F)(T)g" € Aw|[q]] such that fp = > (a(n, F) mod P)g" gives rise to a modular form
in M4 (Do(Np™ ) epxi(py) (resp. S (Do(Np™ )1, epyi(py)) for all arithmetic points P,
where p"(P) is the order of ep. Again F +— fp induces an isomorphism

M(N, x1; Aw) @1y Aw /P = MEE (To(Np™ ), xuep; Wep))

for all arithmetic points (see [GME] Theorem 3.2.15 and Corollary 3.2.18 or [LFE, §7.3]). This
implies that M(N, x1; Aw) and S(N, x1; Aw) are free of finite rank over Ay, and the Ay -module
M(N, x1; Aw) (resp. S(N, x1;Aw)) is naturally a faithful module over H (resp. h). The above
specialization map is compatible with the Hecke operator action. Recall the quotient field @ of A,
and take an algebraic closure Q of Q. We can extend scalars to an extension A/Ay  inside Q to
define S(N, x1;4) = S(NV, x1; Aw) @y A and M(N, x1;4) = M(N, x1;Aw) @ay A TA =1
is finite over Ay, associating the family {fp}pespecr) to a form F' € M(N, x1;1), we may regard
these as spaces of “analytic families of slope 0 of modular forms” with coefficients in I (we also call
them the space of I-adic p-ordinary cusp forms and the space of I-adic p-ordinary modular forms,
respectively). See [LFE, Chapter 7], [GME, Chapter 3] and [H86a] for these facts.

Let Qw = Q(Aw) (and regard Qw as a subfield of @ when W is finite over Z,). Then we have

M(N, x1;Qw) = S(N, x1;Qw) & E(N, x1; Qw)
as modules over H. The space E(N, x1;Qw) is spanned by A-adic Eisenstein series. Assuming
that N is cube free, we make explicit the Eisenstein series: For any character ¢ : (Z/M1Z)* —
W> 0 :(Z/MxZ)* — W>* with ¥ = x1, M1 Ms|Np, p|Ms and p 1 M, there exists a unique A-adic
Eisenstein series in M(N, x1; Qw) defined by its ¢g-expansion:

a@0)(T) + > | D HDU)E)NT) | ¢,

n=1 \0<d|n,ptd

where (d)(T) = 9°8s(D/198,(¥) " 4(6,4p) = 0 if 9 is non-trivial, and otherwise, writing 1, for the
trivial character modulo M, a(f,1,) = $G(T) € Qw with

G —1) = (1 = 1 (p)p") LMV (=, 0)41) forall 0 <k € Z.

As a convention, we put 8(d) = 0 if d has a nontrivial common factor with Ms and that ¢ (d) = 0
if d has a nontrivial common factor with My, and also 6y is the character of (Z/MapZ)* given by
O = 0w'~F. We define LMV (s,0,41) = >20° | O441(n)n~° for this possibly imprimitive fj41. The
existence of the above Eisenstein series is proven under M Ms|Np (cf. [H86a, Theorem 7.2] or [O03,
§1.4]). Counting number of pairs (6, ), we prove that they span over Qw a Hecke stable subspace
E(N, x1; Qw) in M(N, x1; Qw) complementary to S(NV, x1; Qw) if N is cube free (e.g., [H86b, §5]).

Our next goal is to extend Ohta’s construction of Eisenstein series to imprimitive ones assuming
that N is cube-free. In this way, we explicitly make a canonical Hecke eigenbasis of the Eisenstein
component, which enables us to split Ohta’s residue exact sequence (4.1) in Proposition 4.2 and us
to compute the characteristic power series of the Eisenstein congruence module in Corollary 4.3.

Let us prepare some notation to state Ohta’s exact sequence. For a profinite group G, we write
WI[G]] = lim , W[G/H] for the continuous group algebra, where H runs over open subgroups of G.
In particular, for the multiplicative group I' = 1 + pZ, C Z,, we can identify W[[[']] with Ay by
sending v € I to t. Let C,. = C,.(N) be the set of all cusps of X,. := X;(Np"+1)(C), and consider the
formal linear span W([C,] = {}_,cc assla, € W}. Write simply T, := I'y(Np™t!). Since the Hecke
correspondence T s (o)) C X1 (Np") x X;(Np?®) associated to the double coset I';al', for « € GLy(Q)
(with det(«) > 0) gives rise to a correspondence on C, x Cs for r, s > 0, the Hecke correspondences
acts on W[C,]. In particular, W[C,] is equipped with the action of T'(1), T'(1,1) in [IAT, Chapter 3|
and U(q) (q|Np), (z) = 2 - [[vo.I'] for 2 = (2p,2n) € Z) x (Z/NZ)* with 2, € Z, where
0. € SLy(Z) with 0. = (§9) mod Np". The coset [¢] = [['(Np") (¢) ['1(Np"/q)] for a prime | N
gives rise to a linear map [q] : W[C,.(N)] — W[C,(N/q)].
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These operators are computed explicitly, choosing a standard representative set Anpr/ ~ (see
below for Ap,r) for the cusps C,.(N) :=I'1 (Np")\P'(Q) C X,(C) in [003, §2.1], where the action
of T(l) (I 1 Np) is denoted by T*(I) and U(q) (¢|Np) is denoted by T*(¢q) in Ohta’s paper. The
covering map X, — X, for s > r induces a projection 75, : W[Cs] - W][C,], and we define
W[[Co(N)]] :=lim WI[C,(N)]. Since Hecke operators T'(l), L -T'(I,1) = (l) for L{ Np, U(q), () and
[q] are compatible with the projection 7., these operators act on W[[Co(NV)]]. We let the group
Zy x (Z/NZ)* act on W[[Cx]] by the character | ~ [-T(l,1) for primes [ diagonally embedded
in Zjy x (Z/NZ)*. Thus W[[C(N)]] is a module over W{[Z} x (Z/NZ)*]| = lim W[(Z/Np"Z)*]
via the action of (z) and hence is a module over Ay = W{[l']] as I' C Z). Then we confirm
T(1), T(1,1), Ug) € Endy(ry (W([Cou (N)]]) and that [g] : W([Cou (N)]] — W[[Coe (N/g)]] ave W[T]}-
linear maps. Then the p-adic projector e = lim,, o, U(p)™ is well defined on W[C,] and on W [[C]].
Recalling the identification W[[[']] with Ay = W[T]] by v =1+ p — ¢, we endow e - W[[Cx]] with
a Aw-module structure. On e - W[[Cw]], Hecke operators acts Ayy-linearly. As proved in [099,
Proposition 4.3.14], e- W[[Cw]] is free of finite rank over Ay (and the rank is given explicitly there).
Ohta’s choice of the action of Z5 x (Z/NZ)* is one time twist of our action by the p-adic cyclotomic
character; so, the definition of F(6, ) looks a bit different from ours, but our definition is equivalent
to that of [O03] with this twist. Supposing that p{ ¢(N) = |(Z/NZ)*|, we can decompose

e WCx]l = Pe- WICI],
@
where e - W[[Cu]][¢] is the y-eigenspace of a character ¢ : (up—1 x (Z/NZ)*) — W regarding
(p—1 X (Z/NZ)*) C Z; x (Z/NZ)*. Then from a result of Ohta [003, (2.4.6)], assuming p > 5,
for a prime divisor P € Spec(Aw ) prime to (p(N)) = ¢(N)Aw, we deduce a P-localized version of
the canonical exact sequence of Hecke equivariant maps in [003, (2.4.6)]:

(4.1) 0 — S(N, x1; Aw)p — M(N, x1; Aw)p ~= e W[[Cool][x1]p — 0,

where the last map Res is canonical and called the residue map in [O03]. This sequence is valid
without localization if p { ¢(NN). Thus as Hecke modules, e - W[[Coo]][x1] ®aw Q@ = E(N, x1; Q).

We extend this definition of e- W[[Cx]]. Take a prime ¢ outside pN and consider the C-points of
the elliptic Shimura curve X(N;¢?) = GL2(Q)\(GLa(A™)) x (C — R))/A(N¢’) and its connected
component X (N;q¢’) = SLa(Q)\(SL2(A)) x §)/A(Ng?) N SLy(A), where

AWNG) =T (N) (@), T(e!) = {z € GL@)o =1 mod ¢ Ma(Z) },
(4.2) N N N
Th(N) = {3: € GLy@)|x = (33) mod NMQ(Z)} :

Note that X(N;¢’) is isomorphic to a disjoint union of copies of X (N;¢?) indexed by (Z/¢'Z)*.
We write C(N;¢’) (resp. C(N;¢?)) be the set of cusps of X(N;¢7) (resp. X(N;¢’)). Then we have
CND" ) = {(An/ ~) x Ay} /{41}, where

Ay = { (;) € (Z/NZ)’|x(Z/NZ) + y(Z/NT) = Z/NZ}

with (Z) ~ (Z:) < y=vy and x =2’ mod y(Z/NZ). If {1} acts freely on Ay, we have

C(N;¢') 2= ((An/ ~) x Ap) /{£1} = (An/ ~)/{£1}) x Ags.

Replacing the auxiliary level N by Np" for sufficiently large r (noting p > 5), we may assume that
{%1} acts freely on Anpr. Thus for r > 0, we have

CINp5¢) = || (Anpr/ ~) x Ap)/{x1} = || (Anpr/ ~)/{E1} X Ag).
(ks ok
As before (see [003, §2.1]), GL2(Z,) acts on Ay by natural left multiplication on column vectors.
Then u € GLy(Z,) acts on [_|(Z @iz Ay via this multiplication but also permuting indices in
(Z)¢'Z)* via multiplication by det(u). The set C(Np";¢’) of cusps inherits the GLo(Z,)-action
from the curve X(Np";¢’), and this action is compatible with the action (including permutation
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of the components) on ||/ iz« Agi- Consider W[[C(Np>;¢’)]] = lim W[C(Np";¢’)], which
is naturally a Ay-module in the same manner as for W[[C(NV)]] through the action of Z, on
(Anpr/ ~). Then we define V;, = lim, W[[C(Np>;q’)]], where we regard

WICWNp™:d)ll= D WICwu(N)][Ag]
(Z/g72)>

as a space of W{[Cx]]-valued functions on | ] ,,i7)x Ags, and by the pull-back of the projection

@l
[_|(Z/qj+lz)x Agivr —» U(Z/qu)x Agi, we have taken the inductive limit. The idempotent e is well
defined on Vg, and we have e -V, = lim_e- W[[C(Np>;¢)]]-

On the pro-curve X(Np”; ¢*) = pinj X(Np"; ¢7) =2 GLa(Q)\(GLa (A1) x (C—R))/A(N¢>) for
A(Ng>) =), A(Ng7) ={x € A(N)|z, = 1}, GL2(Q,) acts by right multiplication, which induces
the (correspondence) action of GL2(Q,) on the cusps and induces a left action of GL2(Qq) on V.
This GL2(Qq)-action induces the action of the maximal open compact subgroup GLs(Z,) already
described on | 457« Agi. Plainly V5 is a _smooth representation of GL2(Q,) with coefficients in
Aw. At each finite g-level, e - W[[C(Np*>; ¢?)]] is free of finite rank over Ay as proved by Ohta in
[099, §4.3]. Though the curve X;(Np") is specifically dealt with in [099, §4.3], the argument for
X(Np";¢7) is the same, or actually for a suitable choice of g € GL2(Q,) (such that ¢g7'T'(¢?),9 D
Ty (¢%7), for the principal congruence subgroup I'(¢7), C GLy(Z,)), the right multiplication by
g induces a T-equivariant covering X;(Np"¢?’) £ X(Np”:¢7)° for any geometrically connected
component X(Np";¢’?)°; so, Ohta’s result actually implies this finiteness. We have

HO(T(¢7)g, e Vy) = e - WI[C(Np™; ¢)]],

which is free of finite rank over Ay,. Thus e -V, ®a,, Qw is a finitely generated admissible smooth
representation of GL2(Qg), and e - V; is a Ay -lattice stable under the GL2(Q,)-action.

Over the pairs of characters (6,1) defined modulo M; and M, respectively, we confirm that
E(N,x1;Q) is a direct sum of Hecke eigenspaces spanned by E(6,v). Let P € Spec(Aw) be a
prime divisor. Assuming p 1 @(N) if P is above (p) C A, it is easy to see that systems of the
Hecke eigenvalues of E(6,) are distinct modulo the prime divisor P. Thus e - W[[Cx]][x1]p =
D s,4) Aw.pe(8,¢) for an eigen basis e(f, ¢) with the same eigenvalues as E(0,¢). Ohta showed

(4.3) Res(E(0,1)) = A(T; 0,¢)e(0,¢) for A(T;0,¢) € Aw,
where A(T;0,v) € Aw is given as follows ([003, 2.4.10]). Taking the power series G(T; &) € Aw so

that G(v* — 1;§) = Lp(—s,{w) (v = 1+p) for the Kubota-Leopoldt p-adic L-function L,(s, &) with
a primitive even Dirichlet character &, A(T;0,1) is given by, up to units in Ay,

o {T/ (00 10) TLyy (DI (D) — 600D} (0.) = (wi L)
' G(T; 007 w) T v reop—1) lw DI ((T) = 0~ 'w(l)l71)}  otherwise,

where 7" =t — v~ and €(§) is the conductor of the Dirichlet character £. Here 1y, is a Dirichlet
character modulo M. In the exceptional case (6,1) = (w™*,11) (which is equivalent to the case of
(w™2,11) in Ohta’s paper), as is well known, the Eisenstein ideal is trivial and A(T;w ™!, 1) € A,

Definition 4.1. (1) Let Ly, be the product I o ) gy, A(T;0,%) for the pairs (6,v) run-
ning over all characters with My Ms|Np except for the pair induced by (w1, 11).

(2) Put @ = 0 mod my and 1) = 1 mod my,. Put L(0,v) := H(e,qp) A(T;0,4) in I, where
(0,4) runs over pairs of characters defined modulo Myp and M, respectively, with My Ms|N

having reduction (0,) modulo p as characters of Zy x (Z/NZ)*.

Letting ¢ € D, act on W[[T]] by (>, anT™)? = >, alT™, we know that A(T;0,¢)° =
A(T;67,¢7); so, Ly, is Galois invariant, and hence Ly, € A = Zp[[T]]. The following propo-
sition is basically proven in [O03, Theorem 1.5.5]. Since in the statement in [O03], he assumes
N|€(9)€(v)), we give a proof under cube-freeness of N via the theory of admissible representation

of GLy(Qy).
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Proposition 4.2. Let the notation be as above. Suppose p > 5 and that N is cube free. Let P be a
prime divisor of Ay prime to (Lny,) C Aw and o(N)Aw . After tensoring the localization Aw p
at the prime P, Ohta’s exact sequence (4.1) is split as a sequence of Hp-modules.

Proof. By assumption, if (6,v) # (w™',11), P+ A(T;6,¢) in W[[T]]. Thus A(T;6,%) € Ay, p. So,
if N =1, we can define Hecke equivariant section: e - W[[Cx]][x1] — M(N, x1; Aw) by e(8,¢) —
E(6,%) for (0,7%) # (w™!,1;), and e(w™t,11) — ¢t - E(w™!,11) otherwise (¢ =t —~y~1). This gives
rise to a section over Ay p of Hp-modules.

We proceed by induction on the number of prime factors of N. Suppose we have a section:

e W[Coo(N/))]p — M(N/g; x15 Aw, p)
for M(N/q, x1; Aw.p) = M(N/q, x1; Aw) ®a,, Aw,p. Take (0,v) with My Ma|N/q. We claim that

(C) the space V' spanned by e(0,v)|[q] and e(0,v) in W[[Csx(N)]]p has rank 2 over Aw,p, and

is a direct summand of e - W|[[Coo(N)]]p.

To prove this claim (C), we use the admissible representation (e - Vy) ®a Q of GL2(Qq) defined
for the prime to g-part N(@ of N (in place of N) whose detailed description is given just before
stating the proposition. Then e(f, 1)) generates a principal series representation mq C e- Vg Qa,, Qw
isomorphic to 7(6,, 12)\(1) over Qw, where 12)\(1 : Q; — A is the unramified character sending the prime
q to ¥(g){(q), and 6 is just the 9|Q§ regarding 6 as an idele character. Then by the well known theory
of admissible representations if x(P) has characteristic 0 and by Vigneras’ modulo p representation
theory of admissible representations (see [V89, Theorem 3]) if P|(p), an old-new congruence at ¢
occurs only when the ratio (ﬂ)\q /04)(q) is congruent to ¢** modulo P (for the maximal ideal P of
Aw.p). This cannot happen if P is over (p) because (g) = (t'°8(0/198:() for a root of unity ¢ and
t=1+TP" ) =1+uT?" +--- mod pif s = p™u with u € Zy.

If £(P) has characteristic 0, regarding P € Homgz, _a15(I, Q,), we have P(t) = u with |u — 1], < 1.
Then P(ﬂ)\qﬁgl(q) — gty = O (q)uloBr (D108, (V) — g+1 = 0 implies u = y*1( for ¢ € 1, (Q,). We
have P = (t — y*1(); so, Y0~ wTF(q)gt' ¢’ — ¢! = 0 for another p-power root of unity ¢’; hence,
ppe 3 ¢ = 0~ wF(q). Since P 1 ({(¢)(T) — 0y~ w(l)g~ ') (which is a factor of Ly ,, ), we find that
P = (t—('y). Since P is now an arithmetic prime of weight 2 and N is cube-free, we know that H
and Hy . are reduced algebras by [H13a] Corollaries 1.2 and 1.3 (in [H13a], only the cuspidal Hecke
algebra is dealt with, but the proof is the same for H). Thus Hp is an algebra direct sum of the
FEisenstein part and the cuspidal part; so, the exact sequence has to split.

Thus hereafter, we may assume that (ﬂ)\q /0,)(q) # ¢** mod P. By the well known theory of ad-
missible representations if x(P) has characteristic 0 and by Vigneras’ modulo p representation theory
of admissible representations (see [V89, Theorem 3]) if P|(p), m(6y, 12)\(1) mod PAyw, p is irreducible.
The vectors e(f,v) and e(f, ¥)|[g] modulo PAw, p in the irreducible 7y := (7 mod PAw,p) are
linearly independent. This shows the above claim (C).

To make a section, first assume that ¢ is prime to N/q. Letting (61, ) be the pair with 6; which
is 6 regarded as a character modulo Mg, we have e(601,v) = e(0, 1) — 0,4(q)e(8,¢)|[g] up to units in
Aw.p by the argument in the previous section. Similarly e(6,1) = e(6,v) — 1])\(1 (9)e(0,v)|[q] for ¢y
which is 1 regarded as a character modulo M;q. Then

Res(E(61,v)) = Res(E(0,v) — 64(¢9)E(0,¥)|[q]) = Res(E(0,v)) — b4(q)Res(E(0, ¥))]
Res(E(6,11)) = Res(E(0,¥) — 1q(q)E(6,)|[q]) = Res(E(6, 1)) — vq(q)Res(E(6, )
Thus the section of level N/q extends to the level N.

Note that N is cube-free. Thus the remaining case is when ¢?|N. If €(6) and €(1)) are both
prime to g, by the irreducibility of 7,, e(8, 1), e(,v)|[q] and e(6,)|[q]* span a three-dimensional
subspace in ;. Thus we have e(61,v¢1) = e(6,¢1) — 0(¢)e(6, 1) which does not vanish in 7,.
Then e(61,v1) — E(01,11) gives a section on (6;,11)-eigenspace. If ¢|€(0) but ¢ t €(¢)), we define
e(elaw) = 6(93 1/)1) - 9((])6(9, wl)a and if q Jf Q:(e) but Q|Q:(1/))5 6(93 1/)1) = 6(93 1/)1) - 1/’(Q)€(9a wl)a and
the same argument works well. If ¢|€(#) and ¢|€(y)) but one of the characters is imprimitive at

another prime ¢’, we apply our argument to ¢’ in place of ¢, and we get the section. The case where
N|€(0)€(v)) is covered by Ohta’s result explained at the beginning of the proof. O

[q],
Ilq].
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Let E be the image of H in Enda(E(N, x1; Aw)) and define Ce = heg E = (h @ E)/H (the
Eisenstein congruence module). As long as p{ ¢(N) and  ramifies at p, pn, = 01 and (M, M) de-
termine a unique maximal ideal m = m(6, ¥; My, Mg) of H (and E). Since (6, ; My, M) determines

(0,4; My, M) uniquely, we have Ey,, = Ay (as (0, 1) determines (6,v) by p 1t o(N)).

Corollary 4.3. If p t 60(N), N is cube-free and 0 ramifies at p, then we have Charp,, (Crn) =
(A(T;0,v)) in Aw for the localization Cg, of Cg at m = m(,; My, M), where A(T;0,1)) is
defined for 6, mod Mip and v mod Ms.

Proof. We have a pairing H x M(N, x1; Aw) given by (h, f) = a(1, f|h). If we define

M(N, x1;: Aw) = {f € M(N, x1;Qw)l|a(n, f) € Aw for all n > 0}.

Then as is well known (see [H86a, §2]), this pairing H x M(N, y1; Aw) is perfect; i.e., as Ay-
modules, Homy,, (H, Ay) = M(N, x1; Aw) and Homy,, (M(N, x1; Aw), Aw) = H by sending the
linear form: > a(n,F)q" — a(n,F') (indexed by n) to the Hecke operator T'(n). However, by
definition, M(N, X1; Aw )/ M(N, x1; Aw) — Qw /Aw by f — a(0, f), and the inclusion f — a(0, f)
is T-equivariant. The group I' acts on the constant term by the character: T' > z +— 271 € WX
(as by our choice of the action, weight 1 corresponds to the trivial action). This shows that after
inverting 7" =t — v~ 1, the pairing is perfect between M(N, x1; A) and H®,,, A over the principal
ideal domain A := AW[#(N)]' The Aw-perfectness of the pairing on h x S(N, x1; Aw) holds in
the same way as in the case of H without inverting T’ (or ¢(IV)). We have an integral H-linear map
I:eW[[Cx]]lx1] = M(N, x1; Aw) given by I(e(8,1)) = E(0,) if (,1)) is not induced by (w™t,11)
and I(e(0,v)) = T'E(0,v) otherwise. Let m = m(0,v; My, Ms), regard it as a maximal ideal of H,
and assume 1~ (p) # 1. By [003, Lemma 1.4.9], the multiplicity of the Hecke eigenvalues of
E(6,7) is equal to 1 even modulo my. Thus after localization at m,

R 1 ~p L
W[[Coo]]m[m] = W[[T]][w(m]e(& V) = Em[w(N)]
as Hy,-modules. Then we have
| WIT)) ()

Reso I(e - W[[Coollm|

~ )

]) = e(oﬁw) = CEm'

o)~ AT 0, W k)

Putting S = S(N, x1;Qw) N M(N, x13 4) and € = E(N, x1; Qw) N M(N, x13.4) in M(N, x1; Qw),
we have the following exact sequence of Hy-modules:

(4.5) 0= En®Sm — MV, x1;Aw)m — C — 0 with C = Cg,_, as Hy-modules.

Defining an A-dual module M* by M* = Hom (M, Qw/A) for any torsion A-module M of finite
type, we have M = M* (non-canonically) as A-modules, by the following lemma applied to the prin-
cipal ideal domain A. Noting that Hyn®4,, A (resp. (hm®Em)®4,, A) is the A-dual of M(N, x1; A)m
(resp. Sm @ Em) and again applying the following lemma to the exact sequence (4.5) tensored A
over Ay, we have an Hy-linear isomorphism (Cg,,)* 2 Cg,, ®a,, A4; so, we get Charyp, (Cg,,) =
Chary,, (Cg,,) = (A(T;6,v)) in A. Since non-divisibility 77 t Charp,, (Cg,, ) Chary,, (Cg,,) is known,
we have Chary,, (Cg,,) = Chary,, (Cg,,) = (A(T;0,v)) in Ay as desired if p{ p(N). O

Lemma 4.4. Let A be a principal ideal domain with quotient field K. For each A-module M, we
define M* = Hom (M, K/A) and MY = Hom (M, A). For an exact sequence 0 — M — N — T —
0 of A-free modules M and N of finite rank with A-torsion quotient T', we have a canonical exact
sequence of A-modules 0 — NV — MY — T* — 0 and an isomorphism T* = T as A-modules.

Proof. Since A is a principal ideal domain, we have the following facts:

(1) M+~ M* is a perfect duality with M 2 (M*)* canonically for A-modules of finite type,
(2) if an A-module T is torsion of finite type, T = T* as A-modules non-canonically,
(3) if an A-module T is torsion of finite type, Ext’ (K/A,T) = T.
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By perfect duality, we have an exact sequence 0 — L* — N* — T* — 0 of A-modules. Applying
the covariant functor X +— Hom4 (K /A, X) to this exact sequence and noting isomorphisms

Homa (K/A, M*) = Homuy (K/A, Homu (M, K/A)) 2 Homuy (M @4 K/A, K/A) & MY
and Ext} (K/A, T*) = T*, we get the exact sequence 0 — NY — MY — T* — 0. O

5. CM COMPONENTS

We study when a CM component of Spec(h) is a Gorenstein ring. The result is used to determine
the characteristic ideal of the congruence module of the CM component and other non-CM compo-
nents. The characteristic ideal is expected to give the level of non-CM components in the connected
component containing the CM component. We first quote the following fact from [H13a, Section 3]
(or [H11a] (CM1-3) in Section 1):

Proposition 5.1. Let Spec(J) be a reduced irreducible component of Spec(h) as in the introduction.
Write J for the integral closure of J in its quotient field. The following five conditions are equivalent:

(CM1) F is a CM family with py = py ® (M—/Q) for a quadratic field M with discriminant D;

(CM2) The prime p splits in M, and we have py = Ind% Uy for a character Uy : Gal(Q/M) — Jx
with prime-to-p conductor € = €(Vy) unramified outside €p. We have D - N(C)|N;

(CM3) For all arithmetic points P of Spec(J)(Q,), fp is a binary Hecke eigen theta series of the
norm form of an imaginary quadratic extension M/Q with prime-to-p conductor N(€)D;

(CM4) For some arithmetic point P of Spec(1)(Q,), fp is a binary Hecke eigen theta series of the
norm form of an imaginary quadratic extension M/Q with prime-to-p conductor N(€)D;

(CM5) For some arithmetic prime P, pp is an induced representation of a character of Gal(Q/M)
with prime-to-p conductor €, where M is a quadratic extension of Q.

A binary Hecke eigen theta series of the norm form of an imaginary M is called a CM theta series.

See Section 10 for a description of the prime-to-p conductor of Galois representations. We write
€(&) (resp. C(p)) for the prime-to-p conductor of a Galois character & (resp. a two dimensional
Galois representation p). We say a Hecke eigenform f has conductor C(f) if the automorphic
representation generated by f has conductor C(f); so, f itself could be an old form. Recall that the
prime-to-p part C of this conductor C(f) is equal to the prime-to-p conductor C(py) of the p-adic
Galois representation associated to f. We say that J has CM (or is a CM component) by M if one
of the above equivalent conditions is satisfied by an imaginary quadratic field M. In the rest of this
section, we fix a CM component J of h having CM by an imaginary quadratic field M. For Uy as in
(CM2) and a complex conjugation ¢ € Gal(Q/Q), we put

¥ =(T; mod my), ¥ (0) =P(coc™), ¥~ =0/y",

5.1
&) C =C(py) = C(Ind%, ¥y) = N(€(¥))D, € =¢(Uy), c=¢( ), ¢ =¢NT

for € = €°, where N(a) is the norm of a fractional ideal a of M and C(V;) is the prime-to-p
conductor. Then ¢ = ¢, and ¢ is a factor of ¢/ but may not be equal to ¢’.

Let Spec(h?) be the minimal closed subscheme of Spec(h) containing all reduced irreducible
components having CM by a fixed imaginary quadratic field M. We take the connected component
Spec(T) of Spec(h) containing Spec(J). Let Spec(Tey,) be the union of all reduced CM components
inside Spec(T). Note that Spec(Ty,) could contain components having CM by different imaginary
quadratic fields. We would like to know when T,,, is a Gorenstein ring or more strongly a local
complete intersection. This can be answered by proving T.,, is isomorphic to the continuous group
algebra W[[Z,]] for an appropriate ray class group Z, of M (see Lemma 5.5). Such an identification
could fail if either Spec(T.y,) intersects with Spec(h? ) and Spec(hX ) for different fields K and
M or Spec(T.p,) contains a union of two copies of Spec(W{[Z,]]); i.e., new and old (or old and old)
CM components coming from a primitive CM component. Here the word “primitive” is used in the
sense of [H86a] page 252 in §3. Thus we look for sufficient conditions to preclude these bad cases in
terms of level and the prime-to-p conductor of p. We start with a result simple but crucial for the
Gorenstein-ness of the CM local ring given in Proposition 5.7:
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Proposition 5.2. Let A be a p-profinite local integral domain for p > 2. Let M and K be two
distinct quadratic fields in Q. Suppose that we have continuous characters ¢ : Gal(Q/M) — A
and ¢ : Gal(Q/K) — A with absolutely irreducible Ind% @ over Q(A) such that Ind% = Ind% 0.
Write ¢° for the character Gal(Q/M) > 7 +— @(oro™!) for o € Gal(Q/Q) inducing the generator
of Gal(M/Q). If the representations Ind% o= Ind% ¢ are ordinary at p, then we have

1) ¢ and ¢ are both of finite order,

2) M) ©; 50, o~ given by p(p°)~! = 177 is equal to (M)

3) If p does not ramify in MK/Q, ¢ and ¢ are both unramified at p.

4) If ¢ ramifies at a prime factor of p, then p splits in M, ¢ is unramified at another prime

factor of p, p ramifies in K and ¢ is unramified at p.
(5) If K is real and Ind% @ is odd, M is imaginary and ¢ ramifies at exactly one real place.

(
(2) We have 97 = (
(
(

Conversely, if o~ has order 2 and M is imaginary, we have two quadratic fields K, K' distinct from
M with KM = K'M and finite order characters ¢, ¢’ such that Ind% o Ind% ¢ = Ind(% Q.

Here the word “ordinary” means that the representation restricted to a decomposition group at
p is isomorphic to an upper triangular representation with an unramified 1-dimensional quotient. In
our case, the restriction of, say, Ind% © to a decomposition group at p is the direct sum ¢ @ ¢ (for
o asin (2)) or 1@ (M—/Q) for the identity character 1. Then ordinarity implies that ¢ is at least

unramified at one prime in M over p.

Proof. Suppose Ind% p Ind% ¢. We first prove the assertion (2). Let N be the prime-to-p Artin

conductor of Ind% . For any prime [ outside Np inert in K and split in M (such primes have
positive density), we have

0= Tr(Ind% o(Froby)) = Tr(Ind% p(Froby)) = p(I) + o(17)

for 0 € Gal(Q/Q) inducing a generator of Gal(M/Q). Thus we have ¢~ (Frob;) = —1 if [ is inert
in K and split in M (note here that —1 # 1 because p > 2). For any other primes ¢ outside Np
inert in K and split in M, o~ (Frob) = —1 = ¢~ (Frob,). Since FrobFrob;' fix MK, by moving
g, Chebotarev density tells us that ¢~ factors through Gal(M K/M). Since Ind% @ is absolutely

irreducible, we have ¢ # ¢? (i.e., ¢~ # 1). Thus we conclude ¢ = (M

) 7. This proves (2).
We now deal with the assertions (3) and (4). By the remark preceding this proof, we may assume

that ¢ is unramified at one prime factor p? of p. If there is only one prime factor in M over p, this

forces ¢ to be unramified at p. If there are two factors of p in M, either ¢ is unramified also at p

or K ramifies at p by (2). If K ramifies at p, there is only one prime factor in K over p, this forces
¢ to be unramified at p. Thus if M K/Q is unramified at p, M)

¢ are both unramified at p. This proves (3) and (4).
To show (1), first suppose that ¢ ramifies at a prime factor p|p. Thus p ramifies in K and splits

is unramified at p, and ¢ and

in M. Then (M) ramifies at two primes p and p?, and therefore ¢ has to be unramified at p.

In short, ¢ ramifies at p and unramified at p?. Since p ramifies in K, ordinarity of Ind% ¢ forces ¢
to be unramified at p; so, ¢ factors through a finite ray class group Clk (§') for an ideal f' prime to
p. Thus Ind% p = Ind% ¢ has finite image; so, ¢ has finite order.

Next suppose that ¢ is unramified at p. Then ¢ factors through the finite ray class group Clas(f)
of M modulo § for the prime-to-p conductor § of ¢. Now Ind% © has finite image, and we conclude
that ¢ is of finite order (this proves (1)).

To prove (5), now assume that M is imaginary and write ¢ € Gal(Q/Q) for complex conjugation.
Since Ind% ¢ is automatically odd (as M is imaginary), we have Tr(Ind% o(c)) = 0. Regard ¢ as
an idele character of K. Then

#(—1s) + ¢(—1or) if K is real,

0 = Tr(Ind (e)) = Tr(Ind% 9(c)) = {O .
otherwise,
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where oo is an infinite place of K and oo’ is the other, and 1./ is the identity of the co’-component
K2, =R C K;. Thus ¢ ramifies at exactly one infinite place of K if K is real. Since md?, ¢ is
odd, we see that ¢ ramifies at exactly one infinite place of K if K isreal. If M and K are both real,
o/ _ (MK/M
o7 [p = (—
places or unramified at the two infinite places; so, this is impossible (finishing the proof of (5)).
Suppose now that ¢~ has order 2 and that M is imaginary, to prove the converse. Then the
splitting field of ¢~ is a quadratic extension L/M. Since (p~)° = (¢~ ) 1 = ¢~, L° = L; so, L/Q
is an abelian extension of degree 4. This also shows that Ind% @~ is reducible: Ind% T =nd¢
for two characters n,¢ : Gal(Q/Q) with n/¢ = (M—/Q) Since M is imaginary, for any complex

) is unramified at the two infinite places; so, either ¢ ramifies at the two infinite

conjugation ¢, n(c) = (MT/Q) &(c) = —€(c). Since £(c) and n(c) are £1, we conclude one of them is
—1, say, n(c) = —1. If one of £ and 7 has order 4, the other also has order 4. Since £? = 7? is an even
character, its splitting field K C L is a real quadratic field; so, M # K and L = M K, a contradiction
(as Gal(L/Q) has to be cyclic of order 4). Thus L is not a cyclic extension; so, again it is a composite
of two distinct quadratic fields M and K. Thus ¢ and n have order 2. Write p := Ind% w. Asis
well known, we have Ad(p) = Ind% e ( ) and Endgay(p) = Ad(p) @1 = ndED (M_/@) @1
for the trivial representation 1. Therefore we find p ® £ = p and p ® n = 7. Thus for the fixed
field K- of Ker(?) for ? = &, n, we have L = MK, = K, K = K¢M, and there exists characters
¢7 : Gal(Q/K7) — Q(A)* such that p = Tnd} ¢, = Ind%s ¢ (e.g., [MFG, Lemma 2.15]). Then by
(1), ¢- has finite order, and we take K = K,, (resp. K’ = K¢) and ¢ = ¢,, (resp. ¢' = ¢¢). O

Corollary 5.3. Suppose p > 2. Let M and K be distinct itmaginary quadratic fields in which p
splits. If P € Spec(h})) N Spec(hX)) is a prime divisor, we have PN Z,[[T]] = (T).

Proof. Since pp has to be induced from M and K, we have Ind? M= Ind% ¢. Since p has to be
split both in K and M, ¢ and ¢ are unramified at p by Proposition 5.2 (3), and by (Gal), regarding
[v, Qp] € I, C Gal(Q/M), we have t = ¢([,Qp]) = 1550, T =0 in h/P;ie T € P. O

Let Tp be the localization of T at a prime divisor P € Spec(T) and write pr, for p, for
a = Ker(T — T%?). Let u(qg) for primes ¢|Np be the image of U(q) in Tp. Similarly, we write
a(l) € J for the image of T'(I) or U(l) in J. We have k := det(pr,) : Gal((@/(@) — WI][T]]. By
[GME, Proposition 4.3.1], we have det(pr, )([u, Q]) = x1 (u)t'2 (4r)/198,(%) for o, € Z*. Consider the
projection (-) : Im(det(pr,)) — Im(det(pr,))p for the maximal p-profinite subgroup Im(det(pr,)),

of Im(det(pr,)), and put (k) = (-) 0 k; so, k = x1(k). We define p}, = pr, @ / <H>71, where the
square root is supposed to have values in the p-profinite part Im(det(pr,)),. Note that /(k) has
values in W[[T]]* and that pp, has values in GLz(Tp), since p > 2. We prepare

Lemma 5.4. Let the notation be as above (in particular, P is a prime divisor of T). Suppose p > 2.
Put x®) = X|(z/nzy= for the prime to p-part of x. Assume that W is sufficiently large valuation ring
finite flat over Zy. Let T'p be the subring of Tp generated by {Tr(pry (0))},ecqai@/q) over WITlp
Then T'p is generated by {Tr(p}, (0))},cqai@/o) over WIT1]p. Further suppose that the prime-to-p
conductor of pr, coincides with the prime-to-p conductor C(pp) of pp. If N = C(pp), we have

(1) Tp is reduced, and if C(p) = N, T is reduced.
(2) The total quotient rings Q(Tp) and Q(T's) coincide.
(3) If k(P) has characteristic 0 or pt p(N), Tp = Th[u(p)] under absolute irreducibility of pp.
(4) If pp is absolute irreducible, we have Tp = T'’» under one of the following conditions:

(a) k(P) has characteristic 0 and u(p)> # xP)(p) mod P,

(b) K(P) has characteristic 0 and T & P,

(c) X1|Z§ is non-trivial.

Later we compute the congruence module of a CM component of the ring T’ in terms of anticy-

clotomic Katz p-adic L-functions. The relation between T and T is clarified by this lemma.
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Proof. For a continuous representation p : Gal(Q/Q) — G Ly(R) with a p-profinite local W-algebra
R, let € be the unique square root character of Gal(Q/Q) with values in 14 mg of the projection of
det(p) to 14+mp. Let Ry (resp. R}) be the subring of R generated topologically over W by the value of
Tr(p) (resp. Tr(p®E&1)). The subring R; contains 2det(p(c)) = Tr(p(c))? —Tr(p(c?)). Since p > 2,
we have det(p(0)) € R;. Thus R; contains the values of £, and hence R;, C R,. If further R} contains
the value of £, we have R, D Ry as Tr(p@&~1) = ¢ 1Tr(p). Since W[[T7]] contains the value of 1/{k),
the subrings of Tp generated over W([T]]p by {Tr(pr, ()}, cqai@ o) and {Tr(or, ()}, cca@ o)
are the same. This shows that T’ is generated by {Tr(p7, (0))},cqa@/q) over WIT]lp-

Since the argument proving (1) is identical for T and Tp, we give here the one for Tp. Since
N = C(pp)|C(pr)|N by Lemma 10.2 (1) and (4), we conclude C(pp) = C(pr) = N. For any prime
P’ € Spec(Tp), P’ O P, and we have N = C(pp)|C(pp')|N; so, C(pp) = N. Since the nilradical
of T comes from g-old forms for g|N (i.e., the nilradical acts faithfully on the space of g-old forms
for q|N; see [H86a, Corollary 3.3]), it has to be trivial. Thus we conclude the assertion (1) for Tp.

We now look into the subring T’ of Tp generated by {Tr(pr,(0))},cca@/q over WITr
more carefully. Since T’ contains the value Tr(pr,) at the I-Frobenius element for all primes
[ 1 Np, by Chebotarev density theorem, Tr(pr, ) has values in T’. Thus, we have a representation
p : Gal(Q/Q) — GL2(Q(T’)) with Tr(p) = Tr(pr,) by the theory of pseudo representation. The
projection of this representation to each simple factor of Q(T’) is absolutely irreducible. Since
u(q) = 0 or a unit in each irreducible component of Spec(T) (because of [MFM, Theorem 4.6.17]),
u(g) = 0 or a unit in the entire T. Thus, as for (2), (3) and (4), we may assume that u(q) €
T*. Under this assumption, for an arithmetic P’ € Spec(T), H°(I,, pp/) = k(P') (cf. [GME,
Theorem 4.2.7]). Thus Ho(I,, Q(T'"?)) 2 Q(T'"*%), which implies Ho(I,, Q(T))) = Q(T’). Take
an element ¢, € Gal(Q/Q) which induces [g, Q,] on the maximal abelian extension Q2P of Q. Since
u(q) is the eigenvalue of p(¢q) on Ho(Iy, Q(T)) = Q(T’), we have u(q) € Q(T’). This proves (2).

Hereafter we assume absolute irreducibility of pp. Then we have p with values in GL2(T%),
and we take a Tr—free lattice L(p) C Q(T'»)? stable under p. By definition, Tp is generated
over WI[T]]p by the image t(I) of T(I) for I { Np and the image u(q) of U(q) for ¢q/Np. Since
t(l) = Tr(pr, (F'roby)) = Tr(p(Frob;)), by Chebotarev density, to show (3) and (4), we need to see if
u(q) is contained in T%. We may assume that u(q) € T}; then, under the assumption N = C(pp),
we have Ho(Iy, pr,p) has rank 1 on which ¢, acts by u(q) (e.g. [GME] Theorem 4.2.7 (2-3)).

Suppose ¢ # p, and take any arithmetic prime P’ of Spec(T). Then, because of u(q) € T*,
the local p-component of the automorphic representation wp: generated by fp/ is either a Steinberg
representation or in the principal series of the form 7 (c, §) with § unramified at ¢. In the Steinberg
case, as u(q) # 0 mod P’, x; is unramified at ¢, and the ¢ divides N exactly once. Then for any
other arithmetic point P” of Spec(T), mp~ is Steinberg at ¢ and we have the identity Cy(pp) = q.
We conclude that either the local component of wp at p is Steinberg for all arithmetic P” € Spec(T)
(Steinberg case) or in principal series for all arithmetic P” € Spec(T) (Principal case).

In the Steinberg case, we write pr|p, = (§5) with €/6 = N for the cyclotomic character Nj :
Gal(Q,/Qq) — ZX; so, we have k = Nyd? and €/0(¢y) = q # 1. Let A := p(¢q)(k)~'/?(¢,). Taking
W so that it contains /g, the operator A has two distinct eigenvalues a = \/571, b= ,/qin W*.
Note that a # b mod P (by the assumption that either x(P) has characteristic 0 or p t ¢(N)). In
the principal case, since u(q) # 0, we may write pr|p, = (§9) with unramified 6, and €|;, = x1
is non-trivial with conductor €,(x1) dividing exactly N (by Lemma 10.2 (2) combined with [GME,
Theorem 4.2.7 (3)]). Thus we can find ¢ € I, such that p(c) has two eigenvalues a = 1,b in W*.
Again we may assume a Z b mod P by our assumption. Put A := p(0) in the principal series case.
Write p” for p ® (k)~/? in the Steinberg case and for p in the principal case. Now we argue in
the two cases (the Steinberg case and the principal series case) at the same time. Take a T’p-free
p'-stable T'b-lattice L(p”) C p”. The matrix A acts on L(p”) by two distinct eigenvalues a,b in
W* with a Z b mod P. By adding “[a]”, we indicate the a-eigenspace of the operator A; so,
L(p")[a] = T’ = L(p")[b]. Then on the a-eigenspace L(p”)[a] = T'p, ¢, acts by u(q)(k)~'/?(¢,) in
the Steinberg case and by u(g) in the principal series case, and hence u(q) € T'5. This shows (3).

It remains to prove (4). By (3), we have Tp = Tp[u(p)]. Let T/ C T’ be the p-profinite ring
generated by the trace of pr, over W[[T]]. Now we have det(pr,)([p,Q,]) = x®(p) € W c T’
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as det(pr,)(xP)~! factors through Gal(Q[up=]/Q) in which [p,Q,] = 1. Thus we have a :=
Tr(pr, (¢p) = u(p) + ulp) " 'xP (p) € T' C T, and u(p) satisfies X? — aX + xP(p) = 0. We
conclude u(p) € T if a® — 4xP)(p) = (u(p) — u(p)~*x® (p))? is nonzero and a square in T’. By
[H11b], u(p) is transcendental over W, and hence a? — 4xP) (p) # 0 always.

First assume a? — 4y (p) # 0 mod P and x(P) has characteristic 0. Since u(p) € Q(T%),
u(p) is in the integral closure T of T/ in Q(T)). Since Tp/T) is a torsion Tp-module of finite
type, the support of f}g /T’s in Spec(T’) is made up of only finitely many closed points. Thus by
extending scalars, we may assume that 'ﬁ‘} /P’ = K for K = Q(W) for all maximal ideals P’ of 'ﬁ‘}
in the support of 'ﬁ‘}a/'ﬂ‘}g. In other words, for any prime P c 'ﬁ‘}a over P’/ ﬁ;/ﬁ’ =T,/P' =K,
and in particular, x(P) = k(P). Let a be the image of u(p) — u(p)~'x® (p) in x(P). By our
assumption, & € W C k(P). Then regard a € W C T’ and consider a2(u(p) — u(p)~'x)(p))? =
a=2(a® — 4x)(p)) € T', which is in 1 + (P NT’). Since p > 2, 1 + (P N T') is p-profinite, and
(1+(PNT))% =1+ (PNT). Thus a> — 4x (p) is a square in T, which implies u(p) € T'p.

Now assume that a? — 4x(®)(p) = 0 mod P. If T ¢ P, by (Gal), we find ¢ € I, such that the
eigenvalue of p(0) is 1 and z € W* with 2 21 mod P. Then if W is sufficiently large containing z
mod P in k(P), we can split the p-representation module (T>)? into the product of two eigenspaces
of p(o). We have eigenspace decomposition L(p) = L(p)[1] ® L(p)[z] under p(c). Then u(p) acts on
L(p)[1] = H°(1,, L(p)) = T'» as a T’s-linear operator (the action of Frob,); so, u(p) € T’.

If X1|Z§ is non-trivial, we can find again ¢ € I, such that the eigenvalue of p(o) is « = 1 and
b e W* with a 2 b mod P. Then under the notation introduced in the proof for g # p, we have
L(p)[a] = T'» = L(p)[b]. Since u(p) is the eigenvalue of Frob, on L(p')[a], we get u(p) € T’. This
finishes the proof of the last assertion (4). O

We will identify in Section 7 the characteristic ideal of the congruence module between the CM
component Spec(T.p,) C Spec(T) and its complement with the ideal generated by the anticyclo-
tomic Katz measure in [K78] and [HT93] (interpolating anticyclotomic Hecke L-values). Since the
anticyclotomic Katz measure is a measure on the anticyclotomic class group, we need to relate class
group Z := Cly(€p>) and its anticyclotomic counter part Cly;(¢'p™) (¢/ = €N €). This is what
we do now. Consider the ray class group Cly(€p”) modulo €p”, and put
(5.2) Z =1limCly(€p"), and 3 =1limCly(c'p").

On 3, complex conjugation c acts as an involution.

Let Z, (resp. 3,) be the Sylow p-part of Z (resp. 3). We have a natural inclusion (O, x D; )/O*

into 3. Let Z~ = 3/3'"¢ (the maximal quotient on which ¢ acts by —1). We have the projections

m:3—»27Z and w 3 — Z".

The projection 7~ induces an isogeny 3'7¢ = {227¢|z € 3} — Z~ whose kernel and cokernel
are killed by 2. In particular, assuming p > 2, 7~ induces an isomorphism between the maximal p-
profinite subgroups Z, C Z~ and 3;* C 3'~¢; namely, we have 7~ : 3;* & Z, ifp > 2. Similarly,
7 induces 7 : 3;* & Zp if p > 2. Assume now p > 2. Thus we have ¢ : Z, = Z by first lifting
z € Zp to Z € 3,7° and taking its square root and then project down to 7~ (z'/?). The isomorphism
¢ identifies the maximal torsion free quotients of the two groups Z, and Z, which we write as I'a/.

This ¢ also induces W-algebra isomorphism W{[Z,]] = W{[Z,]] which is again written by ¢. Then

we have Z = Z(P) x Z, with finite group Z) of order prime to p. Identify Z, = Gal(M,/M) (resp.
ZW) = Gal(Mép)/M)) for an abelian extension M, /M (resp. Mép)/M) by the Artin symbol.

Lemma 5.5. The algebra W{[Z,]] is a local complete intersection and hence Gorenstein over Ay .

Proof. The natural map I' C Z) — Z induces a W{[[[']|-algebra structure on W[[Z,]]. Identifying
W]} with Aw by v — t, we regard W[[Z,]] as a Aw-algebra. Writing Z,, /T as a product of cyclic

groups Cq x --- x Cp with |C;| = ¢; for a p-power ¢; and picking z; € Z, whose image generates
C;, we have z?j € T which we regard as an element [z;“] of I' € WJ[I']] = Aw. Then we have an

isomorphism Aw [T, ..., T, /(1 +T;)% — [z}zj])j for the polynomial ring Aw [T, ..., T,] and its ideal
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(L+Ty)% — [2]°]); generated by (14 T;)% — 2] € Aw/[T, ..., T,] for j = 1,2,...,7. This shows
that W{[Z,]] is a p-profinite local complete intersection over the regular ring Ay (and is hence a
Gorenstein Ay -algebra; see [CRT, Theorem 21.3)). O

We regard W[[Z,]] as a Aw-algebra by the isomorphism ¢. Let T be a connected component of
h containing a CM component J with C(py) = N. Recall the character ¥y : Gal(Q/M) — J* as
in (CM2) in Proposition 5.1. By class field theory, we may regard Uy as a character ¥y : Z — I*.
Taking W sufficiently large so that W = In @p. Then Wy, has values in W* C J*. Define
Up : Gal(Q/M) — W([Z,]]* by a homomorphism given by ¥r(o) = ‘IJJ(O'|M(Zp))O'|Mp € WI[Z]],
where we regard \IJJ(U|M(Zp)) € W C W[[Z,]]. Define ¥f : Gal(Q/M) — W([Z,]] by ¥} = to Ur.
By Lemma 5.4 combined with [H86a, §7] (or [LFE, §7.6]), there exist algebra homomorphisms
©:T— W[Z)]] and ®© : T — W[[Zp*]] given by ©(Tr(pr(Frob;)) = Tr(Ind% Ur(Frob;)) and
O~ (Tr(pf(Froby)) = Tr(Ind% Ur(Frob;)) for all primes [ { N(&)p, where pf = pr ® \/@71 as in
Lemma 5.4. The above identities uniquely determines these homomorphisms by Lemma 5.4 (2). We
check that © (and hence ©7) is a Ay-algebra homomorphism. We summarize what we remarked:

Lemma 5.6. Let the notation be as above, and assume p > 2. Then
(1) O oph = Ind% UL over Q(T).
(2) v: Zp, = Z,; canonically,
(3) If N = C(py) for a CM component J, the following diagram of Aw -algebras is commutative:

T —2— W[[Z,)]

TR

Proof. Only fact we need to verify is the identity: pf = Ind% Ur over Q(T). Let (¥’) be the pro-
jection of W7 to the p-profinite part of the image Im (V7). Since pr|gai@/ar) = Ind% Ur|Ga@/an =
U @ ¥, we have k := det(pr) = det(Indy ¥p) = W'*¢ over Gal(Q/M), where U'te(g) =
U(ococ™). Thus (K)|Gar@ ) is equal to (Up)!Te. Since pf = pr ® w(n}il, we have ©7 o pf &
Ind®, (U (W)= +)/2) = Ind (¢r - (U7)(1=9)/2) where yr = U/ (Ur) (the prime-to-p part of Ur).
By the construction of ¢ and the definition ¥4 = 1 o Uy, we confirm W, = ¢p - (Up)(1=¢)/2, O

Fix a CM irreducible component Spec(J) of Spec(h), and let Spec(T) be the connected compo-
nent of Spec(h) containing Spec(J). Let € be the prime-to-p conductor of the associated character
Uy. Regard the character ¥y as Zp-algebra homomorphism of Z,[[Z]] into J. Then the algebra
homomorphism ¥y restricted to Z,[Z (P)] has values in J N @p that is a discrete valuation ring finite
flat over Z,. By extending scalars, we assume @p NnNJ=W.

Proposition 5.7. Let J be a CM component Spec(J) C Spec(Ten), and let i) = U3 mod my.
Assume p > 2 and the following two conditions:

(i) ¥ has order > 2, and ) is ramified at p (and unramified at p¢) with € = €y ),
(ii) C(p) = N for p = py mod my = Ind% 1.
Then we have

(1) T is a Gorenstein ring, and T, is a local complete intersection canonically isomorphic to
WI[Z,]] for the mazimal p-profinite quotient Z, of Z = lim Cly(€p™).

(2) Writing pr.,, %_*Ind%'l,b (resp. p = Ind% ) for a character ¢ : Gal(Q/M) — W/[[Z,]]*
(resp. ¢ : Gal(Q/M) — (W/mw)*), the ring Ten, with universal character ¥ is isomorphic
to the universal deformation ring of 1 over W for characters unramified outside €p.

(3) Each CM component J of T is canonically isomorphic to W[[Tas]] and hence J = J, where
T'ar is the mazimal torsion-free quotient of Z.
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Proof. If p = Ind% 1, p determines the pair of characters {¢, EC} By (i) (and Proposition 5.2), p is
absolutely irreducible and is not isomorphic to any induced representations from any other quadratic

field. Since C(p) = N(€(¢))D, N = C(p) and N = N(€)D implies €(3)) = €.

Let (R, 1 : Gal(Q/M) — R*) be the universal couple with the universal character unramified out-
side p€ deforming v over W. This couple (R, {/)v) is characterized by the following universal property:
For any local pro-artinian W-algebra A with residue field F and any character ¢ : Gal(Q/M) — A
unramified outside p¢& with ¢ mod m4 = v (for the maximal ideal m4 of A), there exists a unique
W-algebra homomorphism ¢ : R — A such that ¢ =10 J Such a pair (A, ¢) is called a deformation
of 1 (see [M89] for general theory of Galois deformation).

We now show R = W/[[Z,)]] by class field theory. To see this, we pick a deformation ¢ :
Gal(Q/M) — A* of v unramified outside p&; thus, A is a local aritinian W-algebra sharing the
residue field F with W and ¢ mod m4 = 1) for the maximal ideal m4 of A. Let v be the Teichmiiller
lift of 1; so, ¢’ = @ ~! has p-power order. For a prime [|€, by class field theory, the image 12
of the inertia group I; C Gal(Q/M) in the Galois group of the maximal abelian extension of M
over M is isomorphic to the multiplicative group O of the [-adic integer ring of M;. Since ¢’
has p-power order and p # [, ¢/ must be trivial on 1+ [O; C O°. Thus [-conductor of ¢ is at
most [, and hence ¢ = 't factors through Z. Thus ¢’ factors through the maximal p-profinite
quotient Z, and extends to a unique W-algebra homomorphism ¢ = ¢, : W[[Z,]] — A such that
tlz, = ¢'. Since Z, is the maximal p-profinite quotient of Z, by class field theory, we have the
corresponding subfield M of the ray class field modulo p>€ such that Gal(M /M) = Z, by Artin
symbol. Writing the inclusion Z, C W/[[Z,]] as v — [7y] and identifying Gal(M /M) = Zy,, define a
character v : Gal(Q/M) — W([[Z,]] by ¥(c) = 1(c)[o|5;]. Then by our construction ¢ o1 = ¢; so,
(W1[Zp]], 1) satisfies the universal property of (R, ) for deformations ¢ of 1.

For an ideal a of T, write p, = pr mod a by abusing the symbol slightly. If pq = Ind% Y’ for a
character ¢’ : Gal(Q/M) — A for a local ring A containing T/a, 1 has values in (T/a)* (by (i)
and Hensel’s lemma). Then we have C(p)|C(pa)|C(pr) = C(py) = C(p) by (ii). Thus C(p) = C(pa).
Write @ for the prime-to-p conductor of ¢)'. Then N(&')D = C(p,) = C(p) = N(€)D. One of ¢/ or
¢’¢ must be a deformation of 1), and one of them ramifies at p. Let 1/ be the character ramifying
at p. Then ramification of 1/ at p forces ¢/ = 1) mod m, as 1) is the unique choice ramifying at p.
Then we find € = €(¢))|¢’; so, € = €. Thus ¢ factors through Z. By Proposition 5.2, (i) implies
that the local ring of T contains CM components of a single imaginary quadratic field M deforming
1. This shows that the reduced part T7¢? of T.,, is the surjective image of W[[Z,]] for a canonical
morphism 7 : W{[[Z,]] — Tre? with Ind% (m o) = prrea. Since N = C(p), T kills any old forms of
level N and hence T is reduced (by Lemma 5.4 (1)). Thus Spec(T.y,) is reduced, and hence Ty, is
the surjective image of W{[Z,]] under .

Pick an irreducible component Spec(J) C Spec(W{[Z,]]). Then we have a continuous character
U; : Gal(Q/M) — J* with Uy =9 mod my such that py = Ind% V). From € = €()|€(Vy)|€, we
conclude €(¥y) = ¢. Thus ramification of Wy is completely determined by v; so, we have W[[T]]-
algebra homomorphism © : T — J associated to ¥j. Since © gives rise to a CM component, it
factors through T.,, and makes the following diagram commutative:

Thus W{[Z,]] — Tem is nontrivial over all irreducible components of Spec(W[[Z,]]); so, it is injective,
and pr,, = Ind% 1p. This proves the assertion (2).

By Lemma 5.5, T¢, = W/[[Z,]] is a complete intersection. Each irreducible component of
Spec(W([[Zp]]) is given by Spec(W|[I'as]]), and hence any CM component of T is canonically iso-
morphic to W[[['a]]. Since W[Tp]] is integrally closed, we have J = J. This proves (3).
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Taking inertia group I, = I,, Gorenstein-ness of T follows from Theorem 7.1 in the following
section as p is absolutely irreducible and p|;, 2 ¥, oY 1, with ¢ ramified at p and ¥ unramified
at p. This finishes the proof of (1). O

6. p-ADIC HECKE L-FUNCTIONS

In this section, we assume that W contains a Witt vector ring W (F,) for an algebraic closure F,,
of Fp; so, F = F,, in this section. We recall Katz’s theory in [K78] (and [HT93]) of p-adic L-function.
We fix a prime-to-p conductor ideal ¢ of an imaginary quadratic field M C Q in which p splits into
(p) = pp (p = p° for the generator ¢ of Gal(M/Q)) for p = {a € D’|ip(a)|p < 1}. We write the
embedding M c Q as i : M — Q.

Let X\ : MJ/M* — C* be a type Ay Hecke character (of conductor €(\)|€p>). Then A has
values in Q on the finite part M oy Of M. For the ray-class group 3 modulo €p> of M, write

X:3— @: for the p-adic avatar of . Let —D be the discriminant of M so that M = Q[v/—D], and
put 26 = v—D. The alternating form (z,y) = Tras/q(zy°/v/—D) induces the principal polarization
on the elliptic curve E(9) defined over W = i."! (W) with complex multiplication by O with complex
uniformization E(9)(C) = C/O. A choice of Néron differential on E(O),)y produces its complex
period and p-adic period (Q,2p) € (C* x WX). Katz constructed in [K78] (see also [HT93] where
the case € # 1 is treated) a measure ¢ with values in W on the ray-class group 3 modulo €p*°
characterized by the following formula:

Xd c(\)mh
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for all Hecke characters A modulo €p>°. Here L(s, A) is the primitive complex L-function of A\, and
we use the convention that A(£) = 0 for a prime £ (of M) is £ divides the conductor of A, and
if £ is prime to the conductor of A\, A(£) is the value of the primitive character associated to .
Here the infinity type of A is ki + k(i — ¢) for an integer k and k with integer x satisfying either
k>0and k >0or k<1land k>1—k, ¢(\) # 0 is a simple algebraic constant involving the root
number of A and the value of its I'-factor as specified in [HT93, Theorem 4.1]. Identifying W[[3]]
with the measure algebra under convolution product, we may regard ¢ € W/[3]]. Strictly speaking,
the measure ¢ slightly depends on a choice of § in the following decomposition:

Definition 6.1. We decompose € into a product F§.J such that J is a product of inert and ramified
primes over Q and §F. for a product of primes split over Q with § C 5 and § + §. = O.

By the interpolation formula (6.1) and the description of ¢(\) in [HT93, Theorem 4.1], the measure
is independent of § up to units in W[[3]].

Fix a CM component J of h . Since we work under the assumptions of Proposition 5.7, we
have J = J. Then the associated character Wy has values in J*. Take its anticyclotomic projection
Uy, and write € for the conductor of ¥, we may regard ¥y as a character ¥y : Z= — J*,
which induces W-algebra homomorphism ¥ : W[[Z7]] — J. We then write L,(V; ) € J for the
image under Wy : W[[Z7]] — J of ¢~ = 77 (¢). Decompose Z~ = A~ x I'y; for the maximal
finite subgroup A~ and the maximal torsion-free quotient I'y,. Via ¢+ : Z, = Z, , we identify
I'yr = Ty By this projection W : W[[Z7]] — J, we identify J = W/[[T'},]] = W[[['x»]], and in this
sense, L,(V;") is a branch of the anticyclotomic Katz measure 7, (¢) = ¢~ € W[[Z7]]. We have
a canonical decomposition Z~ = Z(f ) x Z,, for the maximal finite subgroup Z(f ) of order prime

to p. If we fix a character ¢ : Z~ — F*, its Teichmiiller lift )~ : Z— — W* factors through

7% So we have a 1) -projection T, WI[Z7]] = WI[Z;]] sending (2®) 2,y € Z= Cc W[[Z7]]*
to ¥~ (2®)z, € W[[Z,]]. Weput L~ ) =m,_ oo™ =m,_ ¢~ € W[Z]] % WI([Z,)]. The

projection of L™ (1)~ ) to each irreducible component J of T2, = W[[Z]] gives rise to L,(¥}) € J.
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7. CONGRUENCE MODULES

Let Spec(T) be a reduced connected component of Spec(h). Write pr : Gal(Q/Q) — GL2(Q(T))
for the Galois representation associated to this component. We quote the following result from
[H13a, Theorem 4.1], which is essentially proven in [MW86] Proposition 2 in §9:

Theorem 7.1. Let P be a prime ideal in Spec(T). If py is absolutely irreducible and py|r, = (3 1)
with § # 1 for the inertia group I, C Gal(Q/Q) at p, then the localization Ty is a Gorenstein ring.

Let J be as in the introduction (the ordinary part of the projective limit of the Tate modules
of modular jacobians) on which h acts, and write J(T) = T - J. Then the connected—étale exact
sequence produces the following commutative diagram of exact rows:

—»

J(T)° —— J(T) —— J(T)et

I |
T — J(T) — Homy (J(T), A).

Here the vertical arrows are isomorphism of T-modules. This is shown in [H86b] under the condition
(R) in the introduction and in [O03] without assuming (R). Thus Gorenstein-ness of Ty implies
freeness of J(T)qp over To. In particular, if (R) is satisfied and p = pw is absolutely irreducible,
Lean(I) = J(T) @7 I is free of rank 2 as claimed in the introduction (so, in this case, (F.qr) holds).

Let Spec(J) C Spec(h} ) be a CM irreducible component and Spec(T) be the connected com-
ponent of Spec(h) with Spec(J) C Spec(T). Assume that Spec(T) is reduced, and write p = pm, :
Gal(Q/Q) — GLy(F) for the mod p representation of the component T. Then p = Ind%@ for a
character 1 : Gal(Q/M) — F*. Let 1 be the Teichmiiller lift of 1. Write € = €(¥y) for the prime-
to-p conductor of the associated character ¥y : Gal(Q/M) — jx; so we assume 1) = (U mod my).
Write Spec(T2) = Spec(h} )N Spec(T); so, Spec(T2,) is the minimal closed subscheme in Spec(T)
containing all components with CM by M. We have therefore the projection maps

T—-TM -7

where all rings involved are Gorenstein rings if 7 is absolutely irreducible and ¢ has order > 2 and
is ramified at p (see Proposition 5.7). Recall S which is the set of split prime factors q in M of N
but q{ N(€(¥;))). Consider

(7.1) Ein=[[{0 =¥ @N@ HA-¥ @N@ )} €T and Eyy =1 if §=9.
qes

Note here that E; y is the product of Euler factor at q € X¢ of L, (¥} ).

Hereafter in this section, we assume that W > W (F,) to have L, (¢ ) € W[[Z,]] as in Section 6.

Theorem 7.2. Let the notation be as above. Suppose W D W(F,), p > 5, that Spec(T) contains
a non-CM minimal primitive component Spec(l) and that p = Ind%@ for an imaginary quadratic
field M in which p splits. Suppose further that 1 has order > 2, ¢ ramifies at p, and one of the
following conditions:
(a) pto(N) and C(p) = N;
(b) E1ny € my and pt ®(N) for the Euler function ® of M (i.e., ®(N) = N2 [Ty (- ﬁ)
for primes q in M ).
M . . . . — . — . .
Then T, is canonically isomorphic to W[[Z]] for the p-profinite part Z, of the anticyclotomic

ray class group of conductor €(¢p )p™. Writing L= (¢ ) € W(F,)[[Z,]] for the anticyclotomic
Katz measure of modulo p branch character 1 and Spec(T%,) for the complement of Spec(TX) in
Spec(T), we have TX, @1 TL, = W([Z]]/L~ (% YWI[Z;]].

Remark 7.3. We explain why we need to assume (a) or (b) in the above theorem. Since C(p)|N, by
the existence of the Teichmiiller lift of ¥ and Galois deformation theory explained in Proposition 5.7
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(2), TM is non-trivial. Taking a component J of T2 | the main reason for assuming (a) or (b) is to

guarantee that pJ|Ga1(@ /@) 18 minimal at primes g|N split in M and that J is primitive. In addition,
q

the condition Fy y ¢ my in (b) (which is automatically satisfied under (a) as E1 y = 1 in that case)
is to guarantee that pr |7, is never reducible indecomposable for any irreducible component Spec(I’)
of Spec(T), where I, C Gal(Q,/Q,) is the inertia group.

Let us prove this fact. If pp for P € Spec(I') is reducible indecomposable, as is well known
né\/ :;
acting on pipe (unramified at g). The character 7 restricted to I, is of finite order (see Section 10). If

n is ramified at ¢ and 9|7, #1 mod my, liftingn mod my to a non-trivial character 7 of Gal(Q/Q)
1 1

(see Lemma 10.1 (4)), pp|ga@ /q,) 1S isomorphic to ( ) for the p-adic cyclotomic character N

with values in T/my only ramified at ¢, the semi-simplification of p®7~" is unramified; so, p; ® 17~
has less conductor than pr for the Teichmiiller lift 77 of 77. By the minimality of I, this cannot happen;
so, we conclude 7|7, = 1 mod my. By local class field theory, we may regard 7|7, as a character of
Zy. Thus n|r, # 1 but 7|, = 1 implies ¢ = 1 mod p, a contradiction against p { ¢(NN). Hence 7 is
unramified. The g-factor or g-factor of By y is congruent to 1 — (pN'/n)(Froby)g~" = 0 modulo my.
Since pr = py mod mr, we have Fy v = 0 mod my (contradicting against £y y & my). Thus pp|s,
for every prime P € Spec(T) is semi-simple for all primes ¢|N.

Once semi-simplicity of pp|s, is proven for all ¢| N, we can apply results in Section 10, and the
following conditions for primes g|N are equivalent:

(1) pilea@ /q,) 18 absolutely irreducible.
(2) Plea@ /q,) 18 absolutely irreducible.

Indeed, by Lemma 10.3 (2), under p t o(N), (1) < (2) as p = pr mod my. Moreover from the
minimality and primitiveness of pr, by Lemma 10.3 (4), under p { ®(N), C(p) = C(p1) = N; thus
(b) = (a). If N = C(p), by Lemma 5.4 (1), T is reduced. Hence T is reduced under (a) or (b).
Then the following condition is equivalent to (1) (or (2)):

(3) pilea, jq,) is absolutely irreducible.

Since N = C(p)|C(pr) = N, we conclude N = C(py). Therefore, 5 and py must be minimal at
prime ¢ splits in M and J is a primitive component. Then by Lemma 7.9 and Remark 7.8 below, the
characteristic power series of the congruence module of T with respect to A : T — J can be computed
exactly as a product of a certain ray class number of M and the Katz p-adic L,(¥y), which is a key
to reach the conclusion of the theorem.

We prepare some notation, four lemmas and a proposition for the proof of the theorem. The
proof of the theorem will be given at the end of this section. For simplicity, we write the sequence
T—TM - JasR 9,52 Aand we put A= pof: R — A. Under the assumption of the theorem
(and Remark 7.3), R, S, A are all Gorenstein rings (by Proposition 5.7). Thus we suppose Gorenstein-
ness of R, S and A in this section. We write B = A. Since T is reduced, the total quotient ring
Q(R) of R is a product of fields, and we have Q(R) = Qs @ Q(S) for the complementary semi-simple
algebra Qg. Let Rg be the projection of R in @Qs. We have the following (unique) decomposition

(1) Spec(R) = Spec(Rg) U Spec(S), union of closed subschemes inducing R — (Rg @ S) with
A-torsion module Cy(0, S) := (Rs @ S)/R.
Similarly, we have Q(S) = Q4 ® Q(A4) and Q(R) = Q' ® Q(A) as algebra direct sums. Write Sa
(resp. R4) for the projected image of S (resp. R) in Q4 (resp. Q’4). Then we have
(2) Spec(S) = Spec(Sa) U Spec(A), union of closed subschemes inducing S — (S4 & A) with
A-torsion module Cy(u, A) := (Sa @ A)/S.
(3) Spec(R) = Spec(R4) U Spec(A), union of closed subschemes inducing R — (R4 & A) with
A-torsion module Cy(\, A) := (R4 ® A)/R.

Since T is reduced, S is a reduced algebra, and by Gorenstein-ness, we have
(7.2) Homp(R, B) & R, Homp(S, B) = S and Homp (A4, B) = A as R-modules.

Write 7g : R - Rg and 7 : R — S for the two projections and (-,-)g : R x R — B and (+,")g :
S x S — B for the pairing giving the self-duality (7.2). We recall [H86¢, Lemma 1.6]:
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Lemma 7.4. The S-ideal b := Ker(ns : R — Rg) is principal (and is S-free of rank 1).

By [H88, Lemma 6.3] (or [MFG, §5.3.3]), we get the following isomorphisms of R-modules:
(7.3) Co(MA)Z Ry ®Rr A, Co(0;S) 2 Rs ®@r S and Co(pu; A) = 5S4 ®g A.
Recall the following fact first proved in [H88, Theorem 6.6]:
Lemma 7.5. We have the following exact sequence of R-modules:

0 — Co(p; A) = Co(A; A) — Co(6;5) ®s A — 0.

By (7.3), the three congruence modules Cy(u; A), Co(A; A), Co(0; S) @ A are residue rings of R;
so, cyclic A-modules. Moreover they are the ring A modulo principal ideals. Write their generators
as Acx=ANRC (Ra® A), Ac, = ANS C (Sa@A) and Scg = SNR C (Rs @ S). Thus we have

Co(NA) = AJerA, Co(p; A) = Afc, A and Cy(6; S) ®g A = A/9A for the image g € Aof ¢y € S.
By the above lemma, we conclude the following result:

Corollary 7.6. We have ¢g - ¢, = cx up to units in A.

We have a natural morphism (Z/(€NZ))* — Clp () sending ideal (n) for an integer n prime
to € to its class in Clp/(€), and we write h™ (&) for the order of cokernel of this map. Write I([) for
the residual characteristic of [. By a simple computation, we have
Lemma 7.7. Write € for €(Uy). Then the ratio

h—(¢)
h’(M) ’ H[|¢,[: inert prime(l([) + 1) H[|¢,[: split prime with l([)|¢(l([) - 1)
is prime to p (if p t |O*|/2 for the integer ring O of M), where h(M) is the class number of M.

Thus if J is minimal primitive, h~ (€) is equal, up to units in W, to

m(M/Q) =h)  J[ O+,

[|€,1: inert prime

Since py is minimal at primes ¢| N split in M (see Remark 7.3), the ¢-part €,(¥) is minimal among
€4 (¥5¢) for all finite order characters ¢ of Gal(Q,/Qq); in particular, §. = O (by Lemma 10.4).
Thus no rational prime split in M divides €.

Remark 7.8. The number h;(M/Q) is defined in [H09, §1], and h;i(M/Q)L, (¥} ) (for the element
Ly(¥}) € W(F,)[[Ta]] giving the Katz p-adic L-function of W) is computed to be a factor of the
characteristic power series ¢y in [H09, Corollary 3.8] (or (A) in [H09, §1]) assuming p > 5 and

(1) primitiveness of J (i.e., N = N(€(¥1))D)

(2) local minimality at ¢ of py as long as pJ|Gal(@ /q,) 18 reducible.
The reducibility of pJ|Gal(@ /Qy) in (2) is equivalent to the fact that the automorphic representation
generated by fp € Fj is in the principal series at ¢, and in this way, the result is stated in [H09].

Lemma 7.9. Let the notation and the assumption be as in Theorem 7.2. Then we have c, =
h=(€) = hi(M/Q) up to units in J. Here € is the prime-to-p conductor of Uy in (CM2).

Proof. As explained in Remark 7.3, we have C(p) = N under the assumptions of Theorem 7.2.
If C(p) = N = C(py), by Proposition 5.7, without localization, R = T, S = T, and A = J
are Gorenstein rings. Since S is isomorphic to the group algebra W[[Z,]] by Proposition 5.7, the
assertion follows from Lemma 1.9 and Lemma 1.11 in [H86c]|. O

Recall the anticyclotomic Katz p-adic L-function L, (¥} ) as in Section 6. Identifying J with
WI([Tum]], ¥5 : Z= — T'y induces a surjective algebra homomorphism W{[Z]] — J and L, (¥} ) is

the image of the measure L™ (1) ) in Theorem 7.2. We regard L,(¥;) € J.

Proposition 7.10. Under the assumption of Theorem 7.2, we have cx = h™(€)L, (¥} ) up to units
in J for the prime-to-p conductor € of Uy in (CM2).

This is where we need the assumption p > 5 in Theorem 7.2.
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Proof. The fixed field M/M of Ker(¥~) for ¥ = ¥y has Galois group Gal(M/M) >~ Im(¥~). The
maximal torsion-free quotient I'p; of Gal(M /M) is a Zy-free module of rank 1. Fix a decomposition
Gal(M /M) = A x Ty for the maximal finite subgroup A of Gal(M /M). By Proposition 5.7, the
character ¥~ induces an algebra isomorphism ¥, : W/[[['py]] & J. Then the maximal p-abelian
extension L/M unramified outside p has Galois group X which is naturally a W/[[Gal(M /M)]]-
module (in the standard manner of Iwasawa’s theory). Let )~ := ¥~ |a (which has values in W*),
and put X(¢p~) = X Owialer W which is the maximal quotient of X on which A acts by ¥~. Thus
X (v7) is naturally an J-module via ¥, and it is known to be a torsion J-module of finite type. Let
F~ (™) be the Iwasawa power series in J of X (17); i.e., the characteristic power series of X (1)7)
as a torsion J-module of finite type (see [MFG, page 291] for the characteristic power series). By the
proof of the main conjecture over M by K. Rubin [Ru88] or the proof of its anticyclotomic version
by Tilouine/Mazur ([T89] and [MT90]), we know F~(¢~) = L,(¥; ) up to units in J. By [HO09,
Corollary 3.8] (see also Remark 7.8), if p > 5 (and N = N(€)D which follows from the assumption
of Theorem 7.2 as explained in Remark 7.3), we have h™ (&)L, (¥} )|cx. By [MT90] (and [HT94,
Corollary 3.3.7]), we also know c¢x|h ™ (€)F~(1»7). Combining all of these, we conclude the equality
of the proposition. Since the residual representation p is absolutely irreducible, actually, the above
identity is proven in [H09] without using the solution of the main conjecture (and in this way, the
anticyclotomic main conjecture is proven in [H09] for general CM fields). O

Proof of Theorem 7.2. As explained in Remark 7.3, we have C' = N(€)D = C(py) = C(p) always
under the assumption of the theorem. Then by Proposition 5.7, T, T,,, and J are all Gorenstein.
By Corollary 7.6, we find that ¢y = cy/c,. By Proposition 7.10, ¢y = L, (V) up to units in J. Since

L=(¢ ) has image in J given by L,(¥] ) for all irreducible components Spec(J) C Spec(W[[Z,]])
with py & Ind% ;. Thus we conclude cg = L™ (¢ ) up to units, proving (1). O

8. LEVEL AND p-ADIC L-FUNCTIONS

Throughout this section we assume the condition (R) and one of the conditions (s) and (v) above
Theorem I in the introduction, although in some cases, the conditions follows from the specification
of p. Also, as before, we take the base valuation ring W sufficiently large so that each irreducible
component Spec(I) of Spec(h) is geometrically irreducible over the quotient field Q(W') of W.

Our proof heavily relies on Lemma 2.9; so, we first verify the assumptions of Lemma 2.9 under
(R) and one of (s) and (v). When the condition (s) is satisfied, we replace g in (s) by j = lim,, .o g*"

and conjugating G by an element in B(I), we assume that j = (g CO/) with ¢, (" € pp—1. If only (v)
is satisfied, we take o € D), such that p(o) with distinct two eigenvalues as in the condition (R),
¢o
0¢
and p1(D,). Hereafter, we exclusively use the symbol j to denote the above element in Im(pr).

and put j = lim,, .o g? for ¢ = |F|; so, again we have j = ( ) with ¢, (" € pg—1 normalizing G

Lemma 8.1. Let G = Im(pr) NT'1(mg) for an irreducible component Spec(l) of Spec(h), and write
G for the image of G in SLo (ﬁ/‘B) for each prime divisor 3 € Spec(ﬁ). Then the k(B)-span sp of
MO (Gyg) = My (Gyp) Nsly(I/P) is equal to sla(k(P)) for some n > 0 if and only if Gy contains an
open subgroup of SLa(Ag). Here we recall that Ay = Z,, or Fp[[T1]].

Proof. By (R) and one of (s) and (v), M,(G) N U(I) surjects down to M, (Gg) NU(k(R)) for all
n > 0. Since the proof is the same for any n > 0, we just assume that n = 1. Let P =B N A. Note
that 1 = M1 (Gyp) NU(k(P)) and 7, = M1 (Gyp) N*U(k(P)) are A/ P-modules inside sly (I/9). Thus
either = 0 or 0 is A/P-torsion-free of positive rank.

Suppose p = sla(£(P)). Then 7 # 0 and w; # 0. This implies that [, m] # 0 is a non-
trivial torsion-free A/P-module of positive rank, and Ad(j) acts trivially on [, %;]. Thus M?(Ggy)
must contain an open Lie-subalgebra of slz(Ag) (see Section 2, Corollary 2.3 and Lemma 2.4); so,
sy = sla(k(P)). Since

M) (Gp), M3 (Gp)] € M (Gp),
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MO(Ggp) (and actually MO (Gg) for each n > 0) span sly(k(B)) over (). Then the intersection
@;3 = SLa(k(P)) N (1 + M(Gg)) contains an open subgroup of SLa(Ag). The converse is plain as
sla(Ap) contains a basis of sla(k()) over K(B). O

Hereafter, suppose that I is a non-CM component of h. Let Spec(T) C Spec(h) be a connected
component containing Spec(I). Let pr : Gal(Q/Q) — GLo(Q(T)) be the associated Galois represen-
tation. We write p = pm, : Gal(Q/Q) — GLz(F) with F = T/mr associated to the maximal ideal
mr of T. We would like to relate the global level L = L(I) of py (defined in Section 3) with a certain
p-adic L-function. By a result of Ribet [R85] combined with Proposition 5.1 in the text, Im(pg)
contains an open subgroup of SLy(Z,) up to conjugation. Then by Theorem 2.12, we can pick a
representation p € [pr] with values in GLy(I) such that Im(p) D I'(c) with nontrivial c. If 5 is abso-
lutely irreducible, by Theorem 2.12, the global level L = L(I) described just above Lemma 3.3 is well
defined. If p is reducible, assuming the assumption of Lemma 3.5, we pick p in the I-isomorphism
class made out of Lgqn(I) and define L(I) as described after the statement of Lemma 3.5 before its
proof. We start with a version of results in [MW86, §10] and A. Fischman [F02]:

Theorem 8.2. Suppose Im(p) contains SLy(F,) for p > 7. Then the global level L = L(I) of p1 for
every irreducible component Spec(I) of Spec(T) is equal to 1.

The assertion (1) in Theorem IT in the introduction follows from this theorem. By the theory of
pseudo representation, we can find a unique pr with values in GLo(T) up to isomorphism. Thus we
could assume that py has values in GLy(I), though we do not do this.

Proof. Similarly to the proof of Lemma 3.1, writing g for the image of g € Im(pr) in GLy(I/mg), let
K:={g € Im(pr)| det(g) € '} ,L = {g € K|g € U(F)} and H={geK|g=1}

for I' = {t°|s € Zp} C A*. By the existence of j, similarly to the proof of Lemma 1.4, from (Gal),
we find 7 € pr(D,) NH such that 7 = (§9). Then by (Det) in Section 3, the three sets Im(pr)/K,
Im(pr)/L and Im(pr)/H are finite sets. Then for 7/ = {7°|s € Z,}, we have H = 7' x G for
G=HNSLyI), K=T"x K! for K! = KN SLy(I) and L = 7’ x L! for L* = L N SLy(I) (see the
proof of Lemma 3.1). Similarly, for the image T; (resp. Hg, K, L, Ei, Gq and Ki) of 7' (resp.
H, K, L, L!, G and K') in GLy(I/a) for any I-ideal a, we have H, = T; X Gq, Lq = T; X Ei and
Ky =7, x Ki Thus the reduction maps G — G, L' — Ei and K! — Ki given by g — (¢ mod a)
are all surjective. In particular, by our assumption, K = K;ﬁ contains SLo(F)).

We prove P 1 L(I) for all prime divisors of A, which shows L(I) = 1. Take a prime divisor 3
of I above P. Suppose that K;j is a finite group. This is equivalent to assuming @‘B is finite since
K!'/G =2 K/H < Im(py)/H is finite. Thus Kéj is a finite group whose image modulo m; containing
SLy(F,). By the classification of finite subgroups of PGLy(K) for a characteristic 0 field K, if
p > 7 and k(P) has characteristic 0, there is no finite subgroup of SLs(x()) whose image in
SLy(F) contains SLo(F,). This point is also plain if p > 7 as SLy(F,) with p > 7 does not have
2-dimensional representations over K (see [Sc07, page 128]). We conclude that Gy is infinite if
p > 7 and k(P) has characteristic 0. If x(P) has characteristic p, Eéj is still infinite. To see this,
note that E;i contains U(F,); so, E;j contains an element whose reduction modulo ms /9 is non-zero
unipotent. Such an element under conjugation by T:p produces infinitely many elements. Then the
open subgroup Gy of E;,j has infinitely many elements. Therefore M{(Gg) is an infinite Lie algebra.

Let sy be the Lie subalgebra of sl; (I/) generated by MY (Ggp) over 1/%B. Since Gyp is infinite, 5q
is nontrivial. Since p > 5, the adjoint representation of SLa(F,) on sly(F,) is absolutely irreducible.
Thus the quotient sy /ms - sp = sp @3 F (F = 1/ my) is isomorphic to a three dimensional irreducible
subspace in sl (F) over F under the adjoint action of K!. By Nakayama’s lemma, 5y has at least rank
3 over I/%; so, the x(P)-span 5p := K(P) - 5y is equal to slz(5(P)). By Lemma 8.1, Gy contains
an open subgroup of SLs(Ap) in SLa(x(P)). Hence, by Theorem 2.12 (2) and Corollary 3.4, we
conclude Pt (L(D)). O
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Remark 8.3. In the setting of the above theorem, assume p = 5. Again by Schur, the unique
absolutely irreducible 2-dimensional representation over Qs of SLy(F5) can be only defined over
the integer ring of the field Q5[v/5]. Since we have A/P = Zs[us] for P = (%) C A, we have
a subgroup H in SLy(A/P) whose reduction modulo the maximal ideal is isomorphic to SLz(Fs).
Therefore G = {x € SLy(A)|z mod P € H} has (G mod m) = SLy(F5) but the level of G is P.

We now deal with the case where the image of 5 does not contain SLy(F,). We start with the
case of dihedral image of p. Let x be a local field. Write O for the maximal compact subring of .
Let p : Gal(Q/Q) — GL2(0O) be a continuous Galois representation and put G = Im(p) NTo(mo).
We write s for the s-span of the Lie algebra MY(G) = M1 (G) Nsla(G).

Lemma 8.4. Let the notation be as above. Suppose either that s is a Cartan subalgebra of s[(2)
or that Im(p) modulo center is a finite dihedral group. If p is absolutely irreducible, there exists a
quadratic field M/Q and a character 0 : Gal(Q/M) — &> such that p = Ind% 0 and 6° # 0, where
c € Gal(Q/Q) restricted to M is the generator of Gal(M/Q) and 6°(c) = 0(coc™').

This follows from Lemma 2.1 if £ has characteristic 0. We give here a different proof.

Proof. In any case, the group Im(p) is in the normalizer of a Cartan subalgebra $ ( = s if s is a
Cartan subalgebra). By extending scalars x, we may assume that §) is a split Cartan subalgebra.
Then, we can find an open normal subgroup H C Gal(Q/Q) such that p|y is isomorphic to the
direct sum of two abelian characters. Set py = p|g; then, py is completely reducible. Write
pr = (89). Since p extends py, g — ply(g) == pu(hgh™) = p(h)pr(g)p(h)~* is equivalent to py
for all h € Gal(Q/Q). Thus Gal(Q/Q) acts on {6, 8} by inner conjugation. Indeed,

(8.1) (% 9) =pm) (§3) p(h) .

Let A C Gal(Q/Q) be the stabilizer of 5. Then M = @A is at most a quadratic extension of Q. If
M = Q and W is sufficiently large, the two characters extend to 6,0 : Gal(Q/Q) — I* (e.g. [GME,
§5.1.1] or [MFG, §4.3.5]), and p** = 6 @ 6, which cannot happen as p is absolutely irreducible. Then
[Gal(Q/Q) : A] = 2 and by Frobenius reciprocity, p = Ind% 0= Ind% 6 for the quadratic extension

M = @A of Q. We have therefore p|a = 0 @ 6°, and irreducibility of p implies 0 £ 6¢. O

For a character ¢ of Gal(Q/M) with an imaginary quadratic field M, we recall its anti-cyclotomic
projection ¢~ given by o — ¢(o)p(coc™)7L. Let I be a minimal primitive non CM component of
E with p= Ind% E_for an imaginary quadratic field M in which p splits into pp and a character
Y : Gal(Q/M) — F, unramified at p. Under the assumption (a) or (b) in Theorem 7.2, T is
nontrivial. Pick one such CM component J of TM | and write ¢ for the prime-to-p conductor of ¥j.

cm?

Let ¢ = €N ¢, and write ¢ for the prime-to-p conductor of ¥ (so, ¢|¢’). Assuming W D W (F,),

we recall the anticyclotomic Katz measure L™ (¢ ) € W[[Z,]] as in Theorem 7.2. The natural
inclusion Z; — 9Oy induces I' — I'yy =T, C Z7, and hence W{[Z]] is naturally a Ay -algebra for
Aw = WI[T]] = W[[T']]. Since W[[Z.]] is free of finite rank r over Ay for the index r = (Z, : T),
we have a regular representation ® of W{[Z.]] into the r x r matrix algebra M, (Aw), and for

a € W[[Z,]], we define its norm Ny ;-1 /4, (@) = det(®(a)). Define Li = Nyz5/aw (L W ).
This is the element we meant in Theorem II by the product of anticyclotomic Katz L-functions with
a given mod p branch character. We also recall that we defined in (7.1) an element Fq y € J.

Theorem 8.5. Let the notation be as above; in particular, let 1 be a minimal primitive non CM
component with p = Ind%@ for an imaginary quadratic field M as above. Take a large W D W (F))
so that each irreducible component of Spec(T) is geometrically irreducible. Assume p > 5, and
suppose further that yp  has order > 2, 1) ramifies at p, and one of the following conditions:

(a) pfe(N) and C(p) = N;
(b) pt ®(N) for the Euler function ® of M and Ey n & my for E1 n in (7.1).
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Then for the product Li, = Nwiz:1/Aw (L=(x ")), the global level L(I) of a non-CM component 1
of T is a factor of (Li,)2 in Ay . If Li, is a non unit in Ay, for any prime divisor P of Li,,
there exists a non CM component Spec(l) C Spec(T) such that Px|L(I) for Py = P NA.

The assumption (a) is the one made in Theorem II (3b) in the introduction, and therefore, this
theorem proves the assertion (3b) of Theorem II (where cube-freeness of N is assumed but it is not
necessary in this residually induced case; see Remark 7.3). An important feature of this theorem
is that only (the p-adic L-function part of) the congruence ideal between CM and a given non-CM
component I shows up as the level of p;. Therefore congruence between non-CM components and 1
does not have direct involvement to the level L(T).

Here are a sketch of the proof and a summary of how we use the listed assumptions in the proof.
Since 1) ramifies at p, by Theorem 7.1, Leqn (1) = 12; so, py realized on Leqy, (1) has values in G'Lo(I).
Thus we do not need to take i, and we work with I instead of I. Since C (p)|N, by Proposition 5.7,
TM is non-trivial. The condition that v has order > 2 ramified at p is equivalent to the fact that

p is not isomorphic to Ind%, E/ for any quadratic fields M’ other than M (Proposition 5.2); thus,
we have T., = TM . As seen in Proposition 5.7, we have T, = TM =~ W/[[Z,]] for the p-profinite
part of the class group Z = C'Lp(€p™). Note that W[[Z,]] = W[[Z]] canonically by Lemma 5.6.
The assumption (a) or (b) is used to identify T, (or its localization) with (possibly a localization
of) the group algebra W{[Z,]] = W[[Z;]] that enables us to identify the congruence power series
of J inside Spec(Tc;,) with the class number 2™ (€) and that in Spec(T) with A~ (&)L, (V) (see

the later half of Section 7). In other words, the congruence between CM and non-CM components

only involves prime factors of L™ (¢ ) (which is basically the product of L,(¥}) over irreducible
components Spec(J) of Spec(Tepm)).

To make this fact more precise, write an irreducible component of Spec(Te,) as Spec(J). If Z,
is pro-cyclic, W[[Z,]] is an integral domain and hence J = W{[Z,]] = Tey. Note that non-pro-
cyclicity of Z, implies p|h~(€) (but not necessarily the converse). Thus the congruence between
Ten = J and the non CM component I is given simply by the anticyclotomic Katz p-adic L-function
L,(¥;) = L=(¢ ) when Z, is pro-cyclic. The complete-intersection property of Te,, = W{[[Z,]]
proved in Lemma 5.5 will be used to compute the congruence between the non CM component 1
and T.,, when Z, is not pro-cyclic. Roughly speaking, by Theorem 7.2, the complete intersection
property of W{[Z,]] & T, tells us that the congruence between T, and its complement TZ
is just made of the anticyclotomic Katz p-adic L-function, though the congruence between J and
its complement J* involves h~(€) in addition to (the product of) the anticyclotomic Katz p-adic

L-function L™ (¢ ). As in Remark 7.3,

(1) minimality of T implies minimality of py at primes ¢ in N where pJ|Ga1(@q /Qy) is reducible.

(2) the condition (b) actually implies (a), and T is reduced by Lemma 5.4 (1).

(3) any CM component J of T is primitive.
In the computation of congruence modules (in Theorem 7.2) between J and its complement J+ and
between T, and TS, (i.e., determination of Spec(J) N Spec(J+) and Spec(Term) N Spec(T4,)), we
needed these properties (see Remark 7.8 for the necessity of these properties). Then by the relation
in Corollary 7.6, we computed in Theorem 7.2 the characteristic element of C' := T, ® T,
in Tep, = WI[Z,]] as the Katz measure without the class number factor. Hence, we are able to
prove, by Galois deformation theory, that any (non CM) component I in T2, has some points P
having pp isomorphic to an induced representation from M (i.e., P|L(I)) if and only if P is in
Spec(Tem) N Spec(TZ,) (i-e., P is a factor of the Katz p-adic L-function Li,).

Now, for simplicity, suppose I = A. Then pp = (p mod P) is isomorphic to an induced repre-

sentation Ind% 0; thus, the adjoint square Ad(pp) of pp is isomorphic to a reducible representation

M—/Q) @ Ind% 0~ with Ind% 0~ absolutely irreducible. In this sketch, suppose further for sim-

plicity that P is exactly the annihilator Annj, in Ip of the Ip-part C ®t Ip of the congruence
module C' (in other words, C' @1 Ip = Ip/PlIp). Then we show that the P-localized Lie algebra of
MO(Im(pr) NT1(P?)) has three independent generators over Ip; so, L(I)Ip|P%Ip.
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Recall our simplifying assumption I = A. Writing V = A% for the space of p; and
sl(V) = {z € Enda(V)|Tr(x) = 0},

the A p-span sp of M{(G) = M1(G)Nsl(V) (for G = Im(pr)NCs(m4)) is a Lie A p-subalgebra of s[(V)
stable under the adjoint action. Define Galois modules Vp(m) := (sp N P™sl(V))/(sp N P sl(V))
(for m > 1) under the adjoint action. Note that Ip = Ap is a discrete valuation ring. Choosing
a generator w of P and dividing X € sp N P™sl(V) by w™, this Galois module Vp(m) can be
also embedded into s((V/PV) = sla(k(P)) as a Galois module. Note that s((V/PV) = Ad(pp) =

(M—/Q) @Ind% 6~ under the adjoint action of the Galois group. Thus, if non-trivial, dim,,py Vp(m)
is either 1, 2 or 3, and we have three possibilities of the isomorphism class of the Galois module Vp(1)
under the adjoint action of pr: (i) Ad(pp), (i) (M—/@) or (iii) Ind%, 6= Indeed, by definition, Vp (1)

has a Galois equivariant embedding into sl (x(P)) = Ad(pp). Since Ad(pp) = (M—/Q) ®ndy 6~ as

Galois modules, we have only three possibilities as above. In Case (i), plainly Anny, = PAp and
PAp = L(A)Ap, and we are done.

Note that G := Im(pr) NT'1(myg) is p-profinite and does not contain any order 2 element (complex
conjugation). Therefore, we can take a basis of V' so that the image of G in GLy(I/P) is diagonal
with respect to this basis. In other words, taking j = p(¢) for o € D, satisfying the condition (1) of
Lemma 2.9, the chosen basis is an eigenbasis with respect to j = p(o). If we are in Case (ii), the image
Gp2 of G in GLy(A/P?) is diagonal, which implies that py mod P? is an induced representation
from M. By Galois deformation theory, we conclude P?Ip D Anny, = Plp, a contradiction. In
Case (iii), Vp(1) has to contain an anti-diagonal element non-trivial modulo P? (and hence, nilpotent
elements non-trivial modulo P?). Thus with respect to our chosen basis, taking an a-eigenvector,
writing three (distinct) eigenvalues of Ad(j) as a,1,a™!, we have X = (3 %) € (sp N Psl(V)) with
u# 0 mod P? and taking a™!-eigenvector, Y = (99) € (sp N Psl(V)) with v #0 mod P?. Then
[X,Y] produces an Ad(j)-fixed vector in sp N P2s[(V) non-trivial modulo P3. Thus sp N P2s[(V)
has rank 3 over Ip, and hence P2Ip = L(I)Ip, and we are done. If P™Ip = Anny, with m > 1,
then basically replacing P in the above argument by P™ (P2 by P™*! and Vp(1) by Vp(m)), we
get the result. Note that Spec(I/ Anny) = Spec(T.p,) N Spec(Il) for the annihilator Anny of C so, it
is the congruence ideal between Spec(I) and all other CM components.

We have shown locally, in case (i) the congruence ideal is equal to the level ideal (L(L)), and in
Case (i), the square of the congruence ideal is equal to the level ideal. Case (ii) does not occur.
As suggested by the referee, we note that the cohomological congruence ideal is actually the square
of the congruence ideal of the Hecke algebra (as the étale cohomology group of modular curves is
free of rank 2 over the Hecke algebra under an appropriate Gorenstein condition). We now give a
detailed proof for general T D A.

Proof. As explained above in the sketch, we have T, = T is nontrivial. Since I is a non-CM
component of T, we have T # T,,,. Since p is absolutely irreducible, under (R), T is Gorenstein, and
hence pr realized on L.q,(T) has values in GLo(T); so, py realized on L.qy,(I) has values in G L2 (I)
and pr|p, C B(I) with (Gal) satisfied (thus (Fca,) is satisfied). Let G = Im(pr) N I'1(my), and write
pgp = (pr mod P) for a prime P € Spec(I).

Pick now a prime divisor P € Spec(A) and a prime divisor P € Spec(I) above P. We consider
the Lie algebra sy of Gy = (G mod P); i.e., we write 5y for the x()-span of M$(Gg). There are
the following five possibilities:

(O) s =0.

(C) 5y is a Cartan subalgebra $),

(N) sy is a nonzero nilpotent subalgebra

(B) Sy is a Borel subalgebra,

(F) 53 = sla(k(P)).
If we are in Case (F) for all §3|P, by Lemma 3.1 combined with Lemma 8.1, Gy contains an open
subgroup of SLy(Ap) for all PB|P, and we have P { L(I) by Theorem 2.12 (2) and Corollary 3.4. If
we are in Case (N) or (B) for some prime B, the group Gq := Im(py) normalizes Syp. Since the
normalizer of a (non-trivial) nilpotent or a Borel subalgebra is a Borel subgroup, pyp has values in
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a Borel subgroup; so, pyp is reducible, which is impossible by the absolute irreducibility of p. Thus
Cases (B) and (N) do not occur for any P|P.

In the cases (O) and (C), we first show that pg = Ind% 6 for a character 0 : Gal(Q/M) — (I/B)*.
Suppose first that we have some P|P in Case (O). Then the basic closure of Gg is contained in
the center; so, @tp C {+£1}. Since p > 2, we have @‘B = 1. Therefore under the notation in the
proof of Lemma 8.1, we have Hy = 7;3 x Gy = 7;3. Since Im(p) is dihedral modulo center, taking
j € Im(pr) defined just before stating Lemma 8.1, it contains an element j’ of order 2 such that
j’jj’*1 = (Co/ 2) (i.e., conjugation by j’ interchanges the two distinct eigenvalues of j). This j' can
be lifted to an element (still denoted by j') in Im(pp) keeping property of interchanging the two
distinct eigenvalues of j (e.g., [CGP, §IV.3] or [TGP, §IV.7]). Then it interchanges the eigenvalues
of elements in 7;3; so, we have j’T:B j’f1 C Hy = 7;3, which implies T:p = 1. Thus we conclude
PB|T and Hy = 1. Therefore Im(pg) is isomorphically projected onto Im(p), and hence we must
have pp = Ind% 6 for a character 0 : Gal(Q/M) — (I/B)*.

Now we suppose that we have some PB|P in the remaining case (C). Since p is absolutely irre-
ducible, pyp is absolutely irreducible. Then, by Lemma 8.4, pgp = Ind% 0 for a quadratic extension
K/Q and a character 6 of Gal(Q/K). Since pg is ordinary and ¢ ramifies at p, (p) must splits in
K/Q as (p) = pp°. Then we may assume that 6 is ramified at p and unramified at p¢. By Proposi-
tion 5.2, K must be M, and ramification at p forces # mod my = 1. By (Gal), if P # (T) or ¢ is
ramified at p, 0 is ramified over a decomposition group D, at p, and the other 6° is unramified at
the decomposition group.

Hereafter we treat the two cases (O) and (C) at the same time writing pp = Ind% 6. By
primitiveness, F7 is a family of N-new forms. Thus we have C(pp) = N = N(€)D for € = €(¥y)
(see Remark 7.3). We may also assume that W and I have the same residue field F. As before,
let Z = lim Cly(€p™) and Z, be the maximal p-profinite quotient of Z. By Proposition 5.7
(2), there exist a character 8 : Gal(Q/M) — W/[[Z,]]* unramified outside €p and a canonical
isomorphism T, = W/[[Z,]] such that pr,, = Ind% 0. Moreover, identifying T.,, = W{[[Z,]],
(Tem, 0) is the universal couple over W among deformations of # mod my. Thus the character
0 : Gal(Q/M) — TX,, satisfies

(8.2) =6 mod P for aprime P’ € Spec(Tepm,).

In other words, taking ¢ : Ty, — £() such that co8 = 6, we have P’ = Ker(¢) for P’ in (8.2). Since
N = N(€)D, the identification Te,,, = W{[Z,]] gives rise to the algebra homomorphism T — W[[Z,]]
described in Lemma 5.6, which was written as © there.

We write p’ for pr,,,, py, for o’ mod B’. Then we have the identity of Galois representations

pyp = py = Ind% 0. This implies
(8.3) Tr(py (Froby)) = Tr(py (Froby)) for all I prime to Np.

Let T/ C T be the A-subalgebra generated by the image of T'(1) for all [ prime to Np. The identity
(8.3) implies P’ N T = PN T'; i.e., the image of Spec(T.y,) and Spec(l) in Spec(T’) intersects at
P NT'. We now show that Spec(I) and Spec(T,,,) intersect at the unique prime divisor P = P’
above B N T’ in Spec(T). Since ¢ ramifies at p, we may assume that 1 is unramified at p°.
Then X1|Z§ = 1/)|D:C (identifying Z,, = ©O,), which is non-trivial. As remarked in the sketch,
C(pgp) = C(py) = C(p) = N. Since 1 is ramified at p, x1|;, mod my, = 1|7, is non-trivial. Thus
the assumptions of Lemma 5.4 are met, and we conclude T¢ = Tq. Thus Spec(Ten,) and Spec(I)
intersects at P’ = P in Spec(I) N Spec(Tepm,).
By Proposition 5.2 (2), that the order of ¢ is greater than 2 implies TM = T.,,. Write

Spec(T) = Spec(T5,) U Spec(Tern)
for the complementary union of irreducible components Spec(TZ ) C Spec(T). Note that

Spec(Ip) N Spec(Tem,p) = Spec(lp @1 Tem,p) C Spec(']I‘clm)P ®t1 Tem,p)-
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By Theorem 7.2, identifying T, with W[[Z]], we have closed immersions

SpeC(Tcm,m/Li (Ei)']rcm,‘ﬁ) C SpeC(Tclm,P QT Tcm,P) B Spec(ﬂ‘ﬁ ®T Tcm,‘ﬁ);

and we have, inside Spec(']Tclm)p @t Tem,p),

(8.4) Spec(Ip @1 Tem,g) C Spec(Tem /L™ (0 )Tem,p)-
Let
b:= AHHTCM,P(H:‘B KT Tcm)p) C Tcm)p and a:= AIlIl]hB (ng KT Tcm)p) C Hqg,

where Ann4(X) is the annihilator in the ring A of an A-module X. Put pp = (pr,,, mod b) and
pa = (pr mod a). Thus Tr(py) = Tr(pe), which implies pp = p, (by a result of Carayol-Serre;
e.g., [MFG, Proposition 2.13]). Since the right-hand-side pjp is an induced representation from M,
the image Im(pa)| g,y @ ar) (of the right-hand-side) is in the diagonal subgroup of G'Ly(I/al). Thus
(L@)ply C a. By (8.4), ais a factor of Li, Aw p. This a depends on B, and a N A is a power of

P. We fix B|P such that aN A is the smallest. We would like to show (a N Ap)? C (L(I))p.
Suppose (L(I))p € a. Let s = Ly - MI(G). We consider the adjoint action of Gal(Q/Q) on

V.= (533 Na- 5[2(}133))/(5:43 Na '5[2(]133))
for a’ := aPB D (L(I))p. Then the adjoint Gal(Q/Q)-module V is isomorphic to a factor of Ad(py) =
(M—/Q) & Ind% 6—. Since ¢ is non-trivial, = with 6~ = ¢~ mod m; is non-trivial, and hence

Ind% 0~ is absolutely irreducible. If V' contains the two irreducible factors, we have dim,gp) V =3
and hence by Nakayama’s lemma, we have (sg N a - sla(Ip)) = a - sla(Ip); so, (L(D)p = a, a
contradiction (against (L(I))p C a). In other words, we have (L(I))p € a < V does not contain the
two irreducible factors.

If V is made up of (M—/Q), the Lie algebra V' and hence sq /(s N a’ - sla(Iy)) acts trivially on
(I/a")?; so, the imag_e of G in SLy(I/a’) is in the split diagonal torus. This implies pa|ga1@/ar) =
0 @ 0" with ¢/ = ¢ mod my. By Frobenius reciprocity law (cf. [GME, §5.1.1]), we conclude
Par = Ind% ¢’. This is impossible, as a is the minimal Iz-ideal so that p, is an induced representation
from M.

We deal with the remaining case where V' contains only Ind% 0—. We pick again the element
j = p(o) and j’ as specified at the beginning of the proof. As explained before starting the proof, we
may assume that j = pr(c). By the adjoint action, j acts on & := s Na-sly(Ip) and on V. Thus
V=Via&V[1l]e Ve '] and & = &la] ® &[1] ® S[a™] for the three eigenvalues a, 1,a~* of Ad(j).
Since the Galois action on V'[1] factors through (M—/Q), we conclude V[1] = 0. We also know that
j' interchanges V(a] and V[a~!] (and &[a] and &[a~']) isomorphically. Thus V]a] = V[a~™!] # 0
and Sg[?] surjects down to V[?] for ? = a,1,a!. Then & contains matrices X := (§¢) € Sla
and Y := (99) € S[a~!] whose image X (resp. Y) in V are nontrivial in V[a] (resp. V[a™1]); i.e.,
0# X € V[a]and 0 #Y € V[a~']. This X isin M[a] and Y is in M[a~"] in the proof of Lemma 2.9.
In other words, for the A-module n = {z € I| (J &) € M(G)} and its opposite n; introduced in the
proof of Lemma 2.9, a = Iyn = Ipn;. Then

0# [X,Y]= (¢ 00) € (sp Na?-sla(lp))/(sp N a*P - slao(Iyp)) =: V.
The Lie algebra V' also has non-trivial image of AX and AY for any generator A of a. This shows
dim, () V' = 3, and by Nakayama’s lemma sq N a® - sly(Ip) = a - sl(Iy). Thus a® = Ipnn, and
w, C (L(I)), where as before we put u=nnNAand iy =n;NA. If I=A, u=n and u; = ny, this
finishes the proof as we described already.

If I 2 A, we therefore need to show IpuNAp = Ipw, N Ap = anNAp. Recall we have chosen 3
so that ag N A = Aw pnNA (ie., P has been chosen so that ap N A is the highest power of P).
Take e € Ip N ]LJX3 so that euly NAp = anNAp. Conjugating G by o = (§9), we may assume that
up = ApNnp =apNAp. Since Im(pp) surjects down to a dihedral group H := Im(p), in this case
the condition (v) is not satisfied (as Im(p) does not contain nontrivial unipotent elements); so, we are
assuming (s) (which is satisfied if ¢~ |p, has order > 3). Note that D := p(D,) N GLy(F,) is made
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of diagonal matrices of order prime to p. Taking their Teichmiiller lifts, we can lift D isomorphically
onto D C GLg (Zy). By our construction, D is in the image of D,. We can lift H isomorphically onto
a dihedral subgroup H C Im(py) so that D C H (e.g., Exercise 1 of § IV.3 in [CGP] or [TGP, §IV.7]).
Then, as explained in the proof of Corollary 3.4, j € GLy(I) in the condition (1) of Lemma 2.9 is
chosen in D. Thus we have ¢ € Gal(Q/Q) whose restriction to M is the complex conjugation such

that j' = pi(c) € H. Then j'jj/ ' = (%/ 2) if j = (g 2); i.e., the conjugation of j' interchanges

the two eigenvalues. By Lemma 1.4, we have 7/ = {(% 9)|s € Z,} C pi(Dy) C Im(pr), and

JT 7 = {(5,.%)]s€Zp} C pr(cDpe™t). We have chosen an eigen basis of I? of j to write the
matrix form of p;. Then to have ¢ with T's(¢) inside Im(py), we change the basis v of the (-eigenspace
of j multiplying by an element in I prime to P. Since j' = py(c) interchanges the two eigenspaces
of j, we choose the basis of the other (’-cigenspace to be given by pr(c)v. Then this j' and D
generates the dihedral subgroup of H C GL, (Z,) NIm(pr) lifting H isomorphically, and j' is equal
to (93) € Im(pr) NG La(A). Hence we may assume Y = j/Xj'~", which implies (aNAp)? C (L(I))p.

Note that Chary,, (W[[Z,]]/L~ (¥ Y)W[[Z,]]) is given by Nyviizs aw (L™ W) = Li,. Con-

versely if we start with P |Li,, by Theorem 7.2, the intersection scheme Spec(Tclm) p ®r Tem,p) is

non-empty containing a prime divisor; so, we can find an irreducible component Spec(I) of Spec(T% )
such that pp is isomorphic to Ind% A for a character A. This implies P|L(I). O

Here is the result in the residually dihedral case not included in the above theorem.

Theorem 8.6. Ifp is absolutely irreducible with p = Ind% ) for a quadratic field M and a character
¥ : Gal(Q/M) — T, with¢p  having order > 2, then for any non CM component I of T, we have
(1) If M is real and p splits into pp in M, writing 1 + p™ 1 Z,, with m > 0 for the kernel of the
natural map T' — Clys(p™), then L(I) D (" —1)2,
(2) If p does not split in M, then L(I) D (T?).

This theorem settles the case (3a) of Theorem II in the introduction. Note also that ¢» having
order > 2 implies |F| > 4.

Proof. Let P be a prime divisor of A, and write 8 any prime divisor of I above P. Let ¢ be the
prime-to-p conductor of 1. By the same argument as in the proof of the above Theorem 8.5, if
P|L(I), we have either s = 0 or 5 is a Cartan subalgebra or s = sl(2). If 5 = s((2) for all P|P,
then P { L(I) by Lemma 8.1, Theorem 2.12 and Corollary 3.4 combined. If 8y # s((2), by the same
argument as in the proof of Theorem 8.5, pp = Ind% 0 for a character . Then for the prime-to-p
conductor € of §, we may assume that 6 : Z — £(P), where Z = lim Clp(€p). If M is real, Z is

a finite group, and 6([ry, Q,]P") = 1, where we identify the inertia groups I, and I, and [y, Q] € I,,.
This implies P|(t*" — 1) by (Gal).

If p is non-split, 6 has to be unramified at p as 6 or 6¢ is unramified at p (note, by (s), that 6~ |p,
has to have order > 3). Then 6([y,Q,]) = 1, which implies P|(T") by (Gal). Write Z for the class
group Clp(€) of M.

To show L(I)|(t*" —1)? for some m > 0, we deal with the two cases at the same time. Let Z, be
the p-part of Z; so, Z = Z, x Z' for Z' of prime-to-p order. Pick a prime ‘B of I for which pg is an
induced representation from M. Let a be the minimal ideal of Iy such that p, = (o1 mod a) is an
induced representation from M. Then p, = Ind% A and A can be identified with a character of Z
by class field theory. Thus we have a W-algebra homomorphism W[Z] — Iy /a by the universality
of the group algebra. This factors through a local ring of W[Z] isomorphic to W[Z,]. Since I is
generated topologically by Tr(pr) over Q(W) and ¢~ has order > 3, Iy /allp is generated by the
values of X\. Thus Iy /a is reduced; so, a is square-free, aN A D (#*" — 1), and (aN Ap) D (L(I))p.
Then by the same argument as in the proof of Theorem 8.5, we conclude (L(I))p D (aNA)2 O

Assume that p is absolutely irreducible whose projective image in PG Lo (TF) is one of the following
three type of groups: a tetrahedral group, a octahedral group or an icosahedral group. These groups
cannot be a quotient of a Borel subgroup or a unipotent group or a dihedral group, if 5y # sl(2),
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we have 53 = 0. Again under the notation of the proof of Lemma 3.1, ﬁm = T:p X @‘B = T:p as
@‘B = 1. Then we have p(o) whose projective image does not commute with the image of j, and we
find j' € Im(pg) having the same effect on j projecting down to p(c). Then j’T:pj’fl =Hy = 7;3,

which implies 7;3 = 1; so, P|T. Thus we get the following theorem which settles the case (2) of
Theorem II in the introduction.

Theorem 8.7. Assume that p is absolutely irreducible whose projective image is one of the following
three type of groups: a tetrahedral group, an octahedral group or an icosahedral group. Then if Spec(I)
is an irreducible component of Spec(T), we have T|L(I)|T™ for sufficiently large n > 0.

It is interesting to determine the minimal integer n depending on I. The following theorem settles
the last remaining case (4) of Theorem II.

Theorem 8.8. Suppose p > 5, ptp(N) and that N is cube-free. Assume that p is reducible whose
semi-simplification is a direct sum of two characters 6 and 1 with 6 ramified at p and ¥ unramified
at p and that 0/1) has order > 2. Let Spec() be an irreducible component of Spec(T). Then L(I)
is a factor of L(0,1) given in Definition 4.1 (2). Moreover for any prime divisor P of L(6,v), if
p1@e(N), there exists an irreducible non-CM component Spec(I) C Spec(T) such that P|L(I).

The strategy of proving this theorem is similar to the one we took for Theorem 8.5 replacing CM
components by Eisenstein components in Spec(H). As we computed the ideal of the intersection

Spec(Cg,,) = Spec(hy) N Spec(Ey) for m := m(0,4; My, Ms) in Corollary 4.3, the argument goes
through. Note here T = hy,.

Proof. Let the notation be as in the proof of Theorem 8.5. In particular, P is a prime divisor of
Spec(A) and P is a prime divisor of Spec(l) above P. Again there are the following five possibilities:
(O) 5 = 0; (C) s is a Cartan subalgebra $; (N) sy is a nilpotent subalgebra; (B) g is a Borel
subalgebra; (F) sp = sla(k(P)).

We can forget about the case (F) for all B|P as Pt L(I) in Case (F). An induced representation
Ind% A for a quadratic extension M /Q is reducible only when A~ is trivial, and if A= = 1, X extends

to a character A of Gal(Q/Q) and we have Ind% A=A (M—/Q) . By the assumption that 6/ has

order > 3, we find that pp = Ind% A is impossible (so, the assumption of Lemma 3.5 is satisfied,
and we have (L(I)) well defined). In particular, any component of Spec(T) does not have CM. Thus

if 53 # sl(2) or 5 # 0, we have pp = (938 JB) with 0y mod my = 0 and 1 mod my = 1) with

1 unramified at p as 0 ramifies at p. If sp = 0, again we have ﬁm = 7;3, which is normalized
by Im(pyp); so, if B+ T, pyp is reducible. If PB|T and 5 = 0, we have Hy = 1 and hence, Im(py;)
surjects down onto Im(p) with finite kernel K (the possible error term K is in the diagonal torus,

which comes from the difference of det (T:B) and the p-profinite part of Im(det(pg))). This implies
pgp is reducible. Thus P is an Eisenstein ideal.
We now specify the A-adic Eisenstein component with which Spec(Il) intersects at 3. Write

p 335 - (038 1123) )
The prime-to-p conductor of py5 is the product €(fy)€(yy) of the prime-to-p conductors &(fy)
and €(¢gp). Thus we have €(0y)C(Yp)|N. By (Gal), we may assume that g is unramified at p.
Thus 1y only (possibly) ramifies at prime factors of NV prime to p. By class field theory, the image
of the inertia group I; at [ in the abelianization of the decomposition group D; at [ is isomorphic
to the almost [-profinite group Z;*. Thus typ|;, with values in an almost p-profinite subgroup of
K(P)* has to be of finite order. Then by global class field theory, g is of finite order. If k(‘P)

has characteristic p, ¢ has values in F: (so, ¥ = v), and we have a unique Teichmiiller lift
¥ Gal(Q/Q) — WX of ¢ = 9. If k() has characteristic 0, we put ¥ = 1. We may assume
that 1 has values in W*, extending scalars if necessary. Now we consider the strict ray class group
Clg(Np") and Y = lim Clo(Np") = Z; x(Z/NZ)*. By class field theory, for the maximal ray class
field Q[pnpe]/Q modulo Np™, we have a canonical isomorphism Gal(Q[unp-]/Q) = Y. We identify
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these two groups. Write Y}, for the Sylow p-profinite subgroup of Y; so, Y = Y (®) Y, canonically
for the finite group Y ®) of order prime to p. We consider the group algebra WI[Y,]] and for u € Y,
we write [up] for the group element in Y, C W/[[Y,]]* represented by the projection of u in Y,. By
the same deformation argument proving Proposition 5.7 (2) (and used in the proof of Theorem 8.5),
for the Teichmiiller lift 6y : Gal(Q/Q) — W* of § = Oy mod my, if p { p(N), (W[[Y]],0) for
0(Ju, Qp]) = bo(u)[up) € W[[Yp]] for u € Y is the universal couple among all deformations

(A e: Gal(Q/Q) — AX)

of (F, 6y mod my) with prime-to-p conductor €(e)|N.

Let Y; be the maximal torsion subgroup of Y,,. We may assume that any character: Y; x y®) — @:
actually has values in W* by extending scalars if necessary. The maximal torsion free quotient of
Y, is canonically isomorphic to I', and we have a non-canonical decomposition ¥ = Y; x I' with
the p-group Y;. We identify W{[I']] with W[[T]] by v — ¢t = 1+ T. Since W[[Y,]] = WI[Y][[T]],
geometrically irreducible components of Spec(W{[Y}]]) are indexed by characters 6 : ¥; — W so
that the component is given by the W-algebra projection 6, : W{[Y,]] - W/[[T]] sending y € Y; to
6(y) and v to t. We call this component the §-component. Take 6 such that 6, 06 mod P = by in
I. By (Gal), we have 0, o @(Frob;) = 6(Frob;)(l) for all primes [ outside Np. Since 8y gives rise to a
point P’ of an irreducible component Spec(W[[T]]) of the universal deformation space Spec(W{[Y,]])
so that 6 = 6. 00 mod P’ (with P’ = PN W[[T]]). Consider the A-adic Eisenstein series E(6,)).
By our construction, pyp is isomorphic to ¢ @ (6, 060) mod PB’. Then in a way similar to the CM case,
we can find a possibly “old” Eisenstein component I' with Galois representation ¢ @ (6. o 8) which
intersects with I at P. Indeed, again by I|C := €(¢p)€(0yp) < [|N, mismatch of dim Hy(I;, p) and
dim Ho(1;, pr) could occur only when {|(N/C) and {|€(§) but I { &€(n) for {£,n} = {¢gp, Op}. Writing
E(n) for the set of primes [|(N/C) with the above divisibility /non-divisibility property, we consider
the imprimitive characters ¢’ (resp. ¢') induced by ¢ (resp. ¢) modulo M; := €(¢)) [[;ez(y) ! (vesp.
M; :=p-&(0)[[;ez(p) 1)- The Eisenstein series E(¢’,1) has congruence modulo P with the I-adic
form. Therefore I/(L(I))I is a surjective image of the A-submodule Cg, ®r I of the Eisenstein
congruence module Cg, (for m = m(6,; My, Ms)) defined just above Corollary 4.3. Therefore
(L@)p C (L(6,%))p. Let ap = Anny, (Cg,, ®r ). Then ag is the minimal ideal so that pg is
isomorphic to representation into B(Iy/a) and is a factor of L(#,v). If P|(p), we know by [H13a,
Theorem 6.2], py is irreducible if p ¥ ¢(NN); so, there is no reducible prime 9B|(p). Thus we may
assume that P { (p). Then by Corollary 3.6, cp = (g3 p @ N Aw,p; so, cp|L(0, ).

The existence of T with 3| L(I) for P|L(6,) follows from the definition of Cg. Indeed, there exist

(0,; My, My) with P|A(T;6.¢)) and at least one component Spec(I) containing P € Spec(CEm) for
this choice of (0, ; My, Ms). As already remarked, any component of Spec(T) is not of CM type. O

Here is a summarizing remark.

Remark 8.9. The proof of Theorems 8.5 and 8.8 is separated into two parts. The first part is to
prove that the congruence ideal between a non-CM component and abelian components (i.e., either
Eisenstein or CM components) is (essentially) equal to the level ideal. This is the principal work
done in this paper. The second part is to identify the level as a factor of an appropriate p-adic
L-function by the help of a proven main conjecture and Galois deformation theory.

9. MIXED CASES

Pick a minimal primitive irreducible component Spec(I) of Spec(h). Let Spec(T) be the connected
component of Spec(h) containing Spec(I). We consider an I-lattice £ in QI )? stable under r pr. Take
its reflexive closure E which remains stable under p;. For any 0 # a € ]1 the multiple aLl remains
T-reflexive. By [BCM] VII4.2 Proposition 7, the set of associated primes of £ C/aL is made of prime
divisors. Thus, if ]1/ al = W, E/ aL has to be a free W-module, since W is a discrete valuation ring.
Then we must have rankyy E/ al = 2, which implies that, by Nakayama’s lemma, L is free of rank
2 over I. Thus if I is a unique factorization domain, the condition (F) in the introduction holds.
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By resolution of singularity (see [L78]), we have a complete regular local ring I*” C Q(I) contain-
ing I. The non-flat locus of 7 in Spec(I) is at most of codimension 2 (so, its support is the unique
closed point m of Spec(I)). Writing E for the set of prime divisors of I*” above the maximal ideal
of T (those of exceptional divisors over the singular point my € Spec(Il)), the set of prime divisors of
I is in bijection to prime divisors of I*™ outside E as Spec(I) \ {my} = Spec(I*™) \ E. Since I*™ is
regular, it is a unique factorization domain (see [CRT, Theorem 20.3]). Thus by the above argument,
extending scalars W so that Spec(Is™)(W) # (), the reflexive I™-closure L of 15" - L ., (I) C Q(I)?
is free of rank 2 over 1™ and is stable under p;. We write psm : Gal(Q/Q) — GLo(I*™) for the
Galois representation realized on L. Though for simplicity, we assume the condition (F.4,) in this
section, the divisibility conjecture we make should hold for I°*™ ignoring primes in F taking prsm in
place of py without assuming (Feun).

Throughout this section we assume (R) and (Fqy,) in addition to p > 5 and that N is cube-free.
Then by Theorem I, we have the conductor ¢ of Im(pr) NSL2(A). Here Im(py) is taken in GL2(Q(I)).
In order to determine the global level exactly, we need to know the characteristic power series of
the congruence module between the CM part and the non CM part and also the Eisenstein and
non Eisenstein parts of Spec(T). A key ingredient of solving this question is Gorenstein-ness of each
part (cf. Theorem 7.2). If different CM components or/and Eisenstein components are mixed, it
is difficult to prove Gorenstein-ness of CM/Eisenstein part. Writing p for pm,, let us describe this
problem in more details. By Proposition 5.2, if p = Ind% P = Ind% ¢ for two distinct bimaginary
quadratic fields, for the unique real quadratic field K’, there exists a mod p character 5/ of Gal(Q/K")

such that p =2 Ind% 5/. We separate our argument into the following five mixed cases which cover
all possible cases (p-splitting imaginary quadratic fields involved) by Proposition 5.2:

(EIS) p = 0 @ ¢ with both § and ¢ unramified at p with +/6 has order > 2.
(UCM) absolutely irreducible p & Ind%@ for an imaginary quadratic fields M with ¢ unramified

at p and ¢ has order > 2.
(SCM) absolutely irreducible p = Ind% R Ind% ¢ =~ Ind%, 5/ for two p-splitting distinct imaginary
quadratic fields M and K; so, ¢~ = (MK/M), o~ = (M) and ¢/~ = (M)
(HCM) absolutely irreducible p & Ind% (R Ind% ¢ = Ind(% 5/ for an imaginary quadratic field M in
which p splits and an imaginary quadratic field K in which p is not split; so, ¢~ = (w),

b= = (MK/K) and ¢/~ = (MK/K/)'
(ECM) =01 = Ind%@ for a quadratic field M; so, ¥/ = (M—/Q)

The five cases are disjoint, and M in Case (ECM) is imaginary as 1/6 is an odd character. Except
for the case (ECM), we have well defined L(I) (see Section 3). The difficulty of determining all
possible cases of 5 # slo in these cases comes from the fact that some primes P with g # slp could
be a prime of congruence between components of U(p)-deprived Hecke algebra h®) C h generated
by T'(1) (It Np) and U(q) for q # p over A. In order to determine exact level L(I), we need to show
that the local component T of h(®) involved is Gorenstein up to finite error (which is not known
and perhaps not expected in general either).

The Katz measure p on 3 actually depends on the choice of p-adic CM type of the imaginary
quadratic field M (i.e., a choice of (M,p) and (M,p)). Our choice is (M,p) for p corresponding
to iy : Q — @p. If we change (M,p) by (M,p), we get another measure, u*. The two measures
are related by a functional equation (e.g., [H10, Introduction]). We write (L;,)* for the product
of the Katz p-adic L-function with modulo p branch character )~ with respect to (M,p). We may
conjecture the following outcome in the above cases:

Conjecture 9.1. For the non CM component Spec(l) C Spec(T) and a positive integer m > 0,

e in Case (EIS), L(I) is a factor of L(0,%) - L(1,0);
e in Case (UCM), L(I) is a factor of (Li, . (Li,oc)*)%’
e in Case (SCM), L(I) is a factor of (L;, ~L£, : (Lg,oc)* . (Lg,oc)*(tpm —-1))%
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e in Case (HCM), L(I) is a factor of
(L%,)2 (" —1)? if @ is ramified at p,
2
(LE, . (La,oc)* (P — 1)) if @ is unramified at p
for a sufficiently large integer m >0;

e in Case (ECM), further suppose that 01 has prime-to-p conductor N. For prime divisor
P € Spec(A) not under the intersection of a CM and an FEisenstein component, we can
define local conductor cp as in Section 3. For P under the intersection of a CM and an
Fisenstein component, in the isomorphism class of py realized on Lean(Ip) over Ip, we can
find p with mazimal possible local conductor cp. Then we have (L(I)) = AN(pcp is a

factor of L(0,v) - L(,v) - (L%, (LZ__)*)2

@ oc

To explain our reasoning supporting this conjecture, we pick Case (SCM). Then Spec(T) could
contain two CM components Spec(TX ) and Spec(TX ). After inverting T, by Corollary 5.3, the
connected component S of Spec(T[+]) containing Spec(I[4]) can have non-trivial intersection with
Spec(T2) for one choice M. There is a possible contribution from non CM component whose
specialization at some P|(t?" — 1) is an induced representation Ind®, ¢ for the real quadratic field
K' C KM. Then our argument proving Theorem 8.5 relative to an irreducible component J of T
should go through after inverting (t?" — 1) for a sufficiently large m. Thus, outside an exceptional
divisor (containing (?" — 1) and the zero divisor of E; y for M and for K), the conjecture follows.
The real challenge would be the analysis at primes inside the exceptional divisor. All other cases
should be similar in the sense that the conjecture is provable outside an exceptional divisor.

10. PRIME-TO-p CONDUCTOR OF p-ADIC (GALOIS REPRESENTATION

We summarize facts on ramification at a prime g # p of p-adic Galois representations we have
used. Let R be a p-profinite local ring. Let M C Q be a finite extension of Q with integer ring
O, and put O®) = [11,(O ®z Zi). For any continuous character ¢ : M*\M; — R* unramified

outside Np, the restriction v : (55(7”))X — R* has to be a finite order character, as v is ramified
only at finitely many primes and R* is an almost p-profinite group. Thus we have an integral ideal
¢(¢) maximal among ideals a prime to p with (1 + aO®) N (D®)* C Ker(1)). We call €(1)) the
prime-to-p conductor of 1. By local class field theory, a continuous character: Gal(Q/M) — R* can
be viewed as an idele character 1, and hence the definition of €(¢) applies also to Galois characters.
For o € Gal(Q/Q) acting nontrivially on M leaving it stable, we define ¢° : Gal(Q/M) — R*
by ¢°(1) = (oro~t). The idele character corresponding to the Galois character 17 is given by
composing 1 with the action of o on M. For a rational prime ¢ # p, the g-primary part €,(¢) of
€(1) is called the g-conductor of ¢. Obviously, €,(¢) only depends on 9 restricted to the inertia
group at ¢, and therefore, €, () is well defined for any finite order character 1 of the inertia group.
If M = Q, often we identify the ideal €,(¢)) = (¢°) with the positive integer ¢°.

Recall the exact sequence 1 — I/ — I, — Ié — 0 of the wild inertia group I’ and the tame

inertia group I, = Z(® which is an abelian group (e.g., [MFG, §3.2.5]).

Lemma 10.1. Let p : Gal(Q,/Q,) — GL3(R) be a continuous representation for a reduced p-
profinite noetherian local ring R. Put pp = (p mod P) for P € Spec(R). Suppose q # p.

(1) Unless py|1, is reducible indecomposable for some minimal prime p of R, p|1, has finite
1mage.

(2) If there exists a prime ideal Py of the p-profinite ring R such that pp, is absolutely irreducible
over I/, then for all prime ideal P of R, pp = (p mod P) is absolutely irreducible over I;.

(3) Suppose that R is an integral domain. If p|1;u is reducible and p is absolutely irreducible,

then p =2 Ind%{ for a character & of Gal(Q,/Qq) of a quadratic extension K/Q,.

(4) If R is an integral domain and p|g, is reducible indecomposable, we have p = (/\677 :;) with

n|1, having finite order, where N is the unramified cyclotomic character acting on fiye.
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Proof. We first prove (1). Since R — @, R/p for finitely many minimal ideal p, replacing R by
R/p, we may assume that R is an integral domain. Since p|r» has finite image (factoring through
GLa(R/mg) and I, = I} x I}y, by restricting p to Gal(Q,/K) for a ﬁnﬁe extension K/Qq, we may
assume that p|q,g /) is reducible to prove (1). Let I}z = I;” N Gal(Q,/K) and I, be the image
of Ix = I, N Gal(Q,/K) in I}. Then 1 — It — Ix — Ij — 1is exact. Since p(I{) cannot
contain non-trivial unipotent element as g # p, p|r» = n®§ for two finite order characters factoring
through (R/mpg)*. Since I% is cyclic, by [MFG, Corollary 4.37], either pps := Plea@, vy = caq
for extensions € and 7 of & and 7 to Gal(Q,/M) for an extension M/K with [M : K] < 2 or p(Ik)
contains non-trivial unipotent element of p-power order, which is excluded by our assumption; thus
pm = £ @ 1. Replacing M by its finite extension, we may assume that § and 7 factor through
I3, on which an element ¢ € Gal(Q,/M) surjecting down to the Frobenius element over M acts
by ¢pop~! = 0@ for a g-power Q. Defining the inner conjugate £? by £?(0) = £(pogp™1), we have
n? = 7% = 7. This implies 7] is of finite order; so, p|;, has finite image. This proves (1).

By p-profiniteness of R, the residue field R/mpg is finite for the maximal ideal mpg of R. Since
Ir(mp) is p-profinite, ¢ # p implies that p|r» factors through GLa(R/mpg). If po[rw is absolutely
irreducible, then p[sw is absolutely irreducible for p = p mod mp. Then pp|r» is absolutely irre-
ducible for all P € Spec(R). This proves (2).

: u ~ ?u?\ ~ s n

We prove (4). Write p|7, = (8 n)' Then p?|;, = (50 n¢) = pl;, for a Frobenius ¢ € Gal(Q,/Q,).
By indecomposability, we have n® = n? = 5 over I4; so, 1|z, is of finite order, and u® = qu, which
shows 7/§ = N for the cyclotomic character N giving the action of Gal(Q,/Qq) on fip=; so, N is

unramified, and we get the desired result.
To prove (3), assume reducibility of p|r». Since g # p, p|r» = § & n. Then we have

plo) (§9) (o) = o7 = (5 )

for cach o € Gal(Q,/Qq). If &7 = ¢ for all ¢ € Gal(Q,/Qy), absolutely irreducible p commutes
with p(1); so, we conclude £ = 7. We call this case Case Z. If §&7 = n # £, then its stabilizer is
Gal(Q,/K) for a quadratic extension K/Q,. We call this case Case D.

In Case D, by [LRF] Proposition 24 in §8.1 (whose proof does not require p # 0 in R as long as
plre is semi-simple), p = Ind% ¢ for a character & of Gal(@q /K) extending ¢ as asserted.

Suppose that we are in Case Z. Then p(I)’) is in the center of p(I;). Since I is abelian
and p(I,) = p(Iy") x p(I}), p(I,) is an abelian group. Thus p|r, is reducible. By (4), we have
plr, = £ ®n. Then Gal(Q,/Q,) acts on & and 7 by inner conjugation. If the stabilizer of £ is a
proper subgroup of Gal(Q,/Q,), we find a quadratic extension K/Q, such that p is an induced
representation as asserted. If the stabilizer is the entire group, & = n and p(I,) is in the center of
Im(p). Since Im(p) = p(Iy) x (p(¢)) for an element ¢ giving the Frobenius automorphism of the

maximal unramified extension of Qg, Im(p) is abelian, contradicting the absolute irreducibility of p.
This finishes the proof of (3). O

Suppose that R is an integral domain. We recall the conductor Cy(p) of a two-dimensional Galois
representation p : Gal(Q,/Qq) — GLz(R) for a prime ¢ # p (e.g., [GME, Theorem 5.1.9]). It only
depends on the restriction of p to the inertia group I, C Gal(@q /Qq). Regarding p having values
in GL2(Q(R)) for the quotient field Q(R) of R, we define Cy(p) = ¢° as follows. Let Qy" be the
maximal unramified extension of Q, and K with integer ring V' be the splitting field of p[7,. We put

I; = {o € Gal(K/Qy")|o(x) =2 mod miy.

Then we define

=1
SZZ[I():

7] (2 — dimger) H (i, p))-
1=0 ¢
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If Py D P, are two primes of R, dimy(p,) H°(I;, pp,) > dimyp,) H(I;, pp,); so, Cqlpp,) < Cqlpp,)
for pp, = p mod P;. If R is not an integral domain, we define

C‘I(p) = SupPGSpcc(R) Cq(pp).

Here are some explicit identification of Cy(p) (given in [GME, Theorem 5.1.9]) when R is an inte-
gral domain. This covers all cases used in the proof of Theorem 8.5 (as p is an induced representation
in Theorem 8.5). If p|;, is isomorphic to a representation ({ ,) over Q(R), we have

Colp) = q if 1 is unramified and p is indecomposable,
I C,(n)? if n is ramified.

If pp = a @ 3 for two characters o, 8 : Gal(Q,/Q,) — R*, the characters a|7, and |, are of
finite order. We then have Cy(p) = €4(a)&(B). If p is absolutely irreducible and it has of the

form p = Indé}{ for an open subgroup H of I, of index 2, writing (¢°) for the discriminant of the

fa o have Cy(p) = ¢°*/, where (¢/) is the norm relative to @f/@éq of

—H —
quadratic extension Q, /Q,",

the conductor €, (¢) of &.

For an automorphic representation 7 generated by a holomorphic Hecke eigenform f, we have its
p-adic Galois representation py = p, (e.g., [GME, §4.2]). Then Cy(py) coincides with the g-part of
the conductor Cy(7) of 7 in the sense of [AAG, Theorem 4.24] (see also [C86] for Cy(py) = Cy()).

Lemma 10.2. Suppose that R is a reduced p-profinite local ring. Let p : Gal(Q,/Q,) — GLa(R) be
a continuous representation. Then

(1) For any prime ideal P of R containing a minimal prime p, we have Cy(pp) < Cq(p).

(2) Suppose that R is an integral domain in which p # 0. Then unless p|, is reducible in-
decomposable, for any point P € Spec(R[%]), Cq(pp) is independent of P, in particular,
Cqlpp) = Cq(p)-

(3) Suppose that Spec(R) = Spec(I) U Spec(J) for two irreducible components Spec(I) and
Spec(J). If Spec(][%]) N Spec(J[%]) contain a prime Py and py|z, is not reducible indecom-
posable for the two minimal prime ideals p of R, Cq(pp) is independent of P € SpeC(R[%]),
in particular, Cq(pp) = Cq(p).

(4) If P is a prime ideal of R with x(P) having characteristic 0 and py|1, is not reducible
indecomposable for the each minimal prime ideal p of Rp, then Cy(pp) = Cq(pp) for any
prime ideal P’ of the localization Rp.

Proof. The first assertion follows directly from the definition, and the third is the special case of
the second. For the assertions (2) and (3), we note that p|;, has finite image under the assumption.
If R is an integral domain and p ¢ P for P € Spec(R), 1+ PR = RN (1+ PRp) is a torsion-free
group; so, pp(Iy) = p(Iy). In particular, we have, for any subgroup I C I, dimggy H(I,p) =
dimy,py H(I, pp), which implies Cy(p) = Cy(pp), proving (2).

As for (3), writing I = R/p and J = R/q, by (2), Cq(pp) is constant for all P € Spec(][%]) and
Cyq(pg) is independent of Q € Spec(J[%]). We have Cy(pp) = Cq(pp) = Cylpp,) = Cqlpq) = Cqlpa)-

The assertion (4) follows from (3). Note that Rp[%] = Rp as £(P) has characteristic 0. For any
two irreducible components Spec(I) = Spec(Rp/p) and Spec(J) = Spec(Rp/q) of Spec(Rp), we
have P € Spec(I) N Spec(J); so, Cq(pp) = Cq(pq) = Cq(pp). For any P’, taking a minimal prime
ideal q contained in P’, we get Cy(ppr) = Cyq(pq) = Cq(pp). This finishes the proof. O

We call a representation p : Gal(Q,/Qg) minimal if Cq(p ® x) > Cqy(p) for any finite order
character x of Gal(Q,/Q,).

Lemma 10.3. Let R be a p-profinite noetherian integral domain and p : Gal(Q,/Qq) — GLa(R) be
a semi-simple representation. Let p = (p mod mp).
(1) If pl1, 2 € @7 for two characters & and 7 of Iy, then p|;, = € & n for two characters & and
n. If further p is minimal and one of & and n extends to Gal(@q/(@q), one of & and n is
unramified, and p is minimal.
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(2) Suppose that p = € © 7 for two characters & and T of Gal(@q/(@q). If p is absolutely
irreducible, ¢ = 1 mod p. If further p is minimal, p and & are unramified at q (so, p is
minimal), and &/7 has order 2.

(3) Suppose that p = € 7 for two characters & and 7 of Gal(@q/(@q). If p is reducible minimal
isomorphic to £ ®n, one of & and n is unramified, and p is minimal. If p is unramified but
p is ramified, we have again ¢ =1 mod p.

(4) Assume that p # 0 in R. Suppose that either p = TS E or b = Ind%z for a quadratic
extension K/Qq. If Cq(p) < Cq(p) and p is minimal, we have ¢ =1 mod p, where j =1
ifp =T ®E or K is ramified and j = 2 if K is unramified.

Proof. We first prove the assertion (1). If p|;, is absolutely irreducible, by Lemma 10.1 (3), we have

either (i) p|r» is absolutely irreducible or (ii) p = Ind% & for a character £ and a ramified quadratic
extension K/Qq. Case (i) does not occur as p|r» factors through p. Suppose that we are in Case
(ii) and that p[;, is absolutely irreducible. Then we have 77 =1 mod mp for o € I, non-trivial
over K, as pl|z, is reducible. Then by local class field theory, £ 1=9 can be regarded as a character of
O for the integer ring O of K. By irreducibility of p|r,, £'77 # 1 with £&'7? =1 mod mp. Thus
£'77 has p-power order. Since O is a g-profinite group times F) (as K is ramified over Q,), '~
factors through Fy. Any character of O* factoring through F is o-invariant; so, £ 1=7]; =1. Thus
Ind% €|z, is reducible, a contradiction. Thus p[7, = £ @ 7. If one of £ and 7 extends to Gal(@q /Qq),
the two characters extend to Gal(Q,/Q,) as det(p) is a character of Gal(Q,/Q,). Then we must
have p = £ @& n for suitable choice of extensions. By the minimality, one of n and £ is unramified; so,
one of ¢ and 7 is unramified. This implies that 7 is minimal as well. This finishes the proof of (1).
We now prove (2). By (1), pl;, = {®n with £ = ¢ mod mg. Since p is absolutely irreducible, by
Lemma 10.1 (3), we have p & Ind%{ for a character ¢ of Gal(Q,/K) extending the character ¢ of
I, N Gal(Q,/K) for a quadratic extension K/Q,. If K/Qq is ramified, {7 = ¢ for o € I, non-trivial
on K; so, p is reducible, a contradiction. Thus K/Q, is unramified. Take ¢ € Gal(Q,/Q,) giving
rise to ¢g-th power Frobenius modulo ¢. Then ¢ is nontrivial on K, we have £:~¢ =1 mod mp and

&)= (%) as p = £@7. Thus €17 is a p-power order character. Note that €|z, has finite order.

Write |7, = ¢ so that &, has p-power order and ¢(P) has order prime to p. Then g =¢7¢
and (€®)1=¢ = 1, since €'~ has p-power order. Thus &) extends to a finite order character = of
Gal(Q,/Qq). Then p ® Z~! has less conductor than p. Since p ® =~ is absolutely irreducible, it
is ramified; so, &, is non-trivial. Since ¢ acts on I, ; by the cyclotomic character (e.g., [MFG, page

123]), we have {27! = 27! = 1 which implies ¢ = 1 mod p. By minimality of p, we conclude

Elr, = P =1, and ¢|1, has order p-power. Thus Z|1q =1 and hence, p =16 (%), which is

unramified, and &/7 = (%) has order 2. This finishes the proof of (2).

We prove (3). If p is reducible, by semi-simplicity of p, we have p = £ @ r. By minimality of p,
one of £ and 7 is unramified, and hence p is minimal. If further p is unramified while p is ramified,
one of the characters ¢ and 1 non-trivial on I; become trivial modulo mg; so, ¢ =1 mod p.

To see (4), we note that under p t (¢ — 1) and minimality of p, p is absolutely irreducible if and
only if p is absolutely irreducible by (2). If p 2 n @ ¢ and 5 = € &7 with 7 = ( mod mg), for
the Teichmiiller lift £ of € and 77 of 77, Cy(p) > Cy(p) implies that one of €6~ and nij~*, say €62,
is non-trivial over I} of p-power order. Then 1 = (€671)1=% = (££71)174 implies ¢ = 1 mod p.
Now suppose that p = Ind%{ is absolutely irreducible. Then for £ = (¢ mod mg), Zlig # 1 for
o € Gal(Q,/Qq) non-trivial on the quadratic extension K. If K is ramified, again Cy(p) > Cq(p)
implies 1 = (£671)17% = (€£-1)177 as we can choose the Frobenius ¢ inducing identity on K. If K
is unramified, by the same argument, ¢> = 1 mod p as the Frobenius over K acts on I ; by o +— o7

By Lemma 10.1 (3), the remaining case is when p|7w is irreducible but p is not induced. Since
plry factors through p which is induced, p(I’) is a dihedral group (as p|rw is irreducible). Since 2
is a factor of the order of the dihedral group p(I;’), we conclude ¢ = 2. Since p(I;’) is dihedral,
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pliy = Indfzgu ¢ for an index 2 subgroup I of I}’. By [W74], the image G of Im(p) in PGLy(R) is
isomorphic either to Sy or A4. We have an isomorphism Sy /V 22 S5 for the unique (2, 2)-subgroup
V. Let L be the extension of Q2 such that Gal(L/Q,) = G by p. Then L has subfield M with
Gal(L/M) = V. By [K80, §5.1], we have p|q, @, ,/a) = Ind} ¢ for any of three quadratic extensions
L' of M in L. Since p # 2, V N G has to injects into G. Thus G has to be isomorphic to Sy or Ay,
a contradiction, since G is dihedral. Therefore, this case cannot happen, hence we get (4). O

For a global representation p : Gal(Q/Q) — GLz(R), assuming that p only ramifies at finitely
many places (so, C‘I(p|Gal(@q) /Qq)) = 1 for almost all ¢ # p), we define its prime-to-p conductor by
C(p) = Tl 2 Cq(p|Ga1(@q) /Qq)>' All Galois representations we studied in this paper ramify only at
finitely many primes; so, it has well defined conductor. A global Galois representation p as above is
called minimal if C'(p) is minimal among C'(p ® £) for all finite order Galois character &.

Lemma 10.4. Let R be a p-profinite integral domain and W : Gal(Q/M) — R* be a character with
prime-to-p conductor € for an tmaginary quadratic field M. If Ind% W is minimal at primes q split
in M, we have §. = O for the decomposition € = F§.J in Definition 6.1.

Proof. If §. # O, we have a rational prime ¢ such that (¢)|§§.. Since §+ F. = O and F C §¢, we
can split (¢) = QQ° in M so that Q|F. Then identifying I, with Ig., we may regard ¥|;,. as a
character of I,. Since the image of I, in Gal(Q®/Q,) for the maximal abelian extension Q2°/Q,
is isomorphic to Gal(Qg[ue~]/Q,) = Z;, we have a global Galois character & : Gal(Q/Q) — R~
unramified outside ¢ and &|7, = ¥|7,. Then we have, for g-primary parts,

Co((mdy, ) @ €71 D Fy 2 (§8e)g = Cy(Indy, 1)

contradicting against minimality of Ind% v. O
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