
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 25, Number 3, July 2012, Pages 813–826
S 0894-0347(2012)00730-9
Article electronically published on January 25, 2012

A FINITENESS PROPERTY OF ABELIAN VARIETIES

WITH POTENTIALLY ORDINARY GOOD REDUCTION

HARUZO HIDA

Contents

1. Analytic families of Hecke eigenforms 815
2. Archimedean and p-adic CM types 818
3. Super-cuspidality implies super-singularity 822
4. Twist classes of ordinary abelian varieties of GL(2)-type 824
References 825

A g-dimensional abelian variety A/F over a number field F is of GL(2)-type

if End0(A/F ) := End(A/F ) ⊗Z Q contains a field E of degree g. We call such
a field E an endomorphism field of A. We say that an F -simple abelian variety
A/F over a number field F of dimension g is non-CM if End0(A/F ×F Q) does not
contain any semi-simple commutative algebra of degree 2g over Q (cf. [ACM]). If
an abelian variety A/F of GL(2)-type is F -simple, D = End0(A/F ) is a division
algebra with a positive involution α �→ α∗. Since D has a maximal commutative
subfield stable under ∗, we may assume that its endomorphism field E is totally real
or a CM field. The Galois action on the Tate module of an F -simple abelian variety
A/F of GL(2)-type with endomorphism field E produces a two-dimensional strictly

compatible system of Galois representations ρA = {ρλ : Gal(Q/F ) → GL2(Eλ)}λ
indexed by primes λ of E. Thus we have its L-function L(s, ρA). Two F -simple
abelian varieties A and B = Aχ are twist equivalent if L(s, ρB) = L(s, ρA ⊗ χ) for

a finite order character χ : Gal(Q/F ) → Q
×
. Note that the dimension is possibly

unbounded over a twist equivalent class. Since Tate’s conjecture has been proven
by Faltings for abelian varieties, one could formulate this equivalence by insisting
that the two abelian varieties share a simple component over an abelian extension
of F . In this more geometric context, Q-simple abelian varieties have been studied
in depth as Q-simple factors of modular Jacobians by Ribet (for example, see [R]
and his papers quoted there). However we adopt an analytic definition of twist-
equivalence using their L-function as it can also be applied to rank 2 Q-motives (for
which the Tate conjecture is still unknown). Here the identity of two L-functions
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means the identity of the coefficients of the Dirichlet series after suitably choosing
embeddings of the endomorphism fields of A and B, respectively, into Q. We recall
that an abelian scheme A of dimension g over a field κ of characteristic p is called
ordinary if we can embed μg

p into A over an algebraic closure of κ. In this paper,
the expression number field means a finite extension of Q. We make the following

Conjecture. For a given base number field F , fixing a prime ideal p of F over a
rational prime p, there are only finitely many twist equivalence classes of non-CM
F -simple abelian varieties of GL(2)-type with good reduction everywhere outside p

and potentially ordinary good reduction modulo p.

Assuming F �= Q, if Fp = Qp and F is not an imaginary quadratic field, there
are only finitely many characters of p-power conductor; so, one may replace twist-
equivalence by isomorphism in the conjecture. If Fp �= Qp, there could be infinitely
many characters of p-power conductor (this is a problem related to the Leopoldt
conjecture). Anyway, in the extreme case of [Fp : Qp] = [F : Q], we have in-
finitely many characters of p-power conductor, and starting from an F -simple A,
the twist Aχ by a character χ with a p-power conductor satisfies an inequality

dimAχ ≥ [Q(χ) : Q] if the order of χ is sufficiently large (since End0(A) ⊃ Q(χ)).
Thus without bounding the dimension, we cannot replace twist-equivalence by iso-
morphism. We have formulated the conjecture in the above way since by doing
this, there is no need to bound the dimension (nor the p-conductor). If we delve
into Ribet’s theory of absolutely simple factors of modular Jacobians (cf. [R1]),
one might be able to formulate the conjecture in terms of absolutely simple factors
(but we do not touch this point in this paper).

For some primes p, it is easy to see that there are infinitely many twist equivalence
classes of super-singular (i.e., no nontrivial p-torsion Fp-points) Q-simple abelian
varieties of GL(2)-type having potentially good reduction at p and good reduction
everywhere else (see Remark 3.2). If we fix a Q-simple non-CM abelian variety A
with dimA ≤ 2 and vary primes, A is ordinary at each prime (of a well-chosen
number field possibly different from Q) in a set with Kronecker density one (see
[O], 2.7 and [H12], Section 7). The density 1 result is only known up to abelian
surfaces but is expected to be true in general. On the other hand, if we vary
such abelian varieties, even allowing potential ordinarity at p (but requiring good
reduction outside p), we believe that its twist equivalence classes are finitely many.
What we prove in this paper is

Main Theorem. If p > 2 and F = Q, then the above conjecture holds.

Actually, for small primes p = 3, 5 and 7, there is no such abelian variety defined
over Q (see the argument after Question 2.3). There is also a motivic version of
this theorem (see Remark 4.2). If we take for granted a well-believed principle
that the L-function of the compatible system ρA of an F -simple abelian variety A
of GL(2)-type should be given by the L-function of a cohomological automorphic
representation π of GL2(FA) of weight corresponding to Hodge weight (1, 0), one
would expect that there are finitely many isogeny classes of F -simple abelian vari-
eties with everywhere good reduction, since such a π must have level 1 and there
are only finitely many such π of level 1. Since modularity of ρA has been proved
at least potentially if F is totally real by R. Taylor (cf. [T]), this finiteness (under
bounding conductor) could now be accessible, but some serious problems remain.
More precisely, for each ρA over a totally real field F , Taylor finds a totally real
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extension FA/F dependent on A over which ρA is modular. A conceivable idea is to
bound the number of isogeny classes of modular abelian varieties A′ of GL(2)-type
of conductor 1 over FA which descends to F . If we find such a finite extension
F ′ := FA independent of A, the desired finiteness follows, as there are finitely
many automorphic forms of level 1 on GL(2)/F ′ of a given weight. The problem
of finding F ′ independent of A is difficult without assuming the desired finiteness
outright. Thus, plainly there is some serious work to be done for making explicit
the field FA (at present, we do not even know the finiteness of isomorphism classes
of 2-dimensional mod p odd Galois representations of a given prime-to-p conductor
for a general F �= Q). More geometrically, it is a celebrated theorem of Fontaine
that there is no abelian scheme over Z (see [F]). Fontaine’s theorem is a starting
point of the induction process found by Khare–Wintenberger for proving Serre’s
mod p modularity conjecture (see [KW]). If we ease the reduction property to po-
tentially good ordinary reduction, we have to allow all π of p-power level; so, even
for twist-equivalence classes, it is not evident that the number of classes is finite. By
[KW], I, Theorem 10.1, if F = Q, ρA is known to be associated to an elliptic Hecke
eigenform f and A is isogenous to Shimura’s abelian factor Af of the Jacobian of
X1(N) for the conductor N of ρA. We use this fact and a characterization of CM
p-adic analytic families of cusp forms given in [H11] to prove in the text a stronger
version of the main theorem (see Theorem 4.1).

We assume p > 2 in the main theorem because of the reliance of this result
on one of the main results in [H11] (see Theorem 1.1 in the text) whose proof
was given assuming p > 2, though we probably would be able to remove this
assumption at least for the result we use here. Since one of the referees pointed
out the importance of including the prime p = 2 in our scope in view of (hopefully)
plausible applications towards generalization (in Hilbert modular cases) of the proof
of the mod p modularity conjecture, the author hopes to include p = 2 and also
try to generalize the result of this paper to totally real base fields in a forthcoming
paper (see Remark 4.3 for some more details of possible generalization).

Throughout this paper, we fix algebraic closures Q of Q and Qp of Qp and field

embeddings i∞ : Q ↪→ C and ip : Q ↪→ Qp. The p-adic completion of Qp is denoted
by Cp.

1. Analytic families of Hecke eigenforms

Fix a positive integer N prime to p. A p-adic analytic family F of modular
forms is defined with respect to the fixed embedding ip : Q ↪→ Cp. We write |α|p
for the p-adic absolute value (with |p|p = 1/p) induced by ip. We also fix a field

embedding Qp ↪→ C inducing the inclusion on Q ⊂ C. As a base ring, we take a

(sufficiently large) discrete valuation ring W ⊂ Qp that is finite flat over the p-adic
integer ring Zp. Put p = 4 if p = 2 and p = p otherwise. Take a Dirichlet character
ψ : (Z/NprpZ)× → W× with (p � N, r ≥ 0), and consider the space of elliptic cusp
forms Sk(Γ0(Nprp), ψ) with character ψ as defined in [IAT] (3.5.4). Let the ring
Z[ψ] ⊂ C and Zp[ψ] ⊂ Qp be generated by the values ψ over Z and Zp, respectively.
The Hecke algebra over Z[ψ] is the subalgebra of the linear endomorphism algebra
of Sk(Γ0(Nprp), ψ) generated by the Hecke operators T (n):

h = Z[ψ][T (n)|n = 1, 2, · · · ] ⊂ End(Sk(Γ0(Nprp), ψ)),
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where T (n) is the Hecke operator as in [IAT], §3.5. We put hk,ψ = hk,ψ/W =
h ⊗Z[ψ] W . When we need to indicate that our T (l) is the Hecke operator of
a prime factor l of Nprp, we write it as U(l), since T (l) acting on a subspace
Sk(Γ0(N

′), ψ) ⊂ Sk(Γ0(Nprp), ψ) of level N ′ prime to l does not coincide with
U(l) on Sk(Γ0(Nprp), ψ). The ordinary part hk,ψ/W ⊂ hk,ψ/W is the maximal
ring direct summand on which U(p) is invertible. We write e for the idempotent of
hk,ψ/W , and hence e = limn→∞ U(p)n! under the p-adic topology of hk,ψ/W . By the

fixed embedding Qp ↪→ C, the idempotent e not only acts on the space of modular
forms with coefficients in W but also on the classical space Sk(Γ0(Nprp), ψ). We
write the image of the idempotent as Sord

k .
Fix ψ, and assume now that ψp = ψ|

Z
×
p
has conductor at most p and ψ(−1) = 1.

Let ω be the modulo p Teichmüller character (so, if p = 2, ω is the unique nontrivial
character of (Z/4Z)×). Recall the multiplicative group Γ := 1 + pZp ⊂ Z×

p and its

topological generator γ = 1+p. The Iwasawa algebra Λ = W [[Γ]] = lim←−n
W [Γ/Γpn

]

is identified with the power series ring W [[x]] by a W -algebra isomorphism sending
γ ∈ Γ to 1+x. As constructed in [H86a], [H86b] and [GME], we have a unique ‘big’
ordinary Hecke algebra h = h(ψ). The algebra h is characterized by the following
two properties (called Control theorems; see [H86a], Theorem 3.1, Corollary 3.2 and
[H86b], Theorem 1.2 for p ≥ 5 and [GME], Theorem 3.2.15 and Corollary 3.2.18
for general p):

(C1) h is free of finite rank over Λ equipped with T (n) ∈ h for all 1 ≤ n ∈ Z (so
U(l) for l|Np),

(C2) if k ≥ 2 and ε : Z×
p → μp∞ is a character,

h/(1 + x− ε(γ)γk)h ∼= hk,εψk
(γ = 1 + p) for ψk := ψω−k,

sending T (n) to T (n) (and U(l) to U(l) for l|Np).

In the sequel, we sometimes make use of another variable X = γ−1(1 + x)− 1. We
still have Λ = W [[X]]. The prime ideal ((1 + x) − γ) is equal to (X); so, if (C2)
were valid for k = 1, h/Xh would have been the Hecke algebra of weight 1; so, we
call the variable X of Λ the variable centered at weight 1.

Let Spec(I) be a reduced irreducible component Spec(I) ⊂ Spec(h). Write a(n)
for the image of T (n) in I (so, a(p) is the image of U(p)). If a point P of Spec(I)(Qp)

(regarded as a W -algebra homomorphism P : I → Qp) kills (1+x− ε(γ)γk) = (1+

X−ε(γ)γk−1) with 2 ≤ k ∈ Z (i.e., P (1+x−ε(γ)γk) = 0), we call it an arithmetic
point, and we write εP = ε, k(P ) = k ≥ 2 and pr(P ) for the order of εP . If P is
arithmetic, by (C2), we have a Hecke eigenform fP ∈ Sk(Γ0(Npr(P )p), εψk) such
that its eigenvalue for T (n) is given by aP (n) := P (a(n)) ∈ Qp for all n. Thus I gives
rise to a family F = {fP |arithmetic P ∈ Spec(I)} of Hecke eigenforms. We define a
p-adic analytic family of slope 0 (with coefficients in I) to be the family as above of
Hecke eigenforms associated to an irreducible component Spec(I) ⊂ Spec(h). We
call this family slope 0 because |aP (p)|p = 1 = p0 for the p-adic absolute value |·|p of
Qp (it is also often called an ordinary family). We call this family analytic because
the Hecke eigenvalue P �→ aP (n) at P for T (n) is given by an analytic function a(n)
on (the rigid analytic space associated to) the p-profinite formal spectrum Spf(I).
Identify Spec(I)(Qp) with HomW -alg(I,Qp) so that each element a ∈ I gives rise to

a “function” a : Spec(I)(Qp) → Qp whose value at (P : I → Qp) ∈ Spec(I)(Qp)
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is aP := P (a) ∈ Qp. Then a is an analytic function of the rigid analytic space
associated to Spf(I) (in the sense of Berthelot as in [dJ], Section 7).

Each (reduced) irreducible component Spec(I) ⊂ Spec(h) has a 2-dimensional
absolutely irreducible continuous representation ρI of Gal(Q/Q) with coefficients
in the quotient field of I (see [H86b]). The representation ρI restricted to the
p-decomposition group Dp is reducible with unramified quotient character (e.g.,
[GME], §4.2 and §4.3). We write ρssI for its semi-simplification over Dp. As is now
well known (e.g., [GME], §4.2), ρI is unramified outside Np and satisfies
(Gal)

Tr(ρI(Frobl))=a(l) (l � Np), ρssI ([γs,Qp])∼
(
(1+X)s 0

0 1

)
and ρssI ([p,Qp]) ∼

( ∗ 0
0 a(p)

)
,

where γs = (1 + p)s =
∑∞

n=0

(
s
n

)
pn ∈ Z×

p for s ∈ Zp and [x,Qp] is the local Artin
symbol.

By (Gal) and Chebotarev density, Tr(ρI) has values in I; so, P ◦Tr(ρI) : Gal(Q/Q)
→ Qp (P ∈ Spec(I)(Qp)) gives rise to a pseudo-representation of Wiles (e.g., [MFG],
§2.2). Then by a theorem of Wiles, we can make a unique 2-dimensional semi-simple
continuous representation ρP : Gal(Q/Q) → GL2(Qp) unramified outside Np with
Tr(ρP (Frobl)) = aP (l) for all primes l outside Np (though the construction of ρP
does not require the technique of pseudo representation and was known before the
invention of the technique; see [MW], §9, Proposition 1). When P is arithmetic,
this is the Galois representation associated to the Hecke eigenform fP (constructed
earlier by Eichler–Shimura and Deligne; e.g., [GME], §4.2).

A component I is called a CM component if there exists a nontrivial character
χ : Gal(Q/Q) → I× such that ρI ∼= ρI ⊗ χ. We also say that I has complex
multiplication if I is a CM component. In this case, we call the corresponding
family F a CM family (or we say that F has complex multiplication). If F is a CM
family associated to I with ρI ∼= ρI⊗χ, then χ is a quadratic character of Gal(Q/Q)

which cuts out an imaginary quadratic field M , i.e., χ =
(

M/Q
)
. Write Ĩ for the

integral closure of Λ inside the quotient field of I. The following three conditions
are known to be equivalent:

(CM1) F has CM with ρI ∼= ρI ⊗
(

M/Q
)

(⇔ ρI ∼= IndQM λ̂ for a character λ̂ :

Gal(Q/M) → Ĩ×).
(CM2) For all arithmetic P of Spec(I)(Qp), fP is a binary theta series of the norm

form of M/Q.
(CM3) For some arithmetic P of Spec(I)(Qp), fP is a binary theta series of the

norm form of M/Q.

Indeed, (CM1) is equivalent to ρI ∼= IndQM λ̂ for a character λ̂ : Gal(Q/M) →
Ĩ× unramified outside Np (e.g., [MFG], Lemma 2.15). Since the characteristic

polynomial of ρI(σ) has coefficients in I, its eigenvalues fall in Ĩ; so, the character

λ̂ has values in Ĩ× (see [H86c], Corollary 4.2). Then by (Gal), λ̂P = P ◦ λ̂ :

Gal(Q/M) → Q
×
p for an arithmetic P ∈ Spec(̃I)(Qp) is a locally algebraic p-adic

character, which is the p-adic avatar of a Hecke character λP : M×
A /M× → C×

of type A0 of the quadratic field M/Q. Again by (Gal), fP is the theta series

with q-expansion
∑

a
λP (a)q

N(a), where a runs over all integral ideals of M . By
k(P ) ≥ 2 (and (Gal)), M has to be an imaginary quadratic field in which p is
split (as holomorphic binary theta series of real quadratic fields are limited to
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weight 1; cf. [MFM], §4.8). This shows that (CM1)⇒(CM2)⇒(CM3). If (CM2) is
satisfied, we have an identity Tr(ρI(Frobl)) = a(l) = χ(l)a(l) = Tr(ρI ⊗ χ(Frobl))

with χ =
(

M/Q
)

for all primes l outside Np. By Chebotarev density, we have

Tr(ρI) = Tr(ρI ⊗ χ), and we get (CM1) from (CM2) as ρI is semi-simple. If a
component Spec(I) contains an arithmetic point P with theta series fP as above of
M/Q, either I is a CM component or otherwise P is in the intersection in Spec(h)
of a component Spec(I) not having CM by M and another component having CM
by M (as all families with CM by M are made up of theta series of M by the
construction of CM components in [H86a], §7). The latter case cannot happen
as two distinct components never cross at an arithmetic point in Spec(h) (i.e.,
the reduced part of the localization hP is étale over ΛP for any arithmetic point
P ∈ Spec(Λ)(Qp); see [HMI], Proposition 3.78). Thus (CM3) implies (CM2). We
call a binary theta series of the norm form of an imaginary quadratic field a CM
theta series.

We quote the following key result from [H11], Theorem 3.3 and Corollary 6.3
combined.

Theorem 1.1. Suppose p > 2. Let K := Q[μp∞ ] and A ⊂ Spec(I)(Cp) be an
infinite set of arithmetic points P with fixed weight k(P ) = k ≥ 2. The family F
has complex multiplication if and only if lim supP∈A[K(a(p, fP )) : K] < +∞.

2. Archimedean and p-adic CM types

We define InfL/F Σ =
{
σ : L ↪→ Q

∣∣σ|F ∈ Σ
}
for a subset Σ of the set of embed-

dings of a number field F into Q and a finite extension L/F . Assume that F and
L are CM fields. Then InfL/F Σ is again a CM type of L if Σ is a CM type of F .
For a CM type Σ of F , write Σp for the p-adic places of F induced by ip ◦ σ for
σ ∈ Σ. Write c for the complex conjugation induced by i∞. If Σp ∪Σc

p is the set of
all p-adic places of F with Σp ∩ Σc

p = ∅, we call Σp a p-adic CM type (of F ). We
prove

Theorem 2.1. Let A be an infinite set of arithmetic points in Spec(I) outside
((1+x)− γ2). Suppose p > 2 and that k(P ) for all P ∈ A is a constant k ≥ 2. We
then have

(1) The family F has CM if and only if

ΣP =
{
σ : Q(a(p, fP )) ↪→ Q

∣∣|ip(σ(a(p, fP )))|p = 1
}

is a CM type of Q(a(p, fP )) for all P ∈ A.
(2) The family F has CM if and only if the ratio [Q(a(p, fP )) : Q]/|ΣP | is

bounded independent of P ∈ A.

We avoid primes over ((1 + x)− γ2) because fP for such a prime could have its
abelian variety AP with potentially multiplicative reduction and in that case, ΣP

is the complete set of embeddings of Q(a(p, fP )) into Qp (not a half or less).

Proof. Actually the second assertion essentially implies the first, because we have
[Q(a(p, fP )) : Q]/|ΣP | = 2 for all P ∈ A if ΣP is a CM type. However for expository
reasons, we first prove (1).

A CM abelian variety of type (F,Σ) over a number field has potentially ordinary
good reduction at the place induced by ip if and only if Σp is a p-adic CM type.
Let FP = Q(a(p, fP )). If F has CM under an imaginary quadratic field M , then
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FP contains M , and ΣP = InfFP /M Σ0 for the CM type Σ0 given by Σ0,p = {ip|M}.
This shows the “only if” part.

To prove the “if” part, let KP = Q(εP ) and LP = FP (εP ). Then InfLP /FP
ΣP

is a CM type of LP . Thus we have 2| InfLP /FP
ΣP | = [LP : Q]. Let K = Q[μp∞ ].

By the definition of ΣP , we have ΣP,p∩Σc
P,p = ∅; i.e., ΣP gives rise to a p-adic CM

type. Since K has only one p-adic place and [KP : Q] = pr(P )−1(p− 1), for a fixed
embedding σ0 : K ↪→ Q, we have
(2.1)∣∣InfLP /FP

ΣP

∣∣ = ∣∣{σ ∈ InfLP /FP
ΣP : σ|KP

= σ0|KP
}
∣∣·[KP : Q] = Cpr(P )[LP : KP ]

for the constant C = (p− 1)/p independent of P . Take W sufficiently large so that
all characters of (Z/NpZ)× have values in W×.

Write H =
⊕

ψ h(ψ), where ψ runs over all (even) characters of (Z/NpZ)×.

Since
∣∣InfLP /FP

ΣP

∣∣ is at most the number of conjugate slope 0 forms fσ
P indexed

by σ ∈ ΣP (which is bounded by the rank of the Hecke algebra H/((1+x)p
r −γk)H

acting on them), we have, for r = r(P ),

(2.2) | InfLP /FP
ΣP | ≤ rankW H/((1 + x)p

r − γk)H = pr(P ) · rankW [[x]]H.

Since [K(a(p, fP )) : K] = [LP : LP ∩K] ≤ [LP : KP ] as LP ∩K ⊃ KP , (2.1) and
(2.2) combined tells us that

[K(a(p, fP )) : K] ≤ C−1 rankW [[x]]H.

This is impossible if F does not have CM, since supP∈A[K(a(p, fP )) : K] = ∞ by
Theorem 1.1.

We now prove (2). Write the bound as B; so, [FP : Q] ≤ B|ΣP | for all P ∈ A.
Thus [LP : Q] ≤ B| InfLP /FP

ΣP |. Since the equality (2.1) and the estimate (2.2)
still hold, we have, for C = (p− 1)/p,

[K(a(p, fP )) : K]pr(P )C = [LP : LP ∩K]pr(P )C ≤ [LP : KP ]p
r(P )C = [LP : Q]

= B
∣∣InfLP /FP

ΣP

∣∣ ≤ Bpr(P ) rankW [[x]] H,

which implies that

[K(a(p, fP )) : K] ≤ BC−1 rankW [[x]]H.

Again by Theorem 1.1, F has CM. �

If k(P ) = 2 and ψ2εP �= 1, ΣP is a CM type if and only if the abelian variety
AP associated to fP in [IAT] has ordinary good reduction over Zp[μpr(P )+1 ]. To see

this, as is well known, the Frobenius endomorphism Φ of ÃP := AP ⊗Zp[μpr(P )+1 ]

Fp coincides with U(p) on the étale Barsotti–Tate group ÃP [p
∞]et (e.g., [GME],

Theorem 4.2.6 (1)); so, the characteristic polynomial P(X) of Φ over Q coincides
with a power of the characteristic polynomial of α := a(p, fP ). Then decomposing
the total set of field embeddings of Q(fP ) into

InfQ(fP )/FP
ΣP � ΞP � InfQ(fP )/FP

Σc
P ,

the set ΞP is characterized by{
σ : Q(fP ) ↪→ Qp

∣∣p−1 < |ip(ασ)|p < 1
}
.
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Thus ΞP �= ∅ (⇔ ΣP is not a CM type) implies that the Newton polygon of P(X)

has middle positive slope between 0 and 1; so, ÃP is ordinary if and only if ΣP is
a CM type. Thus we get from the above theorem the following fact.

Corollary 2.2. Let A be an infinite set of arithmetic points in Spec(I) outside
((1 + x)− γ2). Suppose p > 2 and k(P ) = 2 for all P ∈ A. The family F has CM
if and only if the abelian variety AP associated to fP by Shimura has ordinary good
reduction over Zp[μpr(P )+1 ] for all P ∈ A. In particular, if F does not have CM, the
set made up of arithmetic points P with AP having ordinary good reduction over
Zp[μpr(P )+1 ] is a finite set.

Question 2.3. For a given slope 0 family F without CM indexed by Spec(I), let

Ord2(I) = {P |AP has ordinary good reduction over Zp[μpr(P )+1 ]}.
By the corollary above, this set is a finite set. What are the numbers

|Ord2(I)| and R = sup
P∈Ord2(I)

r(P )?

Could Ord2(I) be empty?

For N = 1 and for very small primes p = 3, 5 and 7, because of the nonexistence
of slope 0 analytic families of prime-to-p level 1, we conclude the nonexistence of
non-CM Q-simple abelian varieties of GL(2)-type defined over Z[ 1p ] with potentially

ordinary good reduction at p. Similarly, it is known that X1(Np) has genus 0 if 1 ≤
Np ≤ 10 andNp = 12; so, we can extend a bit our list of (N, p) without a potentially
p-ordinary abelian variety of GL(2)-type of prime-to-p conductor N . On the other
hand, the prime p = 11 is the smallest to have a nontrivial family (of prime-to-p
level 1), but even for this simplest family at p = 11 containing Ramanujan’s Δ-
function, we do not know if Ord2(I) = ∅. Thus it would be interesting to make
specific computations targeted to finding potentially ordinary factors of the modular
Jacobians for a fixed small level N .

Eknath Ghate informed me of the following example of AP with nonordinary
good reduction at p = 13: Take weight 2, level 221 = 13 · 17 with quadratic
nebentypus. Then the Hecke algebra breaks into 4 Galois orbits (of dimension each
4+4+6+6 dimensional over Q). The two six-dimensional factors have equal Hecke
polynomial for T (13) given by

x6 + 8x5 + 31x4 + 104x3 + 403x2 + 1352x+ 2197 ≡ x4(x2 + 8x+ 5) mod 13.

Thus we have slopes 0, 1/2, and 1, each of multiplicity 2 for the above polynomial.
These abelian varieties are associated to slope 0 forms but do not have ordinary
good reduction over Z13. See [BG], Table I for some other information of this
example. Numerically, we can find AP with nonordinary reduction modulo p, but
they are rather rare for small level primes p; so, Ord2(I) could be large though it
is a finite set.

The same question can be asked, fixing k(P ) = k > 2 and moving arithmetic P ,
for

Ordk(I)={P |the motive MP is potentially ordinary crystalline over Zp[μpr(P )+1 ]}.
Here MP is the rank 2 motive attached to fP with coefficients in Q(fP ). However
the ordinarity here means that its Newton polygon of MP as a motive with coeffi-
cients in Q coincides with the Hodge polygon of MP . Again for (N, p) listed above
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for the nonexistence of such abelian schemes, we conclude also the nonexistence of
such motives independent of weight k.

We add here a p-adic version of Theorem 2.1. Though we do not use the following
result in the proof of the main theorem, the result might have some value on its
own, as there is some hope of determining (asymptotically) the number of primes
over p and their ramification in the Hecke field via this type of results.

Theorem 2.4. Let the notation be as in Theorem 2.1. Let A be an infinite set of
arithmetic points in Spec(I) outside ((1 + x) − γ2). Suppose p > 2 and that k(P )
for P ∈ A is a constant k ≥ 2. We then have:

(1) The family F has CM if and only if ΣP,p is a p-adic CM type of Q(a(p, fP ))
for all P ∈ A.

(2) The family F has CM if and only if the ratio [Q(a(p, fP )) : Q]/|ΣP,p|pr(P )

is bounded independent of P ∈ A.

Proof. By the definition of ΣP , we have ΣP,p∩Σc
P,p = ∅. If ΣP,p is a p-adic CM type

of Q(a(p, fP )), then plainly ΣP is a CM type of Q(a(p, fP )); so, the first assertion
follows from Theorem 2.1 (1).

We prove (2). We use the notation defined in the proof of Theorem 2.1; so,
FP = Q(a(p, fP )), KP = Q(εP ) and LP = FP (εP ). Let K = Q[μp∞ ]. Since K

has only one p-adic place and [KP : Q] = pr(P )−1(p − 1), for a fixed embedding
σ0 : K ↪→ Q, we have

(2.3)
∣∣InfLP /FP

ΣP,p

∣∣ ≤ ∣∣{σ ∈ InfLP /FP
ΣP : σ|KP

= σ0|KP
}
∣∣ = [LP : KP ].

Take W sufficiently large so that all characters of (Z/NpZ)× have values in W×.
Write H =

⊕
ψ h(ψ), where ψ runs over all characters of (Z/NpZ)×. On the other

hand, since InfLP /FP
ΣP is at most the number of conjugate slope 0 forms fσ

P (which

is bounded by the rank of the Hecke algebra H/((1+x)p
r − γk)H acting on them),

we have, for r = r(P ),

| InfLP /FP
ΣP,p|pr(P )−1(p− 1) ≤ rankW H/((1 + x)p

r − γk)H = pr(P ) rankW [[x]]H.

Thus for C = p
p−1 , we have

(2.4) | InfLP /FP
ΣP,p| ≤ C rankW [[x]]H.

Write the bound as B; so, [FP : Q]/pr(P ) ≤ B|ΣP,p| for all P ∈ A. Thus
[LP : KP ] ≤ C−1B| InfLP /FP

ΣP |. Since [K(a(p, fP )) : K] = [LP : LP ∩K] ≤ [LP :
KP ] as LP ∩ K ⊃ KP , by the equality (2.3) and the estimate (2.4), we have, for
C = (p− 1)/p,

[K(a(p, fP )) : K] = [LP : LP ∩K] ≤ [LP : KP ]

= C−1B
∣∣InfLP /FP

ΣP,p

∣∣ ≤ C−1B rankW [[x]] H,

which implies that

[K(a(p, fP )) : K] ≤ BC−1 rankW [[x]]H.

Again by Theorem 1.1, F has CM. �
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3. Super-cuspidality implies super-singularity

Let f be an elliptic Hecke eigenform of weight 2 which generates an auto-
morphic representation π =

⊗
l πl with local representation πl at primes l. Let

ρλ : Gal(Q/Q) → GL2(Ql) be the λ-adic Galois representation associated to f .
Then we know by [C], Théorème A and [W], if πp is super-cuspidal and p > 2,
for λ � p, there exists a quadratic extension M/Qp and an infinite order character

ϕ : Gal(Qp/M) → Q
×
l such that ρλ|Dp

is irreducible, ρλ|Dp
∼= IndQM ϕ and ϕ|Ip

has finite order (for the decomposition group Dp = Gal(Qp/Qp) and its inertia
subgroup Ip). Even if p = 2, again by Weil [W] (see also [K], 5.1), there exists a
finite extension K of Q2 and a quadratic extension M/K such that ρλ|D′

p
is irre-

ducible, ρλ|D′
p
∼= IndKM ϕ and ϕ|I′

p
has finite order (now for the decomposition group

D′
p = Gal(Qp/K) and its inertia subgroup I ′p). Since any Galois conjugate fσ has

its automorphic representation super-cuspidal at p, writing l for the rational prime
below λ, the l-adic Tate module of Shimura’s abelian variety Af attached to f (cf.
[IAT], Theorem 7.14) becomes unramified at p over a finite extension of Qp; so, Af

has potentially good reduction at p by the theorem of Néron–Ogg–Shafarevich in
[ST].

Proposition 3.1. Let the notation and the assumption be as above. If π is super-
cuspidal at p, Af has potentially good reduction at p but can never be ordinary.

Proof. We use the notation introduced above the proposition. In particular, take
K = Qp if p > 2 and K/Q2

to be as defined above if p = 2, and M/K is the quadratic

extension specified above the proposition. Let E be the subfield of Q generated over
Q by the Hecke eigenvalues of f ; so, we identify E with the E-linear endomorphism
algebra End0E(Af/Q).

We have already proven that Af has potentially good reduction modulo p. Take

a finite extension L ⊂ Qp of Qp such that Af extends to an abelian scheme A
over the integer ring of L. By extending L, we may assume that L contains the

field M and is a Galois extension of K. Let Ã be the special fiber of A. Define

another character ψ : Gal(Qp/M) → Q
×
l by ψ(g) = ϕ(τgτ−1) for an element τ ∈

Gal(Qp/K) inducing a nontrivial automorphism on M . Write ξL for the restriction

of ξ to Gal(Qp/L) ⊂ Gal(Qp/M) for any character ξ of Gal(Qp/M). Then the

action of Gal(Qp/L) on the λ-adic Tate module TλÃ is isomorphic to ϕL⊕ψL. The
two characters ϕL and ψL are unramified. Thus for the prime element � of L and
its Artin symbol φ := [�,L], ϕL(φ) + ψL(φ) ∈ E, and ϕL(φ)ψL(φ) is equal to the
value at φ of the l-adic cyclotomic character (after extending L further if necessary);
so, we have ϕ(φ)ψ(φ) = |NL/Qp

(�)|−1
p . Thus P (X) = (X − ϕ(φ))(X − ψ(φ)) is in

E[X]. Then the characteristic polynomial over Q of the Frobenius endomorphism Φ

of Ã over the residue field F of L is given by
∏

σ:E↪→Q
P σ(X) for conjugates P σ(X)

of P (X) under field embeddings σ : E → Q. If (�)e = (p) in the integer ring of L,
we get

ψσ(φe) = ψσ([p, L]) = ϕσ(τ [p, L]τ−1) = ϕσ([pτ , L]) = ϕσ([p, L]) = ϕσ(φe).

This implies that |ϕσ(φ)|p = |ψσ(φ)|p, and by ϕ(φ)ψ(φ) = |NL/Qp
(�)|−1

p already
mentioned, we have

|ϕσ(φe)ψσ(φe)|p = |ϕ(φ)|2ep = |ψ(φ)|2ep = |NL/Qp
(p)|p.
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Thus we get |ϕσ
L(φ)|p = |ψσ(φ)|p = (NL/Q(p))

−1/(2e). Therefore 0 < |ψσ(φ)|p < 1,

and hence, all eigenvalues of Φ have positive slope between 0 and 1; so, Ã cannot

be ordinary, and moreover Ã(Fp) = {0}. �

Though it might be well known to specialists, the fact that |ϕ([p, L])|p < 1 (used
in the above proof) was once pointed out to the author by A. Yamagami. In the
following remark, we would like to show that there are infinitely many weight 2
Hecke new eigen forms f of Haupt-typus of p-power level super cuspidal at p for
some choice of p > 2 (i.e., infinity of twist equivalence classes of Q-simple abelian
varieties ofGL(2)-type with potentially super-singular good reduction at p and good
reduction everywhere else). This may again be well known, but it is added as the
author was explicitly asked this question by some geometers far from automorphic
theory.

Remark 3.2. Pick a prime p �≡ −1 mod 4 and a quaternion algebra D over Q ex-
actly ramified at p and ∞. Consider the linear algebraic group G/Q of adjoint type

associated toD× (i.e., G(Q) = D×/Q× identifying Q× with the center ofD×). Pick

a maximal order OD and put G(Ẑ(p)) = (OD ⊗Z Ẑ
(p))×/(Ẑ(p))× ⊂ G(A(∞)), where

Ẑ(p) =
∏

l �=p Zl. Then we consider the L2-space L2(G(Q)\G(A)/G(Ẑ(p))G(R))

of square integrable functions on the double coset space G(Q)\G(A)/G(Ẑ(p))G(R)
with respect to an invariant measure under right translation by elements ofG(A(∞)).
The right translation gives rise to a unitary representation which has an infinite
discrete spectrum of irreducible automorphic representations πD with multiplicity
1 (see [AAG]). Such a πD appearing in this spectrum which does not have nonzero

G(Ẑ)-fixed vectors is transferred, by the Jacquet-Langlands correspondence (e.g.
[AAG]), to a holomorphic automorphic representation π of GL(2) of weight 2 of
p-power conductor super-cuspidal at p. Among such πs, there is no automorphic
induction from an imaginary quadratic field M = Q(

√
−D) of discriminant D,

since such an automorphic induction has conductor divisible by D (as there is no
imaginary quadratic field only ramified at p because of p �≡ −1 mod 4). Thus π
as above corresponds to a Q-simple abelian variety of GL(2)-type with potentially
good super-singular reduction modulo p and having good reduction everywhere else.
The twist classes of πD are finitely many as πD has trivial central character. Thus
in this case, plainly, there are infinitely many twist equivalence classes of Q-simple
abelian varieties of GL(2)-type without CM having potentially super-singular good
reduction at p and good reduction everywhere else. Without assuming p �≡ −1
mod 4, by counting CM automorphic representations appearing in this spectrum,
it is plausible to get in general infinity of twist equivalence classes in the poten-
tially super-singular case. Thus the finiteness of twist equivalence classes should be
limited to potentially ordinary ones.

Proposition 3.3. If Af has potentially ordinary good reduction modulo p, then

πp is in principal series of the form π(α, β) for two characters α, β : Q×
p → Q

×
p ,

and one of α(p) and β(p) is a p-adic unit (i.e., max(|α(p)|p, |β(p)|p) = 1); so, f is
nearly p-ordinary, and its twist by a character modulo p-power has slope 0.

Proof. By the above proposition, πp has to be either in principal series or Stein-
berg. By [C], Théorème A, Steinberg cases correspond to potentially multiplica-
tive reduction at p; so, πp has to be in principal series; so, πp = π(α, β). Since
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|αβ(p)|p = |p|p, we may assume that 1 ≥ |α(p)|p ≥ |β(p)|p > 0. We have canon-
ical isomorphisms Z×

p
∼= Gal(Qp[μp∞ ]/Qp) ∼= Gal(Q[μp∞ ]/Q). Thus regarding

α, β as Galois characters, we can lift α|Ip and β|Ip to a unique global charac-

ter α̃, β̃ : Gal(Q[μp∞ ]/Q) → Q
×

of finite order. Regarding these characters as

adelic Hecke characters, we can think of π ⊗ α̃−1 and π ⊗ β̃−1. We write A′

for Shimura’s abelian variety associated to π ⊗ α̃−1. Again by [C], Théorème A
or [AME], §14.5 or [L], A′ has good reduction modulo p over the fixed field of
Ker(α̃−1β), and the Frobenius endomorphism of A′ shares the same characteristic
polynomial with the U(p) operator (e.g., [GME], Theorem 4.2.6) and is given by
α̃−1α(p) (up to Galois conjugation). Thus if A′ has ordinary good reduction at p,
we get |α(p)| = |α̃−1α(p)|p = 1, and the new form f ⊗ α̃−1 associated to π ⊗ α̃−1

has slope 0. �

4. Twist classes of ordinary abelian varieties of GL(2)-type

We prove the following theorem, which implies the main theorem in the intro-
duction:

Theorem 4.1. Suppose p > 2. For a given positive integer N prime to p, there are
only finitely many twist classes of non-CM Q-simple abelian varieties of GL(2)-type
with potentially good ordinary reduction modulo p and with prime-to-p conductor
N .

As remarked already after Corollary 2.2, if we assume 1 < Np ≤ 10 or Np = 12,
there is no such abelian variety over Q as in the above theorem.

Proof. If A is such an abelian variety as in the theorem, by the theorem of Khare–
Wintenberger ([KW], Theorem 10.1) combined with a theorem of Faltings (e.g.,
[ARG]), A is isogenous to Af for an elliptic Hecke eigenform f . Twisting f by a
Dirichlet character of p-power conductor, we may assume that f is a p-ordinary form
of slope 0 (see Proposition 3.1 and Proposition 3.3 and their proofs). The prime-to-
p conductor of f remains N after the twist by a character of the p-power conductor.
Then f belongs to a p-adic analytic family of slope 0 forms of prime-to-p conductor
N . Since there are only finitely many such families and each family can contain
only finitely many Af of potentially ordinary good reduction by Corollary 2.2, the
desired result follows. �

Remark 4.2. Fix an integer k ≥ 2. We look into a rank 2 Q-simple motive of weight
(k − 1, 0), which has its compatible system of Galois representations. Though we
do not know if the identity of L-functions of two Grothendieck motives implies that
the two motives are isomorphic (assuming their coefficient fields are the same), we
can anyway think of twist equivalence classes of such motives in an obvious sense.
Again by the theorem of Khare–Wintenberger, such a motive is twist equivalent to
a modular motive (constructed in [S]) belonging to a slope 0 family. Then, basically
by the same argument, we can prove finiteness of twist classes of potentially ordinary
crystalline Q-simple motives of rank 2 of a given prime-to-p conductor. Again for
the same small pairs (N, p) we listed above, there are no such motives (independent
of weight k).

Remark 4.3. Our proof of finiteness of twist classes is based on the result in [H11]
(i.e., Theorem 1.1 in the text) and the solution of Serre’s modulo p modularity
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conjecture. It is plausible that our conjecture follows from the totally real version
of Serre’s modularity conjecture once the result of [H11] is generalized to the Hilbert
modular case. In the proof of Theorem 1.1 given in [H11], we used at many places
the fact that the base Iwasawa algebra has a single variable. However, the number
of variables of the p-ordinary Hecke algebra of level p∞ (under the notation in the
conjecture) is greater than or equal to [Fp : Qp]. Thus more work needs to be done
to generalize Theorem 1.1 to Hilbert modular cases.
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