* Cyclicity of adjoint Selmer groups and fundamental units

Haruzo Hida Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A. A talk in Iwasawa 2017 at University of Tokyo.

*The author is partially supported by the NSF grant: DMS 1464106.

Generalizing a result of Cho–Vatsal (Crelle, 2003), we prove cyclicity over the Hecke algebra of the adjoint Selmer group of each modular deformation of an induced irreducible representation of a finite order character $\text{Gal}(\overline{\mathbb{Q}}/F) \to \overline{\mathbb{F}}_p$ for a real quadratic field F under mild conditions.

A conjecture.

Let ρ : $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(W)$ be an odd absolutely irreducible Artin representation with coefficients in a complete discrete valuation ring W with finite residue field \mathbb{F} of characteristic $p \nmid |\operatorname{Im}(\rho)|h$ for the class number h of the splitting field of $Ad(\rho)$. Suppose $\rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} = \begin{pmatrix} \epsilon & * \\ 0 & \delta \end{pmatrix}$ with unramified δ . Let $\overline{\rho} := \rho$ mod \mathfrak{m}_W .

Conjecture: Suppose p > 3 and $\epsilon \not\equiv \delta \mod \mathfrak{m}_W$. For the minimal *p*-ordinary universal deformation $\rho_{\mathbb{T}}$ of $\overline{\rho}$ with values in $\operatorname{GL}_2(\mathbb{T})$ for the universal ring \mathbb{T} , Pontyagin dual of $\operatorname{Sel}(Ad(\rho_{\mathbb{T}}))^{\vee}$ is pseudo isomorphic to $\mathbb{T}/(L_p)$ as \mathbb{T} -modules for a non-zero divisor $0 \neq L_p \in \mathbb{T}$.

Here $Ad(\rho_{\mathbb{T}})$ acts on $\mathfrak{sl}_2(\mathbb{T})$ by $x \mapsto \rho_{\mathbb{T}}(\sigma) x \rho_{\mathbb{T}}(\sigma)^{-1}$. The algebra \mathbb{T} is an algebra over the Iwasawa algebra $\Lambda = W[[\Gamma]] = W[[T]]$ (with t = 1+T) by det $\rho_{\mathbb{T}}$ factoring through $\Gamma := \operatorname{Gal}(\mathbb{Q}_p(\mu_p^{\infty})/\mathbb{Q}_p(\mu_p))$, and the element $L_p \neq 0$ is the adjoint *p*-adic L-function $L_p(Ad(\rho_{\mathbb{T}}))$ interpolating $L(1, Ad(\rho_P))$ (for arithmetic points $P \in \operatorname{Spec}(\mathbb{T})$) up to units in \mathbb{T} .

$\S 0.$ Setting over a real quadratic field.

In this lecture, we deal with the case where $\rho = \operatorname{Ind}_{F}^{\mathbb{Q}} \varphi$ for a real quadratic field F and a character $\varphi : \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to W^{\times}$. Here is our setting:

• F: a real quadratic field with discriminant D and a fundamental unit ε . Let ς be the generator of Gal (F/\mathbb{Q}) .

• Pick a character φ : $\operatorname{Gal}(\overline{\mathbb{Q}}/F) \to \overline{\mathbb{Q}}^{\times}$ with mod p reduction $\overline{\varphi}$ with values in \mathbb{F} (and put $W = W(\mathbb{F})$). Let $\varphi^{-}(\sigma) = \varphi(\sigma \widetilde{\varsigma} \sigma^{-1} \widetilde{\varsigma}^{-1})$ and $\overline{\delta}(\sigma) = \overline{\varphi}(\widetilde{\varsigma} \sigma \widetilde{\varsigma}^{-1})$ for $\widetilde{\varsigma} \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ with $\widetilde{\varsigma}|_{F} = \varsigma$.

• Let K^-/F be the maximal *p*-abelian anticyclotomic extension unramified outside *p*. Anticyclotomy means that $\tilde{\varsigma}\sigma\tilde{\varsigma}^{-1} = \sigma^{-1}$ for $\sigma \in \text{Gal}(K^-/F)$. Let $\Gamma_- := \text{Gal}(K^-/F) \cong \text{Gal}(K_{\mathfrak{p}}/F)$ (a finite group), where $K_{\mathfrak{p}}$ is the maximal *p*-abelian extension unramified outside \mathfrak{p} .

Assume

• $p \nmid h_F$ for the class numbe h_F of F and $(p) = \mathfrak{p}\mathfrak{p}^{\varsigma}$ in O with $\mathfrak{p} \neq \mathfrak{p}^{\varsigma}$ for the generator ς of $\operatorname{Gal}(F/\mathbb{Q})$.

§1. Cyclicity theorem. Write f for the prime-to-*p*-conductor of $\overline{\varphi}$ and put $N = DN_{F/\mathbb{Q}}(\mathfrak{c})$ (the level). For the conductor \mathfrak{c} of φ , we suppose $\mathfrak{f}|\mathfrak{c}|\mathfrak{fp}$. Suppose (H1) $\mathfrak{f}|\mathfrak{c}|\mathfrak{cp}$ and $N_{F/\mathbb{Q}}(\mathfrak{c})$ is square-free (so, N is cube-free), (H2) p is prime to $N \prod_{l|N} (l-1)$ for prime factors l of N, (H3) φ^- has order at least 3 with $\varphi^-(\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)) \neq \{1\}$, (H4) the class number h_F of F is prime to p. We describe a proof of

Theorem A: Under (H1–4), if the class number $h_{F(\varphi^{-})}$ of the splitting field $F(\varphi^{-})$ of φ^{-} is prime to p, $Sel(Ad(\rho_{\mathbb{T}}))^{\vee} \cong \mathbb{T}/(L_p)$ as \mathbb{T} -modules for a non-zero divisor $L_p \in \mathbb{T}$.

Note that Γ_{-} is a finite cyclic *p*-group (under (H4)), and we see

$$W[\Gamma_{-}] \cong \Lambda/(\langle \varepsilon \rangle - 1)$$
 for $\langle \varepsilon \rangle := t^{\log_p(\varepsilon)/\log_p(1+p)}$.

§2. Cyclicity and Hecke algebra. The cyclicity follows from a ring theoretic assertion on the big ordinary Hecke algebra h as Spec(T) is a connected component of Spec(h). We identify the Iwasawa algebra $\Lambda = W[[\Gamma]]$ with the one variable power series ring W[[T]] by $\Gamma \ni \gamma = (1 + p) \mapsto t = 1 + T \in \Lambda$. Take a Dirichlet character $\psi : (\mathbb{Z}/Np\mathbb{Z})^{\times} \to W^{\times}$, and consider the big ordinary Hecke algebra h (over Λ) of prime-to-p level N and the character ψ . We just mention here the following three facts about h which has T as a local factor:

• h is an algebra flat over the Iwasawa (weight) algebra $\Lambda := W[[T]]$ interpolating *p*-ordinary Hecke algebras of level Np^{r+1} , of weight $k + 1 \ge 2$ and of character $\epsilon \psi \omega^{-k}$, where $\epsilon : \mathbb{Z}_p^{\times} \to \mu_{p^r}$ $(r \ge 0)$ and $k \ge 1$ vary. If N is cube-free, h is a **reduced** algebra; • Each prime $P \in \text{Spec}(h)$ has a unique Galois representation

 $\rho_P : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\kappa(P)), \operatorname{Tr}\rho_P(\operatorname{Frob}_l) = T(l) \mod P(l \nmid Np)$ for the residue field $\kappa(P)$ of P;

• $\rho_P|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \begin{pmatrix} \epsilon_P & * \\ 0 & \delta_P \end{pmatrix}$ with unramified quotient character δ_P .

§3. Ring theoretic setting. Since \mathbb{T} is universal among p-ordinary deformations of $\overline{\rho} := \rho \mod \mathfrak{m}_W$ with certain extra properties insensitive to the twist $\rho \mapsto \rho \otimes \chi$ for $\chi = \left(\frac{F/\mathbb{Q}}{2}\right)$, \mathbb{T} has an **algebra involution** σ over Λ coming from the twist. For any ring A with an involution σ , we put $A_{\pm} = A^{\pm} := \{x \in A | \sigma(x) = \pm x\}$. Then $A_{\pm} \subset A$ is a subring and A_{-} is an A_{\pm} -module.

• For the ideal $I := \mathbb{T}(\sigma - 1)\mathbb{T}$ of \mathbb{T} generated by \mathbb{T}_- (the "-" eigenspace), we have a canonical Λ -algebra isomorphism

$$\mathbb{T}/I \cong W[\Gamma_{-}]$$

of Cho–Vatsal, where the A-algebra structure is given by sending $u \in \Gamma$ naturally into $u \in O_{\mathfrak{p}}^{\times} = \mathbb{Z}_p^{\times}$ and then projecting the local Artin symbol $\tau = [u, F_{\mathfrak{p}}] = [u, \mathbb{Q}_p] \in \Gamma$ to $\sqrt{\tau \tilde{\varsigma} \tau^{-1} \tilde{\varsigma}^{-1}} = \tau^{(1-\varsigma)/2} \in \Gamma_{-1}$. By this we have $\mathbb{T}/I \cong W[\Gamma_{-1}] \cong \Lambda/(\langle \varepsilon \rangle - 1)$.

Question: Under what condition, we have $\mathbb{T} \cong \Lambda[\sqrt{\langle \varepsilon \rangle} - 1]$? The condition $p \nmid h_F$ is necessary for this by Cho–Vatsal.

$\S4$. Known structure of \mathbb{T} .

• The fixed points

$$\operatorname{Spec}(\mathbb{T})^{\sigma=1} \cong \operatorname{Spec}(\mathbb{T}/\mathbb{T}(\sigma-1)\mathbb{T}) = \operatorname{Spec}(\mathbb{T}/I)$$

is therefore isomorphic to Spec($W[\Gamma_{-}]$); note that $\mathbb{T} \neq W[\Gamma_{-}]$ as $W[\Gamma_{-}]$ has finite rank over W, while \mathbb{T} is free of finite rank over Λ .

- Since $\mathbb{T} \neq W[\Gamma_{-}]$, σ is non-trivial on \mathbb{T} .
- The ring \mathbb{T} is reduced (as N is cube-free).

Plainly $\mathbb T$ is stable under $\sigma,$ but

 $\operatorname{Spec}(\mathbb{T})^{\sigma=1}$ has codimension 1 in $\operatorname{Spec}(\mathbb{T})$,

which does not therefore contain an irreducible component.

§5. Galois deformation theory. By irreducibility of $\overline{\rho}$, we have a Galois representation

 $\rho_{\mathbb{T}}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ with $\operatorname{Tr}(\rho_{\mathbb{T}}(\operatorname{Frob}_l)) = T(l)$

for all primes $l \nmid Np$. By the celebrated $R = \mathbb{T}$ theorem of Taylor–Wiles, the couple $(\mathbb{T}, \rho_{\mathbb{T}})$ is universal among deformations $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(A)$ satisfying (D1) $\rho \mod \mathfrak{m}_A \cong \overline{\rho} := \operatorname{Ind}_F^{\mathbb{Q}} \overline{\varphi}$. (D2) $\rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \begin{pmatrix} \epsilon & * \\ 0 & \delta \end{pmatrix}$ with δ unramified and $\overline{\delta} = (\delta \mod \mathfrak{m}_A)$. (D3) $\det(\rho)|_{I_l} = \psi_l$ for the *l*-part ψ_l of ψ for each prime l|N. (D4) $\det(\rho)|_{I_p} \equiv \psi|_{I_p} \mod \mathfrak{m}_A$ ($\Leftrightarrow \epsilon|_{I_p} \equiv \psi|_{I_p} \mod \mathfrak{m}_A$). By the $R = \mathbb{T}$ theorem and a theorem of Mazur,

$$I/I^{2} = \Omega_{\mathbb{T}/\Lambda} \otimes_{\mathbb{T}} \mathbb{T}/I \cong \operatorname{Sel}(Ad(\operatorname{Ind}_{F}^{\mathbb{Q}} \Phi))^{\vee}$$
$$\Omega_{\mathbb{T}/\Lambda} \cong \operatorname{Sel}(Ad(\rho_{\mathbb{T}}))^{\vee},$$

and principality of I implies cyclicity, where Φ : $Gal(\overline{\mathbb{Q}}/F) \rightarrow W[Gal(K_{\mathfrak{p}}/F)]^{\times} \cong W[\Gamma_{-}]^{\times}$ is a character sending σ to $\varphi(\sigma)\sigma|_{K_{\mathfrak{p}}}$.

$\S6$. Ring theoretic theorem.

Theorem B: Suppose (H1–4). Then if the class number $h_{F(\varphi^{-})}$ of $F(\varphi^{-}) = \overline{\mathbb{Q}}^{\text{Ker}(\varphi^{-})}$ is prime to p, the following equivalent statements hold true:

(1) The rings \mathbb{T} and \mathbb{T}_+ are both local complete intersections free of finite rank over Λ .

(2) The \mathbb{T} -ideal $I = \mathbb{T}(\sigma - 1)\mathbb{T} \subset \mathbb{T}$ is principal and is generated by a non-zero-divisor $\theta \in \mathbb{T}_-$ with $\theta^2 \in \mathbb{T}_+$, and $\mathbb{T} = \mathbb{T}_+[\theta]$ is free of rank 2 over \mathbb{T}_+ .

The implication $(1) \Rightarrow (2)$ follows from the lemma in the following slide.

$\S7. A$ key duality lemma

Here is a simplest case of the theory of dualizing modules by Grothendieck, Hartshorne and Kleiman (exploited by Cho–Vatsal):

Lemma 1 (Key lemma). Let S be a p-profinite Gorenstein integral domain and A be a reduced Gorenstein local S-algebra free of finite rank over S. Suppose

- A has a ring involution σ with $A_+ := \{a \in A | \sigma(a) = a\}$,
- A_+ is Gorenstein,
- $Frac(A)/Frac(A_+)$ is étale quadratic extension.
- $\mathfrak{d}_{A/A_{\perp}}^{-1} := \{x \in \operatorname{Frac}(A) | \operatorname{Tr}_{A/A_{\perp}}(xA) \subset A_{\perp} \} \supsetneq A$,

Then A is free of rank 2 over A_+ and $A = A_+ \oplus A_+\theta$ for an element $\theta \in A$ with $\sigma(\theta) = -\theta$.

To see (1) \Rightarrow (2) of Theorem B, we apply the lemma to $A = \mathbb{T}$.

§8. Sketch of Theorem $B \Rightarrow$ Theorem A.

Assuming (1), by Key lemma, $\mathfrak{d}_{\mathbb{T}/\mathbb{T}_+} = (\theta)$ for a non-zero divisor $\theta \in \mathbb{T}$. By "R = T" theorem, we see that $\mathbb{T}/I \cong W[\Gamma_-]$. Then by a theorem of Mazur, we have

 $\Omega_{\mathbb{T}/\Lambda} \cong \operatorname{Sel}(Ad(\rho_{\mathbb{T}}))^{\vee}$ and $I/I^2 \cong \Omega_{\mathbb{T}/\Lambda} \otimes_{\mathbb{T}} W[\Gamma_-] (\cong \operatorname{Sel}(\operatorname{Ind}_F^{\mathbb{Q}} \Phi)^{\vee})$, where Φ : $\operatorname{Gal}(\overline{\mathbb{Q}}/F) \to W[\Gamma_-]^{\times}$ is the universal character deforming φ unramified outside \mathfrak{cp} . Since $I/I^2 = (\theta)/(\theta^2)$ is cyclic, by Nakayama's lemma, $\Omega_{\mathbb{T}/\Lambda} \cong \operatorname{Sel}(Ad(\rho_{\mathbb{T}}))^{\vee}$ has one generator over \mathbb{T} . Later we will see the annihilator of the generator is a principal ideal (L_p) for a non-zero divisor $L_p \in \mathbb{T}$.

The proof of the adjoint class number formula by Wiles and myself (Pune IISER lecture notes Chap. 6) shows $L_p = L_p(Ad(\rho_T))$ up to units for the adjoint *p*-adic *L*-function $L_p(Ad(\rho_T)) \in T$.

(2) \Rightarrow (1) of Theorem B: We have $I = (\theta) \subset \mathbb{T}$ and $I_+ = (\theta^2) \subset \mathbb{T}_+$. Note that $\mathbb{T}/(\theta) \cong W[\Gamma_-] \cong \mathbb{T}_+/(\theta^2)$. Since θ is a non-zero divisor, the two rings \mathbb{T} and \mathbb{T}_+ are local complete intersections since $W[\Gamma_-]$ is a local complete intersection.

§9. Presentation of \mathbb{T} for the proof of (1) of Theorem B. To see a possibility of applying the key lemma to \mathbb{T}/\mathbb{T}_+ , we like to lift \mathbb{T} to a power series ring $\mathcal{R} = \Lambda[[T_1, \ldots, T_r]]$ with an involution σ_{∞} such that $\mathcal{R}^+ := \{x \in \mathcal{R} | \sigma_{\infty}(x) = x\}$ is Gorenstein and that $(\mathcal{R}/\mathfrak{A}, \sigma_{\infty} \mod \mathfrak{A}) \cong (\mathbb{T}, \sigma)$ for an ideal \mathfrak{A} stable under σ_{∞} .

Taylor and Wiles (with an improvement by Diamond and Fujiwara) found a pair $(\mathcal{R} := \Lambda[[T_1, \ldots, T_r]], (S_1, \ldots, S_r))$ with a regular sequence $S := (S_1, \ldots, S_r) \subset \Lambda[[T_1, \ldots, T_r]])$ such that

$$\Lambda[[T_1,\ldots,T_r]]/(S_1,\ldots,S_r)\cong\mathbb{T}$$

by their Taylor–Wiles system argument.

We need to lift σ somehow to an involution $\sigma_{\infty} \in \operatorname{Aut}(\mathcal{R})$ and show also that \mathcal{R}^+ is Gorenstein. If further $\mathcal{R} \cdot \mathcal{R}^- = (\theta_{\infty})$, the image $\theta \in \mathbb{T}^-$ of θ_{∞} in \mathbb{T} generates I as desired. §10. Taylor–Wiles method. Taylor–Wiles found an integer r > 0 and an infinite sequence of r-sets $\mathcal{Q} := \{Q_m | m = 1, 2, ...\}$ of primes $q \equiv 1 \mod p^m$ such that for the local ring \mathbb{T}^{Q_m} of $\overline{\rho}$ of the Hecke algebra \mathbf{h}^{Q_m} of tame-level $N_m = N \prod_{q \in Q_m} q$. The pair $(\mathbb{T}^{Q_m}, \rho_{\mathbb{T}^{Q_m}})$ is universal among deformation satisfying (D1–4) but ramification at $q \in Q_m$ is allowed. Then $\rho \mapsto \rho \otimes \chi$ induces an involution σ_{Q_m} .

Actually they work with $\mathbb{T}_{Q_m} = \mathbb{T}^{Q_m}/(t-\gamma^k)\mathbb{T}^{Q_m}$ $(t = 1 + T, \gamma = 1 + p \in \Gamma$; the weight k+1 Hecke algebra of weight $k+1 \ge 2$ fixed). The product inertia group $I_{Q_m} = \prod_{q \in Q_m} I_q$ acts on \mathbb{T}_{Q_m} by the *p*-abelian quotient Δ_{Q_m} of $\prod_{q \in Q_m} (\mathbb{Z}/q\mathbb{Z})^{\times}$. We choose an ordering of primes $Q_m = \{q_1, \ldots, q_r\}$ and a generator $\delta_{i,m(n)}$ of the *p*-Sylow group of $(\mathbb{Z}/q_i\mathbb{Z})^{\times}$. The sequence \mathcal{Q} is chosen so that for a given integer n > 0, we can find m = m(n) > n so that we have ring projection maps $R_{n+1} \to R_n := \mathbb{T}_{Q_m(n)}/(p^n, \delta_{i,m(n)}^{p^n} - 1)_i$, and $R_{\infty} = \varprojlim_n R_n \cong W[[T_1, \ldots, T_r]]$ and $S_i = \varprojlim_n (\delta_{i,m(n)} - 1)$.

\S **11.** Lifting involution.

Write D_q for the local version of the deformation functor associated to (D1–4) adding a fixed determinant condition

(det) det(ρ) = $\nu^k \psi$ for the chosen $k \ge 2$;

so, the Q_m -ramified universal ring is given by \mathbb{T}_{Q_m} .

Write \overline{S}_n for the image of W[[S]] for $S = (S_1, \ldots, S_r)$ in R_n . We can add the involution to this projective system. Write σ_n for the involution of R_n induced by $\sigma_{Q_m(n)}$ to the Taylor-Wiles system, and get the lifting $\sigma_{\infty} \in \operatorname{Aut}(R_{\infty})$. We can normalize the variable

$$\{T_1, \dots, T_r\} = \{T_1^+, \dots, T_{d_+}^+\} \sqcup \{T_1^-, \dots, T_{d_-}^-\}$$

so that $\sigma_{\infty}(T_j^{\pm}) = \pm T_j^{\pm}$ (thus $r = d_+ + d_-$). Then we can further lift involution to $\mathcal{R} = \Lambda[[T_1^+, \dots, T_{d_+}^+, T_1^-, \dots, T_{d_-}^-]]$ as $\mathcal{R}/(t - \gamma^k) = R_{\infty}$ for t = 1 + T.

\S **12.** Tangent space of \mathbb{T} .

Let $Y^-(\phi)$ (resp. $Y^-_{sp}(\phi)$) for a character ϕ : $Gal(\overline{\mathbb{Q}}/F) \to W^{\times}$ be the ϕ -eigenspace of the Galois group of the maximal p-abelian extension of the composite $K^-F(\phi)$ unramified outside \mathfrak{p} with total splitting of \mathfrak{p}^{ς} (resp. with total splitting at all prime factors of $\mathfrak{p}^{\varsigma}N$). The tangent space

$$t_{\mathbb{T}_{Q_m}/W} = \operatorname{Hom}(\mathfrak{m}_{\mathbb{T}_{Q_m}}/(\mathfrak{m}_{\mathbb{T}_{Q_m}}^2 + \mathfrak{m}_W), \mathbb{F})$$

is a Selmer group Sel(Ad) for $Ad = Ad(\overline{\rho}) = \mathfrak{sl}_2(\mathbb{F}) \cong \chi \oplus \operatorname{Ind}_F^{\mathbb{Q}} \overline{\varphi}^-$. The involution σ acts on $t_{\mathbb{T}_{Q_m}/W}$ and writing $t_{\mathbb{T}_{Q_m}/W}^{\pm}$ for the " \pm " eigenspace of σ , we have $d_+ = \dim t_{\emptyset/W}^+$ and

$$t^+_{\mathbb{T}_{\emptyset}/W} = \operatorname{Sel}(\chi) = \operatorname{Hom}(Cl_F, \mathbb{F}) = 0$$

by a generalization of a result of Cho–Vatsal to the case $f \neq 1$:

$$t^{-}_{\mathbb{T}_{Q_m}/W} = \operatorname{Sel}(\operatorname{Ind}_{F}^{\mathbb{Q}}\overline{\varphi}^{-}) = \operatorname{Hom}_{W[\Gamma_{-}]}(Y^{-}(\varphi^{-}),\mathbb{F}).$$

§13. Dual Selmer groups as an index set for Q_m .

The index set of Q_m is any choice of \mathbb{F} -basis of a "dual" Selmer group. Regard $\mathcal{D}_q(\mathbb{F}[\epsilon])$ for the dual number ϵ as a subspace of $H^1(\mathbb{Q}_q, Ad)$ in the standard way: Thus we have the orthogonal complement $\mathcal{D}_q(\mathbb{F}[\epsilon])^{\perp} \subset H^1(\mathbb{Q}_q, Ad^*(1))$ under Tate local duality. The dual Selmer group $\mathrm{Sel}^{\perp}(Ad^*(1))$ is given by

$$\mathsf{Sel}^{\perp}(Ad^*(1)) := \mathsf{Ker}(H^1(\mathbb{Q}^{(Np)}/\mathbb{Q}, Ad^*(1)) \to \prod_{l \mid Np} \frac{H^1(\mathbb{Q}_l, Ad^*(1))}{\mathcal{D}_l(\mathbb{F}[\epsilon])^{\perp}}),$$

where $\mathbb{Q}^{(Np)}/\mathbb{Q}$ is the maximal extension of \mathbb{Q} inside $\overline{\mathbb{Q}}$ unramified outside Np and ∞ .

Then $r = \dim_{\mathbb{F}} \operatorname{Sel}^{\perp}(Ad^*(1))$ and choosing a basis $[c_j] \in \operatorname{Sel}^{\perp}(Ad^*(1))$ of Selmer classes, $q_j \in Q_m$ satisfies $c_j|_{\operatorname{Frob}_{q_j}^{\widehat{\mathbb{Z}}}}$ gives non-trivial local cohomology class. §14. Interpretation of the dual Selmer group. Define $Q_m^{\pm} := \{q \in Q_m | \chi(q) = \pm 1\}$. Then if S_q is the variable in W[[S]] coming from $q \in Q_m^{\pm}$, then $\sigma(s_q) = s_q^{\pm 1}$ for $s_q := 1 + S_q$.

Since
$$Ad = \overline{\chi} \oplus \operatorname{Ind}_{F}^{\mathbb{Q}} \overline{\varphi}^{-}$$
; so, for $Ad^{*}(1) = Ad(\overline{\rho})(1)$,
 $\operatorname{Sel}^{\perp}(Ad^{*}(1)) = \operatorname{Sel}^{\perp}(\overline{\chi}(1)) \oplus \operatorname{Sel}^{\perp}(\operatorname{Ind}_{F}^{\mathbb{Q}}(\overline{\varphi}^{-}(1)))$,
 $\operatorname{Sel}^{\perp}(\operatorname{Ind}_{F}^{\mathbb{Q}}(\overline{\varphi}^{-}(1))) \cong \operatorname{Hom}_{W[\Gamma_{-}]}(Y_{sp}^{-}(\varphi^{-}\omega), \mathbb{F})$,

 $\operatorname{Sel}^{\perp}(\overline{\chi}(1)) \cong \operatorname{Hom}(O^{\times}, \mathbb{F})$ (Kummer theory under $p \nmid h_F$).

The choice of q_j with $c_j(\operatorname{Frob}_{q_j}) \neq 0$ forces us that Q_m^+ is indexed by a basis of $\operatorname{Sel}^{\perp}(\overline{\chi}(1))$ and Q_m^- is indexed by a basis of $\operatorname{Sel}^{\perp}(\operatorname{Ind}_F^{\mathbb{Q}}(\overline{\varphi}^-(1)))$; so,

$$r_{+} := \dim \operatorname{Sel}^{\perp}(\overline{\chi}(1)) = |Q_{m}^{+}| \text{ and}$$
$$r_{-} := \dim \operatorname{Sel}^{\perp}(\operatorname{Ind}_{F}^{\mathbb{Q}}(\overline{\varphi}^{-}(1))) = |Q_{m}^{-}| \leq d_{-} \text{ by } \sigma(s_{q}) = s_{q}^{\pm 1}.$$

§15. Determination of the dual induced Selmer group. Write \mathfrak{R} for the integer ring of $F(\varphi^-)$. For simplicity, assume that $\mathbb{F} = \mathbb{F}_p$. If $\phi \in \operatorname{Hom}_{W[\Gamma_-]}(Y^-_{sp}(\varphi^-\omega), \mathbb{F}_p)$, by Kummer theory (and $p \nmid h_{F(\varphi^-)})$,

$$\overline{\mathbb{Q}}^{\operatorname{Ker}(\phi)}[\mu_p] = F[\mu_p][\sqrt[p]{\epsilon}] \quad \text{for } \epsilon \in \mathfrak{R}[\frac{1}{p}]^{\times}$$

with the modulo *p*-power class $[\epsilon]$ in the $(\varphi^{-})^{-1}$ -eigenspace:

$$[\epsilon] \in (\mathfrak{R}[\frac{1}{p}]^{\times}/(\mathfrak{R}[\frac{1}{p}]^{\times})^p)[(\overline{\varphi}^-)^{-1}].$$

Since $F(\varphi^{-})$ is a CM field and $\varphi^{-}(c) = -1$ for complex conjugation c, $\Re^{\times} \otimes_{\mathbb{Z}} \mathbb{F}$ does not have $(\varphi^{-})^{-1}$ -eigenspace as φ^{-} is a totally odd character. The quotient p-divisor group $(\Re[\frac{1}{p}]^{\times}/\Re^{\times}) \otimes_{\mathbb{Z}} \mathbb{F}$ neither have $\overline{\varphi}^{-}$ eigenspace as $\overline{\varphi}^{-}(\operatorname{Gal}(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p})) \neq 1$. Thus if $p \nmid h_{F(\varphi^{-})}$,

$$r_{-} = \dim \operatorname{Sel}(\operatorname{Ind}_{F}^{\mathbb{Q}}\overline{\varphi}^{-}(1)) = \dim \operatorname{Hom}_{W[\Gamma_{-}]}(Y_{sp}^{-}(\varphi^{-}\omega), \mathbb{F}) = 0.$$

§16. Determination of the dual Selmer group of χ .

Write O for the integer ring of F. First assume that $\mathbb{F} = \mathbb{F}_p$. If $[c] \in \operatorname{Sel}_{\emptyset}^{\perp}(\overline{\chi}(1))$, taking $\Psi = c|_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\chi\omega))}$, for $\mathbb{Q}(\Psi) = \overline{\mathbb{Q}}^{\operatorname{Ker}(\Psi)}$, the definition of the Selmer group tells us, by Kummer theory and $p \nmid h_F$,

$$\mathbb{Q}(\Psi)[\mu_p] = \mathbb{Q}[\mu_p][\sqrt[p]{\epsilon}]$$

for the fundamental unit ϵ . Thus we conclude

$$r_+ = \dim_{\mathbb{F}} \operatorname{Sel}(\overline{\chi}(1)) = 1.$$

Since $d_+ + d_- = r_+ + r_- = 1$ and $d_- > 0$ (as σ is non-trivial over \mathbb{T}), we conclude $d_- = 1$.

§17. QED.

Let $I_{\infty} = R_{\infty}(\sigma - 1)R_{\infty}$, $I^Q = \mathbb{T}^Q(\sigma - 1)\mathbb{T}^Q$. Then $R_{\infty} = W[[T_-]]$ with $S_+ \in W[[T_-^2]]$ and $\mathcal{R} = \Lambda[[T_-]]$ with $S_+ \in \Lambda[[T_-^2]]$. The image of T_- in \mathbb{T} gives θ in Theorem B. By $\mathbb{T}/I \cong W = \Lambda/(\langle \varepsilon \rangle - 1)$, we get $\mathbb{T} = \Lambda[[T_-]]/(S_+)$, $\mathbb{T}_+ = \Lambda[[T_-^2]]/(S_+)$ and

$$\Omega_{\mathbb{T}/\Lambda} \otimes_{\mathbb{T}} W[\Gamma_{-}] = I/I^{2} \cong (\theta)/(\theta)^{2} \cong \Lambda/(\langle \varepsilon \rangle - 1).$$

This tells us that \mathbb{T} is only ramified over \mathbb{T}_+ for the prime factor of $(\langle \varepsilon \rangle - 1)$ which supports my conjecture: $\mathbb{T} \stackrel{?}{=} \mathbb{T}_+[\sqrt{\langle \varepsilon \rangle - 1}]$ under (H1–4), generalizing a result of Cho–Vatsal who treated the case $\mathfrak{f} = 1$.

By Nakayama's lemma, $\Omega_{\mathbb{T}/\Lambda}$ is also cyclic.

§18. (L_p) is the different of \mathbb{T}/Λ .

Note that the ideal $(T_{-} - \theta) \supset (S_{+})$ in $\mathbb{T}[[T_{-}]] = \wedge [[T_{-}]] \otimes_{\Lambda} \mathbb{T}$. Write

$$(T_{-}-\theta)\mathcal{L}_p = S_+ \quad (\mathcal{L}_p \in \mathbb{T}[[T_{-}]])$$

with $L_p := (\mathcal{L}_p \mod (T_- - \theta)) \in \mathbb{T}$. Then $\mathcal{L}_p dT_- + (T_- - \theta) d\mathcal{L}_p = dS_+$, and from the commutative diagram with exact rows

we conclude $\Omega_{\mathbb{T}/\Lambda} \cong \mathbb{T}/(L_p)$ for $L_p = L_p(Ad(\rho_{\mathbb{T}}))$.

In an appendix of a paper by Mazur–Roberts, Tate computed also the different $\mathfrak{d}_{\mathbb{T}/\Lambda}$ and showed $\mathfrak{d}_{\mathbb{T}/\Lambda} = (L_p)$.