* Cyclicity of adjoint Selmer groups and fundamental units

Haruzo Hida
Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A.
A talk in Iwasawa 2017
at University of Tokyo.

*The author is partially supported by the NSF grant: DMS 1464106.
Generalizing a result of Cho-Vatsal (Crelle, 2003), we prove cyclicity over the Hecke algebra of the adjoint Selmer group of each modular deformation of an induced irreducible representation of a finite order character $\operatorname{Gal}(\overline{\mathbb{Q}} / F) \rightarrow \overline{\mathbb{F}}_{p}$ for a real quadratic field F under mild conditions.

A conjecture.

Let $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(W)$ be an odd absolutely irreducible Artin representation with coefficients in a complete discrete valuation ring W with finite residue field \mathbb{F} of characteristic $p \nmid$ $|\operatorname{Im}(\rho)| h$ for the class number h of the splitting field of $\operatorname{Ad}(\rho)$. Suppose $\left.\rho\right|_{\text {Gal }\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)}=\left(\begin{array}{cc}\epsilon & * \\ 0 & \delta\end{array}\right)$ with unramified δ. Let $\bar{\rho}:=\rho$ $\bmod \mathfrak{m}_{W}$.

Conjecture: Suppose $p>3$ and $\epsilon \not \equiv \delta \bmod \mathfrak{m}_{W}$. For the minimal p-ordinary universal deformation $\rho_{\mathbb{T}}$ of $\bar{\rho}$ with values in $\mathrm{GL}_{2}(\mathbb{T})$ for the universal ring \mathbb{T}, Pontyagin dual of $\operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{\mathbb{T}}\right)\right)^{\vee}$ is pseudo isomorphic to $\mathbb{T} /\left(L_{p}\right)$ as \mathbb{T}-modules for a non-zero divisor $0 \neq L_{p} \in \mathbb{T}$.

Here $A d\left(\rho_{\mathbb{T}}\right)$ acts on $\mathfrak{s l}_{2}(\mathbb{T})$ by $x \mapsto \rho_{\mathbb{T}}(\sigma) x \rho_{\mathbb{T}}(\sigma)^{-1}$. The algebra \mathbb{T} is an algebra over the Iwasawa algebra $\wedge=W[[\Gamma]]=W[[T]]$ (with $t=1+T)$ by det $\rho_{\mathbb{T}}$ factoring through $\Gamma:=\operatorname{Gal}\left(\mathbb{Q}_{p}\left(\mu_{p} \infty\right) / \mathbb{Q}_{p}\left(\mu_{p}\right)\right)$, and the element $L_{p} \neq 0$ is the adjoint p-adic L-function $L_{p}\left(\operatorname{Ad}\left(\rho_{\mathbb{T}}\right)\right)$ interpolating $L\left(1, \operatorname{Ad}\left(\rho_{P}\right)\right.$) (for arithmetic points $P \in \operatorname{Spec}(\mathbb{T})$) up to units in \mathbb{T}.

$\S 0$. Setting over a real quadratic field.

In this lecture, we deal with the case where $\rho=\operatorname{Ind}_{F}^{\mathbb{Q}} \varphi$ for a real quadratic field F and a character $\varphi: \operatorname{Gal}(\overline{\mathbb{Q}} / F) \rightarrow W^{\times}$.
Here is our setting:

- F : a real quadratic field with discriminant D and a fundamental unit ε. Let ς be the generator of $\operatorname{Gal}(F / \mathbb{Q})$.
- Pick a character $\varphi: \operatorname{Gal}(\overline{\mathbb{Q}} / F) \rightarrow \overline{\mathbb{Q}}^{\times}$with $\bmod p$ reduction $\bar{\varphi}$ with values in \mathbb{F} (and put $W=W(\mathbb{F})$). Let $\varphi^{-}(\sigma)=\varphi\left(\sigma \widetilde{\varsigma} \sigma^{-1} \widetilde{\varsigma}^{-1}\right)$ and $\bar{\delta}(\sigma)=\bar{\varphi}\left(\widetilde{\varsigma} \sigma \widetilde{\varsigma}^{-1}\right)$ for $\widetilde{\varsigma} \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ with $\widetilde{\varsigma}_{F}=\varsigma$.
- Let K^{-} / F be the maximal p-abelian anticyclotomic extension unramified outside p. Anticyclotomy means that $\widetilde{\varsigma} \sigma \widetilde{\varsigma}^{-1}=\sigma^{-1}$ for $\sigma \in \operatorname{Gal}\left(K^{-} / F\right)$. Let $\Gamma_{-}:=\operatorname{Gal}\left(K^{-} / F\right) \cong \operatorname{Gal}\left(K_{\mathfrak{p}} / F\right)$ (a finite group), where $K_{\mathfrak{p}}$ is the maximal p-abelian extension unramified outside \mathfrak{p}.

Assume

- $p \nmid h_{F}$ for the class numbe h_{F} of F and $(p)=\mathfrak{p p}^{\varsigma}$ in O with $\mathfrak{p} \neq \mathfrak{p}^{\varsigma}$ for the generator ς of $\operatorname{Gal}(F / \mathbb{Q})$.
§1. Cyclicity theorem. Write \mathfrak{f} for the prime-to-p-conductor of $\bar{\varphi}$ and put $N=D N_{F / \mathbb{Q}}(\mathfrak{c})$ (the level). For the conductor \mathfrak{c} of φ, we suppose $\mathfrak{f}|\mathfrak{c}| \mathfrak{f p}$. Suppose (H1) $\mathfrak{f | c | c p}$ and $N_{F / \mathbb{Q}}(\mathfrak{c})$ is square-free (so, N is cube-free), (H2) p is prime to $N \prod_{l \mid N}(l-1)$ for prime factors l of N, (H3) φ^{-}has order at least 3 with $\varphi^{-}\left(\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)\right) \neq\{1\}$, (H4) the class number h_{F} of F is prime to p. We describe a proof of

Theorem A: Under $(\mathrm{H} 1-4)$, if the class number $h_{F\left(\varphi^{-}\right)}$of the splitting field $F\left(\varphi^{-}\right)$of φ^{-}is prime to p, $\operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{\mathbb{T}}\right)\right)^{\vee} \cong \mathbb{T} /\left(L_{p}\right)$ as \mathbb{T}-modules for a non-zero divisor $L_{p} \in \mathbb{T}$.

Note that Γ_{-}is a finite cyclic p-group (under (H4)), and we see

$$
W\left[\Gamma_{-}\right] \cong \wedge /(\langle\varepsilon\rangle-1) \quad \text { for }\langle\varepsilon\rangle:=t^{\log _{p}(\varepsilon) / \log _{p}(1+p)}
$$

§2. Cyclicity and Hecke algebra. The cyclicity follows from a ring theoretic assertion on the big ordinary Hecke algebra h as $\operatorname{Spec}(\mathbb{T})$ is a connected component of $\operatorname{Spec}(\mathbf{h})$. We identify the Iwasawa algebra $\wedge=W[[\Gamma]]$ with the one variable power series ring $W[[T]]$ by $\ulcorner\ni \gamma=(1+p) \mapsto t=1+T \in \wedge$. Take a Dirichlet character $\psi:(\mathbb{Z} / N p \mathbb{Z})^{\times} \rightarrow W^{\times}$, and consider the big ordinary Hecke algebra \mathbf{h} (over \wedge) of prime-to- p level N and the character ψ. We just mention here the following three facts about h which has \mathbb{T} as a local factor:

- h is an algebra flat over the Iwasawa (weight) algebra $\wedge:=$ $W[[T]]$ interpolating p-ordinary Hecke algebras of level $N p^{r+1}$, of weight $k+1 \geq 2$ and of character $\epsilon \psi \omega^{-k}$, where $\epsilon: \mathbb{Z}_{p}^{\times} \rightarrow \mu_{p^{r}}$ ($r \geq 0$) and $k \geq 1$ vary. If N is cube-free, \mathbf{h} is a reduced algebra;
- Each prime $P \in \operatorname{Spec}(\mathbf{h})$ has a unique Galois representation
$\rho_{P}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\kappa(P)), \operatorname{Tr} \rho_{P}\left(\mathrm{Frob}_{l}\right)=T(l) \bmod P(l \nmid N p)$ for the residue field $\kappa(P)$ of P;
- $\left.\rho_{P}\right|_{\mathrm{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)} \cong\left(\begin{array}{cc}\epsilon_{P} & * \\ 0 & \delta_{P}\end{array}\right)$ with unramified quotient character δ_{P}.
§3. Ring theoretic setting. Since \mathbb{T} is universal among p ordinary deformations of $\bar{\rho}:=\rho$ mod \mathfrak{m}_{W} with certain extra properties insensitive to the twist $\rho \mapsto \rho \otimes \chi$ for $\chi=\left(\frac{F / \mathbb{Q}}{}\right), \mathbb{T}$ has an algebra involution σ over \wedge coming from the twist. For any ring A with an involution σ, we put $A_{ \pm}=A^{ \pm}:=\{x \in A \mid \sigma(x)= \pm x\}$. Then $A_{+} \subset A$ is a subring and A_{-}is an A_{+}-module.
- For the ideal $I:=\mathbb{T}(\sigma-1) \mathbb{T}$ of \mathbb{T} generated by \mathbb{T}_{-}(the "-" eigenspace), we have a canonical \wedge-algebra isomorphism

$$
\mathbb{T} / I \cong W\left[\Gamma_{-}\right]
$$

of Cho-Vatsal, where the Λ-algebra structure is given by sending $u \in \Gamma$ naturally into $u \in O_{\mathfrak{p}}^{\times}=\mathbb{Z}_{p}^{\times}$and then projecting the local Artin symbol $\tau=\left[u, F_{\mathfrak{p}}\right]=\left[u, \mathbb{Q}_{p}\right] \in \Gamma$ to $\sqrt{\tau \widetilde{\varsigma} \tau^{-1} \widetilde{\varsigma}^{-1}}=\tau^{(1-\varsigma) / 2} \in$ Γ_{-}. By this we have $\mathbb{T} / I \cong W\left[\Gamma_{-}\right] \cong \wedge /(\langle\varepsilon\rangle-1)$.

Question: Under what condition, we have $\mathbb{T} \cong \wedge[\sqrt{\langle\varepsilon\rangle-1}]$? The condition $p \nmid h_{F}$ is necessary for this by Cho-Vatsal.

§4. Known structure of \mathbb{T}.

- The fixed points

$$
\operatorname{Spec}(\mathbb{T})^{\sigma=1} \cong \operatorname{spec}(\mathbb{T} / \mathbb{T}(\sigma-1) \mathbb{T})=\operatorname{Spec}(\mathbb{T} / I)
$$

is therefore isomorphic to $\operatorname{Spec}\left(W\left[\Gamma_{-}\right]\right)$; note that $\mathbb{T} \neq W\left[\Gamma_{-}\right]$ as $W\left[\Gamma_{-}\right]$has finite rank over W, while \mathbb{T} is free of finite rank over \wedge.

- Since $\mathbb{T} \neq W\left[\Gamma_{-}\right], \sigma$ is non-trivial on \mathbb{T}.
- The ring \mathbb{T} is reduced (as N is cube-free).

Plainly \mathbb{T} is stable under σ, but

$$
\operatorname{Spec}(\mathbb{T})^{\sigma=1} \text { has codimension } 1 \text { in } \operatorname{Spec}(\mathbb{T})
$$

which does not therefore contain an irreducible component.
§5. Galois deformation theory. By irreducibility of $\bar{\rho}$, we have a Galois representation

$$
\rho_{\mathbb{T}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T}) \text { with } \operatorname{Tr}\left(\rho_{\mathbb{T}}\left(\mathrm{Frob}_{l}\right)\right)=T(l)
$$

for all primes $l \nmid N p$. By the celebrated $R=\mathbb{T}$ theorem of Taylor-Wiles, the couple ($\mathbb{T}, \rho_{\mathbb{T}}$) is universal among deformations $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(A)$ satisfying
(D1) $\rho \bmod \mathfrak{m}_{A} \cong \bar{\rho}:=\operatorname{Ind}_{F}^{\mathbb{Q}} \bar{\varphi}$.
(D2) $\left.\rho\right|_{\text {Gal }\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)} \cong\left(\begin{array}{cc}\epsilon & * \\ 0 & \delta\end{array}\right)$ with δ unramified and $\bar{\delta}=\left(\delta \bmod \mathfrak{m}_{A}\right)$.
(D3) $\left.\operatorname{det}(\rho)\right|_{I_{l}}=\psi_{l}$ for the l-part ψ_{l} of ψ for each prime $l \mid N$.
(D4) $\left.\left.\operatorname{det}(\rho)\right|_{I_{p}} \equiv \psi\right|_{I_{p}} \bmod \mathfrak{m}_{A}\left(\left.\left.\Leftrightarrow \epsilon\right|_{I_{p}} \equiv \psi\right|_{I_{p}} \bmod \mathfrak{m}_{A}\right)$.
By the $R=\mathbb{T}$ theorem and a theorem of Mazur,

$$
\begin{aligned}
& I / I^{2}=\Omega_{\mathbb{T} / \Lambda} \otimes_{\mathbb{T}} \mathbb{T} / I \cong \operatorname{Sel}\left(\operatorname{Ad}\left(\operatorname{Ind}_{F}^{\mathbb{Q}} \Phi\right)\right)^{\vee} \\
& \Omega_{\mathbb{T} / \Lambda} \cong \operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{\mathbb{T}}\right)\right)^{\vee},
\end{aligned}
$$

and principality of I implies cyclicity, where Φ : Gal $(\overline{\mathbb{Q}} / F) \rightarrow$ $W\left[\operatorname{Gal}\left(K_{\mathfrak{p}} / F\right)\right]^{\times} \cong W\left[\Gamma_{-}\right]^{\times}$is a character sending σ to $\left.\varphi(\sigma) \sigma\right|_{K_{\mathfrak{p}}}$.

§6. Ring theoretic theorem.

Theorem B: Suppose $(\mathrm{H} 1-4)$. Then if the class number $h_{F\left(\varphi^{-}\right)}$ of $F\left(\varphi^{-}\right)=\overline{\mathbb{Q}}^{\operatorname{Ker}\left(\varphi^{-}\right)}$is prime to p, the following equivalent statements hold true:
(1) The rings \mathbb{T} and \mathbb{T}_{+}are both local complete intersections free of finite rank over \wedge.
(2) The \mathbb{T}-ideal $I=\mathbb{T}(\sigma-1) \mathbb{T} \subset \mathbb{T}$ is principal and is generated by a non-zero-divisor $\theta \in \mathbb{T}_{-}$with $\theta^{2} \in \mathbb{T}_{+}$, and $\mathbb{T}=\mathbb{T}_{+}[\theta]$ is free of rank 2 over \mathbb{T}_{+}.

The implication $(1) \Rightarrow(2)$ follows from the lemma in the following slide.

§7. A key duality lemma

Here is a simplest case of the theory of dualizing modules by Grothendieck, Hartshorne and Kleiman (exploited by Cho-Vatsal):

Lemma 1 (Key lemma). Let S be a p-profinite Gorenstein integral domain and A be a reduced Gorenstein local S-algebra free of finite rank over S. Suppose

- A has a ring involution σ with $A_{+}:=\{a \in A \mid \sigma(a)=a\}$,
- A_{+}is Gorenstein,
- $\operatorname{Frac}(A) / \operatorname{Frac}\left(A_{+}\right)$is étale quadratic extension.
- $\mathfrak{d}_{A / A_{+}}^{-1}:=\left\{x \in \operatorname{Frac}(A) \mid \operatorname{Tr}_{A / A_{+}}(x A) \subset A_{+}\right\} \supsetneq A$, Then A is free of rank 2 over A_{+}and $A=A_{+} \oplus A_{+} \theta$ for an element $\theta \in A$ with $\sigma(\theta)=-\theta$.

To see $(1) \Rightarrow(2)$ of Theorem B, we apply the lemma to $A=\mathbb{T}$.

§8. Sketch of Theorem B \Rightarrow Theorem A.

Assuming (1), by Key lemma, $\mathfrak{d}_{\mathbb{T} / \mathbb{T}_{+}}=(\theta)$ for a non-zero divisor $\theta \in \mathbb{T}$. By " $R=T$ " theorem, we see that $\mathbb{T} / I \cong W\left[\Gamma_{-}\right]$. Then by a theorem of Mazur, we have
$\Omega_{\mathbb{T} / \Lambda} \cong \operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{\mathbb{T}}\right)\right)^{\vee}$ and $I / I^{2} \cong \Omega_{\mathbb{T} / \wedge} \otimes_{\mathbb{T}} W\left[\Gamma_{-}\right]\left(\cong \operatorname{Sel}\left(\operatorname{Ind}_{F}^{\mathbb{Q}} \Phi\right)^{\vee}\right)$,
where $\Phi: \operatorname{Gal}(\overline{\mathbb{Q}} / F) \rightarrow W\left[\Gamma_{-}\right]^{\times}$is the universal character deforming φ unramified outside $\mathfrak{c p}$. Since $I / I^{2}=(\theta) /\left(\theta^{2}\right)$ is cyclic, by Nakayama's lemma, $\Omega_{\mathbb{T} / \Lambda} \cong \operatorname{Sel}\left(A d\left(\rho_{\mathbb{T}}\right)\right)^{\vee}$ has one generator over \mathbb{T}. Later we will see the annihilator of the generator is a principal ideal (L_{p}) for a non-zero divisor $L_{p} \in \mathbb{T}$.

The proof of the adjoint class number formula by Wiles and myself (Pune IISER lecture notes Chap. 6) shows $L_{p}=L_{p}\left(\operatorname{Ad}\left(\rho_{\mathbb{T}}\right)\right.$) up to units for the adjoint p-adic L-function $L_{p}\left(\operatorname{Ad}\left(\rho_{\mathbb{T}}\right)\right) \in \mathbb{T}$.
$\mathbf{(2)} \Rightarrow \mathbf{(1)}$ of Theorem B: We have $I=(\theta) \subset \mathbb{T}$ and $I_{+}=\left(\theta^{2}\right) \subset$ \mathbb{T}_{+}. Note that $\mathbb{T} /(\theta) \cong W\left[\Gamma_{-}\right] \cong \mathbb{T}_{+} /\left(\theta^{2}\right)$. Since θ is a non-zero divisor, the two rings \mathbb{T} and \mathbb{T}_{+}are local complete intersections since $W\left[\Gamma_{-}\right]$is a local complete intersection.

§9. Presentation of \mathbb{T} for the proof of (1) of Theorem B.

To see a possibility of applying the key lemma to $\mathbb{T} / \mathbb{T}_{+}$, we like to lift \mathbb{T} to a power series ring $\mathcal{R}=\wedge\left[\left[T_{1}, \ldots, T_{r}\right]\right]$ with an involution σ_{∞} such that $\mathcal{R}^{+}:=\left\{x \in \mathcal{R} \mid \sigma_{\infty}(x)=x\right\}$ is Gorenstein and that $\left(\mathcal{R} / \mathfrak{A}, \sigma_{\infty} \bmod \mathfrak{A}\right) \cong(\mathbb{T}, \sigma)$ for an ideal \mathfrak{A} stable under σ_{∞}.

Taylor and Wiles (with an improvement by Diamond and Fujiwara) found a pair $\left(\mathcal{R}:=\wedge\left[\left[T_{1}, \ldots, T_{r}\right]\right],\left(S_{1}, \ldots, S_{r}\right)\right)$ with a regular sequence $\left.S:=\left(S_{1}, \ldots, S_{r}\right) \subset \wedge\left[\left[T_{1}, \ldots, T_{r}\right]\right]\right)$ such that

$$
\wedge\left[\left[T_{1}, \ldots, T_{r}\right]\right] /\left(S_{1}, \ldots, S_{r}\right) \cong \mathbb{T}
$$

by their Taylor-Wiles system argument.

We need to lift σ somehow to an involution $\sigma_{\infty} \in \operatorname{Aut}(\mathcal{R})$ and show also that \mathcal{R}^{+}is Gorenstein. If further $\mathcal{R} \cdot \mathcal{R}^{-}=\left(\theta_{\infty}\right)$, the image $\theta \in \mathbb{T}^{-}$of θ_{∞} in \mathbb{T} generates I as desired.
§10. Taylor-Wiles method. Taylor-Wiles found an integer $r>0$ and an infinite sequence of r-sets $\mathcal{Q}:=\left\{Q_{m} \mid m=1,2, \ldots\right\}$ of primes $q \equiv 1 \bmod p^{m}$ such that for the local ring $\mathbb{T}^{Q_{m}}$ of $\bar{\rho}$ of the Hecke algebra $\mathbf{h}^{Q_{m}}$ of tame-level $N_{m}=N \prod_{q \in Q_{m}} q$. The pair $\left(\mathbb{T}^{Q_{m}}, \rho_{\mathbb{T}} Q_{m}\right)$ is universal among deformation satisfying (D14) but ramification at $q \in Q_{m}$ is allowed. Then $\rho \mapsto \rho \otimes \chi$ induces an involution $\sigma_{Q_{m}}$.

Actually they work with $\mathbb{T}_{Q_{m}}=\mathbb{T}^{Q_{m}} /\left(t-\gamma^{k}\right) \mathbb{T}^{Q_{m}}(t=1+T$, $\gamma=1+p \in \Gamma$; the weight $k+1$ Hecke algebra of weight $k+1 \geq 2$ fixed). The product inertia group $I_{Q_{m}}=\prod_{q \in Q_{m}} I_{q}$ acts on $\mathbb{T}_{Q_{m}}$ by the p-abelian quotient $\Delta_{Q_{m}}$ of $\prod_{q \in Q_{m}}(\mathbb{Z} / q \mathbb{Z})^{\times}$. We choose an ordering of primes $Q_{m}=\left\{q_{1}, \ldots, q_{r}\right\}$ and a generator $\delta_{i, m(n)}$ of the p-Sylow group of $\left(\mathbb{Z} / q_{i} \mathbb{Z}\right)^{\times}$. The sequence \mathcal{Q} is chosen so that for a given integer $n>0$, we can find $m=m(n)>n$ so that we have ring projection maps $R_{n+1} \rightarrow R_{n}:=\mathbb{T}_{Q_{m(n)}} /\left(p^{n}, \delta_{i, m(n)}^{p^{n}}-1\right)_{i}$, and $R_{\infty}=\varliminf_{n} R_{n} \cong W\left[\left[T_{1}, \ldots, T_{r}\right]\right]$ and $S_{i}=\varliminf_{n}\left(\delta_{i, m(n)}-1\right)$.

\S 11. Lifting involution.

Write \mathcal{D}_{q} for the local version of the deformation functor associated to (D1-4) adding a fixed determinant condition (det) $\operatorname{det}(\rho)=\nu^{k} \psi$ for the chosen $k \geq 2$;
so, the Q_{m}-ramified universal ring is given by $\mathbb{T}_{Q_{m}}$.
Write $\overline{\mathcal{S}}_{n}$ for the image of $W[[S]]$ for $S=\left(S_{1}, \ldots, S_{r}\right)$ in R_{n}. We can add the involution to this projective system. Write σ_{n} for the involution of R_{n} induced by $\sigma_{Q_{m(n)}}$ to the Taylor-Wiles system, and get the lifting $\sigma_{\infty} \in \operatorname{Aut}\left(R_{\infty}\right)$. We can normalize the variable

$$
\left\{T_{1}, \ldots, T_{r}\right\}=\left\{T_{1}^{+}, \ldots, T_{d_{+}}^{+}\right\} \sqcup\left\{T_{1}^{-}, \ldots, T_{d_{-}}^{-}\right\}
$$

so that $\sigma_{\infty}\left(T_{j}^{ \pm}\right)= \pm T_{j}^{ \pm}$(thus $r=d_{+}+d_{-}$). Then we can further lift involution to $\mathcal{R}=\wedge\left[\left[T_{1}^{+}, \ldots, T_{d_{+}}^{+}, T_{1}^{-}, \ldots, T_{d_{-}}^{-}\right]\right]$as $\mathcal{R} /\left(t-\gamma^{k}\right)=$ R_{∞} for $t=1+T$.
§12. Tangent space of \mathbb{T}.
Let $Y^{-}(\phi)\left(\right.$ resp. $\left.Y_{s p}^{-}(\phi)\right)$ for a character $\phi: \operatorname{Gal}(\overline{\mathbb{Q}} / F) \rightarrow W^{\times}$be the ϕ-eigenspace of the Galois group of the maximal p-abelian extension of the composite $K^{-} F(\phi)$ unramified outside \mathfrak{p} with total splitting of \mathfrak{p}^{ς} (resp. with total splitting at all prime factors of $\mathfrak{p}^{\varsigma} N$). The tangent space

$$
t_{\mathbb{T}_{Q_{m}} / W}=\operatorname{Hom}\left(\mathfrak{m}_{\mathbb{T}_{Q_{m}}} /\left(\mathfrak{m}_{\mathbb{T}_{Q_{m}}}^{2}+\mathfrak{m}_{W}\right), \mathbb{F}\right)
$$

is a Selmer group $\operatorname{Sel}(A d)$ for $A d=A d(\bar{\rho})=\mathfrak{s l}_{2}(\mathbb{F}) \cong \chi \oplus \operatorname{Ind} \mathbb{Q}_{F}^{\mathbb{Q}} \bar{\varphi}^{-}$. The involution σ acts on $t_{\mathbb{T}_{Q_{m}} / W}$ and writing $t_{\mathbb{T}_{Q m} / W}^{ \pm}$for the " \pm" eigenspace of σ, we have $d_{+}=\operatorname{dim} t_{\emptyset / W}^{+}$and

$$
t_{\mathbb{T}_{\emptyset} / W}^{+}=\operatorname{Sel}(\chi)=\operatorname{Hom}\left(C l_{F}, \mathbb{F}\right)=0
$$

by a generalization of a result of Cho-Vatsal to the case $\mathfrak{f} \neq 1$:

$$
t_{\mathbb{T}_{Q m} / W}^{-}=\operatorname{Sel}\left(\operatorname{Ind}_{F}^{\mathbb{Q}} \bar{\varphi}^{-}\right)=\operatorname{Hom}_{W\left[\Gamma_{-}\right]}\left(Y^{-}\left(\varphi^{-}\right), \mathbb{F}\right)
$$

§13. Dual Selmer groups as an index set for Q_{m}.

The index set of Q_{m} is any choice of \mathbb{F}-basis of a "dual" Selmer group. Regard $\mathcal{D}_{q}(\mathbb{F}[\epsilon])$ for the dual number ϵ as a subspace of $H^{1}\left(\mathbb{Q}_{q}, A d\right)$ in the standard way: Thus we have the orthogonal complement $\mathcal{D}_{q}(\mathbb{F}[\epsilon])^{\perp} \subset H^{1}\left(\mathbb{Q}_{q}, A d^{*}(1)\right)$ under Tate local duality. The dual Selmer group $\operatorname{Sel}^{\perp}\left(A d^{*}(1)\right)$ is given by
$\operatorname{Sel}^{\perp}\left(A d^{*}(1)\right):=\operatorname{Ker}\left(H^{1}\left(\mathbb{Q}^{(N p)} / \mathbb{Q}, A d^{*}(1)\right) \rightarrow \prod_{l \mid N p} \frac{H^{1}\left(\mathbb{Q}_{l}, A d^{*}(1)\right)}{\mathcal{D}_{l}(\mathbb{F}[\epsilon])^{\perp}}\right)$,
where $\mathbb{Q}^{(N p)} / \mathbb{Q}$ is the maximal extension of \mathbb{Q} inside $\overline{\mathbb{Q}}$ unramified outside $N p$ and ∞.

Then $r=\operatorname{dim}_{\mathbb{F}} \operatorname{Sel}^{\perp}\left(A d^{*}(1)\right)$ and choosing a basis $\left[c_{j}\right] \in \operatorname{Sel}^{\perp}\left(A d^{*}(1)\right)$ of Selmer classes, $q_{j} \in Q m$ satisfies $\left.c_{j}\right|_{\mathrm{Frob}_{q_{j}}^{\mathbb{Z}}}$ gives non-trivial local cohomology class.

§14. Interpretation of the dual Selmer group.

Define $Q_{m}^{ \pm}:=\left\{q \in Q_{m} \mid \chi(q)= \pm 1\right\}$. Then if S_{q} is the variable in $W[[S]]$ coming from $q \in Q_{m}^{ \pm}$, then $\sigma\left(s_{q}\right)=s_{q}^{ \pm 1}$ for $s_{q}:=1+S_{q}$.

Since $A d=\bar{\chi} \oplus \operatorname{Ind}_{F}^{\mathbb{Q}} \bar{\varphi}^{-}$; so, for $A d^{*}(1)=\operatorname{Ad}(\bar{\rho})(1)$,

$$
\begin{gathered}
\operatorname{Sel}^{\perp}\left(A d^{*}(1)\right)=\operatorname{Sel}^{\perp}(\bar{\chi}(1)) \oplus \operatorname{Sel}^{\perp}\left(\operatorname{Ind}_{F}^{\mathbb{Q}}\left(\bar{\varphi}^{-}(1)\right)\right), \\
\operatorname{Sel}^{\perp}\left(\operatorname{Ind}_{F}^{\mathbb{Q}}\left(\bar{\varphi}^{-}(1)\right)\right) \cong \operatorname{Hom}_{W\left[\Gamma_{-}\right]}\left(Y_{s p}^{-}\left(\varphi^{-} \omega\right), \mathbb{F}\right),
\end{gathered}
$$

$$
\left.\operatorname{Sel}^{\perp}(\bar{\chi}(1)) \cong \operatorname{Hom}\left(O^{\times}, \mathbb{F}\right) \text { (Kummer theory under } p \nmid h_{F}\right) .
$$

The choice of q_{j} with $c_{j}\left(\operatorname{Frob}_{q_{j}}\right) \neq 0$ forces us that Q_{m}^{+}is indexed by a basis of $\mathrm{Sel}^{\perp}(\bar{\chi}(1))$ and Q_{m}^{-}is indexed by a basis of $\mathrm{Sel}^{\perp}\left(\operatorname{Ind}_{F}^{\mathbb{Q}}\left(\bar{\varphi}^{-}(1)\right)\right)$; so,

$$
\begin{aligned}
& r_{+}:=\operatorname{dim} \operatorname{Sel}^{\perp}(\bar{\chi}(1))=\left|Q_{m}^{+}\right| \text {and } \\
& \quad r_{-}:=\operatorname{dim} \operatorname{Sel}^{\perp}\left(\operatorname{Ind}_{F}^{\mathbb{Q}}\left(\bar{\varphi}^{-}(1)\right)\right)=\left|Q_{m}^{-}\right| \leq d_{-} \quad \text { by } \sigma\left(s_{q}\right)=s_{q}^{ \pm 1} .
\end{aligned}
$$

§15. Determination of the dual induced Selmer group.

Write \mathfrak{R} for the integer ring of $F\left(\varphi^{-}\right)$. For simplicity, assume that $\mathbb{F}=\mathbb{F}_{p}$. If $\phi \in \operatorname{Hom}_{W\left[\Gamma_{-}\right]}\left(Y_{s p}^{-}\left(\varphi^{-} \omega\right), \mathbb{F}_{p}\right)$, by Kummer theory (and $p \nmid h_{F\left(\varphi^{-}\right)}$),

$$
\overline{\mathbb{Q}}^{\operatorname{Ker}(\phi)}\left[\mu_{p}\right]=F\left[\mu_{p}\right][\sqrt[p]{\epsilon}] \quad \text { for } \epsilon \in \mathfrak{R}\left[\frac{1}{p}\right]^{\times}
$$

with the modulo p-power class $[\epsilon]$ in the $\left(\varphi^{-}\right)^{-1}$-eigenspace:

$$
[\epsilon] \in\left(\mathfrak{R}\left[\frac{1}{p}\right]^{\times} /\left(\mathfrak{R}\left[\frac{1}{p}\right]^{\times}\right)^{p}\right)\left[\left(\bar{\varphi}^{-}\right)^{-1}\right] .
$$

Since $F\left(\varphi^{-}\right)$is a CM field and $\varphi^{-}(c)=-1$ for complex conjugation $c, \mathfrak{R}^{\times} \otimes_{\mathbb{Z}} \mathbb{F}$ does not have ($\left.\varphi^{-}\right)^{-1}$-eigenspace as φ^{-}is a totally odd character. The quotient p-divisor group $\left(\mathfrak{R}\left[\frac{1}{p}\right]^{\times} / \mathfrak{R}^{\times}\right) \otimes_{\mathbb{Z}} \mathbb{F}$ neither have $\bar{\varphi}^{-}$eigenspace as $\bar{\varphi}^{-}\left(\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)\right) \neq 1$. Thus if $p \nmid h_{F\left(\varphi^{-}\right)}$,

$$
r_{-}=\operatorname{dim} \operatorname{Sel}\left(\operatorname{Ind}_{F}^{\mathbb{Q}} \bar{\varphi}^{-}(1)\right)=\operatorname{dim} \operatorname{Hom}_{W\left[\Gamma_{-}\right]}\left(Y_{s p}^{-}\left(\varphi^{-} \omega\right), \mathbb{F}\right)=0 .
$$

§16. Determination of the dual Selmer group of χ.

Write O for the integer ring of F. First assume that $\mathbb{F}=\mathbb{F}_{p}$. If $[c] \in \operatorname{Sel}_{\bar{\emptyset}}^{\perp}(\bar{\chi}(1))$, taking $\psi=\left.c\right|_{G a l(\overline{\mathbb{Q}} / \mathbb{Q}(\chi \omega))}$, for $\mathbb{Q}(\Psi)=\overline{\mathbb{Q}}^{\operatorname{Ker}(\Psi)}$, the definition of the Selmer group tells us, by Kummer theory and $p \nmid h_{F}$,

$$
\mathbb{Q}(\Psi)\left[\mu_{p}\right]=\mathbb{Q}\left[\mu_{p}\right][\sqrt[p]{\epsilon}]
$$

for the fundamental unit ϵ. Thus we conclude

$$
r_{+}=\operatorname{dim}_{\mathbb{F}} \operatorname{Sel}(\bar{\chi}(1))=1
$$

Since $d_{+}+d_{-}=r_{+}+r_{-}=1$ and $d_{-}>0$ (as σ is non-trivial over \mathbb{T}), we conclude $d_{-}=1$.

§17. QED.

Let $I_{\infty}=R_{\infty}(\sigma-1) R_{\infty}, I^{Q}=\mathbb{T}^{Q}(\sigma-1) \mathbb{T}^{Q}$. Then $R_{\infty}=W\left[\left[T_{-}\right]\right]$ with $S_{+} \in W\left[\left[T_{-}^{2}\right]\right]$ and $\mathcal{R}=\wedge\left[\left[T_{-}\right]\right]$with $S_{+} \in \wedge\left[\left[T_{-}^{2}\right]\right]$. The image of T_{-}in \mathbb{T} gives θ in Theorem B. By $\mathbb{T} / I \cong W=\Lambda /(\langle\varepsilon\rangle-1)$, we get $\mathbb{T}=\wedge\left[\left[T_{-}\right]\right] /\left(S_{+}\right), \mathbb{T}_{+}=\wedge\left[\left[T_{-}^{2}\right]\right] /\left(S_{+}\right)$and

$$
\Omega_{\mathbb{T} / \wedge} \otimes_{\mathbb{T}} W\left[\Gamma_{-}\right]=I / I^{2} \cong(\theta) /(\theta)^{2} \cong \wedge /(\langle\varepsilon\rangle-1)
$$

This tells us that \mathbb{T} is only ramified over \mathbb{T}_{+}for the prime factor of $(\langle\varepsilon\rangle-1)$ which supports my conjecture: $\mathbb{T} \stackrel{?}{=} \mathbb{T}_{+}[\sqrt{\langle\varepsilon\rangle-1}]$ under ($\mathrm{H} 1-4$), generalizing a result of Cho-Vatsal who treated the case $f=1$.

By Nakayama's lemma, $\Omega_{\mathbb{T} / \Lambda}$ is also cyclic.
$\S 18 .\left(L_{p}\right)$ is the different of \mathbb{T} / \wedge.
Note that the ideal $\left(T_{-}-\theta\right) \supset\left(S_{+}\right)$in $\mathbb{T}\left[\left[T_{-}\right]\right]=\wedge\left[\left[T_{-}\right]\right] \otimes_{\wedge} \mathbb{T}$. Write

$$
\left(T_{-}-\theta\right) \mathcal{L}_{p}=S_{+} \quad\left(\mathcal{L}_{p} \in \mathbb{T}\left[\left[T_{-}\right]\right]\right)
$$

with $L_{p}:=\left(\mathcal{L}_{p} \bmod \left(T_{-}-\theta\right)\right) \in \mathbb{T}$. Then $\mathcal{L}_{p} d T_{-}+\left(T_{-}-\theta\right) d \mathcal{L}_{p}=$ $d S_{+}$, and from the commutative diagram with exact rows

we conclude $\Omega_{\mathbb{T} / \Lambda} \cong \mathbb{T} /\left(L_{p}\right)$ for $L_{p}=L_{p}\left(\operatorname{Ad}\left(\rho_{\mathbb{T}}\right)\right)$.
In an appendix of a paper by Mazur-Roberts, Tate computed also the different $\mathfrak{d}_{\mathbb{T} / \wedge}$ and showed $\mathfrak{d}_{\mathbb{T} / \wedge}=\left(L_{p}\right)$.

