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Generalizing a result of Cho—Vatsal (Crelle, 2003), we prove cyclicity over the
Hecke algebra of the adjoint Selmer group of each modular deformation of an
induced irreducible representation of a finite order character Gal(Q/F) — F,
for a real quadratic field F' under mild conditions.



A conjecture.

Let p : Gal(Q/Q) — GLo(W) be an odd absolutely irreducible
Artin representation with coefficients in a complete discrete val-
uation ring W with finite residue field F of characteristic p 1t
| Im(p)|h for the class number h of the splitting field of Ad(p).
Suppose p|Ga|@p/Qp) = (§3) with unramified §. Let p := p

mod myy,.

Conjecture: Suppose p > 3 and ¢ # 0 mod my,. For the
minimal p-ordinary universal deformation pr of p with values in
GLo(T) for the universal ring T, Pontyagin dual of Sel(Ad(pT))" is
pseudo isomorphic to T/(Lp) as T-modules for a non-zero divisor
0%~ LpeT.

Here Ad(pT) acts on slo(T) by x — pp(o)zpr(c)~1. The algebra T

is an algebra over the Iwasawa algebra A = W[I']] = W|[[T]] (with

t = 14T) by det pp factoring through I := Gal(Qp(p>)/Qp(1p)),

and the element Ly, # 0O is the adjoint p-adic L-function L,(Ad(pT))
interpolating L(1, Ad(pp)) (for arithmetic points P € Spec(T)) up

to units in T.



§0. Setting over a real quadratic field.

In this lecture, we deal with the case where p = Ind%go for a real
quadratic field F and a character ¢ : Gal(Q/F) — WX,

Here is our setting:

e F. a real quadratic field with discriminant D and a fundamen-
tal unit . Let ¢ be the generator of Gal(F/Q).

e Pick a character ¢ : Gal(Q/F) — @X with mod p reduction ©
with values in F (and put W = W(F)). Let o= (¢) = p(cco—1c1)
and (o) = @(Soc 1) for ¢ € Gal(Q/Q) with ¢|p =c.

e Let K~ /F be the maximal p-abelian anticyclotomic extension
unramified outside p. Anticyclotomy means that ¢oc— 1 = o1
foroc e Gal(K™~/F). Let _ := Gal(K~ /F) = Gal(Ky/F) (a finite
group), where Ky is the maximal p-abelian extension unramified
outside p.

Assume
e p{ hy for the class numbe hp of F' and (p) = ppc in O with
p # p¢ for the generator ¢ of Gal(F/Q).



§1. Cyclicity theorem. Write | for the prime-to-p-conductor of
® and put N = DNF/@(C) (the level). For the conductor ¢ of o,
we suppose flc|fp. Suppose

(H1) f|c|ep and NF/@(c) is square-free (so, N is cube-free),

(H2) p is prime to NH”N(Z — 1) for prime factors [ of N,

(H3) ¢~ has order at least 3 with ¢~ (Gal(Q,/Qp)) = {1},

(H4) the class number hp of F is prime to p.

We describe a proof of

Theorem A: Under (H1-4), if the class number hp,—) of the
splitting field F(p~) of ¢~ is prime to p, Sel(Ad(pr))Y = T/(Lyp)
as T-modules for a non-zero divisor Ly, € T.

Note that I'_ is a finite cyclic p-group (under (H4)), and we see

WIr_] 2 A/((e) — 1) for (&) ;= ¢'09p(e)/1095(1+p)



§2. Cyclicity and Hecke algebra. The cyclicity follows from a
ring theoretic assertion on the big ordinary Hecke algebra h as
Spec(T) is a connected component of Spec(h). We identify
the Iwasawa algebra A = W][[[]] with the one variable power
series ring WI[T]] by T 5y =(14p) —t=14+T € A. Take
a Dirichlet character ¢ : (Z/NpZ)* — W, and consider the big
ordinary Hecke algebra h (over A) of prime-to-p level N and the
character . We just mention here the following three facts
about h which has T as a local factor:

e h is an algebra flat over the Iwasawa (weight) algebra A =
W[T]] interpolating p-ordinary Hecke algebras of level Np™+1,
of weight k+ 1 > 2 and of character epw™F, where € : ZX — p,r
(r >0) and k£ > 1 vary. If N is cube-free, h is a reduced algebra;
e Each prime P € Spec(h) has a unique Galois representation

pp - Gal(Q/Q) — GLa(k(P)), Trpp(Frob;) =T(l) mod P(l{ Np)
for the residue field x(P) of P;

aY

~ Ep * . e g .
o pP|Ga|@p/Qp) = < 0 5P) with unramified quotient character op.



3. RIng theoretic setting. Since T is universal among p-
ordinary deformations of p := p mod my, with certain extra prop-

erties insensitive to the twist p— p® x for x = (F/—@) T has an

algebra involution o over A coming from the twist. For any ring
A with an involution o, we put A4 = AT ;= {z € Alo(z) = +z}.
Then A4y C Ais a subring and A_ is an A;-module.

e For the ideal I := T(oc — 1)T of T generated by T_ (the “-"
eigenspace), we have a canonical A-algebra isomorphism

T/T & WI[r_]

of Cho—Vatsal, where the A-algebra structure is given by sending
w € [T naturally into u € O£< — Z;; and then projecting the local

Artin symbol 7 = [u, Fp] = [u,Qp] € T to \/7'57'_15_1 = 7(1-9)/2 ¢
[_. By this we have T/I = W[l _] = A/({e) — 1).

Question: Under what condition, we have T = A[,/(e) — 1]7
The condition p1 hp is necessary for this by Cho—Vatsal.



84. Known structure of T.

e [ he fixed points
Spec(T)?=1! 2 Spec(T/T(c — 1)T) = Spec(T/I)

is therefore isomorphic to Spec(W|[Ir_]); note that T = W[l _]
as WI[I_] has finite rank over W, while T is free of finite rank

over A.
e Since T #= W|[I_], o is non-trivial on T.
e The ring T is reduced (as N is cube-free).

Plainly T is stable under o, but

Spec(T)?=1! has codimension 1 in Spec(T),

which does not therefore contain an irreducible component.



§5. Galois deformation theory. By irreducibility of p, we have
a Galois representation

T - Gal(@/@) — GLQ(T) with Tr(pT(Frobl)) = T(Z)

for all primes [ { Np. By the celebrated R = T theorem of
Taylor—Wiles, the couple (T, pr) is universal among deformations
p: Gal(Q/Q) — GLQ(A) satisfying
(D1) p mod my = p = Ind¥e.
(D2) ,0|Ga|(@p/@p) = (§ %) with § unramified and 6 = (6 mod my).
(D3) det(p)|, = 1 for the I-part ¢y of ¢ for each prime [|N.
(D4) det(p)|r, = ¢|1, mod my (& €|, = 9|, mod my).
By the R =T theorem and a theorem of Mazur,

I/1% = Qqp @1 T/1 2 Sel(Ad(Ind g &))"

Q/p & Sel(Ad(pr))Y,

and principality of I implies cyclicity, where & : Gal(@/F) —
W[Gal(Ky/F)]* = WI[I_]* is a character sending o to go(a)a|Kp.



§6. Ring theoretic theorem.

Theorem B: Suppose (H1—4). Then if the class number hp(o)

of F(p™) = @Ker(gp_) is prime to p, the following equivalent
statements hold true:

(1) The rings T and T, are both local complete intersections
free of finite rank over A.

(2) The T-ideal I = T(oc — 1)T C T is principal and is generated
by a non-zero-divisor € T_ with 62 € T, and T = T, [0] is free
of rank 2 over T,.

The implication (1)=-(2) follows from the lemma in the following
slide.



87. A key duality lemma

Here is a simplest case of the theory of dualizing modules by
Grothendieck, Hartshorne and Kleiman (exploited by Cho—Vatsal):

Lemma 1 (Key lemma). Let S be a p-profinite Gorenstein inte-
gral domain and A be a reduced Gorenstein local S-algebra
free of finite rank over S. Suppose

e A has a ring involution o with Ay := {a € Alo(a) = a},

° A_|_ iIs Gorenstein,

e Frac(A)/Frac(AL) is €tale quadratic extension.

. 02}A+ = {x € Frac(A)|Tr 4, (®A) C Ay} 2 A,

Then A is free of rank 2 over Ay and A = AL ® A40 for an
element 0 € A with o(0) = —6.

To see (1)=(2) of Theorem B, we apply the lemma to A=T.



§8. Sketch of Theorem B = Theorem A.

Assuming (1), by Key lemma, o/, = (6) for a non-zero divisor
6 €T. By "R="T" theorem, we see that T/I = W[lI_]. Then
by a theorem of Mazur, we have

Qp/p £ Sel(Ad(pr))Y and I/1% = Qp a@yW[I_](= Sel(Ind2 d)V),

where @ : Gal(Q/F) — W[ _]* is the universal character de-
forming ¢ unramified outside c¢p. Since I/I% = (6)/(62) is cyclic,
by Nakayama's lemma, Q2 = Sel(Ad(pt))Y has one generator
over T. Later we will see the annihilator of the generator is a
principal ideal (Lyp) for a non-zero divisor Ly, € T.

The proof of the adjoint class number formula by Wiles and my-
self (Pune IISER lecture notes Chap. 6) shows L, = Ly(Ad(pT))
up to units for the adjoint p-adic L-function L,(Ad(pr)) € T.

(2)=(1) of Theorem B: We have I = (§) C T and I = (6°) C
T,. Note that T/(0) = W[r_] 2 T, /(62). Since 6 is a non-zero
divisor, the two rings T and T—I— are local complete intersections
since WI[I_] is a local complete intersection.



§9. Presentation of T for the proof of (1) of Theorem B.
To see a possibility of applying the key lemmma to T/T_|_, we like to
lift T to a power series ring R = A[[T1,...,Tr]] with an involution
0co SUch that RT := {& € R|oso(z) = z} is Gorenstein and that
(R/A, 000 mod A) = (T, o) for an ideal 2 stable under ox.

Taylor and Wiles (with an improvement by Diamond and Fuji-

wara) found a pair (R := A[[Ty,...,Tr]],(S1,...,Sr)) with a reg-

ular sequence S := (S1,...,5r) C A[[T7,...,Tr]]) such that
N[[Tq,...,Tr]]1/(S1,...,S) =T

by their Taylor—Wiles system argument.

We need to lift ¢ somehow to an involution oo € Aut(R) and
show also that RT is Gorenstein. If further R - R~ = (6), the
image 6 € T~ of 6 in T generates I as desired.



§10. Taylor—Wiles method. Taylor—Wiles found an integer
r > 0 and an infinite sequence of r-sets Q := {Qm|m =1,2,...}
of primes ¢ = 1 mod p™ such that for the local ring T¢" of 5
of the Hecke algebra h@m of tame-level Ny = Nl,eq,,q- The
pair (TQm,pTQm) is universal among deformation satisfying (D1—
4) but ramification at ¢ € Q,, is allowed. Then p — p® x
induces an involution oq, ..

Actually they work with Tg = T@m/(t — +*)TOm (t = 1+ T,
v=1+4pel; the weight k+ 1 Hecke algebra of weight k41 > 2
fixed). The product inertia group IQm = quQm Iq acts on TQm
by the p-abelian quotient Ag = of [[,cq,,(Z/qZ)*. We choose an
ordering of primes Qm = {q1,--.,q9r} and a generator 0; m(n) OF
the p-Sylow group of (Z/q;Z)*. The sequence Q is chosen so that
for a given integer n > 0, we can find m = m(n) > n so that we
have ring projection maps R,,; 1 — Rp := TQm(n)/(p”,(Spn —1),,

1,m(n)

and R = Mn Ry = W[[Tl, Ce ,Tr]] and S; = mn(5z’m(n) — 1).



§11. Lifting involution.
Write Dy for the local version of the deformation functor asso-
ciated to (D1—4) adding a fixed determinant condition

(det) det(p) = v*y for the chosen k > 2
so, the @Qm-ramified universal ring is given by TQm'

Write S, for the image of W([S]] for S = (S1,...,5r) in Ry. We
can add the involution to this projective system. Write o, for the
involution of R, induced by TQm(n) to the Taylor-Wiles system,
and get the lifting o0 € Aut(Rs). We can normalize the variable

{Tl,...,TT}:{Tfr,...,TC;:}u{T;,...,TC;_}
so that aoo(Tji) = iTji (thus r =dy +d_). Then we can further

lift involution to R = A[[TY, ... ,Tcgi,Tl—, Ty 1l as R/(t—~F) =
R fort=1+4T1T.



§12. Tangent space of T.

Let Y™ (¢) (resp. Y,,(¢)) for a character ¢ : Gal(Q/F) — WX be
the ¢-eigenspace of the Galois group of the maximal p-abelian
extension of the composite K~ F(¢) unramified outside p with
total splitting of p¢ (resp. with total splitting at all prime
factors of p°N). The tangent space

tr, sw = Hom(my, /(mf_ —+my),F)

is a Selmer group Sel(Ad) for Ad = Ad(p) = sl (F) = X@IndQ
:l: ] 1
‘The involution o acts on b, /W and writing tTQm/W for the "+

eigenspace of o, we have dy =dim t(Z_)|_/W and

_I_
by w

by a generalization of a result of Cho—Vatsal to the case | # 1:

= Sel(x) = Hom(Clg,F) =0

try W = Sel(Ind2 %) = Homyy (Y ("), ).



§13. Dual Selmer groups as an index set for Q.

The index set of 0y, is any choice of [F-basis of a “dual” Selmer
group. Regard Dy(F[e]) for the dual number € as a subspace of
Hl(Qq,Ad) in the standard way: Thus we have the orthogonal
complement Dq(IF‘[e])l C H'(Qq, Ad*(1)) under Tate local duality.
The dual Selmer group Selt+(Ad*(1)) is given by

H(Qy, Ad*(1))
D;(Fle])+

Selt(Ad*(1)) := Ker(H (QNP)/Q, Ad*(1)) — ]
[|[Np

)7

where Q(Np)/Q is the maximal extension of Q inside Q unramified
outside Np and o~c.

Then r = dimy Selt(Ad*(1)) and choosing a basis [c;] € Sel+(Ad*(1))
of Selmer classes, q; € Qm satisfies cj| ~ gives non-trivial local
Frobqj

cohomology class.



314. Interpretation of the dual Selmer group.

Define Q. := {q € Qm|x(¢) = £1}. Then if S; is the variable in
W[S]] coming from q € Q7, then o(sq) = sl for sq:=14 S,
Since Ad = x ®Ind¥%—; so, for Ad*(1) = Ad(p)(1),

Sel(Ad* (1)) = Selt(%(1)) ® Sel-(IndR(z~(1))),
Sel-(Ind 27 (1)) & Homyy (Yo (9™ w), F),

Selt(x%(1)) = Hom(O*,F) (Kummer theory under pthp).

The choice of g; with c](Frobq) # 0 forces us that Qm is in-
dexed by a basis of Selt(x(1)) and Q,, is indexed by a basis of
Sell(Ind (z—(1))); so,
ry = dimSelt(x(1)) = Q5] and

r_ = dimSel-(IndP(@ (1)) = |Qpn| < d— by a(sq) = sit.



§15. Determination of the dual induced Selmer group.
Write R for the integer ring of F(¢~). For simplicity, assume
that F =TF,. If ¢ € HomW[r_](Ysg(go—w),IFp), by Kummer theory

(and pJ[ hF(gp_))r

QD] = Flupl[¥/e for e e %[%]X

with the modulo p-power class [e] in the (¢~ ) l-eigenspace:
[ € R /RO,
p p

Since F'(¢~) is a CM field and ¢~ (¢) = —1 for complex conjuga-
tion ¢, R*®,F does not have (¢~ ) l-eigenspace as ¢~ is a totally
odd character. The quotient p-divisor group (%[%]X/?ﬁx) ®7 F

neither have p~ eigenspace as @‘(Gal(@p/(@p)) #= 1. Thus if
P1hp(e):

r_ =dim Sel(Ind%@‘(l)) = dimHomy,r (Y, (¢~ w),F) = 0.



316. Determination of the dual Selmer group of y.

Write O for the integer ring of F'. First assume that I = F,. If

[c] € Selj(y(l)), taking W = C|Ga|(@/@(xw))’ for Q(WV) = @Ker(w),

the definition of the Selmer group tells us, by Kummer theory
and p{ hp,

QW) [up] = Qup] [Ve€]
for the fundamental unit e. Thus we conclude
r4 = dimp Sel(x(1)) = 1.

Sincedy +d_=r4y+r_=1andd_ >0 (as o is non-trivial over
T), we conclude d_ = 1.



§17. QED.

Let oo = Roo(0— 1) Roo, I® =T9 (6 —1)T¥. Then Roo = W[[T_]]
with Sy € W[[T?]] and R = A[[T-]] with Sy € A[[T?]]. The
image of T_ in T gives 6 in Theorem B. By T/I =W = A/({e)—1),
we get T = A[[T-]]/(Sy), Ty = A[[T?]]/(S4) and

Qp/p @ WIT-] =1/1% 2 (0)/(0)% = A/((e) - 1).

This tells us that T is only ramified over T—I— for the prime factor

?
of ({¢) — 1) which supports my conjecture: T = T,[/(e) — 1]
under (H1—4), generalizing a result of Cho—Vatsal who treated
the case f = 1.

By Nakayama’'s lemma, QT//\ IS also cyclic.



§18. (Lp) is the different of T/A.

Note that the ideal (IT- —60) D (S4) in T[[T-]] = A[[T-]] ®a T.
Write

(T- —0)Lp =Sy (Lp € T[T]])
with Ly := (Lp mod (T- —0)) € T. Then LpdT_ + (T- — 0)dLy =
dS4, and from the commutative diagram with exact rows

d —»
(S1)/(S1)? = Qrurya®tr T — Qr/a

| | |

TdS_I_ L—> TdT_ j QT/A,
p

we conclude €21/ = T/(Lp) for Ly, = Ly(Ad(pT)).

In an appendix of a paper by Mazur—Roberts, Tate computed
also the different o/, and showed o\ = (Lp).



