ON A GENERALIZATION OF THE CONJECTURE OF MAZUR-TATE-TEITELBAUM

HARUZO HIDA

ABSTRACT. We propose a generalization of the conjecture of Mazur-Tate-Teitelbaum (predicting an exact shape of the *p*-adic \mathcal{L} -invariant of rational Tate curves (which is now a theorem of Greenberg-Stevens) to the symmetric powers of motivic two dimensional odd Galois representations over totally real fields. At *p*-adic places where the motive is multiplicative, the \mathcal{L} -invariant is conjectured to have the same shape as predicted by them. Then we prove our conjecture assuming a precise ring theoretic structure of the universal infinitesimal Galois deformation ring of the symmetric power.

1. The conjectures

Let p be an odd prime and F be a totally real field of degree $d < \infty$ with integer ring O. Order the prime factors of p in O as $\mathfrak{p}_1, \ldots, \mathfrak{p}_g$. In this talk, we describe the computation of Greenberg's \mathcal{L} -invariant $\mathcal{L}_{n,m}$ (at s = m) of the symmetric n-th powers ρ_n of the Tate module T_pE for an elliptic curve $E_{/F}$ with multiplicative reduction at $\mathfrak{p}_j|p > 2$ for $j = 1, 2, \ldots, b$ and ordinary good reduction at $\mathfrak{p}_j|p$ for j > b. Greenberg and also myself in different ways proved under some assumptions, for the number e of vanishing modifying Euler p-factors at m for m critical for ρ_n , the characteristic power series $L_p(s, \rho_n)$ of $\operatorname{Sel}_{F_{\infty}}(\rho_n \otimes \mathbb{Q}_p/\mathbb{Z}_p)$ for the cyclotomic \mathbb{Z}_p -extension F_{∞}/F vanishes of order $\geq e$ at s = m:

$$\lim_{s \to m} \frac{L_p(s, \rho_n)}{(s-m)^e} \sim \mathcal{L}(\rho_{n,m}) \big| \# (\operatorname{Sel}_F(\rho_n \otimes \mathbb{Q}_p / \mathbb{Z}_p)) \big|_p^{-1},$$

where \sim means up to units.

Write F_i for $F_{\mathfrak{p}_i}$, $E(\overline{F}_i) = \overline{F}_i^{\times}/q_i^{\mathbb{Z}}$ for $i \leq b$, $Q_i = N_{F_i/\mathbb{Q}_p}(q_i)$, and $\Gamma_i = \mathcal{N}(\operatorname{Gal}(\overline{F}_i/F_i)) \cap (1 + p\mathbb{Z}_p)$ for the *p*-adic cyclotomic character \mathcal{N} . We assume throughout the talk that E does not have complex multiplication. Take an algebraic closure \overline{F} of F. Writing ρ_0 : $\operatorname{Gal}(\overline{F}/F) \to GL_2(\mathbb{Q}_p)$ for the Galois representation on T_pE , put $\rho_n = \rho_{n,0} = Sym^{\otimes n}(\rho_0)$ and $\rho_{n,m} = \rho_n(-m) = \rho_n \otimes \det(\rho_0)^{-m}$. Note that $\rho_E|_{D_{\mathfrak{p}}} \sim \begin{pmatrix} \beta_{\mathfrak{p}} & * \\ 0 & \alpha_{\mathfrak{p}} \end{pmatrix} (D_{\mathfrak{p}} = \operatorname{Gal}(\overline{F}_{\mathfrak{p}}/F_{\mathfrak{p}}))$ with unramified $\alpha_{\mathfrak{p}}$ at each prime factor $\mathfrak{p}|_P$. Let $S_{n,m}$ be the set of prime ideals of O where $\rho_{n,m}$ ramifies. Consider $J_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. We then define $J_n = Sym^{\otimes n}(J_1)$. Define an algebraic group G_n over \mathbb{Z}_p by

$$G_n(R) = \left\{ \xi \in GL_{n+1}(R) \middle| {}^t \xi J_n \xi = \nu(\xi) J_n \right\} \quad \text{(for } \mathbb{Z}_p\text{-algebras } R)$$

Date: July 2, 2008.

A conference talk at Irsee (Germany) on 6/30/08. The author is partially supported by the NSF grant: DMS 0244401, DMS 0456252 and DMS 0753991.

with the similitude homomorphism $\nu : G_n \to \mathbb{G}_m$. Then G_n is a quasi-split orthogonal or symplectic group according as n is even or odd. The representation $\rho_{n,0}$ of $\operatorname{Gal}(\overline{F}/F)$ factors through $G_n(K) \subset GL_{n+1}(K)$.

Let K/\mathbb{Q}_p be a finite extension with *p*-adic integer ring *W*. Start with $\rho_{n,0}$ and consider the deformation ring (R_n, ρ_n) which is universal among the following deformations: Galois representations $\rho_A : \operatorname{Gal}(\overline{F}/F) \to G_n(A)$ for Artinian local *K*-algebras *A* with residue field $K = A/\mathfrak{m}_A$ (for the maximal ideal \mathfrak{m}_A of *A*) such that

(K_n1) unramified outside $S_{n,0}$, ∞ and p;

(K_n2) for all prime factors
$$\mathfrak{p}$$
 of p , $\rho_A|_{D_\mathfrak{p}} \cong \begin{pmatrix} \alpha_{0,A,\mathfrak{p}} & \ast & \cdots & \ast \\ 0 & \alpha_{1,A,\mathfrak{p}} & \cdots & \ast \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_{n,A,\mathfrak{p}} \end{pmatrix}$ with $\alpha_{j,A,\mathfrak{p}} \equiv \beta_{\mathfrak{p}}^{n-j} \alpha_{\mathfrak{p}}^{j}$
mod \mathfrak{m}_A and $\alpha_{j,A,\mathfrak{p}}|_{I_\mathfrak{p}}$ $(j = 0, 1, \dots, n)$ factoring through $\operatorname{Gal}(F_\mathfrak{p}[\mu_{p^\infty}]/F_\mathfrak{p});$
(K_n3) $\nu \circ \rho_A = \nu \circ \rho_{n,0} = \det(\rho_0)^n$ in A ;
(K_n4) $\rho_A \equiv \rho_{n,0} \mod \mathfrak{m}_A.$

Since $\rho_{n,0}$ is absolutely irreducible and all $\alpha_{\mathfrak{p}}^i \beta_{\mathfrak{p}}^{n-i}$ for $i = 0, 1, \ldots, n$ are distinct, the deformation problem specified by $(K_n 1-4)$ is representable by a universal couple $(R_n, \boldsymbol{\rho}_n)$. In other words, for any ρ_A as above, there exists a unique K-algebra homomorphism $\varphi: R_n \to A$ such that $\varphi \circ \boldsymbol{\rho}_n \approx \rho_A$. Here $\rho \approx \rho'$ if and only if $\rho' = x\rho x^{-1}$ for $x \in G_n(A)$ whose image in $G_n(A/\mathfrak{m}_A)$ is trivial. The representation ρ is said to be *strictly* equivalent to ρ' if $\rho \approx \rho'$. Often we fix n > 0 and write simply $(R, \boldsymbol{\rho})$ for $(R_n, \boldsymbol{\rho}_n)$.

Write now

$$oldsymbol{
ho}_n|_{D_{\mathfrak{p}}}\cong egin{pmatrix} \delta_{0,\mathfrak{p}} &* &\cdots &* \ 0 & \delta_{1,\mathfrak{p}} &\cdots &* \ dots &dots & dots &dots &dots$$

with $\delta_{j,\mathfrak{p}} \equiv \beta_{\mathfrak{p}}^{n-j} \alpha_{\mathfrak{p}}^{j} \mod \mathfrak{m}_{n}$ (for $\mathfrak{m}_{n} = \mathfrak{m}_{R_{n}}$). Let $\Gamma_{\mathfrak{p}}$ be the maximal torsion-free quotient of the inertia group of $\operatorname{Gal}(F_{\mathfrak{p}}[\mu_{p^{\infty}}]/F_{\mathfrak{p}})$. Then the character $\hat{\delta}_{j,\mathfrak{p}} := \delta_{j,\mathfrak{p}}(\beta_{\mathfrak{p}}^{n-j}\alpha_{\mathfrak{p}}^{j})^{-1}$ restricted to the \mathfrak{p} -inertia subgroup $I_{\mathfrak{p}}$ factors through $\Gamma_{\mathfrak{p}}$, giving rise to an algebra structure of R_{n} over $W[[\Gamma_{\mathfrak{p}}]]$. Take the product $\Gamma = \prod_{\mathfrak{p}|p} \Gamma_{\mathfrak{p}}^{n+1}$ of n+1 copies of $\Gamma_{\mathfrak{p}}$ over all prime factors \mathfrak{p} of p in F. We write general elements of Γ as $x = (x_{j,\mathfrak{p}})_{j,\mathfrak{p}}$ with $x_{j,\mathfrak{p}}$ in the j-th component $\Gamma_{\mathfrak{p}}$ in Γ ($j = 0, 1, \ldots, n$). Consider the character $\hat{\delta} : \Gamma \to R_{n}^{\times}$ given by $\hat{\delta}(x) = \prod_{j=0}^{n} \prod_{\mathfrak{p}|p} \hat{\delta}_{j,\mathfrak{p}}(x_{j,\mathfrak{p}})$. Choosing a generator $\gamma_{i} = \gamma_{\mathfrak{p}}$ (for $\mathfrak{p} = \mathfrak{p}_{i}$) of the topologically cyclic group $\Gamma_{\mathfrak{p}}$, we identify $W[[\Gamma]]$ with a power series ring $W[[X_{j,\mathfrak{p}}]]_{j,\mathfrak{p}}$ by associating the generator $\gamma_{j} := \gamma_{\mathfrak{p}_{j}$ of the j-th component $\Gamma_{\mathfrak{p}_{j}}$ of Γ with $1 + X_{j,\mathfrak{p}}$. The character $\hat{\delta}: \Gamma \to R_{n}^{\times}$ extends uniquely to an algebra homomorphism $\hat{\delta}: W[[X_{j,\mathfrak{p}}]]_{j,\mathfrak{p}} \to R_{n}$ by the universality of the (continuous) group ring $W[[\Gamma]]$. Thus R_{n} is naturally an algebra over $K[[X_{j,\mathfrak{p}}]]_{j,\mathfrak{p}}$.

Conjecture 1.1. Suppose that n is odd. Then R_n is isomorphic to the power series ring $K[[X_{j,p}]]_{p|p,1 \leq j \leq n, j:odd}$ of E variables for $E = g\frac{n+1}{2}$.

Remark 1.2. (1) If n = 1 and $F = \mathbb{Q}$, this conjecture: $R_1 = K[[X_1]]$ follows from Serre's mod p modularity conjecture (proven by Khare/Wintenberger/Kisin). Let $\overline{\rho}_0 = (\rho_0 \mod \mathfrak{m}_W)$. By Taylor's potential modularity of ρ_0 with additional assumptions that $\operatorname{Im}(\overline{\rho}_0)$ is nonsoluble, we can prove this conjecture for n = 1 (via modularity theorems of Fujiwara, Kisin and Chen).

- (2) One can conjecture the same assertion starting with a more general ρ_0 : Gal $(\overline{F}/F) \rightarrow GL_2(W)$ satisfying
 - (a) its image contains an open subgroup of $SL_2(\mathbb{Z}_p)$;
 - (b) it is a member of a strictly compatible system;
 - (c) its restriction to $D_{\mathfrak{p}}$ is equivalent to $\begin{pmatrix} \beta_{\mathfrak{p}} & * \\ 0 & \alpha_{\mathfrak{p}} \end{pmatrix}$;
 - (d) $\alpha_{\mathfrak{p}}$ and $\beta_{\mathfrak{p}}$ factors through $\Gamma_{\mathfrak{p}}$;
 - (e) up to finite order characters, $\alpha_{\mathfrak{p}} = \mathcal{N}^{k_{\mathfrak{p}}}$ and $\beta_{\mathfrak{p}} = \mathcal{N}^{k'_{\mathfrak{p}}}$ with $k_{\mathfrak{p}} > k'_{\mathfrak{p}}$ for each $\mathfrak{p}|p$, where \mathcal{N} is the p-adic cyclotomic character.
- (3) Note that G₃ ≈ GSp(4) is the spin cover of G₄ = GO(2,3). Some progress has been made by A. Genestier and J. Tilouine towards the "R = T" theorem for GSp(4)-Hecke algebras (for F = Q), there is a good prospect to get a proof of Conjecture 1.1 when n = 3 and 4. Further, when F = Q, in view of the recent results of Clozel-Harris-Taylor and Taylor (in the paper proving the Sato-Tate conjecture for Tate curves), one would be able to treat general n in future not so far away.

We propose the following generalization of a conjecture of Mazur–Tate–Teitelbaum:

Conjecture 1.3. Recall $Q_i = N_{F_i/\mathbb{Q}_p}(q_i)$. Suppose criticality at 1 of the symmetric power motive $Sym^{\otimes n}(M) \otimes \det(M)^{-m}$ for the motive $M := H_1(E)$ with Tate twist by an integer m. Then if $\rho_{n,m}$ has an exceptional zero at s = 1, we have

$$\mathcal{L}(\rho_{n,m}) = \begin{cases} \left(\prod_{i=1}^{b} \frac{\log_p(Q_i)}{\operatorname{ord}_p(Q_i)}\right) \mathcal{L}(m) & \text{for } \mathcal{L}(m) \in K^{\times} \text{ if } n = 2m \text{ with odd } m \ (e = g), \\ \prod_{i=1}^{b} \frac{\log_p(Q_i)}{\operatorname{ord}_p(Q_i)} & \text{if } n \neq 2m \ (e = b). \end{cases}$$

We have $\mathcal{L}(m) = 1$ if b = g, and the value $\mathcal{L}(1)$ when b < g is given by

$$\mathcal{L}(1) = \det\left(\frac{\partial \boldsymbol{\delta}_{1,\mathbf{p}_i}([p,F_i])}{\partial X_{1,\mathbf{p}_j}}\right)_{i>b,j>b}\Big|_{X=0} \prod_{i>b} \frac{\log_p(\gamma_i)}{[F_i:\mathbb{Q}_p]\alpha_i([p,F_i])}$$

for the local Artin symbol $[p, F_i]$, where we regard γ_i as an element of \mathbb{Z}_p^{\times} where we regard γ_i as an element of \mathbb{Z}_p^{\times} by the cyclotomic character \mathcal{N} to have $\log_p(\gamma_i) \in \mathbb{Q}_p$.

Again, we could have started with a more general ρ_0 and could have made a similar conjecture.

Theorem 1.4. Conjecture 1.1 *implies* Conjecture 1.3 for Greenberg's \mathcal{L} -invariant.

2. Sketch of Proof

Let S_n be the derived group of G_n , and consider the Lie algebra \mathfrak{s}_n of S_n . Then $\sigma \in \operatorname{Gal}(\overline{F}/F)$ acts on \mathfrak{s}_n by $X \mapsto \rho_n(\sigma) X \rho_n(\sigma)^{-1}$. Write this Galois module as $Ad(\rho_n)$. Then

(2.1)
$$Ad(\rho_n) \cong \bigoplus_{j:\text{odd, } 1 \le j \le n} \rho_{2j,j}.$$

Let us write \mathfrak{m}_n for the maximal ideal of R_n . Then in the standard manner, we get the following identity of the (modified) Selmer group of Greenberg:

Lemma 2.1. Suppose Conjecture 1.1. Then canonically

$$\operatorname{Sel}_{F}^{cyc}(Ad(\rho_{n})) \cong \operatorname{Hom}_{\mathbb{Q}_{p}}(\mathfrak{m}_{n}/\mathfrak{m}_{n}^{2}, \mathbb{Q}_{p}) = \bigoplus_{j:odd, 1 \leq j \leq n} \bigoplus_{\mathfrak{p}|p} \mathbb{Q}_{p} \cdot dX_{j,\mathfrak{p}} \cong \bigoplus_{j:odd, 1 \leq j \leq n} \operatorname{Sel}_{F}^{cyc}(\rho_{2j,j}),$$

and we have $\dim_K \operatorname{Sel}_F^{cyc}(\rho_{2j,j}) = g = |\{\mathfrak{p}|p\}|$ and $\operatorname{Sel}_F(\rho_{2j,j}) = 0$ for odd j with $1 \le j \le n$.

The tangent space of $\operatorname{Spf}(R_n)$ is given by $\operatorname{Sel}_F^{cyc}(Ad(\rho_n))$ by a general nonsense. The Selmer cocycles are given by $c_{j,\mathfrak{p}} = \left(\frac{\partial \rho_n}{\partial X_{j,\mathfrak{p}}}\Big|_{X=0}\right) \rho_n^{-1}$. Here Greenberg's Selmer group over an extension M/F is given in the following way: We have a *p*-adic Hodge filtration on $\rho_{n,m}$ such that on $\mathcal{F}^i_{\mathfrak{p}}/\mathcal{F}^{i+1}_{\mathfrak{p}}$, $D_{\mathfrak{p}}$ act by \mathcal{N}^i . Let $\mathcal{F}^+_{\mathfrak{p}} = \mathcal{F}^1_{\mathfrak{p}}$ and $\mathcal{F}^-_{\mathfrak{p}} = \mathcal{F}^0_{\mathfrak{p}}$. We put

$$L_{\mathfrak{p}} = \operatorname{Ker}(\operatorname{Res}: H^{1}(M_{\mathfrak{p}}, \rho_{n,m}) \to H^{1}(I_{\mathfrak{p}}, \frac{\rho_{n,m}}{\mathcal{F}_{\mathfrak{p}}^{+}})),$$

and for primes q outside p

$$L_{\mathfrak{q}} = \operatorname{Ker}(\operatorname{Res} : H^{1}(M_{\mathfrak{q}}, \rho_{n,m}) \to H^{1}(I_{\mathfrak{q}}, \rho_{n,m})).$$

Then

(2.2)
$$\operatorname{Sel}_{M}(\rho_{n,m}) = \operatorname{Ker}(H^{1}(M,\rho_{n,m}) \to \prod_{\text{f:all primes}} \frac{H^{1}(M_{\mathfrak{l}},\rho_{n,m})}{L_{\mathfrak{l}}})$$

We define the "locally cyclotomic" Selmer group $\operatorname{Sel}_{M}^{cyc}(\rho_{n,m})$ replacing $L_{\mathfrak{p}}$ by

$$L^{cyc}_{\mathfrak{p}}(V) = \operatorname{Ker}(\operatorname{Res}: H^1(M_{\mathfrak{p}}, \rho_{n,m}) \to H^1(I_{\mathfrak{p},\infty}, \frac{\rho_{n,m}}{\mathcal{F}^+_{\mathfrak{p}}})),$$

where $I_{\mathfrak{p},\infty}$ is the inertia group of $\operatorname{Gal}(\overline{M}_{\mathfrak{p}}/M_{\mathfrak{p}}[\mu_{p^{\infty}}])$.

Take a basis of cocycles $\{c_{\mathfrak{p}}\}_{\mathfrak{p}|p}$ representing $\operatorname{Sel}_{F}^{cyc}(\rho_{2m,m})$ over K (indexed by $\{\mathfrak{p}|p\}$). Write $a_{\mathfrak{p}}: D_{\mathfrak{p}'} \to K$ for $c_{\mathfrak{p}} \mod \mathcal{F}_{\mathfrak{p}'}^+ \rho_{2m,m}$ regarded as a homomorphism (identifying $\mathcal{F}_{\mathfrak{p}}^- \rho_{2m,m}/\mathcal{F}_{\mathfrak{p}}^+ \rho_{2m,m}$ with the trivial $D_{\mathfrak{p}}$ -module K). We now have two $e \times e$ matrices with coefficients in K: $A_m = (a_{\mathfrak{p}_i}([p, F_{\mathfrak{p}_j}]))_{i,j}$ and $B_m = (\log_p(\gamma_{\mathfrak{p}_i})^{-1}a_{\mathfrak{p}_i}([\gamma_{\mathfrak{p}_j}, F_{\mathfrak{p}_j}]))_{i,j}$. We can see fairly easily that Conjecture 1.1 for $\rho_{n,0}$ with all odd $1 \leq n \leq m$ implies that B_m is invertible. Then Greenberg's \mathcal{L} -invariant is defined by

(2.3)
$$\mathcal{L}(\rho_{2m,m}) = \mathcal{L}(\operatorname{Ind}_F^{\mathbb{Q}} \rho_{2m,m}) = \det(A_m B_m^{-1}).$$

The determinant det $(A_m B_m^{-1})$ is independent of the choice of the basis $\{c_p\}_p$. We also have the relation $\delta_{i,p}\delta_{n-i,p} = \mathcal{N}^n$ for $i = 0, 1, \ldots, n$. Then $\{dX_{j,p} \leftrightarrow c_{j,p}\}_{j:odd,p|p}$ is a basis of $\bigoplus_{j:odd,0 < j \leq n} \operatorname{Sel}_F^{cyc}(\rho_{2j,j})$. Using the explicit form of $c_{j,p}$ projected down to $\rho_{2m,m}$ for odd $0 < m \leq n$, we can compute the \mathcal{L} -invariant in the form described in the theorem. See the following paper for details:

[H07] H. Hida, On a generalization of the conjecture of Mazur–Tate–Teitelbaum, International Mathematics Research Notices, Vol. 2007, Article ID rnm102, 49 pages. doi:10.1093/imrn/rnm102

DEPARTMENT OF MATHEMATICS, UCLA, LOS ANGELES, CA 90095-1555, U.S.A.