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In this paper, we describe a proof (more concise than the treatments in [PAF]
Chapter 8 and [H06]) of irreducibility of the modulo p Igusa tower over a (unitary)
Shimura variety. We study the decomposition group of the mixed characteristic
valuation associated to each irreducible component of the Igusa tower (so the ar-
gument is closer to [PAF] Chapter 8 than the purely characteristic p argument
in [H06]). The author hopes that the account here is easier to follow than the
technical but more general treatment in [H06] and [PAF].

There are at least two ways of showing irreducibility: (i) the use of the auto-
morphism group of the function field of the Shimura variety of characteristic 0 (cf.
[PAF] Sections 6.4.3 and 8.4.4), which uses characteristic 0 results to prove the
characteristic p assertion, and (ii) a purely characteristic p proof following a line
close to (i) (see [H06]). There are some other arguments (purely in characteristic
p) to prove the same result (covering different families of reductive groups giving
the Shimura variety) as sketched in [C1] for the Siegel modular variety.

Here is an axiomatic approach to prove irreducibility of an étale covering π :
I → S of a smooth irreducible variety S over the algebraic closure F of Fp. Write
π0(I) for the set of connected components of I. We start with the following two
axioms:
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(A1) A group G = M×G1 acts on I and S compatibly so that M ⊂ Aut(I/S),
G1 ⊂ Aut(S) and G1 acts trivially on π0(I).

(A2) M acts on each fiber of I/S transitively; so, M acts transitively on
π0(I).

Under (A1–2), we study the stabilizer subgroup Tx in G of a point x in a connected
component I◦ of I and try to prove the following conclusion:

(C) {Tx}x for a good choice of a collection of points x and G1 generate a dense
subgroup of G.

Once we reach the conclusion (C), by the transitivity (A2), we obtain I◦ = I getting
the irreducibility of I.

In the setting of Shimura variety Sh of PEL type (of level away from a given
finite set Σ of places), assuming that we have a smooth integral compactification of
Sh over a p-adic discrete valuation ring W (see [ACS] 6.4.1), we can easily verify
the axioms (A1–2) for the following reasons: compatibility of the action in (A1) and
and the transitivity in (A2) follow from the definition. In this case of a Shimura
variety, S is the ordinary locus of the modulo p Shimura variety Sh/F of level away

from a given finite set Σ of places including p and ∞. Then, for the adéle ring A(Σ)

away from Σ, G1 is the adéle group G(A(Σ)) for the semi-simple group G/Q (which
is the derived group of the starting reductive group in Shimura’s data), and M is
the Zp-points M(Zp) of the reductive part M of a parabolic subgroup of G. If we
choose Σ so that G(Q�) is generated by unipotent elements for all � �∈ Σ, G1 has
no nontrivial finite quotient group (because unipotent groups over a characteristic
0 field are uniquely divisible). For any finite subcovering I ′/S of I, G1 acts on the
finite set π0(I

′) through a finite quotient of G1; thus, the action is trivial, proving
(A1).

In the above discussion of how to verify (A1), a key ingredient is that G1

is large enough not to have finite (nontrivial) quotient. As we will do in this
paper, this is deduced from the existence of a smooth toroidal compactification (if
the Shimura variety is not projective) and a characteristic 0 determination of the
automorphism group of the Shimura variety. Alternatively, one can prove that G1

is large by showing that the �-adic monodromy homomorphism for primes � �= p has
large open image in G(A(Σ)). Indeed, C.-L. Chai [C] (in the symplectic case) has
deduced the open image result via group theory from the semi-simplicity theorem
of Grothendieck-Deligne of the �-adic representation. The method in [C] should
also work for � �∈ Σ (for an appropriate Σ) in our setting.

Let I◦/F be an irreducible component of I/F. We want to prove I◦ = π−1(S) = I

(irreducibility). Then Gal(I◦/S) ⊂ M, and ifM = Gal(I◦/S), we get I◦ = π−1(S).
Let D be the stabilizer of I◦ ∈ π0(I) in G. Pick a point x ∈ I (which can be a
generic point), and look at the stabilizer Tx ⊂ G of x. Since gx(x) ∈ I◦ (gx ∈ M) by
the transitivity of the action, we have gxTxg

−1
x ⊂ D. Then we show that M = G/G1

is generated topologically by {gxTxg
−1
x |x ∈ I}, which implies M = Gal(I◦/S) and

the conclusion (C).
In the setting of the Igusa tower of a Shimura variety, we can have at least

three choices of the points x ∈ I:

(∞) A cusp, assuming that the group G = ResF/QG0 for a quasi-split group
G0 over a number field F (acting on a tube domain). This is the proof
given for GSp(2n) in [DAV].
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(cm) A closed point x ∈ I(F) is fixed by a maximal torus Tx of G anisotropic at
∞; thus, gxTx(Z(p))g

−1
x ⊂ D for Z(p) = Q ∩ Zp). A well chosen finite set

of closed points X := {x} is enough to generate a dense subgroup of D by
{gxTx(Z(p))g

−1
x }x∈X . This is Ribet’s choice for Hilbert modular varieties

and is also taken in [H06]. If one uses a CM point (the so-called “hyper-
symmetric point”) carrying a product of copies of CM elliptic curves, often
one such point is sufficient (see Section 3.5);

(gn) Take a coordinate system T = (T1, . . . , Td) around x ∈ Sh(W ) with (x

mod p) ∈ I◦(F) (so that ÔSh,x
∼= W [[T1, . . . , Td]]) and take the valuation

vx(
∑
α

c(α, f)Tα) = Infα ordp(c(α, f)).

Then the decomposition group D of vx contains Tx (for all x ∈ I◦), and D
is the stabilizer of the generic point of I◦ containing x (this choice is taken
in [PAF] 8.4.4). The valuation vx corresponds to the generic point of I◦.
The point x can be a cusp as in (∞), and in the case of the modular curve
(see Section 1.3), the Hilbert-Siegel modular variety and U(n, n) Shimura
variety, the choice of the infinity cusp works as well (cf. [PAF] 6.4.3).

Actually there is (at least) one more choice. Igusa completed his tower over modular
curves adding super singular points and used such points to prove his irreducibility
theorem in the 1950s. Here we describe the method (gn), but the base point x we
use is the infinity cusp in the elliptic modular case and a hyper symmetric point in
the unitary case.

Fix a prime p and an algebraic closure F of Fp. We fix an algebraic closure Q

(resp. Qp) of Q (resp. Qp), respectively. We fix field embeddings ip : Q ↪→ Qp

and i∞ : Q ↪→ C. Throughout this paper, proofs of the results claimed are given
assuming p > 2 (just for simplicity; see [H06] for the treatment in the case p = 2).

1. Elliptic modular Igusa tower

As an introduction to the subject, we first describe the simplest case: the
modular curves by the method (gn).

1.1. Elliptic modular function fields. We consider a field K given by⋃
p�N Q(μN ) inside Q; so K

ip
↪→ Qp. Take a p-adic place P of K given by ip and write

W ⊂ K for the discrete valuation ring of P. We thus have a continuous embedding
ip : W ↪→ Qp, and for the maximal ideal m of W , F = W/m is an algebraic closure

of Fp. Put G = GL1(Zp) × SL2(A
(p∞)) and we embed diagonally Z(p)-points of

the standard diagonal torus M ⊂ SL(2) (of the upper triangular Borel subgroup
P =

{
( a ∗
0 a−1 )

∣∣a ∈ GL(1)
}
of SL(2)) into G so that

(
a 0
0 a−1

)
is sent to a ∈ GL1(Zp)

at p and
(
a 0
0 a−1

)
∈ SL2(Q�) at all primes � � p.

We consider the modular curve X(N)/Z[ 1
N ] for an integer N prime to p which

classifies pairs (E, φN )/A, where E is an elliptic over A and φN : (Z/NZ)2 ∼= A[N ] =
Ker(N : A → A) is an isomorphism of finite flat group schemes over A. The level
structure φN specifies a primitive root of unity ζN ∈ μN via the Weil pairing

ζN := 〈φN (1, 0), φN (0, 1)〉.
Thus X(N) has a scheme structure over Z[μN , 1

N ], but we may consider it defined

over Z[ 1N ], composing with the morphism Spec(Z[μN , 1
N ]) → Spec(Z[ 1N ]). If we
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consider level pm-structure φp of type Γ = Γ?(p
m) (? = 0, 1) given as follows: φp is

a subgroup isomorphic to μpm étale locally if Γ = Γ0(p
m) and φp : μpm ↪→ E[pm] (a

closed immersion of finite flat group schemes) if Γ = Γ1(p
m) (and Npm ≥ 4), we can

think of the fine moduli space X(N,Γ)/B over the base ring B/Z[ 1
N ] which classifies

triples (E, φN , φp)/A over B-algebras A. As the ring B, we take one of W , F or K.
As we observed, the open curves X(N) (resp. X(N,Γ)) can be regarded as schemes
over Spec(Z[ 1N , μN ]) (resp. over Spec(Q[μN ])). For N prime to p, X(N)/Q[μN ] is
geometrically irreducible.

We can think of the p-integral Shimura curve

Sh/Z(p)
= lim←−

p�N

X(N)/Z(p)
,

and more generally over Q,

ShΓ/Q = lim←−
p�N

X(N,Γ)/Q

(regarding these schemes as Z(p)-schemes or Q-schemes). Let

X(N,Γ)/B = X(N,Γ)/Z[μN , 1
N ]×Z[μN ]B and X(N)/W = X(N)/Z[μN , 1

N ]×Z[μN , 1
N ]B.

The pro-schemes

XΓ/B = lim←−
N

X(N,Γ)/B for B = K and X
(p)
/W = lim←−

p�N

X(N)/W

give geometrically irreducible components of ShΓ/Q ×Q K and Sh
(p)
/Z(p)

×Z(p)
W (the

neutral components). If convenient, we write ShΓ1(p0)/Z(p)
for Sh/Z(p)

(abusing the

notation). By the interpretation of Deligne–Kottwitz, we have

(1.1) ShΓ(A) ∼=
{(E, η : (A(p∞))2 ∼= V (E), φp)/A}

prime-to-p isogenies
,

where A runs over Z(p)-algebras if Γ = Γ1(p
0) and B-algebras (B = F or Q) if

Γ = Γ?(p
m) with m > 0 (? = 0, 1), V (E) = A(p∞) ⊗ lim←−p�N

E[N ]. Thus (a, g) ∈ G
(a ∈ GL1(Zp) and g ∈ SL2(A

(p∞))) acts on ShΓ by

(E, η, φp) �→ (E, η ◦ g, φp ◦ a),
where a ∈ GL1(Zp) ∼= M(Zp). Write FΓ for the function field K(XΓ) and F(p)

for K(X(p)) (the arithmetic automorphic function fields). This action produces an
embedding

τ : G/{±1} ↪→ Aut(FΓ1(p∞)/K) = Aut(XΓ1(p∞)/K).

The action of τ (a, g) on the function field FΓ is on the left and has the fol-
lowing property (by Shimura; e.g., [IAT] Theorem 6.23 or [PAF] Theorem 4.14):
For a ∈ GL1(Z(p)) (corresponding to

(
a 0
0 a−1

)
in M(Z(p)) diagonally embedded in

SL2(A
(∞))), we have for f ∈ FΓ

(1.2) τ (a)(f)(z) = f(a−2z);

so, we have τ (α)(f) = f(α−1(z)) for α =
(
a 0
0 a−1

)
. This formula is valid for general

α ∈ GL2(Z(p)) if f ∈ F(p) (thus, our normalization is different form Shimura’s).
We define a valuation

vΓ(f) = inf
ξ
ordp(c(ξ, f))
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of modular functions f =
∑

ξ c(ξ, f)q
ξ ∈ FΓ. We write vm for vΓ if Γ = Γ1(p

m).

Thus the valuation v0 : F(p) → Z ∪ {∞} has a standard unramified extension
vΓ : FΓ � Z ∪ {∞}. Here are some easy facts:

Lemma 1.1. (1) If a ∈ GL1(Z(p)) ∼= M(Z(p)), then

c(ξ, τ (a)(f)) = c(a2ξ, f).

In particular, the diagonally embedded M(Z(p)) ⊂ G preserves the valua-
tion vΓ;

(2) The vertical divisor X
(p)
/F := X

(p)
/W ⊗W F of X

(p)
/W is a prime divisor (geo-

metrically irreducible) and gives rise to a unique valuation of F(p), whose
explicit form is given by the valuation v0.

Proof. The first assertion follows directly from (1.2). By the existence of a
smooth compactification of X(p) over W , Zariski’s connectedness theorem tells us

that X
(p)
/F = X(p) ×W F is irreducible. Thus the vertical Weil prime divisor X

(p)
/F

on the smooth arithmetic surface X
(p)
/W gives rise to a unique valuation. By the

irreducibility of X
(p)
/F , a W-integral modular form of level away from p vanishes on

the divisorX
(p)
/F if and only if its q-expansion vanishes modulo p. Thus the valuation

v0 is the one corresponding to the vertical prime divisor X
(p)
/F ⊂ X

(p)
/W . �

1.2. mod p connected components and the valuation vm. Let S be
the ordinary locus X(p)[ 1H ]/F for the Hasse invariant H. Then S is an irreducible
variety over F, because H is a global section of the ample modular line bundle

ω⊗(p−1) of the compactification of X
(p)
/F . Consider the valuation ring V of F(p) of

the valuation v0. Thus the residue field V/mV is the function field F(S) of S. Let
E/X(p) be the universal elliptic curve. Then we consider the Cartesian diagram for

EV = E×X(p) Spec(V ):

EV
↪→−−−−→ E⏐⏐� ⏐⏐�

Spec(V ) −−−−→
↪→

X(p).

Since any lift of a power of H is inverted in V , E
̂V = EV ×V V̂ is an ordinary abelian

scheme for the completed valuation ring V̂ = lim←−n
V/pnV . Thus we can think of

the functor I
̂V ,m = Isom

̂V (μpm ,E
̂V [p

m]) which assigns to each p-adic V̂ -algebra

R = lim←−n
R/pnR the set of closed immersions: μpm/R → E

̂V [p
m]/R defined over R.

Since E
̂V [p

m] has a well defined connected component over V̂ isomorphic to

μpm étale locally (V̂ is a henselian local ring), we have canonical isomorphisms of
formal schemes:

I
̂V ,m = Isom

̂V (μpm/̂V ,ÊV [p
m]◦)

(∗)∼= Isom
̂V ((Z/p

mZ)/̂V ,ÊV [p
m]ét)

(∗∗)∼= E
̂V [p

m]ét − E
̂V [p

m−1]ét,

where the identity (∗) is given by taking the inverse of the Cartier dual map and
(∗∗) is given by φ �→ φ(1) for 1 ∈ Z/pmZ and φ ∈ Isom

̂V ((Z/p
mZ)/̂V ,ÊV [p

m]ét).
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Thus I
̂V ,m/Spf(V̂ ) is étale finite. Note here E

̂V [p
m]◦ is isomorphic to μpn/̂V étale

locally. By the second expression, I
̂V ,m/Spf(V̂ ) is an étale finite covering over V̂ ,

and GL1(Zp) naturally acts on I
̂V ,m. Since I

̂V ,m is étale faithfully flat over Spf(V̂ ),

it is affine, and we may write I
̂V ,m = Spf(V̂m). Then V̂m is a semi-local normal

V̂ -algebra étale finite over V̂ ; so, it is a product of complete discrete valuation rings
whose maximal ideal is generated by the rational prime p. WriteW = lim←−n

W/pnW ,

and take a modular form E on X
(p)
/W lifting a positive power of the Hasse invariant

H. Let X̂(p) be a formal completion of X(p)[ 1E ]/W along S (the ordinary locus).

The p-adic formal scheme X̂(p) does not depend on the choice of the lift E. Then

we define a p-adic formal scheme X̂Γ/W = Isom
̂X(p)(μpn ,E) ∼= E[pm]ét − E[pm−1]ét

over X̂(p), which is étale finite over X̂(p). We may regard X̂Γ/W as the formal
completion of XΓ/W along XΓ/F. By definition, we have an open immersion

I
̂V ,m ↪→ X̂Γ1(pm)/W ×

̂X
(p)

/W
Spf(V̂ ),

and V̂m is the product of the completions of valuation rings of FΓ1(pm) unramified

over V . Thus Vm = V̂m ∩ FΓ1(pm) inside FΓ1(pm) ⊗V V̂ is a semi-local ring Vm with

V̂m = lim←−n
Vm/pnVm = Vm ⊗V V̂ .

We put IV,m = Spec(Vm) and XΓ/F = lim←−p�N
X(N,Γ)/F. Then

XΓ1(pm)/F = IsomS(μpm ,E[pm]◦) =: Im

gives rise to the Igusa tower I � · · · � Im � · · · � I1 � S over S. We may
regard the moduli scheme X(N,Γ)/F as a scheme over X(N)[ 1H ] (forgetting the
level p-structure). The set of generic points {ηI◦

m
∈ I◦m/F|I◦m/F ∈ π0(Im/F)} is in

bijection with π0(Im), and

V̂m ⊗Zp
F = Vm ⊗Z(p)

F =
∏

I◦
m∈π0(Im)

F(I◦m) (⇔ IV,m ⊗Z(p)
F =

⊔
I◦∈π0(Im)

{ηI◦
m
}).

By the definition of the action of (a, g) ∈ G:

(E, η(p), φp) �→ (E, η(p) ◦ g, φp ◦ a),

G := GL1(Zp) × SL2(A
(p∞)) acts on I

̂V ,m and hence on IV,m (m = 1, 2, . . . ,∞),

Spec(V ) (by Lemma 1.1 (2)), FΓ, Im, XΓ/F and XΓ/K. Thus we can form the étale
quotient IΓ0(pm) := IV,m/GL1(Z/p

mZ). Again we have IΓ0(pm) = Spec(VΓ0(pm)),
and VΓ0(pm) is a valuation ring finite flat over V sharing the same residue field.
Indeed, there is a unique connected subgroup of E (isomorphic to μpm étale locally)
if (E, φN)/A gives rise to a unique A-point of X(N,Γ0(p

m))/F. Thus for any m > 0,
S/F = lim←−p�N

X(N,Γ0(p
m))/F. This shows that the residue field of VΓ0(pm) is the

function field of S and that the quotient field of VΓ0(pm) is FΓ0(pm). Since Vm/V is
étale, we have

V̂Γ0(pm) = lim←−
m

VΓ0(pm)/p
mVΓ0(pm) = lim←−

m

V/pmV = V̂ ,

and Vm is étale finite over VΓ0(pm). This shows
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Lemma 1.2. We have the following one-to-one onto correspondences:{
v : FΓ1(pm) → Z

∣∣v|FΓ0(pm)
= vΓ0(pm) unramified over v0

}
↔ Max(Vm) ↔ π0(Im) ↔ {ηI◦

m
},

where v is a p-adic valuation of FΓ1(pm) unramified (of degree 1) over v0 and
Max(Vm) is the set of maximal ideals of Vm.

The correspondence is given by

v ↔ mv = {x ∈ Vm|v(x) > 0} ↔ I◦m with F(I◦m) = Vm/mv.

Lemma 1.3. The action of G1 := SL2(A
(p∞)) fixes vm = vΓ1(pm) and each

element of π0(Im).

Proof. Since FΓ1(pm)/FΓ0(pm) is a finite Galois extension, the set of extensions
of vΓ0(pm) to FΓ1(pm) is a finite set, and by the above lemma, it is in bijection

with π0(Im). Thus the action of SL2(A
(p∞)) on π0(Im) gives a finite permutation

representation of SL2(A
(p∞)). Since SL2(k) of any field k of characteristic 0 does

not have a nontrivial finite quotient group (because it is generated by divisible
unipotent subgroups), the action of SL2(A

(p∞)) fixes every irreducible component
of π0(Im). �

1.3. Proof of irreducibility of elliptic Igusa tower. Let v∞ = vΓ1(p∞),
and define

D =
{
x ∈ (GL1(Zp)× SL2(A

(p∞)))
∣∣v∞ ◦ τ (x) = v∞

}
.

Since M(Z(p)) and SL2(A
(p∞)) fixes v∞ (Lemmas 1.1 and 1.3) and the subgroup

(M(Z(p))SL2(A
(p∞))) is dense in G = GL1(Zp)× SL2(A

(p∞)), we conclude (C):

Theorem 1.4. We have D = G.

Let K(p) be a compact open subgroup of SL2(A
(p∞)) and K = K(p)×GL2(Zp).

Put XK = X(p)/K(p) (which is the level K modular curve). Let IK = I/K(p),
which is the Igusa tower over XK . Since I is irreducible by

Aut(I◦/S) = GL1(Zp) ∼= M(Zp) (the above theorem),

IK is irreducible. Thus we have reproved

Corollary 1.5 (Igusa). The Igusa tower IK over XK/F is irreducible for

K = GL2(Zp)×K(p) for each compact open subgroup K(p) of SL2(A
(p∞)).

2. Shimura varieties of unitary groups

We give an example S of smooth Shimura varieties for which irreducibility of
the full Igusa tower is false but one can study the irreducible components explicitly.
In other words, we construct a partial tower I◦/S for which the axioms (A1–2) can
be proved. Write W for the ring of Witt vectors of the algebraic closure F of Fp

and embed W inside Cp (the p-adic completion of Qp). Hereafter, we write W for

the valuation ring i−1
p (W ) and K for the field of fractions of W . The (additive)

valuation of W and W is written as ordp; so, ordp(p) = 1. As before, we prove
that S/W is irreducible and smooth and that the Igusa tower I/F is étale over S/F.
Then for each point x ∈ I(W), we take a coordinate system X1, . . . , Xd of I and
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define a valuation vx of the function field of I by vx(
∑

α c(α)Xα) = Infα ordp(c(α))
(Xα = Xα1

1 Xα2
2 · · ·Xαd

d ). For any automorphism σ of I/W fixing x, plainly vx ◦σ =
vx. Then we conclude the irreducibility by showing that the stabilizers {Tx}x∈I(W)

inside Aut(I/W) of x ∈ I(W) cover sufficiently many conjugacy classes of tori to
prove (A1–2). Actually, in the simple case we study, a well chosen single point
x0 ∈ I(W) is sufficient.

We first recall briefly the definition of unitary groups over an imaginary qua-
dratic field F and the construction of the Shimura variety for the unitary groups.
The main source of the information for this part is [PAF] Chapter 7. Then we
prove the irreducibility of the Igusa tower.

Suppose that the imaginary quadratic field F is sitting inside Q, and write
1 : F ↪→ Q for the identity embedding. Suppose for simplicity that the fixed prime
p is split in F and that the embedding 1 : F ↪→ Q composed with ip : Q ↪→ Qp

gives the standard p-adic place p of F . Write O for the integer ring of F .

2.1. Unitary groups. Write c for the generator of Gal(F/Q) (the complex
conjugation on F ). We fix a vector space V over F with c-Hermitian alternating
form 〈 , 〉 : V × V → Q. We assume we have an O-submodule L ⊂ V of finite type
such that

(L1) L⊗Z Q = V ;
(L2) 〈 , 〉 induces HomZp

(Lp,Zp) ∼= Lp, where Lp = L⊗Z Zp.

We fix an O-lattice L of V as above.
We identify V with the column vector space F r by fixing a basis of V over F .

Let C = EndF (V ) = Mr(F ). There exists an invertible matrix s ∈ Mr(F ) with
tsc = −s such that 〈v, w〉 = TrF/Q(

tvs ·wc), where TrF/Q is the trace map: F → Q.

On C, we have the involution ι given by xι = s−1txcs. Define algebraic groups
defined over Q by the following group functors from Q-algebras R to groups:

GU(R) =
{
x ∈ C ⊗Q R

∣∣xιx ∈ R×}
=

{
x ∈ C ⊗Q R

∣∣txcs · x = ν(x)s for ν(x) = xιx ∈ R×} ,
U(R) =

{
x ∈ GU(R)

∣∣xιx = 1
}
, SU(R) =

{
x ∈ U(R)

∣∣ det(x) = 1
}
,

(2.1)

where det(x) is the determinant of x as an F -linear automorphism of V . Then
SU is the derived group of GU and U . Let Z ⊂ GU be the center; so Z(R) =
(R ⊗Q F )× as a group functor. Since FR = F ⊗Q R = C with bc = b for complex

conjugation b �→ b, S =
√
−1s ∈ Mr(FR) = Mr(C) is a Hermitian matrix. Thus

U(R) is the unitary group of S. We have Homfield(F,C) = {1, c} for the identity
inclusion 1. Writing the signature of S as (m1,mc), we find U(R) ∼= Um1,mc

(R) ={
x ∈ GLr(C)

∣∣txIm1,mc
x = Im1,mc

}
for Im1,mc

=
(

1m1
0

0 −1mc

)
.

Example 2.1. For a Q-algebra R,

(1) if s =
(
0 −1
1 0

)
, then

(
a b
c d

)ι
=

(
d −b
−c a

)
and SU(R) = SL2(R),

GL2(R) =
{
x ∈ GU(R)

∣∣det(x) = ν(x)
}
;

(2) GU(Q) = GL2(Q)Z(Q)× and GU(R) = GL2(R)Z(R).
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2.2. Abelian schemes of hermitian type. To put a complex structure on
the real vector space V∞ = V ⊗Q R, we use an R-algebra homomorphism h : C ↪→
C∞ = C ⊗Q R with h(z) = h(z)ι. We call such an algebra homomorphism an
ι-homomorphism. Then h(i)ι = −h(i) for i =

√
−1 and hence xρ = h(i)−1xιh(i) is

an involution of C∞.

Example 2.2. If s =
(
0 −1
1 0

)
, the morphism a + bi �→ h(a + bi) =

(
a −b
b a

)
∈

M2(R) ⊂ C∞ is an ι-homomorphism.

We suppose

(pos) The symmetric real bilinear form (v, w) �→ 〈v, h(i)w〉 on V∞ is positive defi-
nite.

It is easy to check that h in Example 2.2 satisfies (pos).
By (pos), we have 0 < (xv, xv) = (v, (xρx)v) for all 0 �= v ∈ V∞ and x ∈ C∞,

and hence xρx only has positive eigenvalues; therefore, ρ is a positive involution of
C (i.e., TrC/Q(x

ρx) > 0 unless x = 0).

Fix one such h := h0 : C → C∞, and define X (resp. X+) by the collection of
all conjugates of h0 under GU(R) (resp. under SU(R)). Any two homomorphisms
satisfying (pos) are conjugates under SU(R) (see [PAF] Lemma 7.3). Thus X+ =
SU(R)/C0 for the stabilizer C0 of h0 in SU(R) is connected and is a connected
component of X. On X, GU(R) acts by conjugation (from the left), and by (pos)
the stabilizer C0 ⊂ GU(R) of h0 is a maximal compact subgroup of GU(R) modulo
center.

Example 2.3. Assume that s =
(
0 −1
1 0

)
and take h0(a + bi) =

(
a −b
b a

)
. Since

h0(C
×) gives the stabilizer of i ∈ H = {z ∈ C| Im(z) > 0}, we have X+ ∼= H by

sending gh0g
−1 to g(i). We also have X ∼= H � H = (C− R) in the same way.

Since h : C → C∞ is an R-algebra homomorphism, we can split VC = V ⊗Q C
into the direct sum of eigenspaces VC = V1 ⊕ V2 so that h(z) acts on V1 (resp.
V2) through multiplication by z (resp. z); thereby, we get a complex vector space
structure on V∞ by the projection V∞ ∼= V1. Since h(C) ⊂ C∞, h(z) commutes
with the action of F ; so, Vj is stable under the action of FC = F ⊗Q C. We get the
representation ρ1 : F ↪→ EndC(V1). We define E to be the subfield of C fixed by
the open subgroup

{
σ ∈ Aut(C)

∣∣ρσ1 ∼= ρ1
}
. If h′(z) = g · h(z)g−1 for g ∈ GU(R),

h′ induces a similar decomposition VC = V ′
1 ⊕ V ′

2 , and g induces an F -linear
isomorphism between V1 and V ′

1 ; thus, E is independent of the choice of h′ in the
GU(R)-conjugacy class of h. This field E is called the reflex field of (GU,X) (and
is a canonical field of definition of our canonical models of the Shimura variety).

By the positivity (pos), the quotient complex torus V∞/L = V1/L has a Rie-
mann form induced by 〈·, ·〉. The theta functions with respect to the Hermitian form
〈·, ·〉 give rise to global sections of an ample line bundle (e.g., [ABV] Chapter I) on
V1/L and hence embed V1/L into a projective space over C. The embedded image
is the analytic space Ah(C) associated with an abelian variety Ah/C by Chow’s the-
orem (see [ABV] page 33). Multiplication by b ∈ O on V1/L induces an embedding

i : O ↪→ End(Ah/C) and i : F ↪→ EndQ(Ah/C) = End(Ah/C)⊗Z Q.
The representation ρ1 is given by the action of F on the Lie algebra Lie(Ah) =

V1 at the origin of Ah(C). Since Ah is projective, the field of definition of the
abelian variety Ah is a field of finite type over Q.
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The reflex field E is the field of rationality of the representation of F on Lie(Ah);
therefore, the field of definition of (Ah, ι) always contains this field E. It would then
be natural to expect that the moduli variety of triples (A, λ, ι) for an abelian variety
A with F -linear isomorphism Lie(A) ∼= V1 is defined over E.

Since the isomorphism class of ρ1 is determined by Tr(ρ1) (see [MFG] Propo-
sition 2.9), E is generated over Q by Tr(ρ1(b)) for all b ∈ F . Thus we have E = F
or Q and that E = Q implies m1 = mc, because Tr(ρ1(ξ)) = m1ξ+mcξ

c for ξ ∈ F .
We write OE for the integer ring of E. Let Z(p) = Zp ∩ Q, put O(p) = O ⊗Z Z(p),
OE,(p) = OE ⊗Z Z(p), and write V for the valuation ring W ∩ E ⊃ OE,(p) (V is
the localization of OE at p). More generally, for a finite set of places Σ, we write
ZΣ for the product of Z� over finite places � ∈ Σ, and we put Z(Σ) = Q ∩ ZΣ and
O(Σ) = O ⊗Z Z(Σ). The ring V has residue field Fp since p is split in E because
E ⊂ F .

2.3. Shimura variety for GU . We study the classification problem of quadru-
ples (A, λ, i, η(p))/R: A is a (projective) abelian scheme over a base R, tA =

Pic0A/R(A) is the dual abelian scheme of A, λ : A → tA is a prime-to-p polar-

ization (that is, an isogeny with degree prime to p fiber-by-fiber geometrically in-

duced from an ample divisor), i : O(p) ↪→ End
Z(p)

R (A) = EndR(A) ⊗Z Z(p) is a
Z(p)-algebra embedding (taking 1 to the identity of A) with λ ◦ i(αc) = ti(α) ◦ λ

for all α ∈ O, and η(p) is a level structure. Regarding tA as a left O-module by
O � b �→ ti(bc) ∈ End(tA), λ is F -linear. Hereafter we call λ F -linear in this sense.
The base scheme R is assumed to be a scheme over Spec(V).

We clarify the meaning of the level structure η(p). Fix a base (geometric)
point s ∈ R and write As for the fiber of A at s. We consider the Tate module
T (As) = lim←−N

A[N ](k(s)) and V (p)(As) = T (As) ⊗Z A(p∞), where N runs over

all positive integers ordered by divisibility. The prime-to-p level structure η(p) :
V (A(p∞)) = V ⊗Q A(p∞) ∼= V (p)(As) is an O-linear isomorphism. The duality
pairing eN : A[N ] × tA[N ] → μN composed with λ gives, after taking the limit
with respect to N , an alternating form (·, ·)λ : V (p)(As)× V (p)(As) → A(p∞)(1) :=
limp�N μN satisfying the following conditions:

(P1) (α(x), y)λ = (x, αc(y))λ for α ∈ End(A/B);
(P2) The pairing induces the self-duality: A[pn] ∼= Hom(A[pn], μpn) if N = pn.

We require that η(p) send the alternating form 〈·, ·〉 to (·, ·)λ up to multiple of
scalars in (A(p∞))×. This is possible, because A(p∞)(1) ∼= A(p∞) up to scalars in
(A(p∞))×. Then η(p) is required to be an isomorphism of skew Hermitian F -modules
with respect to the pairing 〈·, ·〉λ on V (p)(As).

The algebraic fundamental group π1(R, s) acts on V (p)(As) preserving the skew
Hermitian form 〈·, ·〉λ up to scalars in (A(p∞))× (because it preserves the Weil eN -
pairing; see [ABV] Section 20). Take a closed subgroup K(p) ⊂ GU(A(p∞)). We

write η(p) for the orbit η(p) ◦K(p). If σ ◦ η(p) = η(p) for all σ ∈ π1(R, s), we say the

level structure η(p) is defined over R. Even if we change the point s ∈ R, everything
will be conjugated by an isomorphism; therefore, the definition does not depend
on the choice of s as long as R is connected. For nonconnected R, we choose one
geometric point at each connected component.

A quadruple A/R = (A, λ, i, η(p)) is isomorphic to A′
/R = (A′, λ′, i′, η′

(p)
) if

we have an O-linear isogeny φ : A → A′ defined over R such that p � deg(φ),
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φ∗λ′ = tφ ◦ λ′ ◦ φ = νλ with ν ∈ Z×
(p)+, φ ◦ i ◦ φ−1 = i′, and η′

(p)
= φ ◦ η(p). Here

Z×
(p)+ is the collection of all positive elements in Z×

(p). Thus φ associates the prime-

to-p polarization class λ
′
= {νλ′|ν ∈ Z×

(p)+} of λ′ to the class λ of λ: φ∗λ
′
= λ. In

this case, we write A ≈ A′. We write A ∼= A′ if the isogeny is an isomorphism of
abelian schemes; that is, deg(φ) = 1.

We take the fibered category C = CF,V of the quadruples (A, λ, i, η(p))/R over
the category V-SCH of V-schemes and define

(2.2) HomC/R
((A, λ, i, η(p))/R, (A

′, λ′, i′, η′
(p)

)/R)

=

{
φ ∈ HomR(A,A′)⊗Z Z(p)

∣∣∣tφ ◦ λ′ ◦ φ = νλ with 0 < ν ∈ Z×
(p)+,

φ ◦ i = i′ ◦ φ and η′
(p)

= φ ◦ η(p)

}
.

The representation ρ1 is well defined over V , since p splits in F ; thus, it is
well defined over OR for any V-scheme R. We consider the functor E(p) : V-
SCH → SETS given by

E(p)(R) =
{
A/R = (A, λ, i, η(p))/R

∣∣Lie(A) ∼= ρ1 over OR

}
/ ≈ .

Since A/R is a group scheme, its tangent space at the zero section has a Lie algebra
structure over OR. We write Lie(A) for this Lie algebra. Since A is smooth over
R, Lie(A) is a locally free OR-module of rank dimR A. In our case, for a given

quadruple A = (A, λ, i, η(p))/R, the Lie algebra Lie(A) of A over OR is an O(p)-
module via i. Since Lie(A) is locally free of rank dimR A over OR, we can think of
an isomorphism Lie(A) ∼= ρ1 of OR-representations of O(p). One can find in [PAF]
Chapter 7 a proof of the following theorem due to Shimura, Deligne and Kottwitz.

Theorem 2.1. The functor E(p) is representable by a quasi-projective smooth
pro-scheme Sh(p) over V. Letting g ∈ GU(A(p∞)) act on Sh(p) by η(p) �→ η(p)◦g, for
each compact open subgroup K ⊂ G(A(p∞)), the quotient scheme Sh

(p)
K = Sh(p)/K

exists as a quasi-projective scheme of finite type over V, and Sh(p) = lim←−K
Sh

(p)
K .

The Shimura variety Sh
(p)
K is projective over V if the Hermitian pairing 〈·, ·〉 is

anisotropic.

For a finite set of primes Σ containing p and ∞, we can think of the Shimura
variety away from Σ as follows. Write Σ = {p,∞} � Σ′. If Σ′ �= ∅, let GU(ZΣ′) =
{g ∈ GU(QΣ′)|gLΣ′ = LΣ′}, and put Sh(Σ) = Sh(p)/GU(ZΣ′). It is known that

Sh
(Σ)
/V is a smooth (quasi-projective) pro-scheme.

Recall the embedding ip : Q ↪→ Qp and the valuation ring W which is the pull-
back by ip of the p-adic integer ring of the maximal unramified extension of Qp. By

our choice, 1 : F ↪→ Q
ip
↪→ Qp induces the valuation ring V . Write K be the filed of

fraction ofW . Let Sh
(Σ)
/W = Sh(Σ)×Spec(V)Spec(W) and putW = lim←−n

W/pnW . By

the reduction map (see [ACS] Corollary 6.4.1.3), we have π0(Sh
(Σ)
/K ) ∼= π0(Sh

(Σ)
/F )

for Sh
(Σ)
/F = Sh

(Σ)
/W ×W F by Zariski’s connectedness theorem and the existence of

a smooth toroidal compactification of Sh
(p)
K/W , and SU(A(Σ)) leaves stable each

irreducible component in π0(Sh
(Σ)
/K ) because X+ is a quotient of SU(R). A proof of
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the existence of a smooth toroidal compactification of Sh
(p)
K/W can also be found in

[ACS] 6.4.1. Thus, by the existence of a smooth toroidal compactification of Sh
(Σ)
/W

(and Zariski’s connectedness theorem), we get

Proposition 2.2. Geometrically irreducible components of Sh
(Σ)
/K are generic

fibers of irreducible components of Sh
(Σ)
/W . Each irreducible component of Sh

(Σ)
/W has

irreducible special fiber over F, and the group SU(A(Σ)) leaves stable each irreducible

component of the Shimura variety Sh
(Σ)
/F = Sh

(Σ)
/W ×W F.

We can compute the stabilizer in GU(A(Σ)) of each point of π0(Sh
(Σ)
/F ) explicitly

([H06] Lemma 1.1).

3. Igusa tower over unitary Shimura variety

We first define the Igusa tower over the GU Shimura variety and prove that the
tower is not irreducible. Then we prove the irreducibility of the partial SU -tower.
Let G(Zp) = {g ∈ G(Qp)|gLp = Lp} for G = GU,U and SU . Let Σ be a finite set
of rational places including p and ∞.

3.1. Unitary group over Zp. Recall our simplifying assumption: p = pp

(p �= p) in O so that p is induced by ip. Since Op = Op ×Op = Zp ×Zp on which c
acts by interchanging the coordinates, (x, y)c = (y, x) and ξ ∈ O is sent to (ξ, ξc) ∈
Zp × Zp, we thus have GLr(Op) = GLr(Op) × GLr(Op) = GLr(Zp) × GLr(Zp).
Since xι = s−1txcs for the skew-hermitian matrix s = −tsc, if (x, y) ∈ U(Zp), we
have

(x−1, y−1) = (x, y)−1 = xι = (s, sc)−1(ty, tx)(s, sc) = (s−1tys, s−ctxsc)

and y = ts−1x−1ts. Thus, choosing a basis of Lp over Op, we have U(Zp) ∼= GLr(Zp)
by sending (x, y) ∈ U(Zp) to x ∈ GLr(Zp). Similarly, SU(Zp) ∼= SLr(Zp) and
GU(Zp) ∼= GLr(Zp)×GL1(Zp) by g = (x, y) �→ (xν(x, y)−1, ν(x, y)).

3.2. The Igusa tower. Let S/W = S
(Σ)
/W be an irreducible component of

the ordinary locus of Sh
(Σ)
/W . Thus S is the subscheme obtained from Sh

(Σ)
/W by

removing the closed subscheme of non-ordinary locus at the special fiber at p. By
〈·, ·〉, Lp is self-dual. Since Op = Op⊕Op, we have the corresponding decomposition
Lp = Lp ⊕ Lp.

Let A/S be the universal ordinary abelian scheme over S with its fiber Ax at
x ∈ S. Pick a base point x0 of S(W ) (W = lim←−n

W/pnW) with reduction x0 ∈ S(F)

modulo p. We fix an identification: Lp
∼= TpAx0

[p∞] for the p-adic Tate module

TpAx0
[p∞] of the Barsotti-Tate group Ax0

[p∞]. Then over the formal completion Ŝ
along the special fiber, we have the reduction map TpAx0

[p∞] → TpAx0
[p∞]ét. The

kernel of the reduction map gives rise to an Op-direct summand L1 ⊂ Lp. Since O
acts on the tangent space at 0 via the identity inclusion into Zp by multiplicity m1

and the tangent space of A[p]◦/x0
is equal to this eigenspace in the tangent space of

Ax0
, we find that L1 ⊗Op

Fp
∼= Fm1

p ; thus, L1
∼= Om1

p . Similarly, we define Lc ⊂ Lp

using the reduction map on p-torsion points of Ax0
. Then Lc

∼= Omc

p
. Note that

Lp/L1
∼= HomZp

(Lc,Zp) and Lp/Lc
∼= HomZp

(L1,Zp) by 〈·, ·〉. Let L = L1 ⊕Lc as
O-modules.
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We consider the functor In = I
(Σ)
n from the category of S/W -schemes R into

the category of sets taking R to the set of O-linear closed immersions of L⊗Zμpn/R

into A/R[p
n], where A/R = A ×S R. Since the two schemes L ⊗Z μpn and A[pn]

are finite flat over S, by the theory of Hilbert schemes, this functor is representable
by a scheme In. Then In/W classifies quintuples (A, i, λ, η(Σ), φp) for an O-linear
closed immersion φp : L ⊗Z μpn ↪→ A[pn].

The formal completion Ŝ along the special fiber S/F = S ×W F is a formal

W -scheme. The connected component A[pn]◦ of A[pn] is well defined over Ŝ, and

hence the formal completion În/W of In along its special fiber In/F = In ×W F can

be written as Isom
̂S(L ⊗Z μpn ,A[pn]◦). Then În/̂S is isomorphic to the scheme

Isom
̂S(L∨/pnL∨,A[pn]ét) étale finite over Ŝ, since by duality, φp : L ⊗Z μpn ∼=

A[pn]◦ gives rise to tφ−1
p : L∨/pnL∨ ∼= A[pn]ét for L∨ = Lp/L.

Let I/W = lim←−n
In/W . Its special fiber

I/W ×W F = lim←−
n

In/F

is called the Igusa tower over S/F. By the projection Lp � Lp, we have U(Zp) ∼=
GL(Lp) ∼= GLr(Zp). Consider the universal level structure φp : L ⊗ μp∞ ↪→ A[p∞]
over I. The group GU(Zp) acts on L. Let

P (Zp) =
{
g ∈ U(Zp) = GL(Lp)

∣∣gL1 = L1

}
.

Then, identifying GL(L1) = GLm1
(Zp) and GL(Lp/L1) = GLmc

(Zp), P (Zp) is a
parabolic subgroup of U(Zp) = GLr(Zp) of the following form,{(

a b
0 d

) ∣∣(a, d) ∈ GL(L1)×GL(L∨
c )
} ∼=

{(
a b
0 d

) ∣∣(a, d) ∈ GLm1
(Zp)×GLmc

(Zp)
}
.

Here the action of d ∈ GL(L∨
c ) on L∨

c = Lp/L1 is given by the matrix d and hence
it acts on Lc = Hom(Lp/L1,Zp) by the dual action (induced by 〈·, ·〉) written
as d−∗. Define M(Zp) = GL(L1) × GL(L∨

c ) for the reductive part of P . Put
M1(Zp) = M(Zp)∩SU(Zp). Then M(Zp) acts on each fiber of I transitively, since
I/S/F is an M(Zp)-torsor by the action

(φp, φp) ◦ (a, d) = (φp ◦ a, φp ◦ d−∗),

where the original action of d on Lp/L1 is dualized by the polarization pairing

〈·, ·〉λ : A[p∞]ét × lim←−
n

A[pn]◦ → μp∞ .

3.3. Reducibility and irreducibility. First, we may assume that S(C) is the

image of SU(A(Σ)) × X+ in Sh(Σ)(C) = GU(Q)\(GU(A(∞)) × X)/GU(ZΣ)Z(Q),
where ZΣ =

∏
�∈Σ−{∞} Z�, QΣ =

∏
�∈Σ−{∞} Q�, Z(Σ) = Q ∩ ZΣ in QΣ and

GU(ZΣ) = {x ∈ GU(QΣ)|xLΣ = LΣ} for LΣ = L⊗Z ZΣ.
On S, the universal level structure η(Σ) : V (A(Σ)) ∼= V (Σ)(A) induces the

trivialization of the étale A(Σ)-sheaf:

det(η(Σ)) : A(Σ) ∼=
r∧

F
A
(Σ)

V (A(Σ)) ∼=
r∧

F
A
(Σ)

V (Σ)(A).

For any prime � outside Σ, take a compact open subgroup K of GU(A(Σ)) such that

K = K� × K(�) with K� = {x ∈ GU(Z�)|xL� = L�} and such that Sh(Σ)/Sh
(Σ)
K
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(Sh
(Σ)
K = Sh(Σ)/K) is an étale covering. Then for the principal congruence sub-

groupK(�n) ⊂ K modulo �n, ShK(�n)/W is constructed as Isom
Sh

(Σ)
K

(L/�nL,AK [�n])

for the universal abelian scheme AK over Sh
(Σ)
K . Let SK be the image of S in Sh

(Σ)
K

and write again as x0 the image of x0 in SK . By this expression, the action of
π1(SK , x0) on the étale sheaf AK [�n]/SK

factors through the action of K�∩SU(Z�).

In particular, its action on
∧r

O�
AK [�n] factors through det : K� ∩ SU(Z�) → O×

�

which is the trivial character by the definition of SU . Thus
∧r

O�
AK [�n] is a constant

étale sheaf over SK/W . In other words, the action of GU(A(Σ)) on
∧r

F
A
(Σ)

V (A(Σ))

factors through the determinant map, it is trivial on SU(A(Σ)), and V (Σ)(A)
over the irreducible component S/W is constant; thus, the �-adic sheaf

∧r
O�

T�A
(T�A = lim←−n

A[�n]) is identical to
∧r

O�
T�Ax for the fiber of A at any closed point

x ∈ S(K).
For any exact sequence of free Zp-modules X1 ↪→ X � X2 with ranks r1, r

and r2 respectively, we have a natural direct summand
∧r1 X1 ⊗

∧r2 X2 in
∧r

X,
because the ambiguity of lifting x2 ∈ X2 to x ∈ X is killed by wedge product with∧r1 X1.

As for the fppf abelian sheaf
∧m1

Op
A[pn]◦

/̂S/W
over Ŝ/W , it is isomorphic to∧m1

Zp
(Op ⊗ μpn)m1 ; thus, its dual étale sheaf

∧m1

Op
A[pn]ét

/̂S/W
is constant over Ŝ/W .

Similarly
∧mc

Op
A[pn]ét

/̂S/W
is constant. Thus

E[pn] =

mc∧
Zp

A[pn]ét ⊗Zp

m1∧
Zp

A[pn]ét
/̂S

is isomorphic to the constant sheaf Z/pnZ over Ŝ/W . Thus we have a morphism

det : În/̂S = Isom
̂S(

L∨

pnL∨ ,A[pn]ét) → Isom(

mc∧ L∨
1

pnL∨
1

⊗Zp

m1∧ L∨
c

pnL∨
c

,E[pn])

∼= (Z/pnZ)×

over Ŝ taking tφ−1
p : L∨/pnL∨ ∼= A[pn]ét to(

m1∧(
tφ−1

p |L∨
c /pnL∨

c

)
⊗

mc∧(
tφ−1

p |L∨
1 /pnL∨

1

))
.

Pick a generator

v ∈ lim←−
n

Isom(

mc∧ L∨
1

pnL∨
1

⊗Zp

m1∧ L∨
c

pnL∨
c

,E[pn])

over Zp, and define ISU
n = I

SU,(Σ)
n = det−1(vmod pn) and ISU = ISU,(Σ) =

lim←−n
I
SU,(Σ)
n . We claim

Theorem 3.1. For each finite set Σ of rational places containing p and ∞,

I
SU,(Σ)
n /S is a geometrically irreducible component of In/S.
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3.4. Proof. By construction, I
SU,(Σ)
n contains an irreducible component of

I
(Σ)
n/S . Thus we need to prove irreducibility of I

SU,(Σ)
n /S showing axioms (A1–2).

For a point x ∈ ISU,(Σ)(F), consider the formal completion Î
SU,(Σ)
x/W along x. Then

O
̂I
SU,(Σ)

x/W

∼= W [[X1, . . . , Xd]] for d = dimW S (⇔ Î
SU,(Σ)
x/W

∼= Spf(W [[X1, . . . , Xd]])).

Define the valuation vx : O
̂I
SU,(Σ)

x/W

→ Z ∪ {∞} as already mentioned:

vx(
∑
α

c(α)Xα) = Infα ordp(c(α))

where Xα = Xα1
1 Xα2

2 · · ·Xαd

d . Then the stalk OISU,(Σ),x ⊂ O
̂I
SU,(Σ)

x/W

inherits the

valuation vx and hence its function field F = K(ISU,(Σ)) gets the valuation vx. The
valuation vx is unramified over the function field FS(Σ) = K(S(Σ)). Let D (resp.
Tx) be the stabilizer of vx (resp. x) in M1(Zp)× SU(A(Σ)). Then Tx ⊂ D.

First take Σ to be Σ0 given by {p,∞} ∪ {�|SU is not quasi-split at �}. Then
SU(A(Σ)) does not have any finite quotient. In particular, SU(A(Σ)) fixes each
connected component of ISU

n , and SU(A(Σ)) ⊂ D. As will be seen in the following
section, we can find one base point x = x0 such that Tx0

has p-adically dense
image in M1(Zp) under the projection: SU(A(Σ)) × M1(Zp) → M1(Zp). Thus

Tx0
· SU(A(Σ)) is dense in SU(A(Σ)) × M1(Zp). Since D ⊃ Tx0

· SU(A(Σ)), D

contains SU(A(Σ)) × M1(Zp) and in particular contains M1(Zp). This shows the

irreducibility of ISU,(Σ).
If Σ0 as above is bigger than the minimal choice σ = {p,∞}, we note that

F(S(σ)) and F(ISU,(Σ0)) are linearly disjoint over F(S(Σ0)). Indeed, we have

F(S(σ)) ∩ F(ISU,(Σ0)) = F(S(Σ0))

by construction, and the two extensions are Galois extensions over F(S(Σ0)). The

quotient field K of the integral domain F(S(σ)) ⊗F(S(Σ0)) F(I
SU,(Σ0)
n ) has degree

equal to the covering degree [I
SU,(σ)
n : S(σ)] and K is an intermediate field of

F(I
SU,(σ)
n )/F(S(σ)); therefore, K is the function field of the full Igusa tower I

SU,(σ)

n/S(σ) .

This shows that I
SU,(σ)

/S(σ) is still irreducible.

For an arbitrary Σ � σ, the natural projection ISU,(σ) → ISU,(Σ) is surjective
dominant; therefore, the irreducibility of ISU,(σ) implies the irreducibility of ISU,(Σ).

3.5. Finding the base point x0. Here is how to find the point x0 with p-
adically dense image in M1(Zp). For simplicity, we assume that p > 2. The unitary
group GU/Q depends only on the hermitian vector space V not the lattice L. The
unitary group GU/Z(p)

depends on the hermitian form on L(p) = L ⊗Z Z(p), and

Sh
(p)
/V only depends on GU/Z(p)

; thus, we may change the lattice L without changing

L(p). In particular, if necessary, replacing L keeping L(p) intact, we may assume
that the hermitian matrix s is diagonalizable over L (if p > 2).

Since g ∈ M(Zp) acts transitively on E[pn]− E[pn−1] ∼= (Z/pnZ)× by multipli-
cation by det(g), we can change the element

v ∈ lim←−
n

Isom(

mc∧ L∨
1

pnL∨
1

⊗Zp

m1∧ L∨
c

pnL∨
c

,E[pn])
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(appearing in the definition of ISU,(Σ0)) at our will. Thus, changing v if necessary,
we only need to find a hyper symmetric point x0 ∈ I(Σ0) with Tx0

SU(A(Σ0)) dense in
SU(A(Σ0))×M1(Zp). We may assume that m1mc �= 0. Diagonalize the hermitian
matrix s over L. By the self-duality of Lp, s has p-adic unit diagonal entries
s1, . . . , sr ∈ F and Im(sj) > 0 ⇔ j ≤ m1. Note that |sj |

√
−1 = ±sj has positive

imaginary part. Take an elliptic curve Ej/W with complex multiplication by F with

Riemann form given by F ×F � (v, w) �→ TrF/Q(v|sj |
√
−1wc). Since sj is a p-adic

unit, we may assume that Ej(C) ∼= C/aj for a lattice aj in F with aj,p = Op. We

identify EndQ(Ej) := End(Ej)⊗ZQ with F by sending ξ ∈ F to the multiplication

by ξ on C. Take A = E1 ⊕ E2 ⊕ · · · ⊕ Er. Embed F into EndQ(A) so that F →
EndQ(A) � EndQ(Ej) is 1 if and only if j ≤ m1 (thus, F → EndQ(A) � EndQ(Ej)
is complex conjugation c if and only if j > m1). By our construction, we have
an isomorphism H1(A(C),Z) ∼= L which takes the Riemann form on H1(A(C),Z)
to 〈·, ·〉 on L. The Hodge decomposition H1(A(C),C) = H−1,0 ⊕H0,−1 gives the
decomposition V ⊗Q C = V1 ⊕ V2 and hence a point in hA ∈ X+.

Since p splits in F , Ej is ordinary; so hA ∈ X+ projects down to a point S(W).
We have

End
(Σ0)
O (A/F ) := EndO(A/F )⊗ Z(Σ0) = Mm1

(O(Σ0))×Mmc
(O(Σ0)).

Over the place p, Ej [p
∞]/W ∼= μp∞/W if and only if j ≤ m1. We may identify

TpEj [p
∞] ∼= Tp(aj,p ⊗ μp∞) = Zp(1) if j ≤ m1 and TpEj [p

∞] ∼= Tp(aj,p ⊗ μp∞) =
Zp(1) if j > m1. In this way we get φp : L ∼= TpA[p∞]◦. By duality, we get⎛⎝m1⊕

j=1

aj,p

⎞⎠⊕

⎛⎝ r⊕
j=m1+1

aj,p

⎞⎠ tφ−1
p∼=

⎛⎝m1⊕
j=1

TpEj [p
∞]ét/W

⎞⎠⊕

⎛⎝ r⊕
j=m1+1

TpEj [p
∞]ét/W

⎞⎠ .

Then we put ηp = φ⊕ tφ−1
p : Lp = L⊕L∨ ∼= TpA[p∞]◦⊕TpA[p∞]ét = TpA[p∞]. We

choose η(Σ0) of A defined over W so that (A, φp, η
(Σ0)) is over x0 ∈ I(F), and write

η = (ηp, η
(Σ0)). For each isogeny α ∈ End

(Σ0)
O (A/F ) preserving polarization up to

scalars and fixing the generator v ∈ lim←−n
Isom(

∧mc L∨
1

pnL∨
1
⊗Zp

∧m1 L∨
c

pnL∨
c
,E[pn]), we

can define ρ(Σ0)(α) ∈ SU(A(Σ0)) by α ◦ η(Σ0) = η(Σ0) ◦ρ(Σ0)(α) and ρp(α) ∈ M(Zp)

by α ◦ ηp = ηp ◦ ρp(α). Then we embed α in SU(A(Σ0)) × M(Zp) diagonally by

α �→ (ρ(Σ0)(α)× ρp(α)). Note that α ◦ v = v ⇔ ρp(α) ∈ M1(Zp). Since the abelian
scheme above ρ(α)(x0) is

(A, η ◦ ρ(α)) = (Im(α), α ◦ η)
α−1

∼= (A, η),

we find that ρ(α)(x0) = x0. By construction, the stabilizer of x0 ∈ I(Σ0)(F) contains
the image Im(ρ) whose projection to M1(Zp) is the p-adically dense subgroup

(GLm1
(O(Σ0))×GLmc

(O(Σ0))) ∩ SU(Q)

as desired.
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