\ast Characters of vanishing integral and the thin point set Ξ

Haruzo Hida UCLA, Los Angeles, CA 90095-1555, U.S.A. ICTS hybrid conference Bengaluru, August, 2022.

*Assume that $\mathcal{Q} \cong \Delta^-$ with \mathfrak{Q} split over F. We describe the set $\mathcal{Z} = \{\chi \in \operatorname{Hom}(\Gamma, \mu_{\ell^{\infty}}) \text{ with } \int_{Cl_n^-} \chi \psi d\varphi_f = 0\}$ and relate it to the point set $\Xi \subset Sh^{\mathcal{Q}}$. Recall $\int_{\Gamma_n} \chi d\varphi_{f_{\psi}^{\mathcal{Q}}} = \sum_{\mathfrak{Q}, \mathcal{A} \in \Gamma_n} \lambda \psi^{-1}(\mathfrak{Q}) \chi(\mathcal{A}) f([\mathcal{A}\mathfrak{Q}^{-1}]_n[\mathfrak{Q}]_{\Gamma})$. The action of $[\mathfrak{Q}]_{\Gamma}$ is transcendental and is incorporated into the embedding $C \hookrightarrow Sh^{\mathcal{Q}}$. So we write down $f_{\psi}^{\mathcal{Q}}$ as a value of a single modular form $f_{\psi} := \sum_{\mathfrak{Q} \in \mathcal{Q}} \lambda \psi^{-1}(\mathfrak{Q}) f|\langle \mathfrak{Q} \rangle$ for $f|\langle \mathfrak{Q} \rangle (x(\mathcal{A})) = f(x(\mathcal{A}\mathfrak{Q}^{-1}))$. §0. The idea when $O_{\mathfrak{l}} = \mathbb{Z}_{\ell}$. Descend $\mathfrak{Q} \in \mathcal{Q}$ to $\mathfrak{q} = \mathfrak{Q} \cap O$. Then $C_{\mathfrak{q}} := (\varpi_{\mathfrak{q}}^{-1} \widehat{O} w_1 + \widehat{O} w_2)/TX \subset X$ is a *O*-cyclic subgroup. Define for $\langle \mathfrak{Q} \rangle$ by the action of diag $[\varpi_{\mathfrak{q}}^{-1}, 1]$:

 $f|\langle \mathfrak{Q} \rangle(X,\overline{\Lambda},w,\omega) := f(X/C_{\mathfrak{q}},\overline{\Lambda}_{\mathfrak{Q}},\langle \mathfrak{Q} \rangle w,\omega_{\mathfrak{Q}}) (f|\langle \mathfrak{Q} \rangle([\mathcal{A}]) = f([\mathcal{A}\mathfrak{Q}^{-1}])),$ where $\overline{\Lambda}_{\mathfrak{Q}}$ and $\omega_{\mathfrak{Q}}$ are the push-down of $\overline{\Lambda}$ and ω to the quotient $X/C_{\mathfrak{Q}}$. Define $f_{\psi} = \sum_{\mathfrak{Q}} \lambda \psi^{-1}(\mathfrak{Q}) f|\langle \mathfrak{Q} \rangle$. Recall $v = v(\chi)$ such that $\chi([\mathcal{A}_{u}]) = \zeta_{j}^{\mathsf{Tr}(vu)}$ identifying $\Gamma_{n}[\mathfrak{l}^{j}] \cong O/\mathfrak{l}^{j}$ by $x(\mathcal{A}_{u}) = \alpha(u/\varpi_{\mathfrak{l}}^{j})(x(R_{n}))$. We regard $(f|\langle \mathfrak{Q} \rangle)_{\mathfrak{Q}}$ a modular form on $Sh^{\mathcal{Q}}$ and evaluate it at $\Xi = \Xi_{\underline{n},j}$ defined by the following sequence \underline{n} .

 $\underline{n} := \{n | \int_{Cl_n^-} \chi \psi d\varphi_f = 0 \text{ for } n > j \text{ with } cond(\chi) = \mathfrak{l}^n \text{ and } v(\chi) = v\}.$

Modifying further $f_{\psi} = \sum_{\mathfrak{Q}} \lambda \psi^{-1}(\mathfrak{Q}) f_v |\langle \mathfrak{Q} \rangle$ with

$$f_{v} = \sum_{u \in O/\mathcal{V}} \zeta_{j}^{Tr(vu)} f |\alpha(u/\varpi_{\mathfrak{l}}^{j}),$$

we show $f_v([\mathcal{A}]) = 0$ for all $s([\mathcal{A}]) \in \Xi$; so, $f_v = 0$ if Ξ is Zariski dense in $V^{\mathcal{Q}}$. Note $N(\mathfrak{l})^j a(\xi, f) = a(\xi, f_v)$ as long as $\xi \equiv -v$ mod $\mathfrak{l}^j O_{\mathfrak{l}}$. We suppose $j \ge r > 0$ for r with $\ell^r || |\mathbb{F}_p[f, \lambda, \psi, \mu_\ell]^{\times} |$.

$\S1$. Geometric modular forms.

Geometric modular forms classify quadruples $(X, \overline{\Lambda}, w, \omega)$ with $(X, \overline{\Lambda}, w)_{/A} \in Sh(A)$, where ω is a generator over $O \otimes_{\mathbb{Z}} A$ of $H^0(X, \Omega_{X/A})$. A geometric modular form $f_{/B}$ $(B = W, \mathbb{F})$ is a functorial rule of assigning a value to triples $(X, \overline{\Lambda}, w, \omega)$ to satisfy the following three axioms:

(G1) For a *B*-algebra homomorphism $\phi : A \to A'$, we have

$$f((X,\overline{\Lambda},w,\omega)\times_{A,\phi}A')=\phi(f(X,\overline{\Lambda},w,\omega)).$$

(G2) f is finite at all cusps, that is, the q-expansion of f at every Tate test object does not have a pole at q = 0.

(G3) $f(X,\overline{\Lambda},w,\xi\omega) = \xi^{-k\Sigma}f(X,\overline{\Lambda},w,\omega)$ for $\xi \in T(A)$ for $T = \operatorname{Res}_{O/\mathbb{Z}}(\mathbb{G}_m)$.

Note $k\Sigma \in \text{Hom}_{\text{alg. gp}}(T, \mathbb{G}_m)$ sending ξ to $\xi^{k\Sigma} = \prod_{\sigma \in \Sigma} (\xi^{\sigma})^k$. Only important point about polarization is its ideal \mathfrak{c} such that $\Lambda : X \otimes \mathfrak{c} \cong \text{Pic}^0(X)$, and $[\mathfrak{c}] \in Cl_F^+$ parameterizes geometrically irreducible components of Sh_K if $\det(K) = \hat{O}^{(p),\times}$. The differential operator d^{κ} changes k to $k\Sigma + \kappa(1-c)$. For simplicity, we assume $\kappa = 0$. §2. Choice of λ . For simplicity, assume that f has trivial Neben types. Choose λ so that $\lambda((\xi)) = \xi^{-k\Sigma}$ and $\lambda|_{F_{\mathbb{A}(\infty)}^{\times}}$ is the central character of f. Fix ω on X(R). Then by the isogeny $\iota : X(R) \to X(\mathcal{A})$ induced by $\mathcal{A} = aR_n$ for $a \in M_{\mathbb{A}^{pl\infty}}^{\times}$, we have $\omega_{\mathcal{A}} = \iota_* \omega$ for all \mathcal{A} . Since $\xi : X(\mathcal{A}) \cong X(\xi \mathcal{A})$ for $\xi \in M^{\times} \cap R_{n,\mathfrak{l}}^{\times}$ induces $\omega \mapsto \xi_* \omega = \xi \omega$, we find

 $f(x(\xi\mathcal{A})) = f(X(\xi\mathcal{A}), \xi w, \xi \omega_{\mathcal{A}}) = \xi^{-k\Sigma} f(x(\mathcal{A})),$

and by $\lambda((\xi))\xi^{k\Sigma}$ is the Neben character of f, we find

 $f([\mathcal{A}]) := \lambda(\mathcal{A})^{-1} f(x(\mathcal{A}))$

only depends on the class $Cl_n^- = M^{\times}_{\mathbb{A}} / \hat{R}_n^{\times} (F^{(\infty)}_{\mathbb{A}})^{\times} M^{\times} M^{\times}_{\infty}$.

The action $\langle \mathfrak{Q} \rangle = \text{diag}[\varpi_{\mathfrak{q}}^{-1}, 1]$ is at the place $\mathfrak{q} = \mathfrak{Q} \cap O$ and the action $\alpha(u/\varpi_{\mathfrak{l}}^{r})$ is at $\mathfrak{l} \neq \mathfrak{q}$; so, they commute. Thus

 $f|\langle \mathfrak{Q} \rangle([\mathcal{A}])$ and $f_v([\mathcal{A}])$ are well defined for $[\mathcal{A}] \in Cl_n^-$.

\S **3.** Shimura's reciprocity law.

Let (M', Σ') be the reflex of (M, Σ) . We suppose that $f_{/\mathbb{F}}$ is the reduction modulo p of $f_{/\mathcal{W}}$ and write E over M' be the field of rationality of ψ , $f_{/\mathcal{W}}$ and λ . Let E_f be the field of rationality over $E[\mu_{\ell^{\infty}}]$ of $x(\mathcal{A}) \in Sh$ for all $[\mathcal{A}] \in Cl^{alg}$. Then E_f is an abelian extension over E. Then for an idele b of $M'^{\times}_{\mathbb{A}}$, we have $b^{\Sigma'} = \prod_{\sigma' \in \Sigma'} b^{\sigma'} \in M^{\times}_{\mathbb{A}}$, and hence we have an Artin symbol $[N(b)^{\Sigma'}, E]$ acting on E_f for the norm map $N := N_{E/M'}$, whose ideal version, we write as $\sigma = \sigma_b = [N(b)^{\Sigma'}, E]$.

Here is a reciprocity law of Shimura:

$$f([\mathcal{A}])^{\sigma} = f([N(b)^{-\Sigma'}\mathcal{A}]), \qquad (\mathsf{R})$$

which implies

$$\left(\int_{\Gamma_n} \chi d\varphi_{f_{\psi}}^{\mathcal{Q}}\right)^{\sigma} = \chi^{\sigma}(N(b)^{\Sigma}) \int_{\Gamma_n} \chi^{\sigma} d\varphi_{f_{\psi}}^{\mathcal{Q}}.$$

§4. Trace relation. Let $\mathbb{F}_P = \mathbb{F}_p[f_{/\mathbb{F}}, \psi, \lambda_{/\mathbb{F}}, \mu_{\ell}]$ (the field of rationality of $f_{/\mathbb{F}}, \psi, \lambda_{/\mathbb{F}}$ and μ_{ℓ}). Define r > 0 by $\ell^r || |\mathbb{F}_P^{\times}|$.

Lemma. For a generator $\zeta_n \in \mu_{\ell^n}$, if $\mathbb{F}_P[\chi] = \mathbb{F}_P[\zeta_n]$ with $n > j \ge r$, we have

$$\mathsf{Tr}_{\mathbb{F}_{P}[\chi]/\mathbb{F}_{P}[\mu_{\ell j}]}(\zeta_{n}^{s}) = \begin{cases} [\mathbb{F}_{P}[\zeta_{n}] : \mathbb{F}_{P}[\zeta_{j}]]\zeta_{n}^{s} & \text{ if } \zeta_{n}^{s} \in \mu_{\ell j}, \\ 0 & \text{ otherwise.} \end{cases}$$

Note $[\mathbb{F}_P[\zeta_n] : \mathbb{F}_P[\zeta_j]] = \ell^{n-j} \neq 0$ in \mathbb{F} . Proof. By our assumption, j > 0. Then the minimal equation of $\mathbb{F}_P[\chi]$ of ζ_n^s over $\mathbb{F}_P[\mu_{\ell j}]$ is, if $\zeta_n^s \notin \mu_{\ell j}$, for m = n - j

$$X^{\ell^{m}(\ell-1)} + X^{\ell^{m}(\ell-2)} + \dots + 1$$

= $X^{\ell^{m}(\ell-1)} - \operatorname{Tr}_{\mathbb{F}_{P}[\zeta_{n}^{s}]/\mathbb{F}_{P}[\mu_{\ell^{j}}]}(\zeta_{n}^{s})X^{\ell^{m}(\ell-1)-1} + \dots$

So, we get the above formula.

§5. f_{ψ} to f_{v} . Recall $\left(\int_{\Gamma_{n}[\mathcal{B}]} \chi([\mathcal{A}]) d\varphi_{f_{\psi}^{\mathcal{Q}}}([\mathcal{A}][\mathcal{B}])\right)^{\sigma} = \chi^{\sigma}([N(b)^{\Sigma'}]) \int_{\Gamma_{n}} \chi([\mathcal{A}]) d\varphi_{f_{\psi}^{\mathcal{Q}}}([\mathcal{A}][\mathcal{B}])$ by Shimura's reciprocity law (R), and $\int_{\Gamma_{n}} \chi([\mathcal{A}]) d\varphi_{f_{\psi}^{\mathcal{Q}}}([\mathcal{A}][\mathcal{B}]) = 0 \Leftrightarrow \int_{\Gamma_{n}} \sigma(\chi([\mathcal{A}])) d\varphi_{f_{\psi}^{\mathcal{Q}}}([\mathcal{A}][\mathcal{B}]) = 0.$ Thus for $n \in \underline{n}$ and any $[\mathcal{B}] \in \Gamma_{n}$, we find for $\operatorname{Tr} := \operatorname{Tr}_{\mathbb{F}_{P}[\chi]/\mathbb{F}_{P}[\mu_{\ell j}]}$,

$$0 = \sum_{\sigma \in \operatorname{Gal}(\mathbb{F}_{P}[\chi]/\mathbb{F}_{P}[\mu_{\ell j}])} \sum_{\mathcal{A} \in \Gamma_{n}} \sum_{\mathfrak{Q} \in \mathcal{Q}} \lambda \psi^{-1}(\mathfrak{Q}) \chi^{\sigma}(\mathcal{A}) f|\langle \mathfrak{Q} \rangle ([\mathcal{A}\mathcal{B}][\mathfrak{Q}]_{\Gamma})$$
$$= \sum_{\mathcal{A}} \sum_{\mathfrak{Q}} \lambda \psi^{-1}(\mathfrak{Q}) \operatorname{Tr}(\chi(\mathcal{A})) f|\langle \mathfrak{Q} \rangle ([\mathcal{A}\mathcal{B}][\mathfrak{Q}]_{\Gamma})$$
$$\operatorname{Trace rel} \ell^{n-j} \sum_{\mathfrak{Q} \in \mathcal{Q}} \lambda \psi^{-1}(\mathfrak{Q}) \zeta_{j}^{\operatorname{Tr}(vu)} \sum_{\substack{u \\ \eta = -j}} \frac{f|\langle \mathfrak{Q} \rangle|\alpha(u/\varpi_{\mathfrak{l}}^{j})([\mathcal{B}][\mathfrak{Q}]_{\Gamma})}{\sum_{\mathfrak{Q} \in \mathcal{Q}} \lambda \psi^{-1}(\mathfrak{Q}) f_{v}|\langle \mathfrak{Q} \rangle ([\mathcal{B}][\mathfrak{Q}]_{\Gamma})}.$$

$\S6.$ Conclusion.

Let $\tilde{f} := \sum_{\mathfrak{Q} \in \mathcal{Q}} 1 \otimes \cdots \otimes \lambda \psi^{-1}(\mathfrak{Q}) f_v | \langle \mathfrak{Q} \rangle \otimes \cdots \otimes 1$ as a function on $V^{\mathcal{Q}}$. Then for the embedding $\mathbf{s} : C \cap V^{\mathcal{Q}} \to V^{\mathcal{Q}}$ given by $\mathbf{s}(x(\mathcal{A})) = \mathbf{s}(\mathcal{A}) = (x(\mathcal{A}[\mathfrak{Q}_{\Gamma}]))_{\mathfrak{Q} \in \mathcal{Q}},$

 $\sum_{\mathfrak{Q}\in\mathcal{Q}}\lambda\psi^{-1}(\mathfrak{Q})f_{v}|\langle\mathfrak{Q}\rangle([\mathcal{B}][\mathfrak{Q}]_{\Gamma})=\lambda(\mathcal{B})^{-1}\widetilde{f}(\mathbf{s}(\mathcal{B})).$

Thus if Ξ is Zariski-dense in $V^{\mathcal{Q}}$, we conclude $f_v = 0$. By computation, $a(\xi, f) \neq 0$ for $\xi \in -v$ is equivalent to $a(\xi, f_v) \neq 0$, a contradiction.

The sequence

$$\underline{n} := \{n | cond(\chi) = \mathfrak{l}^n \text{ and } \chi \in \mathcal{Z}\}$$

defines $\Xi = \{s(\mathcal{A}) | [\mathcal{A}] \in \bigsqcup_{n \in \underline{n}} \operatorname{Ker}(\Gamma_n \to \Gamma_j)\}$ as we took the trace to $\mathbb{F}_P[\mu_{\ell j}]$. Therefore if \underline{n} contains an arithmetic progression, then $f_v = 0$ by the density theorem. **§7. Rigidity of torus.** On the contrary to the assertion of the non-vanishing theorem, we assume that

$$\mathcal{X} := \{\chi \in \mathsf{Hom}(\Gamma, \mu_{\ell^{\infty}}) | \int_{Cl_n^-} \chi \psi d\varphi_f \neq 0, \ v(\chi) = v \}$$

has Zariski closure $\overline{\mathcal{X}}$ with dim $\overline{\mathcal{X}} < d$. Since \mathcal{X} is stable by p-Frobenius $t \mapsto t^P$ for a p-power P, $\overline{\mathcal{X}}$ is stable under $t \mapsto t^{P^m}$ for all m. Let W_ℓ be a discrete valuation ring finite flat over $W(\overline{\mathbb{F}}_\ell)$. We apply to the formal completion $\widehat{\mathcal{X}}$ of $\overline{\mathcal{X}}$ the following

Rigidity Theorem. Let $X = \text{Spf}(\mathcal{T})$ be a closed formal subscheme of $\hat{G} = \widehat{\mathbb{G}}_{m/W_{\ell}}^{n}$ flat geometrically irreducible over W_{ℓ} (i.e., $\mathcal{T} \cap \overline{\mathbb{Q}}_{\ell} = W_{\ell}$). Suppose there exists an open subgroup U of $\mathbb{Z}_{\ell}^{\times}$ such that X is stable under the action $\widehat{G} \ni t \mapsto t^{u} \in \widehat{G}$ for all $u \in U$. If X contains a Zariski dense subset $\Omega \subset X(\mathbb{C}_{\ell}) \cap \mu_{\ell}^{n}(\mathbb{C}_{\ell})$, then there exist $\omega \in \Omega$ and a formal subtorus T such that $X = T\omega$.

\S 8. The strategy.

A key point is the use of a rigidity theorem asserting a formal subscheme of $\widehat{\mathbb{G}}_{m/W_{\ell}}$ stable under $t \mapsto t^P$ for a p-power P is a union of formal subtorus up to making finite quotient. Define $\mathcal{X} := \{\chi \in \operatorname{Hom}(\Gamma, \mu_{\ell^{\infty}}) | \int_{Cl_{\infty}^{-}} \chi \psi d\varphi_{f} \neq 0 \}$, and regard \mathcal{Z} and \mathcal{X} as a subset of $\widehat{\mathbb{G}}_{m/W_{\ell}}$ for a sufficiently large W_{ℓ} . Stability of $\widehat{\mathcal{X}} \subset \widehat{\mathbb{G}}_m^d$ under a suitable power of p-Frobenius implies stability of $\widehat{\mathcal{X}}$ under an open subgroup $U \subset \mathbb{Z}_{\ell}^{\times}$ generated by P. Assume dim $\widehat{\mathcal{X}} < d$ for $d = [F : \mathbb{Q}]$. By the rigidity theorem applied to $\widehat{\mathcal{X}}$, we find an arithmetic progression <u>n</u> such that χ with conductor \mathfrak{l}^n for all $n \in \underline{n}$ is in $\mathbb{G}_m^d - \widehat{\mathcal{X}}$ to conclude $f_v = 0$, a contradiction against $a(\xi, f_v) = N(\mathfrak{l})^j a(\xi, f) \neq 0$ for $\xi \in -v$. Thus the non-vanishing theorem follows. The details will be discussed in the last lecture.