* Assume that $Q \cong \Delta^-$ with Δ split over F. We describe the set $\mathcal{Z} = \{\chi \in \text{Hom}(\Gamma, \mu_{\ell}) \text{ with } \int_{\text{Cl}^{-}_n} \chi \psi d\varphi_f = 0\}$ and relate it to the point set $\Xi \subset Sh^Q$. Recall $\int_{\Gamma_n} \chi d\varphi_{f_{\psi}} = \sum_{Q, \mathcal{A} \in \Gamma_n} \lambda \psi^{-1}(Q) \chi(\mathcal{A}) f([A\Omega^{-1}]_n[\Omega]_\Gamma)$. The action of $[\Omega]_\Gamma$ is transcendental and is incorporated into the embedding $C \hookrightarrow Sh^Q$. So we write down f_{ψ}^Q as a value of a single modular form $f_{\psi} := \sum_{Q \in Q} \lambda \psi^{-1}(Q) f|\langle \Omega \rangle$ first for $f|\langle \Omega \rangle(x(\mathcal{A})) = f(x(A\Omega^{-1})).
The idea when $O_l = \mathbb{Z}_\ell$. Descend $\Omega \in \mathcal{Q}$ to $q = \Omega \cap O$. Then $C_q := (\omega_q^{-1} \hat{\omega}_1 + \hat{\omega}_2) / TX \subset X$ is a O-cyclic subgroup. Define for $\langle \Omega \rangle$ by the action of $\text{diag} [\omega_q^{-1}, 1]$:

$$f|_{\langle \Omega \rangle}(X, \overline{\Lambda}, w, \omega) := f(X/C_q, \overline{\Lambda}_\Omega, \langle \Omega \rangle w, \omega_\Omega)$$

$$f|_{\langle \Omega \rangle}(\mathfrak{A}) = f(\mathfrak{A}_q^{-1})$$

where $\overline{\Lambda}_\Omega$ and ω_Ω are the push-down of $\overline{\Lambda}$ and ω to the quotient X/C_Ω. Define $f_\psi = \sum_{\Omega} \lambda_\psi^{-1}(\Omega) f|_{\langle \Omega \rangle}$. Recall $v = v(\chi)$ such that $\chi([\mathfrak{A}_u]) = \zeta_j \text{Tr}(vu)$ identifying $\Gamma_n[l^j] \cong O/l^j$ by $x(\mathfrak{A}_u) = \alpha(u/\omega_l^j)(x(R_n))$. We regard $(f|_{\langle \Omega \rangle})_\Omega$ a modular form on $Sh^\mathcal{Q}$ and evaluate it at $\Xi = \Xi_{n,j}$ defined by the following sequence n.

$$n := \{n \mid \int_{Cl_n} \chi \psi d\varphi f = 0 \text{ for } n > j \text{ with cond}(\chi) = l^n \text{ and } v(\chi) = v \}.$$

Modifying further $f_\psi = \sum_{\Omega} \lambda_\psi^{-1}(\Omega) f_v|_{\langle \Omega \rangle}$ with

$$f_v = \sum_{u \in O/l^j} \zeta_j^{\text{Tr}(vu)} f|_\alpha(u/\omega_l^j),$$

we show $f_v([\mathfrak{A}]) = 0$ for all $s([\mathfrak{A}]) \in \Xi$; so, $f_v = 0$ if Ξ is Zariski dense in $V^\mathcal{Q}$. Note $N(l)^ja(\xi, f) = a(\xi, f_v)$ as long as $\xi \equiv -v \mod [l^jO_l]$. We suppose $j \geq r > 0$ for r with $\ell^r || |F_p[f, \lambda, \psi, \mu_\ell]|^\times|.$
§1. Geometric modular forms.

Geometric modular forms classify quadruples \((X, \Lambda, w, \omega)\) with \((X, \Lambda, w)_A \in Sh(A)\), where \(\omega\) is a generator over \(O \otimes_{\mathbb{Z}} A\) of \(H^0(X, \Omega_{X/A})\). A geometric modular form \(f/B\) \((B = W, \mathbb{F})\) is a functorial rule of assigning a value to triples \((X, \Lambda, w, \omega)\) to satisfy the following three axioms:

- (G1) For a \(B\)-algebra homomorphism \(\phi : A \rightarrow A'\), we have
 \[f((X, \Lambda, w, \omega) \times_A \phi A') = \phi(f(X, \Lambda, w, \omega)). \]

- (G2) \(f\) is finite at all cusps, that is, the \(q\)-expansion of \(f\) at every Tate test object does not have a pole at \(q = 0\).

- (G3) \(f(X, \Lambda, w, \xi \omega) = \xi^{-k\Sigma}f(X, \Lambda, w, \omega)\) for \(\xi \in T(A)\) for \(T = \text{Res}_{O/\mathbb{Z}}(\mathbb{G}_m)\).

Note \(k\Sigma \in \text{Hom}_{\text{alg. gp}}(T, \mathbb{G}_m)\) sending \(\xi\) to \(\xi^{k\Sigma} = \prod_{\sigma \in \Sigma}(\xi^\sigma)^k\).

Only important point about polarization is its ideal \(\mathfrak{c}\) such that \(\Lambda : X \otimes \mathfrak{c} \cong \text{Pic}^0(X)\), and \([\mathfrak{c}] \in \text{Cl}_F^+\) parameterizes geometrically irreducible components of \(Sh_K\) if \(\det(K) = \hat{O}^{(p)}, x\). The differential operator \(d^\kappa\) changes \(k\) to \(k\Sigma + \kappa(1 - c)\). For simplicity, we assume \(\kappa = 0\).
\section{Choice of λ.}

For simplicity, assume that f has trivial Neben types. Choose λ so that $\lambda((\xi)) = \xi^{-k\Sigma}$ and $\lambda|_{F_A^\times}$ is the central character of f. Fix ω on $X(R)$. Then by the isogeny $\iota : X(R) \to X(A)$ induced by $A = aR_n$ for $a \in M_{\mathbb{A}}^{\times}$, we have $\omega_A = \iota_* \omega$ for all A. Since $\xi : X(A) \cong X(\xi A)$ for $\xi \in M^\times \cap R_n^{\times}$, ι induces $\omega \mapsto \xi_* \omega = \xi \omega$, we find

\[f(x(\xi A)) = f(X(\xi A), \xi w, \xi \omega_A) = \xi^{-k\Sigma} f(x(A)), \]

and by $\lambda((\xi))\xi^{k\Sigma}$ is the Neben character of f, we find

\[f([A]) := \lambda(A)^{-1} f(x(A)) \]

only depends on the class $Cl_{n}^- = M_{\mathbb{A}}^{\times} / \hat{R}_{n}^{\times} (F_{\mathbb{A}}(\infty)) \times M^\times M_{\infty}^\times$.

The action $\langle \Omega \rangle = \text{diag}[\omega_q^{-1}, 1]$ is at the place $q = \Omega \cap O$ and the action $\alpha(u/\omega_l^r)$ is at $l \neq q$; so, they commute. Thus

\[f|\langle \Omega \rangle ([A]) \text{ and } f_v([A]) \text{ are well defined for } [A] \in Cl_{n}^- .\]
§3. Shimura's reciprocity law.

Let \((M', \Sigma')\) be the reflex of \((M, \Sigma)\). We suppose that \(f/\mathbb{F}\) is the reduction modulo \(p\) of \(f/\mathcal{W}\) and write \(E\) over \(M'\) be the field of rationality of \(\psi, f/\mathcal{W}\) and \(\lambda\). Let \(E_f\) be the field of rationality over \(E[\mu_{\ell\infty}]\) of \(x(\mathcal{A}) \in Sh\) for all \([\mathcal{A}] \in Cl_{alg}\). Then \(E_f\) is an abelian extension over \(E\). Then for an idele \(b\) of \(M'_\mathbb{A}_\times\), we have \(b^{\Sigma'} = \prod_{\sigma' \in \Sigma'} b^{\sigma'} \in M'_\mathbb{A}_\times\), and hence we have an Artin symbol \([N(b)\Sigma', E]\) acting on \(E_f\) for the norm map \(N := N_{E/M'}\), whose ideal version, we write as \(\sigma = \sigma_b = [N(b)\Sigma', E]\).

Here is a reciprocity law of Shimura:

\[
f([\mathcal{A}])^{\sigma} = f([N(b)^{-\Sigma'} \mathcal{A}]), \tag{R}\]

which implies

\[
\left(\int_{\Gamma_n} \chi d\varphi_{f_\psi}^O\right)^{\sigma} = \chi^{\sigma}(N(b)^{\Sigma}) \int_{\Gamma_n} \chi^{\sigma} d\varphi_{f_\psi}^O.
\]
§4. Trace relation. Let $F_{P} = F_{p}[f/\mathbb{F}, \psi, \lambda/\mathbb{F}, \mu_{\ell}]$ (the field of rationality of $f/\mathbb{F}, \psi, \lambda/\mathbb{F}$ and μ_{ℓ}). Define $r > 0$ by $\ell^{r} \parallel |F_{P}^{\times}|$.

Lemma. For a generator $\zeta_{n} \in \mu_{\ell^{n}}$, if $F_{P}[\chi] = F_{P}[\zeta_{n}]$ with $n > j \geq r$, we have

$$\text{Tr}_{F_{P}[\chi]/F_{P}[\mu_{\ell^{j}}]}(\zeta_{n}^{s}) = \begin{cases} [F_{P}[\zeta_{n}]: F_{P}[\zeta_{j}]]\zeta_{n}^{s} & \text{if } \zeta_{n}^{s} \in \mu_{\ell^{j}}, \\ 0 & \text{otherwise.} \end{cases}$$

Note $[F_{P}[\zeta_{n}]: F_{P}[\zeta_{j}]] = \ell^{n-j} \neq 0$ in \mathbb{F}.

Proof. By our assumption, $j > 0$. Then the minimal equation of $F_{P}[\chi]$ of ζ_{n}^{s} over $F_{P}[\mu_{\ell^{j}}]$ is, if $\zeta_{n}^{s} \not\in \mu_{\ell^{j}}$, for $m = n - j$

$$X^{\ell^{m}(\ell-1)} + X^{\ell^{m}(\ell-2)} + \cdots + 1 = X^{\ell^{m}(\ell-1)} - \text{Tr}_{F_{P}[\zeta_{n}^{s}]/F_{P}[\mu_{\ell^{j}}]}(\zeta_{n}^{s})X^{\ell^{m}(\ell-1)-1} + \cdots.$$

So, we get the above formula. \square
§5. f_{ψ} to f_v. For a while, assume that $\Gamma \cong \mathbb{Z}_\ell$. Recall
\[
\left(\int_{\Gamma_n[B]} \chi([A])d\varphi f_{\psi}([A][B]) \right)^\sigma = \chi^\sigma([N(b)^{\Sigma'}]) \int_{\Gamma_n} \chi([A])d\varphi f_{\psi}([A][B])
\]
by Shimura’s reciprocity law (R), and
\[
\int_{\Gamma_n} \chi([A])d\varphi f_{\psi}([A][B]) = 0 \iff \int_{\Gamma_n} \sigma(\chi([A]))d\varphi f_{\psi}([A][B]) = 0.
\]
Thus for $n \in \mathbb{N}$ and any $[B] \in \Gamma_n$, we find for $\text{Tr} := \text{Tr}_{\mathbb{F}_P[\chi]/\mathbb{F}_P[\mu_{\ell^j}]}$,
\[
0 = \sum_{\sigma \in \text{Gal}(\mathbb{F}_P[\chi]/\mathbb{F}_P[\mu_{\ell^j}])} \sum_{A \in \Gamma_n} \sum_{\Omega \in \mathcal{Q}} \lambda_{\psi^{-1}}(\Omega) \chi^\sigma(A)f|\langle \Omega \rangle([AB][\Omega]_{\Gamma})
\]
\[
= \sum_{A} \sum_{\Omega} \lambda_{\psi^{-1}}(\Omega) \text{Tr}(\chi(A))f|\langle \Omega \rangle([AB][\Omega]_{\Gamma})
\]
\[
\text{Trace rel } \ell^n-j \sum_{\Omega \in \mathcal{Q}} \lambda_{\psi^{-1}}(\Omega) \zeta_j \text{Tr}(vu) \sum_{u \mod \ell^j} f|\langle \Omega \rangle|\alpha(u/\omega_j^i)([B][\Omega]_{\Gamma})
\]
\[
= \ell^{n-j} \sum_{\Omega \in \mathcal{Q}} \lambda_{\psi^{-1}}(\Omega) f_v|\langle \Omega \rangle([B][\Omega]_{\Gamma}).
\]
§6. Conclusion.

Let \(\tilde{f} := \sum_{\Omega \in \mathcal{Q}} 1 \otimes \cdots \otimes \lambda \psi^{-1}(\Omega)f_v|\langle \Omega \rangle \otimes \cdots \otimes 1 \) as a function on \(V^Q \). Then for the embedding \(s : C \cap V^Q \to V^Q \) given by \(s(x(A)) = s(A) = (x(A[\mathfrak{Q}_\Gamma]))_{\Omega \in \mathcal{Q}}, \)

\[
\sum_{\Omega \in \mathcal{Q}} \lambda \psi^{-1}(\Omega)f_v|\langle \Omega \rangle([B][\mathfrak{Q}]_{\Gamma}) = \lambda(B)^{-1}\tilde{f}(s(B)).
\]

Thus if \(\Xi \) is Zariski-dense in \(V^Q \), we conclude \(f_v = 0 \). By computation, \(a(\xi, f) \neq 0 \) for \(\xi \in -v \) is equivalent to \(a(\xi, f_v) \neq 0 \), a contradiction.

The sequence

\[
n := \{n|cond(\chi) = 1^n \text{ and } \chi \in \mathcal{Z}\}
\]
defines \(\Xi = \{s(A)|A] \in \bigcup_{n \in \mathbb{N}} \text{Ker}(\Gamma_n \to \Gamma_j)\} \) as we took the trace to \(\mathbb{F}_P[\mu_{\ell^j}] \). Therefore if \(n \) contains an arithmetic progression, then \(f_v = 0 \) by the density theorem.
§7. Rigidity of torus. On the contrary to the assertion of the non-vanishing theorem, we assume that

\[\mathcal{X} := \{ \chi \in \text{Hom}(\Gamma, \mu_{\ell^\infty}) \mid \int_{\text{Cl}_n} \chi \psi d\varphi_f \neq 0, \, v(\chi) = v \} \]

has Zariski closure \(\overline{\mathcal{X}} \) with \(\dim \overline{\mathcal{X}} < d \). Since \(\mathcal{X} \) is stable by \(p \)-Frobenius \(t \mapsto t^P \) for a \(p \)-power \(P \), \(\overline{\mathcal{X}} \) is stable under \(t \mapsto t^{Pm} \) for all \(m \). Let \(W_\ell \) be a discrete valuation ring finite flat over \(W(\overline{\mathbb{F}_\ell}) \). We apply to the formal completion \(\widehat{\mathcal{X}} \) of \(\overline{\mathcal{X}} \) the following

Rigidity Theorem. Let \(X = \text{Spf}(\mathcal{T}) \) be a closed formal subscheme of \(\widehat{G} = \widehat{G}^n_{m/W_\ell} \) flat geometrically irreducible over \(W_\ell \) (i.e., \(\mathcal{T} \cap \mathcal{O}_\ell = W_\ell \)). Suppose there exists an open subgroup \(U \) of \(\mathbb{Z}_\ell^\times \) such that \(X \) is stable under the action \(\widehat{G} \ni t \mapsto t^u \in \widehat{G} \) for all \(u \in U \). If \(X \) contains a Zariski dense subset \(\Omega \subset X(\mathbb{C}_\ell) \cap \mu_{\ell^\infty}(\mathbb{C}_\ell) \), then there exist \(\omega \in \Omega \) and a formal subtorus \(T \) such that \(X = T\omega \).
§8. The strategy.
A key point is the use of a rigidity theorem asserting a formal subscheme of \(\hat{G}_m/W_\ell \) stable under \(t \mapsto t^P \) for a \(p \)-power \(P \) is a union of formal subtori up to making finite quotient. Define \(\mathcal{X} := \{ \chi \in \text{Hom}(\Gamma, \mu_{\ell\infty}) | \int_{\mathbb{O}_{\ell\infty}} \chi \psi d\varphi_f \neq 0 \} \), and regard \(\mathcal{Z} \) and \(\mathcal{X} \) as a subset of \(\hat{G}_m/W_\ell \) for a sufficiently large \(W_\ell \). Stability of \(\hat{\mathcal{X}} \subset \hat{G}_m^d \) under a suitable power of \(p \)-Frobenius implies stability of \(\hat{\mathcal{X}} \) under an open subgroup \(U \subset \mathbb{Z}_\ell^X \) generated by \(P \). Assume \(\dim \hat{\mathcal{X}} < d \) for \(d = [F : \mathbb{Q}] \). By the rigidity theorem applied to \(\hat{\mathcal{X}} \), we find an arithmetic progression \(n \) such that \(\chi \) with conductor \(l^n \) for all \(n \in \mathbb{n} \) is in \(\mathbb{G}_m^d - \hat{\mathcal{X}} \) to conclude \(f_v = 0 \), a contradiction against \(a(\xi, f_v) = N(l)^j a(\xi, f) \neq 0 \) for \(\xi \in -v \). Thus the non-vanishing theorem follows. The details will be discussed in the last lecture.