* Characters of vanishing integral
and the thin point set Ξ

Haruzo Hida
UCLA, Los Angeles, CA 90095-1555, U.S.A.

ICTS hybrid conference Bengaluru, August, 2022.

*Assume that $Q \cong \Delta^-$ with Ω split over F. We describe the set $Z = \{\chi \in \text{Hom}(\Gamma, \mu_{\ell^\infty}) \text{ with } \int_{\text{Cl}_n} \chi \psi d\varphi_f = 0\}$ and relate it to the point set $\Xi \subset Sh^Q$. Recall $\int_{\Gamma_n} \chi d\varphi_{f^{Q}_\psi} = \sum_{\Omega, A \in \Gamma_n} \lambda^{\psi^{-1}}(\Omega)\chi(A)f([A\Omega^{-1}]_n[\Omega]_\Gamma)$. The action of $[\Omega]_\Gamma$ is transcendental and is incorporated into the embedding $C \hookrightarrow Sh^Q$. So we write down f^{Q}_{ψ} as a value of a single modular form $f_{\psi} := \sum_{\Omega \in Q} \lambda^{\psi^{-1}}(\Omega)f|\langle \Omega \rangle$ for $f|\langle \Omega \rangle(x(A)) = f(x(A\Omega^{-1}))$.
§0. The idea when $O_l = \mathbb{Z}_l$. Descend $\Omega \in Q$ to $q = \Omega \cap O$. Then $C_q := (\omega_q^{-1} \hat{Q}_w + \hat{Q}_w)/TX \subset X$ is a O-cyclic subgroup. Define for $\langle \Omega \rangle$ by the action of diag$[\omega_q^{-1}, 1]$:

$$f|\langle \Omega \rangle(X, \Lambda, w, \omega) := f(X/C_q, \Lambda_q, \langle \Omega \rangle w, \omega_q) (f|\langle \Omega \rangle([A]) = f([A\Omega^{-1}]),$$

where Λ_q and ω_q are the push-down of Λ and ω to the quotient X/C_q. Define $f_\psi = \sum_\Omega \lambda\psi^{-1}(\Omega)f|\langle \Omega \rangle$. Recall $v = v(\chi)$ such that $\chi([A_u]) = \zeta_j^{Tr(vu)}$ identifying $\Gamma_n[\hat{j}] \cong O/\hat{j}$ by $x(A_u) = \alpha(u/\omega^j_1)(x(R_n))$. We regard $(f|\langle \Omega \rangle)_\Omega$ a modular form on Sh^Q and evaluate it at $\Xi = \Xi^n_{n,j}$ defined by the following sequence n.

$$n := \{n | \int_{C_n} \chi_w d\varphi f = 0 \text{ for } n > j \text{ with } \text{cond}(\chi) = l^n \text{ and } v(\chi) = v\}.$$

Modifying further $f_\psi = \sum_\Omega \lambda\psi^{-1}(\Omega)f_v|\langle \Omega \rangle$ with

$$f_v = \sum_{u \in O/\hat{j}} \zeta_j^{Tr(vu)} f|\alpha(u/\omega^j_1),$$

we show $f_v([A]) = 0$ for all $s([A]) \in \Xi$; so, $f_v = 0$ if Ξ is Zariski dense in V^Q. Note $N(l)^ja(\xi, f) = a(\xi, f_v)$ as long as $\xi \equiv -v$ mod l^jO_l. We suppose $j \geq r > 0$ for r with $\ell^r \parallel \mathbb{F}_p[f, \lambda, \psi, \mu_\ell]^\times$.

§1. Geometric modular forms.

Geometric modular forms classify quadruples \((X, \Lambda, w, \omega)\) with \((X, \Lambda, w, \omega)_A \in Sh(A)\), where \(\omega\) is a generator over \(O \otimes \mathbb{Z} A\) of \(H^0(X, \Omega_{X/A})\). A geometric modular form \(f/B\) \((B = W, \mathbb{F})\) is a functorial rule of assigning a value to triples \((X, \Lambda, w, \omega)\) to satisfy the following three axioms:

(G1) For a \(B\)-algebra homomorphism \(\phi: A \to A'\), we have

\[
f(((X, \Lambda, w, \omega) \times_A \phi A')) = \phi(f(X, \Lambda, w, \omega)).
\]

(G2) \(f\) is finite at all cusps, that is, the \(q\)-expansion of \(f\) at every Tate test object does not have a pole at \(q = 0\).

(G3) \(f(X, \Lambda, w, \xi \omega) = \xi^{-k\Sigma} f(X, \Lambda, w, \omega)\) for \(\xi \in T(A)\) for \(T = \text{Res}_{O/\mathbb{Z}}(\mathbb{G}_m)\).

Note \(k\Sigma \in \text{Hom}_{\text{alg. gp}}(T, \mathbb{G}_m)\) sending \(\xi\) to \(\xi^k \Sigma = \prod_{\sigma \in \Sigma} (\xi^\sigma)^k\).

Only important point about polarization is its ideal \(c\) such that \(\Lambda : X \otimes c \cong \text{Pic}^0(X)\), and \([c] \in Cl_F^+\) parameterizes geometrically irreducible components of \(Sh_K\) if \(\det(K) = \hat{O}(p), \times\). The differential operator \(d^\kappa\) changes \(k\) to \(k\Sigma + \kappa(1 - c)\). For simplicity, we assume \(\kappa = 0\).
§2. Choice of λ. For simplicity, assume that f has trivial Neben types. Choose λ so that $\lambda((\xi)) = \xi^{-k\Sigma}$ and $\lambda|_{F_A^\times(\infty)}$ is the central character of f. Fix ω on $X(R)$. Then by the isogeny $\iota : X(R) \to X(A)$ induced by $A = aR_n$ for $a \in M_{\hat{A}p(\infty)}^\times$, we have $\omega_A = \iota_\ast\omega$ for all A. Since $\xi : X(A) \cong X(\xi A)$ for $\xi \in M^\times \cap R_n^\times$, induces $\omega \mapsto \xi_\ast \omega = \xi \omega$, we find

$$f(x(\xi A)) = f(X(\xi A), \xi w, \xi \omega_A) = \xi^{-k\Sigma} f(x(A)),$$

and by $\lambda((\xi))\xi^{k\Sigma}$ is the Neben character of f, we find

$$f([A]) := \lambda(A)^{-1} f(x(A))$$

only depends on the class $Cl_{n}^- = M_{\hat{A}}^\times / \hat{R}_n^\times(F_{\hat{A}}(\infty)) \times M^\times M_{\infty}^\times$.

The action $\langle \Omega \rangle = \text{diag}[\omega_q^{-1}, 1]$ is at the place $q = \Omega \cap O$ and the action $\alpha(u/\omega_l^r)$ is at $l \neq q$; so, they commute. Thus

$$f|\langle \Omega \rangle([A]) \text{ and } f_v([A]) \text{ are well defined for } [A] \in Cl_{n}^-.$$
§3. Shimura’s reciprocity law.

Let (M', Σ') be the reflex of (M, Σ). We suppose that f/F is the reduction modulo p of f/W and write E over M' be the field of rationality of ψ, f/W and λ. Let E_f be the field of rationality over $E[\mu_{\ell\infty}]$ of $x(A) \in Sh$ for all $[A] \in \text{Cl}_{\text{alg}}$. Then E_f is an abelian extension over E. Then for an idele b of $M'_{\mathbb{A}}$, we have $b^{\Sigma'} = \prod_{\sigma' \in \Sigma'} b^{\sigma'} \in M_{\mathbb{A}}^\times$, and hence we have an Artin symbol $[N(b)\Sigma', E]$ acting on E_f for the norm map $N := N_{E/M'}$, whose ideal version, we write as $\sigma = \sigma_b = [N(b)\Sigma', E]$.

Here is a reciprocity law of Shimura:

$$f([A])^\sigma = f([N(b)^{-\Sigma'} A]), \quad (\text{R})$$

which implies

$$\left(\int_{\Gamma_n} \chi d\varphi^{O}_{f, \psi}\right)^\sigma = \chi^\sigma(N(b)^{\Sigma}) \int_{\Gamma_n} \chi^\sigma d\varphi^{O}_{f, \psi}. $$
§4. Trace relation. Let $\mathbb{F}_P = \mathbb{F}_p[f/F, \psi, \lambda/F, \mu_\ell]$ (the field of rationality of $f/F, \psi, \lambda/F$ and μ_ℓ). Define $r > 0$ by $\ell^r || |\mathbb{F}_P^\times|$.

Lemma. For a generator $\zeta_n \in \mu_\ell^n$, if $\mathbb{F}_P[\chi] = \mathbb{F}_P[\zeta_n]$ with $n > j \geq r$, we have

$$\text{Tr}_{\mathbb{F}_P[\chi]/\mathbb{F}_P[\mu_\ell^j]}(\zeta_n) = \begin{cases} [\mathbb{F}_P[\zeta_n] : \mathbb{F}_P[\zeta_j]] \zeta_n^s & \text{if } \zeta_n^s \in \mu_\ell^j, \\ 0 & \text{otherwise.} \end{cases}$$

Note $[\mathbb{F}_P[\zeta_n] : \mathbb{F}_P[\zeta_j]] = \ell^{n-j} \neq 0$ in \mathbb{F}.

Proof. By our assumption, $j > 0$. Then the minimal equation of $\mathbb{F}_P[\chi]$ of ζ_n^s over $\mathbb{F}_P[\mu_\ell^j]$ is, if $\zeta_n^s \not\in \mu_\ell^j$, for $m = n - j$

$$X^{\ell^m(\ell-1)} + X^{\ell^m(\ell-2)} + \cdots + 1 = X^{\ell^m(\ell-1)} - \text{Tr}_{\mathbb{F}_P[\zeta_n^s]/\mathbb{F}_P[\mu_\ell^j]}(\zeta_n^s)X^{\ell^m(\ell-1)-1} + \cdots.$$

So, we get the above formula. \square
§5. f_ψ to f_v. Recall
\[
\left(\int_{\Gamma_n[B]} \chi([A]) d\varphi_{f_\psi}([A][B]) \right)^\sigma = \chi^\sigma([N(b)\Sigma']) \int_{\Gamma_n} \chi([A]) d\varphi_{f_\psi}([A][B])
\]
by Shimura’s reciprocity law (R), and
\[
\int_{\Gamma_n} \chi([A]) d\varphi_{f_\psi}([A][B]) = 0 \iff \int_{\Gamma_n} \sigma(\chi([A])) d\varphi_{f_\psi}([A][B]) = 0.
\]
Thus for $n \in \mathbb{N}$ and any $[B] \in \Gamma_n$, we find for $\text{Tr} := \text{Tr}_{F_P[\chi]/F_P[\mu_{\ell^j}]}$
\[
0 = \sum_{\sigma \in \text{Gal}(F_P[\chi]/F_P[\mu_{\ell^j}])} \sum_{A \in \Gamma_n} \sum_{\Omega \in \mathcal{Q}} \lambda \psi^{-1}(\Omega) \chi^\sigma(A) f_{\langle \Omega \rangle}([AB][\Omega]_\Gamma)
\]
\[
= \sum_{A} \sum_{\Omega} \lambda \psi^{-1}(\Omega) \text{Tr}(\chi(A)) f_{\langle \Omega \rangle}([AB][\Omega]_\Gamma)
\]
\[
\text{Trace rel } \ell^{n-j} \sum_{\Omega \in \mathcal{Q}} \lambda \psi^{-1}(\Omega) \zeta_j \text{Tr}(vu) \sum_{u \mod \ell^j} f_{\langle \Omega \rangle} |\alpha(u/\omega^j_i)([B][\Omega]_\Gamma)\rangle
\]
\[
= \ell^{n-j} \sum_{\Omega \in \mathcal{Q}} \lambda \psi^{-1}(\Omega) f_v_{\langle \Omega \rangle}([B][\Omega]_\Gamma).
\]
§6. Conclusion.

Let $\tilde{f} := \sum_{\mathfrak{O} \in \mathcal{O}_1 \otimes \cdots \otimes \lambda \psi^{-1}(\mathfrak{O})} f_v|\langle \mathfrak{O} \rangle \otimes \cdots \otimes 1$ as a function on V^Q. Then for the embedding $s : C \cap V^Q \to V^Q$ given by $s(x(A)) = s(A) = (x(A[\mathfrak{O}_\Gamma]))_{\mathfrak{O} \in \mathcal{O}_1}$,

$$\sum_{\mathfrak{O} \in \mathcal{O}_1} \lambda \psi^{-1}(\mathfrak{O}) f_v|\langle \mathfrak{O} \rangle ([B][\mathfrak{O}_\Gamma]) = \lambda(B)^{-1} \tilde{f}(s(B)).$$

Thus if Ξ is Zariski-dense in V^Q, we conclude $f_v = 0$. By computation, $a(\xi, f) \neq 0$ for $\xi \in -v$ is equivalent to $a(\xi, f_v) \neq 0$, a contradiction.

The sequence

$$n := \{ n \mid \text{cond}(\chi) = l^n \text{ and } \chi \in \mathcal{Z} \}$$

defines $\Xi = \{ s(A)[A] \in \bigcup_{n \in n} \ker(\Gamma_n \to \Gamma_j) \}$ as we took the trace to $\mathbb{F}_p[\mu_{l^j}]$. Therefore if n contains an arithmetic progression, then $f_v = 0$ by the density theorem.
§7. Rigidity of torus. On the contrary to the assertion of the non-vanishing theorem, we assume that

\[\mathcal{X} := \{ \chi \in \text{Hom}(\Gamma, \mu_{\ell\infty}) \mid \int_{\text{Cl}_n} \chi \psi d\varphi_f \neq 0, \ v(\chi) = v \} \]

has Zariski closure \(\overline{\mathcal{X}} \) with \(\dim \overline{\mathcal{X}} < d \). Since \(\mathcal{X} \) is stable by \(p \)-Frobenius \(t \mapsto t^P \) for a \(p \)-power \(P \), \(\overline{\mathcal{X}} \) is stable under \(t \mapsto t^{P^m} \) for all \(m \). Let \(W_\ell \) be a discrete valuation ring finite flat over \(W(F_\ell) \). We apply to the formal completion \(\widehat{\mathcal{X}} \) of \(\overline{\mathcal{X}} \) the following

Rigidity Theorem. Let \(X = \text{Spf}(T) \) be a closed formal sub-scheme of \(\widehat{G} = \widehat{G}^n / W_\ell \) flat geometrically irreducible over \(W_\ell \) (i.e., \(T \cap \overline{Q}_\ell = W_\ell \)). Suppose there exists an open subgroup \(U \) of \(\mathbb{Z}_\ell \times \) such that \(X \) is stable under the action \(\widehat{G} \ni t \mapsto t^u \in \widehat{G} \) for all \(u \in U \). If \(X \) contains a Zariski dense subset \(\Omega \subset X(\mathbb{C}_\ell) \cap \mu_{\ell\infty}^n(\mathbb{C}_\ell) \), then there exist \(\omega \in \Omega \) and a formal subtorus \(T \) such that \(X = T_\omega \).
§8. The strategy.
A key point is the use of a rigidity theorem asserting a formal subscheme of $\hat{\mathbb{G}}_m/W_\ell$ stable under $t \mapsto t^P$ for a p-power P is a union of formal subtorus up to making finite quotient. Define $X := \{ \chi \in \text{Hom}(\Gamma, \mu_{\ell\infty}) | \int_{\text{Cl}_\infty} \chi \psi d\varphi_f \neq 0 \}$, and regard Z and X as a subset of $\hat{\mathbb{G}}_m/W_\ell$ for a sufficiently large W_ℓ. Stability of $\hat{X} \subset \hat{\mathbb{G}}_m^d$ under a suitable power of p-Frobenius implies stability of \hat{X} under an open subgroup $U \subset \mathbb{Z}_\ell^X$ generated by P. Assume $\dim \hat{X} < d$ for $d = [F : \mathbb{Q}]$. By the rigidity theorem applied to \hat{X}, we find an arithmetic progression n such that χ with conductor l^n for all $n \in n$ is in $\mathbb{G}_m^d - \hat{X}$ to conclude $f_v = 0$, a contradiction against $a(\xi, f_v) = N(l)^j a(\xi, f) \neq 0$ for $\xi \in -v$. Thus the non-vanishing theorem follows. The details will be discussed in the last lecture.