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In this lecture, we sketch the proof of H(ψ)P |(h(M/F ))L−
p (χ)P

for an arithmetic specialization at P , which finish the proof of

the anti-cyclotomic main conjecture. We keep the assumptions

and the notation in the first lecture and Tilouine’s lecture. In

particular, (M,Σ,Σp) is a fixed ordinary CM-type, and for sim-

plicity, we assumed

(S) ψ has conductor CPe and order prime to p,

where C+Cc = OM and e = (e(P))P∈Σp
with Pe =

∏
P∈Σp

Pe(P).



§1. q-Expansion of f ∈ S(C). Each f has Fourier expansion:

f
(
y x
0 1

)
= |y|A

∑

0�ξ∈F
a(ξdy, f)qξ with qξ := eF(

√
−1ξy∞)eF (ξx)

where eF (x∞) = exp(2π
√
−1

∑
σ∈I xσ) and y 7→ a(y, f) is a func-

tion on F×
A(∞) supported on Ô. Here d is differental idele. Set

S(W ) := {f ∈ S(C)|a(y, f) ∈W, ∀y}. Define a pairings 〈·, ·〉 : hP ×
S(W ) →W and (·, ·) : SB(W ) × SB(W ) →W by 〈h, f〉 = a(1, f |h)
and (f, g) =

∑
a∈A e−1

a f(a)g(a) for ea = |Γa| with projected image

Γa of aΓ̂0(N)a−1 ∩ B× in B×/F×. The pairings are perfect (if

p ≥ 5); in particular,

HomW(S,W ) ∼= hP and HomW(hP ,W ) ∼= S.

The latter map is induced by φ 7→ |y|A
∑

0�ξ∈d−1 φ(T(ξdy))qξ ∈ S(W ).

Thus we obtain

Proposition 1. The q–expansion for f ∈ SB(W ) and g ∈ SB(W )

θ(f ⊗ g)
(
y x
0 1

)
= |y|A

∑

0�ξ∈F
(f |T(ξyd), g)qξ

is an element of S(W ) (rigidifying JL).



§2. Theta series of B span S(W ). We find

ST
B := SB(W )hP ⊗ TP

∼= TP
∼= T∗

P as T-modules

for T∗
B = HomW(TB,W ), (a bi-product of the “R = T”-theorem).

By JL, θ : ST
B ⊗W ST

B → ST for ST = S(W ) ⊗hP
TP is onto. By

computation, θ(f ⊗ g) :=
∑
a,b∈A e−1

a e−1
b f(a)g(b)θ̃a,b, where θ̃(x)

is the adelic lift of classical theta series

θa,b =
∑

ξ∈a∆̂b−1∩B
ε−1(a−1ξb)eF (N(ξ)z).

Here eF (z) = exp(2π
√
−1

∑
σ zσ) for z = (zσ)σ∈I ∈ HI and N :

B → F is the reduced norm map. Thus

Corollary 1. Quaternionic theta series for the Schwartz–Bruhat

function supported on a∆̂b−1 ⊂ B
(∞)
A

whose value is given by

a∆̂b−1 3 axb−1 7→ ε−1(x) for a, b ∈ A span S(W )T over W .



§3. Quaternionic theta is a product of two CM theta series.

Consider θ(φ)(z) :=
∑
ξ∈B φ(ξ)eF (N(ξ)z) for a Bruhat function

φ : B
(∞)
A

→ W . We choose two embedding l, r : OM ↪→ OB and

extend it to M ↪→ B. Let M ⊗F M act on B by (a ⊗ b)v =

l(a)vr(bc). Since M ⊗F M ∼= M ⊕ M by (a ⊗ b) 7→ (ab, acb),

B = (1,0)B⊕ (0,1)B with quadratic space L = (1,0)B ∼= M and

R = (0,1)B ∼= M with norm form NM/F : L → F and −NM/F :

R → F and L ⊥ R. By this decomposition, φ =
∑
φl,φr

φl⊗φr, and

θ(φ) =
∑
φl,φr

θ(φl)θ(φr). Thus we need to show the W -integrality

of φ? (i.e., φ? has values in W ).

To show integrality of (Θ, θ(φl)θ(φr))/Ω
2I, we need to use a

Shimura series.



§4. Idea of showing (θ(ψP ), θ(φl)θ(φr))/Ω
2I ∈ W . By means

of Shimura series (defined in his 1981 Annals paper), we cre-

ate a Hilbert modular form Ψ(z, w) on GL(2) × GL(2)/F and

two lattices L,R in M , such that for the CM point (z0, w0)

corresponding abelian varieties (X(L), X(R))/W of CM type Σ,

Ψ(z0, w0) = (θ(ψP ), θ(φl)θ(φr))/Ω
2I, where X(A)(C) = CΣ/AΣ.

We compute q-expansion to show Ψ is W -integral; hence,

(θ(ψP ), θ(φl)θ(φr))

Ω2I
= Ψ(z0, w0) ∈W.

To define Shimura series, put for z, w ∈ H and v ∈M2(C),

p(z, w) := − ( z1 ) (w,1)
(

0 −1
1 0

)
, [v; z, w] := Tr(p(z, w)vι).

By computation, [v; z, w] never vanishes for 0 6= v ∈ M2(R), and

for α, β ∈ GL2(R), we have

αp(z, w)βι = p(α(z), β(w))j(α, z)j(β, z),

[αvβι; z, w] = j(αι, z)j(βι, w)[v;αι(z), βι(w)].
(A)



§5. Shimura series. Shimura defined the following series H(z, w; s)

on GL(2) × GL(2)/F for weight I Hilbert modular form f =
∑
ξ∈F a(ξ, f)qξ on Γ and [v; z, w]sI :=

∏
σ∈I[vσ; zσ, wσ]s:

∑

06=α∈M2(F)/U

φ(∞)(α)a(det(εα), f)[α; z, w]−I
∣∣∣[α; z, w]−2sI

∣∣∣

for (z, w) ∈ HI × HI with the stabilizer U in O× of all the terms

of H. This H converges over a right half plane and has mero-

morphic continuation. The residue Ψ(z, w) at s = 1 has the

q-expansion for the partial Fourier transform φ∗,

Im(z)−I Im(w)−I
∑

α∈Γ\M2(F);det(α)�0

φ∗(εα)eF (det(α)z)f |Iα(w),

where ε = diag[−1, 1] [AMC, Cor. 3.4]. When f = θ1 = θ(φ1)

and θ2 = θ(φR), writing Θ =
∑

A ΘA for classical theta series

associated to the ideal class A and choosing φ = φL⊗ φR and φ1

well, by Shimura’s evaluation, Ψ(z0, w0) + (ΘA, θ1θ2) for a CM

point (z0, w0) ∈ HI [AMC, Thm.4.1]. Suppose M = F [z0] =

F [w0] and as a point of HI, z0 = (zσ0)σ∈Σ and w0 = (wσ0)σ∈Σ.



§6. Evaluation of Shimura series.

Let Y = M ⊗F M = L ⊕ R with L ∼= R ∼= M so that S(x, y) =

Tr(xyι) on (M2(F ), det) is positive definite on L and negative on

R. We let Y act on M2(F ) by (a⊗ b)v = ρ(a)vr(ac) with

( z0aa ) = ρ(a)
(
z0
1

)
and

(
w0b
b

)
= r(b)

(
w0
1

)
.

The vector pσ := p(z0,σ, w0,σ) ∈ M2(C) is an Y -eigenvector such

that (a ⊗ b)pσ = aσbσpσ. Choose a generator v ∈ M2(F ) well

such that M2(Op) = OY,pv. Note that pσ is orthogonal to Rv.

So, writing V 3 α = av ⊕ bv with a ∈ L and b ∈ R

[ασ; z0,σ, w0,σ] = S(ασ, p(z0,σ, w0,σ)) = aσc[vσ; z0,σ, w0,σ]

[α; z0, w0]
−I |[α; z0, w0]|−2sI = C−Σ|C−2sΣ|a−ΣcNM/Q(a)−s,

where C = [vσ; z0,σ, w0,σ]. If φ = φL ⊗ φR with Bruhat function

φ? on ?, CΣ|C2sΣ|H(z0, w0; s) is
∑

α∈L/U
φL(α)

∑

β∈R/U
φR(β)a(ααc − ββc, f)α−ΣcN(α)−s, (R1)

as det(ε(α⊕ β)) = ααc − ββc.



§7. Rankin convolution.

We show that H(z0, w0; s) is the Rankin convolution of a cusp

form f ′ and the theta series θ(φ′L) of the norm form of M for

φ′L(α) = αΣφL(αv). Choose φL so that θ(φ′L) = ΘA. Writing

f ′ = fθ(φR) ∈ S(I,0)(Γ
′),

H(z0, w0; s) =
∑

α∈R/U
φL(αv)a(αα

c, f ′)N(α)1−s = D(s−1; θ(φ′L), f
′)

up to an explicit non-zero constant in W×, where D(s; θ(φ′L), f
′)

is the Rankin convolution of θ(φ′L) and f ′ normalized to have a

pole at s = 0 [AMC, (4.5)]. It is well known that the residue

Ress=1D(s−1; θ(φ′L), f
′) is (θ(φ′L), f

′) up to an explicit constant.

Taking residue at s = 1 and f = θ1 = θ(φ1) with θ2 := θ(φR), we

get (θ(φ′L), θ1θ2)/Ω
2I ∈ W if θ1 and θ2 are W -integral. We have

freedom to choose pairs (φ1, φR) so that S(W ) is spanned by

θ1θ2 = θ(φ1)θ(φR) over W .



§8. Preparation for a proof of integrality of θ1, θ2. Write

OM = yz1 +Oz2 for the polarization O-ideal y and zj = wj ∈ M ,

and start with z0 = (σ(z1/z2))σ∈Σ = w0 ∈ HI as a starting CM

point (so, r = ρ). We start modifying z? and w?. Then ρ has

values in

(
O y

y−1 O

)
by ρ(ξ)

[
z1
z2

]
=

[
z1ξ
z2ξ

]
and

Γ0(N; y) = {γ ∈
(

O y

Ny−1 O

)
|0 � det(γ) ∈ O×}.

If M/F ramifies at some finite places, the norm map NM/F :

ClM → CLF is onto. Otherwise, Coker(NM/F) is isomorphic

to Gal(M/F ). For ShB := B×\B×
A
/Γ̂0(N)B×∞F

×
A

, fix a complete

representative set A := {a1 = 1, . . . , ah} with ai,Np = ai,∞ = 1.

Thus

ShB
∼= {aj}j i.e., B×

A
=

⊔

j

B×ajΓ̂0(N)F×
A
B×
∞.



§9. Reduction steps of the choice of aj. We consider

∆ij = a−ιi · ∆̂aιj ∩B, Ôijz = a−ιi · Ô0(N)aιj ∩B and

Γi0(N) = B1 ∩ aiΓ̂0(N)a−1
i B×

∞ for B1(F ) = Ker(N : B× → F×).

Put Ôi := Ôii and Oi := Ôi ∩ B. Replacing aj by ξaju with

ξ ∈ B× and u ∈ Γ̂0(N)M×
A
, we may assume that N(aj) = 1. Pick

a prime q of F outside Np, by strong approximation theorem,

B1(F )B1(Fq) is dense in B1(F
(∞)
A

). Thus we may assume that

aj ∈ B1(Fq). Approximate aj by γj ∈ B× modulo small open

compact subgroup U ⊂ Ô×
B (i.e., aj = γju with u ∈ U). We

choose an embedding i = i1 = ρ : OM ↪→ O1, and conjugating

i1 by γj, we may assume that ij : OM,m := O + qmOM ↪→ Oj
for m � 0. We have a decomposition B = L ⊕ R so that for

projections Li and Ri of Oi, (Li ⊕ Ri)/Oi is killed by qmDM/F

prime to p. Choosing v well, the theta series of Li and Ri has

extra level D2
M/Fqm for a sufficiently large m.



§10. Expressing φ supported on Ôi into a sum of φ1 ⊗ φ2.

If φ is a characteristic function of Ôi, by the Fourier transform

of the finite additive group Q := (Li⊕Ri)/(Oi∩ (Li⊕Ri)), φ is a

linear combination of additive characters of A with coefficients

in W [ 1
NpN(q)m

] = W . Additive characters are of the form φl⊗ φr.

Our choice of Bruhat function is εφ, and we can check ε factors

through Li choosing v well. Thus εφ =
∑

(φ1,φ2)
φ1 ⊗ φ2 for φ1 :

L → W and φ2 : R → W . Note that individual θj = θ(φj) is on

Γ′ := Γ0(D
2
M/F qm; y) ∩Γ0(N ·NM/FPe); y). We have the identity

(ΘA, θ1θ2)Γ′ = [Γ : Γ′](ΘA, θ1θ2)Γ for Γ := Γ0(N ; y); so, we have

[Γ : Γ′]
(ΘA, θ1θ2)Γ

Ω2I
∈W.

We need to remove the factor [Γ : Γ′].

The choice of φL is determined by ΘA and H(z, w; s) is deter-

mined by (φL, φR, f), the choice of integral φR = φ2 and f = θ(φ1)

is arbitrary as long as the W -span of {θ(φ1)θ(φR)}φ1,φR
contains

S(W ).



§11. The factor [Γ : Γ′] is prime to p. If p|[Γ : Γ′], then

p|(NF/Q(q) ± 1). Since F/Q is unramified, NF/Q : O×
p → Z×

p is

onto. Thus for a principal prime ideal q = ($) outside Np, if

p ≥ 5, we can choose NF/Q($) 6≡ ∓1 mod p.

In [AMC], (N(l)±1) for prime factors l of DM/F is also considered,

but DM/F |N , such factor does not appear in the index [Γ : Γ′].

Strictly speaking, there is one more Gauss sum factor appears

in front of (Θ,Θ) as mentioned in the first lecture. This factor

is compensated by basically the samefator appearing when we

make the partial Fourier transform φ 7→ φ∗. See details in [AMC,

page 525–526].


