* Irreducible components of Zariski closure

Haruzo Hida
UCLA, Los Angeles, CA 90095-1555, U.S.A.
ICTS hybrid conference Bengaluru, August, 2022.

*We prove Density theorem out of Black Box theorem via a general theory of Zariski closure in a pro-étale variety of an infinite set of close points, and we prepare some notation and geometric lemmas to prove the density theorem. As before, let $\alpha_{l}=\operatorname{diag}\left[1, \varpi_{l}\right]$. Choose a large power $\left[^{m}\right.$ which is generated by $\varpi=\varphi \varphi^{c}(\varphi \in R)$ and put $\alpha=\operatorname{diag}[1, \varpi]$. We may assume $\alpha / \alpha_{l}^{m} \in K$ and hence pretend $\alpha=\alpha_{1}^{m}$ to have the same action on $S h_{K}=S h / K . \alpha$ preserves each irreducible component of $S h_{K / \mathbb{F}}$ as long as $\operatorname{det}(K)=\widehat{O}^{\times}$. Set $N:=\left\{\alpha(u) \mid u \in O_{r}\right\}$, and assume $K \supset N$. For a variety $Y_{\mid \mathbb{F}}$, write $\operatorname{Irr}_{d}(Y)$ for the set of irreducible components of dimension d of Y. Set $\operatorname{Irr}(Y):=$ $\bigsqcup_{d} \operatorname{Irr}_{d}(Y)$ and $\operatorname{Irr}_{+}(Y):=\bigsqcup_{d>0} \operatorname{Irr}_{d}(Y)$.

§0. The idea.

For a proper R_{n}-ideal \mathcal{A}_{n} prime to $p \mathfrak{l}$, define a proper $R_{n^{\prime}}$-ideal by $\widehat{\mathcal{A}}_{n^{\prime}}:=\widehat{\mathcal{A}}_{n}^{(l)} \times R_{n^{\prime}, \text { I }}$. We have three identities:

$$
\alpha_{\urcorner}\left(x\left(\mathcal{A}_{n}\right)\right)=x\left(\mathcal{A}_{n+1}\right) \text { for } \alpha_{\urcorner}=\operatorname{diag}\left[1, \varpi_{\urcorner}\right]
$$

$$
O_{\mathrm{l}} / \mathfrak{l}^{i} \cong \Gamma_{n}\left[\mathfrak{l}^{i}\right] \text { by } u \mapsto \alpha\left(u / \varpi_{\mathfrak{l}}^{i}\right) x\left(R_{n}\right)=: x\left(\mathcal{A}_{u, n}\right) \text { if } n \geq i \text {, }
$$

For $\xi \in \mathcal{T}_{j}:=\left(M^{\times} \cap R_{j, \mathfrak{l}}^{\times}\right) \subset \mathrm{GL}_{2}\left(F_{\mathbb{A}}^{(p l \infty)}\right), \xi(x(\mathcal{A}))=x((\xi) \mathcal{A})$.
We show, if \underline{n} is an arithmetic progression, the semi-group $\alpha^{\mathbb{N}}$ generated by $\alpha^{i} i=1,2, \ldots$ for the m-th power α of α_{ℓ} acts on $\operatorname{Irr}_{0}\left(X_{K}\right)$ for $X_{K}=\overline{\bar{E}}_{\underline{n}, j, K} \subset V_{K}^{\mathcal{Q}}$. Since each orbit of $\alpha^{\mathbb{N}}$ is infinite, for the image X_{K} in $S h / K$,

$$
\operatorname{Irr}_{0}\left(X_{K}\right) \neq \emptyset \Rightarrow\left|\operatorname{Irr}_{0}\left(X_{K}\right)\right|=\infty
$$

a contradiction against noetherian property of $X_{K} \subset V_{K}$, and hence $\operatorname{Irr}_{0}(X)=\lim _{K} \operatorname{Irr}_{0}\left(X_{K}\right)=\emptyset$. Since $\alpha \in \operatorname{Aut}(V)$ (automorphisms) and by the above identity, $\alpha^{-1}(\equiv)-\equiv$ is a finite set, which we need later. We may replace $\alpha^{\mathbb{N}}$ by $\mathcal{S}=\alpha^{\mathbb{N}} \cdot \mathcal{T}_{j}$ to make the action on \equiv transitive.
\S 1. Basics. Write $\mathcal{V}:=V^{\mathcal{Q}}$, and adding the subscript K implies the image in $(S h / K)^{\mathcal{Q}}$. Take K sufficiently small so that $\mathcal{V}_{/ \mathcal{V}_{K}}$ is étale. Since for proper R_{n}-ideals \mathcal{A} and \mathcal{A}^{\prime}

$$
X(\mathcal{A}) \cong X\left(\mathcal{A}^{\prime}\right) \Leftrightarrow[\mathcal{A}]_{n}=\left[\mathcal{A}^{\prime}\right]_{n} \in C l_{n}
$$

a. $\pi_{*}: C \cap \mathcal{V} \cong C_{K} \cap \mathcal{V}_{K}$ by projection $\pi: \mathcal{V} \rightarrow \mathcal{V}_{K}$.
b. For the chosen infinite subset $\equiv \subset C \cap \mathcal{V}$, let X (resp. X_{K}) be the Zariski closure of \equiv in \mathcal{V} (resp. \equiv_{K} in \mathcal{V}_{K}). Then X_{K} is the reduced image of X in \mathcal{V}_{K}.
c. For the image $\left[\delta_{n}\right] \in C l_{n}^{-}$of $\delta \in \mathcal{Q}$ with δ_{n} prime to $p l$, $C l_{n} \ni[\mathcal{A}]_{n} \mapsto\left[\mathcal{A} \delta_{n}\right]_{n} \in C l_{n}^{-}$commutes with the action of \mathcal{S} and $\alpha(u)$ for $u \in F_{\mathfrak{l}}$, since the action of \mathcal{S} and $\alpha(u)$ is concentrated at \mathfrak{l} and the multiplication by $\left[\delta_{n}\right]_{n}$ is outside \mathfrak{l}-action. So the diagonal action of \mathcal{S} on \mathcal{V} preserves $C \cap \mathcal{V}$.
§2. $\operatorname{Irr}(X)$. Let $\pi_{*}\left(\operatorname{Irr}\left(X_{U}\right)\right):=\left\{\pi\left(Z^{\prime}\right) \mid Z^{\prime} \in \operatorname{Irr}\left(X_{U}\right)\right\}$ for a closed subgroup U of K and the projection $\pi: \mathcal{V}_{U} \rightarrow \mathcal{V}_{K}$ for the projection, where $\pi\left(Z^{\prime}\right) \subset X_{K}$ is the reduced image. Then
1 (Going up theorem). For $Y \in \operatorname{Irr}\left(X_{K}\right)$, if $Z \in \operatorname{Irr}\left(\pi^{-1}(Y)\right)$ is contained in X_{U}, we have $Z \in \operatorname{Irr}\left(X_{U}\right)$, where $\pi^{-1}(Y)=Y \times \mathcal{V}_{K} \mathcal{V}_{U}$. 2. The image $\pi_{*}\left(\operatorname{Irr}\left(X_{U}\right)\right)$ contains $\operatorname{Irr}\left(X_{K}\right)$; so, for $Y \in \operatorname{Irr}\left(X_{K}\right)$, we have $Z^{\prime} \in \operatorname{Irr}\left(X_{U}\right)$ such that $\pi_{*}\left(Z^{\prime}\right)=Y$, because any closed irreducible subvariety is contained in an irreducible component.
3. We have a unique section $\operatorname{Irr}_{0}\left(X_{K}\right) \hookrightarrow \operatorname{Irr}_{0}\left(X_{U}\right)$ of $\operatorname{Irr}_{0}\left(X_{U}\right) \rightarrow$ $\pi_{*}\left(\operatorname{Irr}_{0}\left(X_{U}\right)\right) \subset X$ and $\operatorname{Irr}_{0}\left(X_{U}\right) \subset \equiv_{U}$. Moreover

$$
\operatorname{Irr}_{0}\left(X_{U}\right)=\underset{U^{\prime}}{\lim _{U^{\prime}}} \operatorname{Irr}_{0}\left(X_{U^{\prime}}\right) \subset \equiv
$$

for U^{\prime} running over all open subgroups of K containing U.

I will give a proof of some of these assertions later if time allows.
§3. Correspondence action of $\alpha^{\mathbb{N}}$ on $\operatorname{Irr}_{d}\left(X_{K}\right)$. Let $\beta=$ α^{i}. For an irreducible component $Y_{K} \in \operatorname{Irr}_{d}\left(X_{K}\right)$, let $Y_{U}=$ $\cup_{Z \in \operatorname{Irr}_{d}\left(\pi_{U, K}^{-1}\left(Y_{K}\right)\right) \cap \operatorname{Irr} r_{d}\left(X_{U}\right)} Z$. Consider the diagram for $U=K \cap K^{\beta}$ for $K^{\beta}:=\beta^{-1} K \beta$ (so, $U U^{\beta^{-1}} \subset K$):

$$
\begin{array}{lll}
X_{U} \supset Y_{U} & \xrightarrow{v \mapsto \beta(v)} & \beta\left(Y_{U}\right) \subset X_{U^{\beta^{-1}}} \\
\pi_{U, K} \mid & & \mid \pi=\pi_{U^{\beta-1}, K} \\
X_{K} \supset Y_{K} & \longrightarrow & \pi\left(\beta\left(Y_{U}\right)\right) \subset X_{K} .
\end{array}
$$

We define the correspondence action of β by

$$
[\beta]\left(Y_{K}\right):=\left\{\pi \beta(Z) \mid Z \in \operatorname{Irr}_{d}\left(Y_{U}\right)\right\} .
$$

This set $[\beta]\left(Y_{K}\right)$ can be shown to be a subset of $\operatorname{Irr}_{d}\left(X_{K}\right)$. As we only need the case of $d=0$, we prove this fact assuming $d=0$. Then $[\beta]\left(Y_{K}\right)$ is a singleton made of $\beta\left(Y_{K}\right)$.
§4. β-action on $\operatorname{Irr}_{0}\left(X_{K}\right)$. Suppose $d=0$, and write $U^{\prime}:=$ $U^{\beta^{-1}}$. By Property 3, $x_{K}=Y_{K} \in \operatorname{Irr}_{0}\left(X_{K}\right)$ falls in the image \equiv_{K} in \mathcal{V}_{K} of \equiv. Since $\equiv \cong \bar{\Xi}_{U} \cong \equiv_{K}, p_{U, K}^{-1}\left(x_{K}\right) \cap X_{U}=\left\{x_{U}\right\} \subset$ $\overline{\bar{~}}_{U}$ is a singleton. Therefore $Y_{U}=\left\{Z:=x_{U}\right\}$ is a singleton. Take an irreducible component Y_{K}^{\prime} of X_{K} containing $\beta(x)_{K}=$ $\beta\left(x_{K^{\beta}}\right)$ such that $\beta(Z) \subset Z^{\prime}$ for an irreducible component Z^{\prime} of $Y_{U^{\prime}}^{\prime}$ (so, $\beta\left(x_{U}\right) \in Z^{\prime}$). Such a Y_{K}^{\prime} exists by Property 2 . So $\operatorname{dim} Z^{\prime}=\operatorname{dim} Y_{K}^{\prime} \geq 0$. We want to prove $\operatorname{dim} Y_{K}^{\prime}=0$. Since $\operatorname{Irr}_{+}\left(\beta^{-1}(X)_{U}\right)=\operatorname{Irr}_{+}\left(X_{U}\right)$ by $\mid \beta^{-1}\left(\right.$ 三) - 三 $\mid<\infty$, if $\operatorname{dim} Z^{\prime}>0$, we have $\operatorname{dim} \beta^{-1}\left(Z^{\prime}\right)>0$ and $\beta^{-1}\left(Z^{\prime}\right)$ is an irreducible component of X_{U}. Since $\beta^{-1}\left(Z^{\prime}\right) \supset Z=x_{U}$ by construction and the two are irreducible components of X_{U} (by going-up), we find that $\beta^{-1}\left(Z^{\prime}\right)=Z=x_{U}$, a contradiction against $\operatorname{dim} Z^{\prime}>0$. Hence $\operatorname{dim} Z^{\prime}=0$ and $Z^{\prime}=\beta(Z)=\beta\left(x_{U}\right)$, and $Y_{K}^{\prime}=p_{U^{\prime}, K}\left(Z^{\prime}\right)=$ $\beta(x)_{K}$. This implies that $[\beta]$ brings $\operatorname{Irr}_{0}\left(X_{K}\right)$ into $\operatorname{Irr}_{0}\left(X_{K}\right)$, and $x_{K} \mapsto[\beta]\left(x_{K}\right)=\beta(x)_{K}$ is really an action (not a correspondence action) of $\alpha^{\mathbb{N}}$ on $\operatorname{Irr}_{0}\left(X_{K}\right)$, and the action is compatible with the action of $\alpha^{\mathbb{N}}$ on \equiv as $\operatorname{Irr}_{0}\left(X_{K}\right) \subset \equiv_{K} \cong$.

§5. Proof of density theorem.

Density Theorem. Assume $\mathcal{Q} \hookrightarrow C l_{\infty}^{-} / C l^{\text {alg }}$. Let $\underline{n} \subset \mathbb{Z}_{+}$be the sequence defining $\overline{\text { E }}$. If \underline{n} contains an arithmetic progression, then $X \cap \neq \emptyset$ and \equiv is Zariski dense in $V^{\mathcal{Q}}$.

Proof. We can replace \underline{n} by an arithmetic progression of suitable difference so that $\alpha^{\mathbb{N}}$ preserve $\bar{\Xi}_{\underline{n}, r}$. Then $\mathcal{S}=\alpha^{\mathbb{N}} \cdot \mathcal{T}$ acts transitively on \equiv with all orbits are infinite. If $\operatorname{Irr}_{0}\left(X_{K}\right) \neq \emptyset$, by the action of \mathcal{S} on $\operatorname{Irr}_{0}\left(X_{K}\right)$ described in $\S 4, \operatorname{Irr}_{0}\left(X_{K}\right)$ is infinite. This is a contradiction, as X_{K} is a noetherian scheme.

Thus $\operatorname{Irr}_{0}(X)=\lim _{K} \operatorname{Irr}_{0}\left(X_{K}\right)=\emptyset$, therefore all irreducible components of X has positive dimension; so, we have an irreducible component Z of X with $x \in Z \cap \equiv$, By Black Box Theorem, $Z=X=V^{\mathcal{Q}}$ as desired.
§6. Proof of Property 3. Since $\mathcal{V}_{U} \rightarrow \mathcal{V}_{K}$ is étale, it is affine; so, we may assume that $\mathcal{V}_{U}=\operatorname{Spec}\left(A^{\prime}\right)$ and $\mathcal{V}_{K}=\operatorname{Spec}(A)$ with $A_{/ A}^{\prime}$ finite. $\mathrm{Write}_{\operatorname{Irr}}^{?}(A)=\operatorname{Irr}_{?}(\operatorname{Spec}(A))$ and regard it as a set of minimal primes. Then $X_{U}=\operatorname{Spec}\left(B^{\prime}\right)$ and $X_{K}=\operatorname{Spec}(B)$ for $B^{\prime}=A^{\prime} / \cap_{P \in \Xi_{U}} P$ and $B=A / \cap_{P \in \Xi_{U}}(A \cap P)$ regarding \equiv_{U} a set of maximal A^{\prime}-ideals. Pick $\mathfrak{m} \in \operatorname{Irr}_{0}(B)$. Then $B=B^{(\mathfrak{m})} \oplus B / \mathfrak{m}$ for a subring $B^{(\mathfrak{m})} \subset B$ as $\operatorname{Spec}(B / \mathfrak{m})$ is a connected component of $\operatorname{Spec}(B)$. Since $B^{\prime} \supset B$, the above decomposition induces an algebra direct sum $B^{\prime}={B^{\prime}}^{(\mathfrak{m})} \oplus B^{\prime} / \mathfrak{m} B^{\prime}$. Since B^{\prime} is finite over $B, B^{\prime} / \mathfrak{m} B^{\prime}$ has dimension 0 . By reducedness of B^{\prime}, the direct summand $B^{\prime} / \mathfrak{m} B^{\prime}$ of B^{\prime} is a direct sum of fields. Then π induces a surjection $\operatorname{Irr}_{0}\left(B^{\prime}\right) \supset \pi_{0}\left(\operatorname{Spec}\left(B^{\prime} / \mathfrak{m} B^{\prime}\right)\right) \xrightarrow{\pi^{*}}\{\mathfrak{m}\}$ for each \mathfrak{m}. Therefore $\pi_{*}\left(\operatorname{Irr}_{0}\left(B^{\prime}\right)\right) \supset \operatorname{Irr}_{0}(B)$. If $\mathfrak{m} \notin \bar{\Xi}_{K}, \bar{\Xi}_{K} \subset$ $\operatorname{Spec}\left(B^{(\mathfrak{m})}\right)$ as $\operatorname{Spec}(B)=\operatorname{Spec}(B / \mathfrak{m}) \sqcup \operatorname{Spec}\left(B^{(\mathfrak{m})}\right)$. This implies $B=A / \cap_{P \in \Xi_{K}} P$ is equal to $B^{(\mathfrak{m})}$, a contradiction. Thus $\mathfrak{m} \in \equiv_{K}$, and $\operatorname{Irr}_{0}(B) \subset \equiv_{K}$. Since $\equiv \cong \equiv_{K}, \pi_{*}: \operatorname{Irr}_{0}\left(B^{\prime}\right) \rightarrow \pi_{*}\left(\operatorname{Irr}_{0}\left(B^{\prime}\right)\right)$ has a unique section $\pi^{*}: \operatorname{Irr}_{0}(B) \rightarrow \operatorname{Irr}_{0}\left(B^{\prime}\right)$.

§7. Proof of Property 1.

As $\mathcal{V} \rightarrow \mathcal{V}_{K}$ is étale, $\pi^{-1}(Y)$ is étale over Y; so, equi-dimensional. Suppose that $Z \subset X^{\prime}$ for $Z \in \operatorname{Irr}\left(\pi^{-1}(Y)\right)$. Then we find $Z^{\prime} \in$ $\operatorname{Irr}\left(X^{\prime}\right)$ such that $Z^{\prime} \supset Z$; so, $\pi\left(Z^{\prime}\right) \subset X$. We are going to show $Z^{\prime}=Z$. We have $X \supset \pi\left(Z^{\prime}\right) \supset Y$. Since $\pi\left(Z^{\prime}\right)$ is irreducible, $\pi\left(Z^{\prime}\right)$ containing $Y \in \operatorname{Irr}(X)$ implies $\pi\left(Z^{\prime}\right)=Y$. Thus $Z^{\prime} \rightarrow Y$ is a integral dominant; so, $\operatorname{dim} Z^{\prime}=\operatorname{dim} Z=\operatorname{dim} Y$. This shows $Z=Z^{\prime} \in \operatorname{Irr}\left(X^{\prime}\right)$, as desired. Thus Property 1 follows.
§8. Proof of Property 2.
Pick $\mathfrak{p} \in \operatorname{Irr}(B)$ giving $Y \in \operatorname{Irr}(\operatorname{Spec}(B))$. Since B^{\prime} / B is integral, we find a prime $P^{\prime} \in \operatorname{Spec}\left(B^{\prime}\right)$ such that $P^{\prime} \cap B=\mathfrak{p}$ by goingup theorem. For each $P^{\prime} \in \operatorname{Spec}\left(B^{\prime}\right)$ with $P^{\prime} \cap B=\mathfrak{p}$ (i.e., $\left.P^{\prime} \in \pi^{-1}(Y)=\operatorname{Spec}\left(B^{\prime} / \mathfrak{p} B^{\prime}\right)\right)$, take a minimal prime $\mathfrak{p}^{\prime} \subset P^{\prime}$ (i.e., $\left.\mathfrak{p}^{\prime} \in \operatorname{Irr}\left(B^{\prime}\right)\right)$. Then $\mathfrak{p}^{\prime} \cap B$ is a prime ideal of B and $\mathfrak{p} \supset \mathfrak{p}^{\prime} \cap B$; so, by minimality of \mathfrak{p}, we have $\mathfrak{p}=\mathfrak{p}^{\prime} \cap B$. Thus \mathfrak{p} is in the image of $\operatorname{Irr}\left(B^{\prime}\right)$. This proves Property 2.

