* Irreducible components of Zariski closure

Haruzo Hida UCLA, Los Angeles, CA 90095-1555, U.S.A. ICTS hybrid conference Bengaluru, August, 2022.

*We prove Density theorem out of Black Box theorem via a general theory of Zariski closure in a pro-étale variety of an infinite set of close points, and we prepare some notation and geometric lemmas to prove the density theorem. As before, let $\alpha_{\mathfrak{l}} = \operatorname{diag}[1, \varpi_{\mathfrak{l}}]$. Choose a large power \mathfrak{l}^m which is generated by $\varpi = \varphi \varphi^c$ ($\varphi \in R$) and put $\alpha = \operatorname{diag}[1, \varpi]$. We may assume $\alpha/\alpha_{\mathfrak{l}}^m \in K$ and hence pretend $\alpha = \alpha_{\mathfrak{l}}^m$ to have the same action on $Sh_K = Sh/K$. α preserves each irreducible component of $Sh_{K/\mathbb{F}}$ as long as $\det(K) = \widehat{O}^{\times}$. Set $N := \{\alpha(u) | u \in O_{\mathfrak{l}}\}$, and assume $K \supset N$. For a variety $Y_{/\mathbb{F}}$, write $\operatorname{Irr}_d(Y)$ for the set of irreducible components of dimension d of Y. Set $\operatorname{Irr}(Y) := \bigsqcup_d \operatorname{Irr}_d(Y)$ and $\operatorname{Irr}_+(Y) := \bigsqcup_{d>0} \operatorname{Irr}_d(Y)$.

$\S 0$. The idea.

For a proper R_n -ideal \mathcal{A}_n prime to $p\mathfrak{l}$, define a proper $R_{n'}$ -ideal by $\widehat{\mathcal{A}}_{n'} := \widehat{\mathcal{A}}_n^{(\mathfrak{l})} \times R_{n',\mathfrak{l}}$. We have three identities:

 $\alpha_{\mathfrak{l}}(x(\mathcal{A}_n)) = x(\mathcal{A}_{n+1}) \text{ for } \alpha_{\mathfrak{l}} = \operatorname{diag}[1, \varpi_{\mathfrak{l}}],$

 $O_{\mathfrak{l}}/\mathfrak{l}^{i} \cong \Gamma_{n}[\mathfrak{l}^{i}]$ by $u \mapsto \alpha(u/\varpi_{\mathfrak{l}}^{i})x(R_{n}) =: x(\mathcal{A}_{u,n})$ if $n \ge i$,

For $\xi \in \mathcal{T}_j := (M^{\times} \cap R_{j,\mathfrak{l}}^{\times}) \subset \operatorname{GL}_2(F_{\mathbb{A}}^{(p \mid \infty)}), \ \xi(x(\mathcal{A})) = x((\xi)\mathcal{A}).$ We show, if \underline{n} is an arithmetic progression, the semi-group $\alpha^{\mathbb{N}}$ generated by α^i $i = 1, 2, \ldots$ for the *m*-th power α of $\alpha_{\mathfrak{l}}$ acts on $\operatorname{Irr}_0(X_K)$ for $X_K = \overline{\Xi}_{\underline{n},j,K} \subset V_K^{\mathcal{Q}}$. Since each orbit of $\alpha^{\mathbb{N}}$ is infinite, for the image X_K in Sh/K,

 $\operatorname{Irr}_{0}(X_{K}) \neq \emptyset \Rightarrow |\operatorname{Irr}_{0}(X_{K})| = \infty,$

a contradiction against noetherian property of $X_K \subset V_K$, and hence $\operatorname{Irr}_0(X) = \lim_K \operatorname{Irr}_0(X_K) = \emptyset$. Since $\alpha \in \operatorname{Aut}(V)$ (automorphisms) and by the above identity, $\alpha^{-1}(\Xi) - \Xi$ is a finite set, which we need later. We may replace $\alpha^{\mathbb{N}}$ by $\mathcal{S} = \alpha^{\mathbb{N}} \cdot \mathcal{T}_j$ to make the action on Ξ transitive. §1. Basics. Write $\mathcal{V} := V^{\mathcal{Q}}$, and adding the subscript K implies the image in $(Sh/K)^{\mathcal{Q}}$. Take K sufficiently small so that $\mathcal{V}_{/\mathcal{V}_K}$ is étale. Since for proper R_n -ideals \mathcal{A} and \mathcal{A}'

 $X(\mathcal{A}) \cong X(\mathcal{A}') \Leftrightarrow [\mathcal{A}]_n = [\mathcal{A}']_n \in Cl_n,$

a. $\pi_* : C \cap \mathcal{V} \cong C_K \cap \mathcal{V}_K$ by projection $\pi : \mathcal{V} \to \mathcal{V}_K$.

b. For the chosen infinite subset $\Xi \subset C \cap \mathcal{V}$, let X (resp. X_K) be the Zariski closure of Ξ in \mathcal{V} (resp. Ξ_K in \mathcal{V}_K). Then X_K is the reduced image of X in \mathcal{V}_K .

c. For the image $[\delta_n] \in Cl_n^-$ of $\delta \in \mathcal{Q}$ with δ_n prime to $p\mathfrak{l}$, $Cl_n \ni [\mathcal{A}]_n \mapsto [\mathcal{A}\delta_n]_n \in Cl_n^-$ commutes with the action of S and $\alpha(u)$ for $u \in F_{\mathfrak{l}}$, since the action of S and $\alpha(u)$ is concentrated at \mathfrak{l} and the multiplication by $[\delta_n]_n$ is outside \mathfrak{l} -action. So the diagonal action of S on \mathcal{V} preserves $C \cap \mathcal{V}$.

§2. Irr(X). Let $\pi_*(\operatorname{Irr}(X_U)) := \{\pi(Z') | Z' \in \operatorname{Irr}(X_U)\}$ for a closed subgroup U of K and the projection $\pi : \mathcal{V}_U \twoheadrightarrow \mathcal{V}_K$ for the projection, where $\pi(Z') \subset X_K$ is the reduced image. Then 1 (Going up theorem). For $Y \in \operatorname{Irr}(X_K)$, if $Z \in \operatorname{Irr}(\pi^{-1}(Y))$ is contained in X_U , we have $Z \in \operatorname{Irr}(X_U)$, where $\pi^{-1}(Y) = Y \times_{\mathcal{V}_K} \mathcal{V}_U$. 2. The image $\pi_*(\operatorname{Irr}(X_U))$ contains $\operatorname{Irr}(X_K)$; so, for $Y \in \operatorname{Irr}(X_K)$, we have $Z' \in \operatorname{Irr}(X_U)$ such that $\pi_*(Z') = Y$, because any closed irreducible subvariety is contained in an irreducible component. 3. We have a unique section $\operatorname{Irr}_0(X_K) \hookrightarrow \operatorname{Irr}_0(X_U)$ of $\operatorname{Irr}_0(X_U) \twoheadrightarrow$ $\pi_*(\operatorname{Irr}_0(X_U)) \subset X$ and $\operatorname{Irr}_0(X_U) \subset \Xi_U$. Moreover

$$\operatorname{Irr}_{0}(X_{U}) = \varinjlim_{U'} \operatorname{Irr}_{0}(X_{U'}) \subset \Xi$$

for U' running over all open subgroups of K containing U.

I will give a proof of some of these assertions later if time allows.

§3. Correspondence action of $\alpha^{\mathbb{N}}$ on $\operatorname{Irr}_d(X_K)$. Let $\beta = \alpha^i$. For an irreducible component $Y_K \in \operatorname{Irr}_d(X_K)$, let $Y_U = \bigcup_{Z \in \operatorname{Irr}_d(\pi_{U,K}^{-1}(Y_K)) \cap \operatorname{Irr}_d(X_U)} Z$. Consider the diagram for $U = K \cap K^{\beta}$ for $K^{\beta} := \beta^{-1} K \beta$ (so, $UU^{\beta^{-1}} \subset K$):

We define the correspondence action of β by

$$[\beta](Y_K) := \{ \pi \beta(Z) | Z \in \operatorname{Irr}_d(Y_U) \}.$$

This set $[\beta](Y_K)$ can be shown to be a subset of $\operatorname{Irr}_d(X_K)$. As we only need the case of d = 0, we prove this fact assuming d = 0. Then $[\beta](Y_K)$ is a singleton made of $\beta(Y_K)$. §4. β -action on $\operatorname{Irr}_0(X_K)$. Suppose d = 0, and write $U' := U^{\beta^{-1}}$. By Property 3, $x_K = Y_K \in \operatorname{Irr}_0(X_K)$ falls in the image Ξ_K in \mathcal{V}_K of Ξ . Since $\Xi \cong \Xi_U \cong \Xi_K$, $p_{UK}^{-1}(x_K) \cap X_U = \{x_U\} \subset \mathbb{C}$ Ξ_U is a singleton. Therefore $Y_U = \{Z := x_U\}$ is a singleton. Take an irreducible component Y'_K of X_K containing $\beta(x)_K =$ $\beta(x_{K^{\beta}})$ such that $\beta(Z) \subset Z'$ for an irreducible component Z'of $Y'_{U'}$ (so, $\beta(x_U) \in Z'$). Such a Y'_K exists by Property 2. So $\dim Z' = \dim Y'_K \ge 0$. We want to prove $\dim Y'_K = 0$. Since $Irr_{+}(\beta^{-1}(X)_{U}) = Irr_{+}(X_{U})$ by $|\beta^{-1}(\Xi) - \Xi| < \infty$, if dim Z' > 0, we have dim $\beta^{-1}(Z') > 0$ and $\beta^{-1}(Z')$ is an irreducible component of X_U . Since $\beta^{-1}(Z') \supset Z = x_U$ by construction and the two are irreducible components of X_U (by going-up), we find that $\beta^{-1}(Z') = Z = x_U$, a contradiction against dim Z' > 0. Hence dim Z' = 0 and $Z' = \beta(Z) = \beta(x_U)$, and $Y'_K = p_{U',K}(Z') =$ $\beta(x)_K$. This implies that $[\beta]$ brings $\operatorname{Irr}_0(X_K)$ into $\operatorname{Irr}_0(X_K)$, and $x_K \mapsto [\beta](x_K) = \beta(x)_K$ is really an action (not a correspondence action) of $\alpha^{\mathbb{N}}$ on $\operatorname{Irr}_{0}(X_{K})$, and the action is compatible with the action of $\alpha^{\mathbb{N}}$ on Ξ as $\operatorname{Irr}_0(X_K) \subset \Xi_K \cong \Xi$.

$\S5$. Proof of density theorem.

Density Theorem. Assume $\mathcal{Q} \hookrightarrow Cl_{\infty}^{-}/Cl^{alg}$. Let $\underline{n} \subset \mathbb{Z}_{+}$ be the sequence defining Ξ . If \underline{n} contains an arithmetic progression, then $X \cap \Xi \neq \emptyset$ and Ξ is Zariski dense in $V^{\mathcal{Q}}$.

Proof. We can replace \underline{n} by an arithmetic progression of suitable difference so that $\alpha^{\mathbb{N}}$ preserve $\Xi_{\underline{n},r}$. Then $\mathcal{S} = \alpha^{\mathbb{N}} \cdot \mathcal{T}$ acts transitively on Ξ with all orbits are infinite. If $\operatorname{Irr}_0(X_K) \neq \emptyset$, by the action of \mathcal{S} on $\operatorname{Irr}_0(X_K)$ described in §4, $\operatorname{Irr}_0(X_K)$ is infinite. This is a contradiction, as X_K is a noetherian scheme.

Thus $\operatorname{Irr}_0(X) = \varinjlim_K \operatorname{Irr}_0(X_K) = \emptyset$, therefore all irreducible components of X has positive dimension; so, we have an irreducible component Z of X with $x \in Z \cap \Xi$, By Black Box Theorem, $Z = X = V^Q$ as desired.

§6. Proof of Property 3. Since $\mathcal{V}_U \to \mathcal{V}_K$ is étale, it is affine; so, we may assume that $\mathcal{V}_U = \operatorname{Spec}(A')$ and $\mathcal{V}_K = \operatorname{Spec}(A)$ with A'_{A} finite. Write $\operatorname{Irr}_{?}(A) = \operatorname{Irr}_{?}(\operatorname{Spec}(A))$ and regard it as a set of minimal primes. Then $X_U = \operatorname{Spec}(B')$ and $X_K = \operatorname{Spec}(B)$ for $B' = A' / \bigcap_{P \in \Xi_U} P$ and $B = A / \bigcap_{P \in \Xi_U} (A \cap P)$ regarding Ξ_U a set of maximal A'-ideals. Pick $\mathfrak{m} \in \operatorname{Irr}_0(B)$. Then $B = B^{(\mathfrak{m})} \oplus B/\mathfrak{m}$ for a subring $B^{(\mathfrak{m})} \subset B$ as $\operatorname{Spec}(B/\mathfrak{m})$ is a connected component of Spec(B). Since $B' \supset B$, the above decomposition induces an algebra direct sum $B' = {B'}^{(\mathfrak{m})} \oplus {B'}/\mathfrak{m}B'$. Since B' is finite over B, $B'/\mathfrak{m}B'$ has dimension 0. By reducedness of B', the direct summand $B'/\mathfrak{m}B'$ of B' is a direct sum of fields. Then π induces a surjection $\operatorname{Irr}_{0}(B') \supset \pi_{0}(\operatorname{Spec}(B'/\mathfrak{m}B')) \xrightarrow{\pi^{*}} {\mathfrak{m}}$ for each \mathfrak{m} . Therefore $\pi_*(\operatorname{Irr}_0(B')) \supset \operatorname{Irr}_0(B)$. If $\mathfrak{m} \notin \Xi_K, \Xi_K \subset$ $\operatorname{Spec}(B^{(\mathfrak{m})})$ as $\operatorname{Spec}(B) = \operatorname{Spec}(B/\mathfrak{m}) \sqcup \operatorname{Spec}(B^{(\mathfrak{m})})$. This implies $B = A / \bigcap_{P \in \Xi_K} P$ is equal to $B^{(\mathfrak{m})}$, a contradiction. Thus $\mathfrak{m} \in \Xi_K$, and $\operatorname{Irr}_{0}(B) \subset \Xi_{K}$. Since $\Xi \cong \Xi_{K}, \pi_{*} : \operatorname{Irr}_{0}(B') \to \pi_{*}(\operatorname{Irr}_{0}(B'))$ has a unique section π^* : $Irr_0(B) \to Irr_0(B')$.

$\S7$. Proof of Property 1.

As $\mathcal{V} \to \mathcal{V}_K$ is étale, $\pi^{-1}(Y)$ is étale over Y; so, equi-dimensional. Suppose that $Z \subset X'$ for $Z \in \operatorname{Irr}(\pi^{-1}(Y))$. Then we find $Z' \in \operatorname{Irr}(X')$ such that $Z' \supset Z$; so, $\pi(Z') \subset X$. We are going to show Z' = Z. We have $X \supset \pi(Z') \supset Y$. Since $\pi(Z')$ is irreducible, $\pi(Z')$ containing $Y \in \operatorname{Irr}(X)$ implies $\pi(Z') = Y$. Thus $Z' \to Y$ is a integral dominant; so, dim $Z' = \dim Z = \dim Y$. This shows $Z = Z' \in \operatorname{Irr}(X')$, as desired. Thus Property 1 follows.

\S 8. Proof of Property 2.

Pick $\mathfrak{p} \in \operatorname{Irr}(B)$ giving $Y \in \operatorname{Irr}(\operatorname{Spec}(B))$. Since B'/B is integral, we find a prime $P' \in \operatorname{Spec}(B')$ such that $P' \cap B = \mathfrak{p}$ by goingup theorem. For each $P' \in \operatorname{Spec}(B')$ with $P' \cap B = \mathfrak{p}$ (i.e., $P' \in \pi^{-1}(Y) = \operatorname{Spec}(B'/\mathfrak{p}B')$), take a minimal prime $\mathfrak{p}' \subset P'$ (i.e., $\mathfrak{p}' \in \operatorname{Irr}(B')$). Then $\mathfrak{p}' \cap B$ is a prime ideal of B and $\mathfrak{p} \supset \mathfrak{p}' \cap B$; so, by minimality of \mathfrak{p} , we have $\mathfrak{p} = \mathfrak{p}' \cap B$. Thus \mathfrak{p} is in the image of $\operatorname{Irr}(B')$. This proves Property 2.