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*We prove Density theorem out of Black Box theorem via a general theory of
Zariski closure in a pro-€étale variety of an infinite set of close points, and we
prepare some notation and geometric lemmas to prove the density theorem.
As before, let oy = diag[1, w]. Choose a large power [™ which is generated
by w = p¢° (¢ € R) and put a = diag[l,w]. We may assume a/of* € K
and hence pretend o« = «f" to have the same action on Shxg = Sh/K. «
preserves each irreducible component of Shg r as long as det(K) = O*. Set
N :={a(u)|u € O}, and assume K D N. For a variety Y, write Irry(Y)
for the set of irreducible components of dimension d of Y. Set Irr(Y) =

Ll Irra(Y) and Irr (V) := | oo Irra(Y).



§0. The idea.
For a proper Rp-ideal A, prime to pl, define a proper R, ~ideal

by A, = AP x R, . We have three identities:
af(z(An)) = 2(A,41) for oy =diag[l, =],
O[/[i >~ 1] by u— a(u/w%)az(Rn) =: z(Ayn) if n>1i,

For € € T := (M* N R}y C GLa(F"™), &(a(A) = 2((©)A).
We show, if n is an arithmetic progression, the semi-group alN
generated by o' ¢+ = 1,2,... for the m-th power a of ¢ acts

on Irrg(Xg) for Xig = =,k C Vf? Since each orbit of a! is
infinite, for the image Xy in Sh/K,

Irrg(Xg) # 0 = |Irrg(X )| = oo,

a contradiction against noetherian property of X C Vg, and
hence Irrg(X) = lim . Irro(Xk) = (. Since a € Aut(V) (automor-
phisms) and by the above identity, o 1( ) — = is a finite set,
which we need later. We may replace alN by § = alN . 7}- to make
the action on = transitive.



§1. Basics. Write V := V<, and adding the subscript K implies
the image in (Sh/K)Q. Take K sufficiently small so that V/VK IS
étale. Since for proper R,-ideals A and A’

X(A) = X(A) & [Aln = [An € Cln,

a. m . CNY = CrNVg by projection m:V — V.

b. For the chosen infinite subset Z C C NV, let X (resp. Xg)
be the Zariski closure of = in V (resp. = in Vg). Then Xy is
the reduced image of X in V.

c. For the image [6n] € Cl; of § € Q with 6, prime to pl,
Clp 3 [Aln — [Adn]n € Cl; commutes with the action of S and
a(u) for u € F}, since the action of S and a(u) is concentrated
at [ and the multiplication by [dn]n iS outside [-action. So the
diagonal action of S on V preserves C' N V.



§2. Irr(X). Let m(Irr(Xy)) := {n(Z")|Z' € Irr(Xy)} for a closed
subgroup U of K and the projection 7 : Vi — Vg for the projec-
tion, where w(Z’') C Xy is the reduced image. Then

1 (Going up theorem). For Y € Irr(X ), if Z € Irr(n—1(Y)) is
contained in Xy, we have Z € Irr(Xy), where 7= 1(Y) = Y xy, V.
2. The image m«(Irr(Xy)) contains Irr(X g ); so, for Y € Irr( Xy ),
we have Z’ € Irr(Xy;) such that m.(Z") =Y, because any closed
irreducible subvariety is contained in an irreducible component.
3. We have a unique section Irrg(X ) — Irrg(Xyr) of Irrg( Xy ) —
m«(Irrg(Xy)) € X and Irrg( X)) C =;7. Moreover

Irrg(Xy) = limIrrg(Xyr) C =
U/

for U’ running over all open subgroups of K containing U.

I will give a proof of some of these assertions later if time allows.



§3. Correspondence action of o on Irry(Xy). Let g =
o'. For an irreducible component Yy € Irrg(Xg), let Yy =

. _ - 5
UZEIFFCZ(W(_J}K(YK))ﬂIrrd(XU) Z. Consider the diagram for U = KNK

for K8 := 3-1K8 (so, UUP ' C K):

XU D) YU v=p ) ﬁ(YU) C XUﬁ_l

| |
WU,KJ yT_WUﬁ_l,K

XK D) YK — W(ﬁ(YU)) C XK-
We define the correspondence action of 3 by

Bl(Yk) :={nB(2)|Z € Irry(Yy)}

This set [B](Yx) can be shown to be a subset of Irr;( X ). As we
only need the case of d = 0, we prove this fact assuming d = 0.
Then [B](Yy) is a singleton made of G(Yx).




84. (-action on Irrg(Xg). Suppose d = 0, and write U’ :=
Uﬁ_l. By Property 3, zp = Yi € Irrg(Xg) falls in the image
=k in Vg of =. Since = &= =y = =y, py i (ex) N Xy = {ay} C
=y is a singleton. Therefore Yy = {Z := xy} is a singleton.
Take an irreducible component Y7 of X containing g(z)g =
B(x3) such that 3(Z) C Z' for an irreducible component Z’
of Y(’], (so, B(xy) € Z’). Such a Y}, exists by Property 2. So
dimZ’" = dimY} > 0. We want to prove dimY;, = 0. Since
Irry (B~ X)y) =TIrr . (Xy) by |B7H(E)-=| < o0, ifdim Z' > 0, we
have dim3~1(Z") > 0 and 3=1(Z") is an irreducible component
of Xy. Since 8~1(Z") D Z = =z by construction and the two
are irreducible components of Xy (by going-up), we find that
8~YZ" = Z = xp7, a contradiction against dimZ’ > 0. Hence
dimZz’' = 0 and Z' = 8(Z) = B(zy), and Y = py g(Z') =
B(x) . This implies that [8] brings Irrg(Xg) into Irrg(Xg), and
r — Bl (x) = B(x) is really an action (not a correspondence
action) of o on Irrg(X k), and the action is compatible with the

NS —

action of oY on = as Irrg(Xx) C = & =.



85. Proof of density theorem.

Density Theorem. Assume Q «— Cl3/Cl%9. Letn C Z, be
the sequence defining =. If n contains an arithmetic progression,
then X N= # 0 and = is Zariski dense in V<.

Proof. We can replace n by an arithmetic progression of suit-
able difference so that o preserve =,,. Then S = o' . T acts
transitively on = with all orbits are infinite. If Irrg(Xg) # 0, by
the action of S on Irrg(X ) described in §4, Irrg(X ) is infinite.
This is a contradiction, as Xy is a noetherian scheme.

Thus Irrg(X) = lim . Irrg(Xg) = 0, therefore all irreducible com-
ponents of X has positive dimension; so, we have an irreducible
component Z of X with z € Z N =, By Black Box Theorem,
Z =X = V< as desired. ]



§6. Proof of Property 3. Since Vi — Vi is €tale, it is affine;
so, we may assume that V;; = Spec(A’) and Vg = Spec(A) with
A’/A finite. Write Irr,(A) = Irr,(Spec(A)) and regard it as a set
of minimal primes. Then X;; = Spec(B’) and X, = Spec(B) for
B'= A'/Npe=, P and B = A/Npe=,(AN P) regarding =y a set
of maximal A’-ideals. Pick m € Irrg(B). Then B = B(™ g B/m
for a subring B(M) - B as Spec(B/m) is a connected component
of Spec(B). Since B’ D B, the above decomposition induces
an algebra direct sum B’ = B'(™ g B'/mB’. Since B’ is finite
over B, B’/mB’ has dimension 0. By reducedness of B/, the
direct summand B’/mB’ of B’ is a direct sum of fields. Then

7w induces a surjection Irrg(B’) D mg(Spec(B’'/mB’)) N {m} for
each m. Therefore m«(Irrg(B’)) D Irrg(B). If m € =, = C
Spec(B(M) as Spec(B) = Spec(B/m)l_ISpec(B(m)). This implies
B=A/ Npe= P is equal to B(m), a contradiction. Thusm € =,
and Irrg(B) C =. Since = £ =y, 7« : Irrg(B') — m(Irrg(B))
has a unique section ©* : Irrg(B) — Irrg(B’).



7. Proof of Property 1.

As V — V- is étale, 7~ 1(Y) is étale over Y; so, equi-dimensional.
Suppose that Z ¢ X’ for Z € Irr(z—1(Y)). Then we find Z’' €
Irr(X’) such that 2’ © Z; so, n(Z') Cc X. We are going to show
Z' = Z. We have X D n(Z") D Y. Since w(Z’) is irreducible,
m(Z") containing Y € Irr(X) implies n(Z') =Y. Thus Z/ - Y is
a integral dominant; so, dimZ’ = dimZ = dimY. This shows
Z = 7" elrr(X"), as desired. Thus Property 1 follows.



8. Proof of Property 2.

Pick p € Irr(B) giving Y € Irr(Spec(B)). Since B’/B is integral,
we find a prime P’ € Spec(B’) such that PN B = p by going-
up theorem. For each P’ € Spec(B’) with PPn B = p (i.e.,
P' e 7 1(Y) = Spec(B’/pB")), take a minimal prime p’ C P’ (i.e.,
p’ € Irr(B")). Then p’N B is a prime ideal of B and p D p' N B; so,
by minimality of p, we have p = p’N B. Thus p is in the image
of Irr(B’). This proves Property 2.



