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1. Introduction

The purpose of this paper is three folds:

(1) To give a concise proof of rationality and integrality result (due to Shimura
[S] and Katz [K]) of the special values of (archimedean and p-adic) arithmetic
modular forms at CM points (Sections 3 and 4);

(2) To construct a two variable p-adic measure interpolating critical Hecke L-
values of imaginary quadratic fields (Section 5);

(3) To give a brief sketch of a proof of the anticyclotomic main conjecture in the
Iwasawa theory of CM fields (Section 7).

We follow [S] to prove the rationality of the special values of classical arithmetic
modular forms and their derivatives (Theorem 3.2). The new proof of p-integrality
statements due to Katz (Theorem 4.4) is a modification of the argument of Shimura
and can be easily generalized to Hilbert modular forms and beyond. Out of this
p-integrality theorems, we can easily construct the measure. The Hilbert modular
version of the measure (Theorem 6.1) is used to formulate the main conjecture and
the anti-cyclotomic version (Conjecture 6.2). We admit a proposition reducing the
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proof of Conjecture 6.2 to a p-integrality statement of Petersson inner products of
weight 2 p-integral Hilbert modular forms and a cetain well-specified CM form (Propo-
sition 6.3), and we give a very brief sketch of how to prove the p-integrality of the
Petersson inner product. There are two keys to the proof. One is the expression of
the inner product of the CM form and a product of two weight 1 forms as a special
values at a CM point of the residue of a series (called Shimura series generalizing
Eisenstein series), and another is to write down integrally a given p-integral form as
a sum of the products of two weight 1 forms (cf. [H05a]). Verifying the p-integrality
of the q-expansion of the residue, we conclude the p-integrality of the special value
(and hence the inner products) by the q-expansion principle. All the details of the
proof of the conjecture are in [H05b], [H05c] and [HMI] Chapter 5.

2. Elliptic modular forms

What are modular forms? In the easiest cases of elliptic modular forms, if we write
w = t(w1, w2) linearly independent complex numbers (with Im(z) > 0 (z = w1/w2)), a
weight k modular form is a holomorphic function f of w satisfying f (( a b

c d )w) = f(w)
and f(aw) = a−kf(w) for a ∈ C× as everybody knows. We want to prove algebraicity
and integrality of the value f(w) when w is a basis of an imaginary quadratic field
(up to a canonical period), and further generalize this to Hilbert modular case. This
is due to Damerell, Weil, Shimura and Katz.

To do this, we need to give algebraic interpretation of modular form (see [AME],
[GME] and [PAF] Chapter 2). Pick two linearly independent numbers w = (w1, w2) ∈
C2. Writing u for the variable on C, the quotient C/Lw for Lw = Zw1 +Zw2 gives rise
to a pair (E,ω) of elliptic curves and the differential ω = du of first kind (nowhere
vanishing differential). Indeed, E(C) ∼= C/Lw, and we can embed E into P2 via
u 7→ (x(u), y(u), 1) ∈ P2(C) by Weierstrass P-functions

x(u) = P(u;Lw) =
1

u2
+

∑

0 6=`∈Lw

{
1

(u− `)2
− 1

`2

}
=

1

u2
+
g2

20
u2 +

g3

28
u4 + · · ·

and y = dx
du

, where g2(w) = 60
∑

0 6=`∈Lw
`−4 and g3(w) = 140

∑
0 6=`∈Lw

`−6. Then the

relation is y2 = 4x3 − g2x − g3 and ω = du = dx
y

. The pair w can be recovered by ω

so that wi =
∫

γi
ω for a basis (γ1, γ2) of H1(E(C),Z).

Conversely, start with a pair (E,ω)/A defined over a ring A made of an elliptic
curve (a smooth curve of genus 1 with a specific point 0 = 0E ∈ E(A)) and a nowhere
vanishing differential ω. Then take a parameter u around 0 so that ω = du. Write
[0] for the relative Cartier divisor given by 0. Since the line bundle L(m[0]) (made
of meromorphic function having pole at 0 of order at most m) is free of rank m
if m > 0 (by the existence of ω), we can find x ∈ H0(E,L(2[0])) having a pole
of order 2 whose Laurent expansion has its leading term u−2. If 6−1 ∈ A, there
is a unique way of normalizing x so that y2 = 4x3 − g2x − g3 for a unique pair
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(g2 = g2(E,ω), g3 = g3(E,ω)) ∈ A2. Since E/A is smooth, this pair (g2, g3) has to
satisfy ∆ = g3

2 − 27g2
3 ∈ A×. This shows

{(E,ω)/A}/ ∼=
1 to 1 and onto↔ {(g2, g3) ∈ A2|∆ ∈ A×}

= Homalg(Z[
1

6
, g2, g3,

1

∆
], A) = Spec(Z[

1

6
, g2, g3,

1

∆
])(A).

Since all these functions g2, g3 and ∆ has Fourier expansions in Z[1
6
][[q]] for q =

exp(2πiz), we can think of the Tate curve

Tate(q) = Proj(Z[
1

6
][[q]][x, y, z]/(y2z − (4x3 − g2(q)xz

2 − g3(q)z
3)).

As shown by Tate, Tate(q)(Qp[[q]]) ⊃ (Qp[[q]])
×/qZ, we have a natural inclusion

ican : µN ↪→ Tate(q)[N ] and φcan : Z/NZ ∼= qN−1Z/qZ ↪→ Tate(q)[N ]. The Tate
curve also has a canonical differential ωcan = dx

y
. The Tate curve is an elliptic curve

over Z[1
6
][[q]][q−1] because q|∆. Let B be a Z[1

6
]-algebra. This motivate the following

algebraic definition (cf. [GME] 2.6.5) of B-integral elliptic modular forms of level
Γ1(N) as functions of (E,ω) satisfying

(G0) f assigns a value f((E, i, ω)/A) ∈ A for any triple (E, i : µN ↪→ E[N ], ω)/A

defined over an B-algebra A. Here A is also a variable.
(G1) f((E, i, ω)/A) ∈ A depends only on the isomorphism class of (E, i, ω)/A.
(G2) If ϕ : A → A′ is an B-algebra homomorphism, we have f((E, i, ω)A ⊗ A′) =

ϕ(f((E, i, ω)/A).
(G3) f((E, i, a · ω)/A) = a−kf(E, i, ω) for a ∈ A×.
(G4) f(q) = f((Tate(q), ican, ωcan)/B[[q]][q−1]) ∈ B[[q]].

The space of modular forms will be written as Gk(N ;B). By definition, Gk(1;B) =⊕
4a+6b=k Bg

a
2g

b
3, and Gk(N,Z[1

6
])⊗ C = Gk(N,C). Also, if f ∈ Gk(N,C), f(q) with

q = exp(2πz) gives the Fourier expansion of f at the cusp ∞.
Fix a prime p ≥ 5. We call a Zp-algebra A a p-adic algebra if A = lim←−n

A/pnA.
Thus Zp is a p-adic algebra but Qp is not. Take a p-adic algebra B. The space
of B-integral p-adic modular form V (B) is a collection of rules f assigning a value
f((E, i : µp∞)/A) ∈ A for p-adic B-algebras A satisfying the following condition:

(V0) f assigns a value f((E, i)/A) ∈ A for any couple (E, i : µp∞ ↪→ E[p∞])/A

defined over a p-adic B-algebra A. Here A is also a variable.
(V1) f((E, i)/A) ∈ A depends only on the isomorphism class of (E, i)/A.
(V2) If ϕ : A → A′ is an B-algebra homomorphism continuous under the p-adic

topology, we have f((E, i)A ⊗A′) = ϕ(f((E, i)/A).
(V3) f(q) = f((Tate(q), ican)/B[[q]][q−1]) ∈ B[[q]].

By definition, V (B) is a p-adic B-algebra.
Since the knowledge of µp∞/Zp = lim−→n

µpn/Zp is equivalent to the knowledge of

Ĝm/Zp = Spf(lim←−n
Zp[t, t

−1]/(tn − 1)), i : µp∞ ↪→ E induces an identification i :
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Ĝm
∼= Ê = lim←−n

E[pn]◦. Since Ĝm has a canonical differential dt
t
, i induces a nowhere

vanishing differential ωp = i∗
dt
t
. Thus f ∈ Gk(p

n;B) can be regarded as a p-adic

modular form by f((E, i : µp∞ → E[p∞])/A) = f(E, i|µpn , i∗
dt
t
) ∈ A. Thus we have

a canonical B-linear map Gk(N ;B) → V (B). The following fact is called the q-
expansion principle (following from the two facts that the irreducibility of the Igusa
curve over Fp and the existence of the Tate curve; see [PAF] 3.2.8 and [GME] 2.5):

(Q0) f(q) = 0 ⇐⇒ f = 0 for any f in V (B) or in Gk(N ;B). In particular,
Gk(p

n;B)→ V (B) is an injection, and functions in the image satisfies f(E, a ·
i) = a−kf(E, i) for a ∈ Z×

p .
(Q1) Let fn ∈ V (B) be a sequence. Then fn converges p-adically in V (B) ⇐⇒

fn(q) converges p-adically in B[[q]] ⇐⇒ fn((E, i))/A) converges p-adically
for all (E, i))/A and all p-adic B-algebra A.

(Q2) If B0 is a Z[1
6
]-algebra p-adically dense in B, Gk(p

∞;B0) =
⋃

n Gk(p
n;B0) is

dense in V (B) for any k ≥ 2.
(Q3) If f ∈ V (B)⊗Z Q and f(q) ∈ B[[q]], then f ∈ V (B), assuming B is flat over

Zp.

An elliptic curve E/A is said to have complex multiplication if End(E/A) contains the
integer ring R of an imaginary quadratic field M ⊂ C. If E(C) = C/Lw has complex
multiplication, R · Lw ⊂ Lw, thus we have a representation ρ : M× ↪→ GL2(Q) such
that αw = ρ(α)w for α ∈ M×. Since ρ(α)(z) = az+b

cz+d
(ρ(α) = ( a b

c d )) and z = w1/w2

corresponds to the same elliptic curve, we have ρ(α)(z) = z. Suppose that E has
complex multiplication by R. Then by the Shimura–Taniyama theory, E is defined
over a number field M ′, and by a result of Serre–Tate E is defined over a valuation
ring R′ of M ′ the residual characteristic p. Suppose further p splits into a product of
two primes pp in R. Then we may assume that E[p∞]/R′ is isomorphic to µp∞ after

extending scalar to the strict henselization W ⊂ Q of R′. Pick ω ∈ H0(E,ΩE/W) so
that H0(E,ΩE/W) = Wω. We fix two isomorphisms i : µp∞/W ∼= E[p∞] ⊂ E[p∞]/W
and E(C) = C/a for a fractional ideal a ⊃ R with ap = Rp. Thus we may assume
that a = Z + Zz (z ∈ M×). Let W = lim←−n

W/pnW. Then we have two numbers

Ω∞ ∈ C× and Ωp ∈ W× such that

ω = Ω∞du = Ωpi∗
dt

t
.

We have

Theorem 2.1. Let f ∈ Gk(p
n;W). Write fp ∈ V (W ) (resp. f∞ ∈ Gk(p

n; C)) the
corresponding p-adic modular form (resp. the corresponding holomorphic modular
form). If (E,ω)/W has complex multiplication by R in which p splits, we have

f∞(z)

Ωk
∞

=
f∞(E, i, du)

Ωk
∞

=
fp(E, i, i∗

dt
t
)

Ωk
p

= f(E, i, ω) ∈ W.
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Remark 2.2. ReplacingW by its quotient field, the assertion of the theorem is valid
if f = f

g
finite at (E, i, du) for h ∈ Gk+k′(pn;W) and g ∈ Gk′(pn;W) for an obvious

reason.

3. Invariant differential operators

Shimura studied the effect on modular forms of the following differential operators
on the upper half complex plane H indexed by k ∈ Z:

(3.1) δk =
1

2π
√
−1

(
∂

∂z
+

k

2y
√
−1

)
and δr

k = δk+2r−2 · · · δk,

where r ∈ Z with r ≥ 0. For more details of these operators, see [LFE] 10.1. Here
are easy identities:

Exercise 3.1. Show the following formulas:

(1) δk+`(fg) = gδkf + fδ`g.
(2) δr

k(f |kα) = (δr
kf)|k+2rα for a holomorphic function f : H→ C, where

f |kα(z) = det(α)k/2f(α(z))(cz + d)−k

for α = ( a b
c d ) with positive determinant.

Therefore if f ∈ Gk(N ; C), δr
k(f) satisfies δr

k(f)|k+2rγ = δr
k(f) for all γ ∈ Γ1(N).

Although δr
k(f) is not a holomorphic function, defining

δr
k(f)(w) = w−k−2r

2 δr
k(f)(z),

we have a well-defined homogeneous modular form. In this sense, δr
k(f) is a real-

analytic modular form on Γ1(N) of weight k + 2r.
An important point Shimura found is that the differential operator preserves ra-

tionality property at CM points of (arithmetic) modular forms, although it does not
preserve holomorphy. We shall describe the rationality. Here is the rationality result
of Shimura [S]:

Theorem 3.2 (G. Shimura). Let the notation and the assumption be as in Theo-
rem 2.1. For f ∈ Gk(N ; Q), we have

(S)
(δr

kf)(z)

Ωk+2r
∞

=
(δr

kf)(E, i, du)

Ωk+2r
∞

∈ Q.

Proof. We follow the argument of Shimura in [S]. Since

(δr
kf)(E, du) = w−k−2r

2 (δr
kf)(z) = (δr

kf)(z)

for z = w1/w2 ∈ H (and w2 = 1), we need to show
(δr

kf)(z)

Ωk+2r
∞

∈ Q. When r = 0, the result

follows from Theorem 2.1. We have ρ : M× ↪→ GL2(Q) given by ( zα
α ) = ρ(α) ( z

1 ) for
α ∈M×. Then ρ(α)(z) = z. Writing ρ(α) = ( a b

c d ), we have cz + d = α. Apply δk to
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f |kρ(α) = fh, by Exercise 3.1, we have (δkf)|k+2ρ(α) = (δkf)h+f(δ0h). Specializing
this equality at z, we have

α−k−2(δkf)(z) = (δkf)|k+2ρ(α)(z) = (δkf)(z)h(z) + f(z)(δ0h)(z)

= (δkf)(z)α−k + f(z)(δ0h)(z),

because h(z) = (f |kρ(α))(z)/f(z) = α−k. Then we have

(δkf)(z) = αk(α−2 − 1)−1f(z)(δ0h)(z).

Note that δ0h is a meromorphic modular form of weight 2 defined over Q by the

q-expansion principle. Thus δ0h(z)
Ω2∞

∈ Q (Remark 2.2), and this proves the result

when r = 1. We repeating this process r times. By the Leibnitz formula, δr
k(fh) =∑

0≤s≤r

(
r
s

)
δs
kfδ

r−s
0 h. Form this we get

δr
k(f)|k+2rρ(α) = (δr

kf)h+
∑

0<s≤r

(
r

s

)
(δr−s

k f)(δs
0h).

Evaluating this at z, we finally get

(3.2) (δr
kf)(z) = αk(α−2r − 1)−1

∑

0<s≤r

(
r

s

)
(δr−s

k f)(z)(δs
0h)(z).

Note that δs
0h = δs−1

2 δ0h, and as we have already observed, δ0h is a meromorphic
Q-rational modular form finite at z. Then by the induction hypothesis, we get the
desired rationality. �

Remark 3.3. Choosing g ∈ Gk+2r(N ;W) with g(z) 6= 0 under the notation of the

above proof, Shimura actually proved in [S] that
δr
kf(z)

g(z)
∈ Q, which is equivalent to

the above theorem by Theorem 2.1.

Remark 3.4. For a given f ∈ Gk(N ; Q) as above, defining the transformation equa-
tion

P (X, f) =
∏

γ∈Γ1(N)\SL2(Z)

(X − f |kγ) =
d∑

j=0

aj(z)X
j ,

we have aj ∈ Gkd−jd(1;W). Thus aj = Qj(g2, g3) for a isobaric polynomial Qj

with coefficients in oQ. If (E,ω) is defined by y2 = 4x3 − g2(E,ω)x − g3(E,ω),

f(E, i, ω) satisfies
∑d

j=0 Qj(g2(E,ω), g3(E,ω))Xj = 0. Thus this gives an algorithm

to compute the value f(E, i, ω). Once we know the value f(E, i, ω) = f(E,i,du)
Ωk∞

, we can

then compute
δr
k(f(z))

Ωk+2r
∞

following the above proof (in particular, the induction process).
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4. p-Adic differential operators

On V (W ), we have a more standard differential operator d = δ0 whose effect on q-
expansion is d(

∑
n anq

n) =
∑

n nanq
n. An elementary construction of d can be given

as follows. Pick f ∈ Gk(N ;W) ⊂ Gk(N ; C). Then for any function φ : Z/prZ →W,
we define its Fourier transform φ∗ : Z/prZ →W by φ∗(x) =

∑
u∈Z/prZ φ(u)e(xu/pr),

where e(x) = exp(2πix).

Exercise 4.1. Prove (φ∗)∗(x) = prφ(−x).

We define

(4.1) f |φ(z) = p−r
∑

u mod Z/prZ

φ∗(−u)f(z +
u

pr
).

Then we have (
∑

n anq
n)|φ) =

∑
n φ(n)anq

n ∈ Gk(Np
2r;W).

Exercise 4.2. Define φ|x(u) = φ(xu) for x ∈ (Z/prZ)×. For f ∈ Gk(N ; C), prove
that (f |φ)|kγ = (f |kγ)|(φ|ad−1) if γ = ( a b

c d ) ∈ Γ1(N) ∩ Γ0(p
2r). In particular f |φ ∈

Gk(N ; C). (Hint: Use the strong approximation theorem of SL(2) and the formula:

( a b
0 d )

−1 (
1 u/pr

0 1

)
( a b

0 d ) =
(

1 (a−1d)u/pr−a−1b
0 1

)
; see also [IAT] Proposition 3.64.)

Then choosing φn : Z/pnZ → W so that φn(u) ≡ u mod pnW, the q-expansion
limn→∞(f |φn) converges p-adically to the q-expansion of df . By the q-expansion
principle, Gk(p

∞;W) is dense in V (W ), we have a unique df ∈ V (W ). Thus
drf(E, i∗

dt
t
) ∈ W is well defined. The effect of dr on the q–expansion of a modu-

lar form is given by

(4.2) dr
∑

n

a(n)qn =
∑

n

a(n)nrqn.

We can let a ∈ Z×
p acts on f ∈ V (R) by f |a(E, i) = f |

(
a 0
0 a−1

)
(E, i) = f(E, a · i).

Lemma 4.3. If f ∈ Gk(N ;W), then we have

(drf)|
(

a 0
0 a−1

)
= a−k−2r(drf)

for a ∈ Z×
p .

Proof. We can approximate p-adically
(

a 0
0 a−1

)
by an element γn ∈ Γ1(N)∩Γ0(p

2n) so
that γn ≡ g mod pnM2(Zp). By Exercise 4.2, we have

df |a = lim
n→∞

f |φn|kγn = a−k lim
n→∞

f |γn|(φn|a2) = a−k−2df

because φn(u) ≡ u mod pnW. Then iterating this formula r times, we get the
formula in the lemma. �

Katz interpreted the differential operator d in terms of the Gauss-Manin connection
of the universal elliptic curve over the modular curveX1(N) and gave a purely algebro-
geometric definition of the operator dr acting on V (R) for any p-adic W -algebra R
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(see Katz’s paper [K]). Since his definition of dr is purely algebro-geometric, it is
valid for classical modular forms and p–adic modular forms at the same time. An
important formula given in [K] (2.6.7) is as follows.

Theorem 4.4 (N. M. Katz). Let the notation and the assumption be as in Theo-
rem 2.1 For f ∈ Gk(p

n;W), we have

(K)
(drf)(E, i)

Ωk+2r
p

=
(δr

kf)(E, i, du)

Ωk+2r
∞

∈ W.

We give here a proof similar to the argument which proves Theorem 3.2.

Proof. We use the notation introduced in the proof of Theorem 3.2. In particular,
take ±1 6= α ∈M×) with αα = 1.

After identifying algebro-geometric forms and analytic ones by q-expansions via the
fixed two embeddings Qp ⊃W ⊂ C, we see that d = 1

2πi
∂
∂z

. We writeA = A(N ; Q) =⋃
k{

f
g
|f, g ∈ Gk(N ; Q)}. Thus for meromorphic functions h(x) ∈ A, we have,

d(h ◦ ρ(α)) =
1

2πi

∂h(ρ(α)(z))

∂z
= α−2 1

2πi

∂h

∂z
((ρ(α)(z)) = α−2(dh) ◦ ρ(α).

Since dh = g1/g2 for g1 ∈ Gk+2(N ;W) and g2 ∈ Gk(N ;W) for sufficiently large k, we
have (Remark 2.2)

(4.3)
(dh)(E, i∗

dt
t
)

Ω2
p

= (dh)(E,ω) ∈ Q.

Since
f(E,i∗

dt
t

)

Ωk
p

= f(E,ω) ∈ W, we first show

(drf)(E, i)

Ωk+2r
p

=
(δr

kf)(E, i, du)

Ωk+2r
∞

∈ Q

by induction on r. When r = 0, this follows from Theorem 2.1. To treat r > 0, take
f ∈ Gk(N ;W), and define h ∈ A by f |kρ(α) = fh as in the proof of Theorem 3.2.

Apply d to f |kρ(α) = fh, we have (df)|k+2ρ(α) = (df)h + f(dh). Specializing this
equality at (E,ω), we get from Lemma 4.3

α−k−2(df(E, i)) = ((df)|k+2ρ(α))(E, i) = (df)(E, i)h(E) + f(E, i)(dh)(E, i).

Since h(E) = (f |kρ(α))(E, i)/f(E, i) = α−k, we have

(df)(E, i) = αk(α−2 − 1)−1f(z)(dh)(E, i).

Thus we have again proved
dh(E,i∗

dt
t

))

Ω2
p

∈ Q, and also this proves the result when

r = 1. We repeat this process r times. By the Leibnitz formula, we have dr(fh) =
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∑
0≤s≤r

(
r
s

)
dsfdr−sh. Form this we get

dr(f)|k+2rρ(α) = (drf)h +
∑

0<s≤r

(
r

s

)
(dr−sf)(dsh).

Evaluating this at (E, i), we get

(drf)(E, i) = αk(α−2r − 1)−1
∑

0<s≤r

(
r

s

)
(dr−sf)(E, i)(dsh)(E, i).

Dividing by Ωk+2r
p , we finally get

(drf)(E, i)

Ωk+2r
p

= αk(α−2r − 1)−1
∑

0<s≤r

(
r

s

)
(dr−sf)(E, i)

Ωk+2r−2s
p

(dsh)(E, i)

Ω2s
p

.

By the induction hypothesis, we have, for s > 0,

(dr−sf)(E, i)

Ωk+2r−2s
p

=
(δr−s

k f)(E, i, du)

Ωk+2r−2s
∞

and
(dsh)(E, i)

Ω2s
p

=
(ds−1dh)(E, i)

Ω2s
p

=
(δs−1

2 dh)(E, i, du)

Ω2s
∞

.

Replacing each term as above by the corresponding archimedean term, we recover the
right-hand-side of (3.2) divided by Ωk+2r

∞ . Then by the induction hypothesis, we get
the desired identity:

(drf)(E, i)

Ωk+2r
p

=
(δr

kf)(E, i, du)

Ωk+2r
∞

inside Q. Since the left-hand-side of the above identity is in W , we conclude the
identity in W = W ∩Q. �

We note that all this process of proving algebraicity and integrality applies to
Hilbert modular forms after an appropriate adjustment.

5. Katz measure

We consider the binomial polynomial
(

x
m

)
. We consider the differential operator(

d
m

)
. Then we have (

d

m

)
(
∑

n

anq
n) =

∑

n

(
n

m

)
anq

n.

In particular,
(

n
m

)
an ∈ R if an ∈ R for a p-adic algebra R. This shows

(
d
m

)
: V (R)→

V (R). In particular,
(

d
m

)
f(E,ω) ∈ W if f ∈ Gk(p

n;W ). By Mahler’s theorem, a given

continuous function φ : Zp →W can be expanded uniquely as φ(x) =
∑

m≥0 cm(φ)
(

x
m

)

for cm(φ) ∈ W tending to 0 as m → ∞. Thus defining
∫

Zp

(
x
m

)
df(x) =

(
d
m

)
f(E, i),
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we have a unique p-adic measure df : C(Zp;W ) → W , where C(Zp;W ) is the p-adic
Banach space of continuous functions on Zp with values in W . Thus, we have

Theorem 5.1. Let the notation be as in Theorem 2.1, and suppose f ∈ Gk(p
n;W).

If φ(x) =
∑

m≥0 cm(φ)
(

x
m

)
∈ C(Zp;W ), we have

∫

Zp

φ(x)df(x) = φ(x) =
∑

m≥0

cm(φ)

(
d

m

)
f(E, i).

In particular, we have
∫

Zp
xrdf(x)

Ωk+2r
p

=
drf(E, i)

Ωk+2r
p

=
δr
kf(E, du)

Ωk+2r
∞

∈ W.

Recall the Eisenstein series

gk(w) =
∑

0 6=`∈Lw

`−k.

After a division by a simple nonzero constant, writing the new series as Gk, this series
Gk has the following q-expansion :

Gk(q) = 2−1ζ(1 − k) +
∑

n>0

qn
∑

0<δ|n

δk−1.

Thus defining Ek = Gk|1 for the characteristic function 1 of (Z/pZ)× on (Z/pZ) in
order to remove coefficients of qmp for m = 0, 1, . . . , we get

Ek(q) =
∑

n>0,p-n

qn
∑

0<δ|n

δk−1.

Then writing
(

x
m

)
=

∑m
j=0 cjx

j, we find
(
E
m

)
=

∑

j

cjEj+1 =
∑

n>0,p-n

qn
∑

0<δ|n

(
δ

m

)
∈ Z[[q]],

which has integral q-expansion. Thus we can create two variable measure dE :
C(Z2

p;W )→W as follows.

Theorem 5.2 (N. Katz). Let the notation be as in Theorem 2.1. There exists a
measure dE : C(Z2

p;W )→ W such that
∫

Z2
p

(
x

m

)(
y

n

)
dE =

(
d

m

)(
E
n

)
(E, i) ∈ W

for all integers n ≥ 0 and m ≥ 0.
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If E is given by Gauss’ lemniscate: y2 = 1− x4 ∼= y2 = 4x3 − 4x, we have R = Z[i]

for i =
√
−1, Ω∞ =

∫ 1

0
du =

∫ ∞
0

dx√
1−x4dx, and

gk(E,ω) = Ω−k
∞

∑

0 6=α∈Z[i]

α−k = Ω−k
∞ L(0, λk),

where λk((α)) = α−k. More generally, the differential operator δr
k brings λk into λ′

with λk+r,−r((α)) = α−k(α/α)r, and we get a p-adic measure interpolating
L(0,λk+r,−r)

Ωk+2r
∞ (2πi)−r

over Z2
p. For a general imaginary quadratic field M , one needs to make a combination

of the above type of measures to get this type of p-adic interpolation of Hecke L-
values. Indeed, writing Cl(pn) for the ray class group of M modulo pn, the limit
C = lim←−n

Cl(pn) =
⊔

a∈Cl[a]R×
p /{±1}. Each a gives rise to an elliptic curve with

complex multiplication by R with Ea(C) = C/a. Since we assumed that p splits in R,
Rp
∼= Z2

p as algebras. By the above construction, we have a measure dEa associated
to Ea on the coset [a]R×

p /{±1}. In this way, Katz proved

Theorem 5.3 (N. Katz). Let M be an imaginary quadratic field in which the prime
p splits. Then there exists a measure dµ on C such that for a Hecke character λ with
λ((α)) = α−kαj for α ≡ 1 mod pn for some n > 0, writing its p-adic avatar as λ̂,

∫
C
λ̂dµ

Ωk+j
p

= c(λ)(1− λ(p))(1− λ(p)−1p−1)
L(0, λ)

(2πi)−jΩk+j
∞
∈ W[λ],

where 0 ≤ j < k and W[λ] is the ring generated over W by λ(a) for a running over
all fractional ideals of M prime to p. For the simple constant c(λ), see [K] (5.3.0).

6. Anticyclotomic main conjectures

Now we need to work over a totally real field. Fix a totally real field F with
integer ring O and a totally imaginary quadratic extension M/F with integer ring
R. We suppose that p is unramified in F/Q. Such an M is called a CM field from
the time of Shimura–Taniyama. Fix two embeddings ip : Q ↪→ Qp and i∞ : Q ↪→ C.

Then each embedding σ ∈ I = Homfield(M,Q) gives rise to a p-adic absolute value
|x|p,σ = |ip(σ(x))|p. Let Σ ⊂ I such that I = Σ tΣc for the generator c ∈ Gal(M/F )
and any p-adic absolute value associated to σ ∈ Σ is not induced by elements in Σc.
Such a subset exists only if

(ord) every prime factor p of p in O splits in R.

In place of CM elliptic curves (E,ω), now we have a CM abelian variety (X,ω)/W
such that X(C) = CΣ/RΣ, where RΣ = {(i∞(σ(x)))σ∈Σ} ⊂ CΣ|x ∈ R}. Here
H0(X,ΩX/W) = (W ⊗Z R)ω. At ∞, we have variables u = (uσ) of CΣ. Then
ω∞ = du =

∑
σ duσ satisfies H0(X,ΩX/C) = (C ⊗Z R)du. At p, note that Σ gives

p-adic places which in turn gives rise to a set of prime ideals Pσ. Let P be the product
of Pσ for σ ∈ Σ. Then we can identify X[P∞] with µp∞ ⊗Z O over W. This induces
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an isomorphism of formal groups i : Ĝm⊗ZO ∼= X̂; so, we have ωp = i∗(
dt
t
⊗1), which

satisfies H0(X,ΩX/W ) = (W⊗ZR)ωp. Thus we can define Ωp = (Ωσ
p )σ∈Σ ∈ (W×)Σ and

Ω∞ = (Ωσ
∞)σ∈Σ ∈ (C×)Σ by ω = Ω∞ω∞ and ω = Ωpωp. For k =

∑
σ∈Σ kσσ ∈ Z[Σ],

we write Ωk
? =

∏
σ(Ω

σ
? )kσ for ? =∞, p. We also write Σ for

∑
σ∈Σ σ.

Let Cl(pn) be the ray class group of M modulo pn and put C = lim←−n
Cl(pn). Then

in exactly the same manner as in the proof of Theorem 5.3, Katz proved in [K] the
following result.

Theorem 6.1 (N. Katz). Let the notation and the assumption be as above. Then
there exists a measure dµ on C such that for a Hecke character λ with λ((α)) =
α−kΣα−κ(1−c) with either 0 < k ∈ Z and 0 ≤ κ ∈ Z[Σ] or k ≤ 1 and κ ≥ (1− k)Σ for
α ≡ 1 mod pn for some n > 0,

∫
C
λ̂dµ

ΩkΣ+2κ
p

= c(λ)
∏

σ

[
(1− λ(Pσ))(1 − λ(Pσ)−1N(Pσ)

−1)
] L(0, λ)

(2πi)−κΩkΣ+2κ
∞

∈ W[λ],

where W[λ] is the ring generated over W by λ(a) for a running over all fractional
ideals of M prime to p. For the simple constant c(λ), see [K] (5.3.0).

We split C = ∆ × Γ for a finite group ∆ and a torsion-free subgroup Γ. The
group Γ has a natural action of Gal(M/F ). We define Γ+ = H0(Gal(M/F ),Γ) and
Γ− = Γ/Γ+. Write π− : C → Γ− and π∆ : C → ∆ for the two projections. Take
a character ϕ : ∆ → W×, and regard it as a character of C through the projection:
C � ∆. The Katz measure dµ on C associated to the CM type Σ as in Theorem 6.1
induces the anticyclotomic ϕ–branch dµ−

ϕ by

(6.1)

∫

Γ−

φdµ−
ϕ =

∫

C

φ(π−(z))ϕ(π∆(z))dµ(z).

We write L−
p (ϕ) for this measure dµ−

ϕ regarding it as an element of the algebra Λ− =
W [[Γ−]] made up of measures with values in W .

We look into arithmetic of the unique Z[F :Q]
p –extension M−

∞ of M on which we
have cσc−1 = σ−1 for all σ ∈ Gal(M−

∞/M) for complex conjugation c. The extension
M−

∞/M is called the anticyclotomic tower over M . Writing M(p∞) for the ray class
field overM modulo p∞, we identify C with Gal(M(p∞)/M) via the Artin reciprocity
law. Then Gal(M(p∞)/M−

∞) = Γ+ ×∆ and Gal(M−
∞/M) = Γ−. We then define M∆

by the fixed field of Γ in M(p∞); so, Gal(M∆/M) = ∆. Since ϕ is a character of
∆, ϕ factors through Gal(M−

∞M∆/M). Let L∞/M
−
∞M∆ be the maximal p–abelian

extension unramified outside Σp. Each γ ∈ Gal(L∞/M) acts on the normal subgroup
X = Gal(L∞/M

−
∞M∆) continuously by conjugation, and by the commutativity of

X, this action factors through Gal(M∆M
−
∞/M). Then we look into the Γ−–module:

X[ϕ] = X ⊗∆,ϕ W .
A character ϕ of ∆ is called anticyclotomic if ϕ(cσc−1) = ϕ−1. If ϕ is anti-

cyclotomic, then we can find a finite order Hecke character ψ of M such that ϕ(σ) =
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ψ1−c(σ) = ψ(σ)ψ(cσc−1)−1. As is well known, X[ϕ] is a Λ−–module of finite type,
and in many cases, it is known to be a torsion module by the work of Taylor–Wiles
and K. Fujiwara under the following conditions:

(H0) ϕ is anticyclotomic.
We choose ψ as above with ψ1−c = ϕ.

(H1) The character ϕ regarded as a Galois character is nontrivial on Gal(Q/F [
√
p∗])

(p∗ = (−1)(p−1)/2p). This implies that the representation IndF
M (ψ mod mW )

for the maximal ideal mW of W is absolutely irreducible over Gal(Q/F [
√
p∗]).

(H2) The character ϕ regarded as a Galois character is nontrivial on the decompo-
sition group of P for all prime factors P|p in R.

If one assumes the Σ–Leopoldt conjecture for abelian extensions of M , we know that
X[ϕ] is a torsion module over Λ− always. If X[ϕ] is a torsion Λ−–module, we can
think of the characteristic element F−(ϕ) ∈ Λ− of the module X[ϕ]. If X[ϕ] is not
of torsion over Λ−, we simply put F−(ϕ) = 0. Here is a conjecture made in [HT].

Conjecture 6.2. The Λ−-module X[ϕ] is a torsion module, and F−(ϕ) = L−
p (ϕ) up

to units in Λ−.

A Hilbert modular Hecke eigenform θ is called of CM-type by R if its p-adic Galois

representation is isomorphic to IndK
M λ̂ for a Hecke character λ ofM . For the character

λ̂, we define its Teichmüller projection by ψλ = limn→∞ λ̂pnf
, where f is the residual

degree of the maximal ideal of Zp[λ].
The proof of this conjecture under (H0–2) boils down to the following statement:

Proposition 6.3. Let θ be a CM Hecke eigenform whose Galois representation is

isomorphic to IndF
M λ̂ for κ = 0 and k = 1. Define ϕ(σ) = ψλ(σ)ψλ(cσc

−1)−1. Under
(H0–2), if for any W-integral Hilbert modular form of p-power level with the same
weight 2, the same level and the same Neben character as θ, the Petersson inner

product W (λ1−c)(θ,f)
(2πi)−2ΣΩ2Σ

∞
is p-integral, then Conjecture 6.2 follows for ϕ, where W (λ1−c) is

the Gauss sum of λ1−c.

This follows from a detailed analysis of the congruence number of θ and the size of
the Selmer group of λ1−c. We admit this fact. See [H05b] and [H05c].

7. Petersson inner product

For each fractional ideal c, we need to consider

Γ0(p
n, c) =

{
( a b

c d ) ∈ GL2(O)
∣∣c ∈ pn(c∗)−1, a, d ∈ O b ∈ c∗

}
,

where c∗ = {x ∈ F |TrF/Q(xc) ⊂ Z}. We write Γ0(p
n) for Γ0(p

n, O). Then Hilbert
modular Hecke operators T (n) acts on the product

⊕
c G2(Γ0(p

n, c), ε;R) (for a Neben
character ε modulo pn) taken over c running in a complete representative set for the
strict ideal classes of F . To make things simple, we just assume that the strict class
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number of F is trivial so that we have G2(p
n, ε;R) = G2(Γ0(p

n), ε;R). A modular
form f ∈ G2(p

n, ε; C)) has q-expansion of the following form:

f(q) = a(0, f) +
∑

0 6=ξ∈F

a(ξ, f)qξ,

where qξ = exp(2πiTr(ξz)). Here a(ξ, f) = 0 if 0 6= ξ is not in F×
+ ∩ O. Also

f ∈ G2(p
n, ε;R) ⇐⇒ a(ξ, f) ∈ R for all ξ. The inner product is given by

(θ, f) =

∫

Γ0(pn)\HI

θ(z)f(z)dxdy.

To study the p-integrality of (θ, f), we consider the Shimura series defined in the
following way: Let (z,w) ∈ HI × HI and v ∈M2(F ). Put

[v; z,w] = ((wσ, 1)
tσ(v) ( 0 −1

1 0 ) ( zσ
1 ))σ

as a tuple of numbers indexed by σ ∈ I. Then define [v; z,w]k =
∏

σ[σ(v); zσ, wσ]k.

Take a locally constant compactly supported function φ : M2(F
(∞)
A ) → W with

φ(εx) = φ(x) for ε ∈ O×
+. Then the Shimura series for GL(2) ×GL(2) is defined for

0 < k ∈ Z in [S1] II (4.11) by

(7.1) H(z,w; s) = Hk(z,w; s;φ, g)

=
∑

0 6=α∈M2(F )/O×
+

φ(α)a(−det(α), g)[α; z,w]−k |[α; z,w]|−2s

for (z,w) ∈ HI × HI . Here g is a Hilbert modular in G`(Γ0(p
n), ε). The following

facts are known (see [S1], [H05b] and [H05c]):

(S0) This series is a generalization of Eisenstein series, because if we take g = 1
(so ` = 0), the series gives an Eisenstein series for GL(2) ×GL(2) over F .

(S1) The series (7.1) converges absolutely and locally uniformly with respect to all
variables s, z, w if Re(s) � 0 and can be continued meromorphically to the
whole s ∈ C.

(S2) Choose z0 ∈ HI ∩ MΣ on which (X, i, ω) sits. Define ρ : M → M2(F ) by
ρ(α) ( z0

1 ) = ( z0α
α ). We can find b ∈ M2(F ) such that M ⊕M = M ⊗F M ∼=

M2(F ) by α ⊗ β 7→ ρ(α)vρ(βc). Take φL, φR : M → W (locally constant
compactly supported functions), and define φ = φL ⊗ φR : M2(F ) → W.
Then if ` = k, Hk(z,w; s;φ, g) has a pole of order ≤ 1 at s = 1. Define
φk,L(α) = αkΣφ(α). Then Ress=1Hk(z0, z0; s;φ, g) ∼ (θ(φk,L), gθ(φR)).

(S3) Define Ψg(z,w) = c · Ress=1Hk(z,w; s;φ, g) for a suitable normalization con-
stant (which is a p-adic unit). Then this modular form has the following
q-expansion for q = exp(2πz)

Ψg(z,w) =
∑

α∈Γ0(pn)\M2(F ),det(α)�0

φ∗(εα)qdet(α)g|kα(w),
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where φ∗ is the partial Fourier transform with respect to (a, b) for ( a b
c d ) ∈

M2(F
(∞)
A ). Thus “basically” Ψg is integral if φ∗ is integral and if the p-

component of φ∗ has support in the Eichler order of conductor pn.

Choosing φL well, we may assume that θ(φ1,L) = θ (the CM Hecke eigenform associ-
ated to λ). Thus if all W-integral form f of weight 2 with character ε is an integral
linear combination of θ(φR)g moving around g and φR, we get the integrality as in
the proposition.

If [F : Q] is even, we have a definite quaternion algebra everywhere unramified
at finite place. Thus we can embed M ↪→ B and split B = M ⊕ M as above.
Every modular form is a “rational” linear combination of theta series of B (the
Jacquet-Langlands correspondence). Thus every weight 2 modular forms is a linear
combination of θ(φ1)θ(φ2) for φj : M → W, and we may take φR = φ1 and g =
θ(φ2). Thus we need to proveW-integrality of the Jacquet-Langlands correspondence.
This can be done under (H0–2). So we get the p-integrality of (θ, f) under suitable
assumptions if [F : Q] is even. In fact, by a base-change argument, the anticyclotomic
conjecture can be proven for any F unramified at p under (H0–2) as long as p ≥ 5.
All the details of the above argument can be found in [H05c].
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