
Katz p-adic L-functions, congruence modules and
deformation of Galois representations

H. HIDA* AND J. TILOUINE

0. Although the two-variable main conjecture for imaginary quadratic fields
has been successfully proven by Rubin [R] using brilliant ideas found by
Thaine and Kolyvagin, we still have some interest in studying the new proof
of a special case of the conjecture, i.e., the anticyclotomic case given by Mazur
and the second named author of the present article ([M-T], [Tl]). Its interest
lies firstly in surprizing amenability of the method to the case of CM fields
in place of imaginary quadratic fields and secondly in its possible relevance
for non-abelian cases. In this short note, we begin with a short summary
of the result in [M-T] and [Tl] concerning the Iwasawa theory for imaginary
quadratic fields, and after that, we shall give a very brief sketch of how one
can generalize every step of the proof to the general CM-case. At the end,
coming back to the original imaginary quadratic case, we remove some restric-
tion of one of the main result in [M-T]. The idea for this slight amelioration
to [M-T] is to consider deformations of Galois representations not only over
finite fields but over any finite extension of Qp. Throughout the paper, we
assume that p > 2.

1. Let M be an imaginary quadratic field and p be an odd prime which splits
in M; i.e., p — ~pp(p ^ ~p). We always fix the algebraic closures Q and Qp and
embeddings of Q into C and Qp. Any algebraic number field will be considered
to be inside Q. Suppose the factor p of p is compatible with this embedding
M into Qp. The scheme of the new proof of the main conjecture for the
anti-cyclotomic Zp-tower of M consists in proving two divisibility theorems
between the following three power series:

(1.1) L-\H\Iw~,

where
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272 Hida & Tilouine - Katz p-adic L-functions

(i) L~~ is the Katz-Yager p-adic L-function (which interpolates p-adically
Hurwitz-Damerell numbers) projected to one branch of the anti-
cyclotomic line of the imaginary quadratic field M;

(ii) H is the characteristic power series of the congruence module attached
to M (and the branch in (i)) constructed via the theory of Hecke
algebras for GL(2)/Q;

(iii) Iw~ is the characteristic power series (of the branch in (i)) of the
maximal p-ramified extension of the anti-cyclotomic Z*-tower over M.

Once these divisibilities are assumed, the proof is fairly easy: Under a suitable
branch condition, we know from the analytic class number formula that the
A and /^-invariants of G and Iw~ are the same and hence

(1.2) Iw~ — L~ up to a unit power series

as the anticyclotomic main conjecture predicts.

Strictly speaking, the equality (1.2) is proven in [M-T] and [T] under the
assumption that the class number of M is equal to 1. In fact, if the class
number h of M is divisible by p, we need to modify (1.1) as

(1.3) h - L~\H\h - Iw~ for the class number h of M.

In [M-T], the second divisibility assertion: H \ Iw~ is proven under the
milder assumption that h is prime to p but there is another assumption that
the branch character ip of L~ must be non-trivial on the inertia group Ip at
p. We will prove the divisibility (1.3) outside the trivial zero of L~ (if any)
without hypothesis in Appendix.

2. In this section, we deal with the generalization of the first divisibility
result: L~~ \ H in the general CM case. The second divisibility: H \ Iw~ will
be dealt with in the following paragraphs. To state the result precisely, we fix
a prime p and write the fixed embeddings as ip : Q —> Qp and ^ • Q —* C. We
consider Q as a subfield of Qp and C by these embeddings. Let F be a totally
real number field with class number h(F) and M/F be a totally imaginary
quadratic extension whose class number is denoted by h(M). Let c be the
complex conjugation which induces the unique non-trivial automorphism of
M over F. We assume the following ordinarity condition:

Cambridge Books Online © Cambridge University Press, 2009available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511526053.011
Downloaded from https://www.cambridge.org/core. Caltech Library, on 04 Nov 2018 at 14:08:19, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511526053.011
https://www.cambridge.org/core


Katz p-adic L-functions 273

Ordinarily hypothesis All prime factor p of p in F splits in M.

Thus we can write the set of prime factors of p in M as a disjoint union
S U Se of two subsets of prime ideals so that *# £ 5 if and only if q?c £ 5C.
If a is the number of prime ideals in F over p, there are 2a choices of such
subset 5. Such an S will be called a p-adic CM-type. Considering S as a
set of p-adic places of M, let E be the set of embeddings of M into Q which
give rise to places in S after combining with tp. Then S U S o c is the total
set of embeddings of M into Q and hence gives a complex CM-type of M.
Hereafter we fix a p-adic CM-type S and compatible complex CM-type S.
Let G be the Galois group of the maximal p-ramified abelian extension M^
of M. Then we fix a decomposition G = Gtor x W for a finite group Gtor

and a Zp-free module W. Let K/typ be a p-adically complete extension in
the p-adic completion fl of Qp containing all the images a(M) for a £ S and
O = OK be the p-adic integer ring of K. We now consider the continuous
group algebras A = O[[W]] and O[[G]] = A[Gtor]- By choosing a basis of W,
we have W £ lr

p and A £ O[[XU..., Xr]]. Here r = [F : Q] +1 +£, where £ is
the defect of the Leopoldt conjecture for F; i.e., 6 > 0 and £ = 0 if and only
if the Leopoldt conjecture holds for F and p. Fix a character A : Gtor —+ Dx

and define the projection A* : O[[G]] -> O[[W]] = A by A,(p,iy) = X(g)[w] for
the group element [w] in A for w £ W and </ £ Gtor. We consider two anti-
cyclotomic characters of G given by A_ = A(AC)"X and a = A1|I(AJ)~1, where
AC(<T) = A(c(jc-1) and Xfa) = A*(cere-1). Let M~(A_) be the subfield of M^
fixed by Ker(a). Let M5(A_)/M~(A_) be the maximal p-abelian extension
unramified outside S. Naturally Xs = Gal(M5(A_)/M""(A_)) is a continuous
module over ZP[[H]] of H = Im(a). We consider the A_-branch of Xs defined
by

where O(A_) is the O-free module of rank one on which Gtor acts via A_.
Once we are given a p-adic CM-type 5, we have the following 3 objects as in
the imaginary quadratic case:

(i) The A_-branch of the projection L~ of the Katz p-adic L-function
L £ On[[G]] to the anti-cyclotomic tower M~(A_);

(ii) The congruence power series H £ A attached to the A-branch of the
nearly ordinary Hecke algebra of CM-type 5;

(iii) The characteristic power series Iw~ of X5(A_) in A.

Note that Ker(a) contains G+ = {x £ G | exc"1 = x} and we can realize the
quotient G/G + inside G by the subgroup of commutators [x,c] = xcx~1c~1.
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274 Hida & Tilouine - Katz p-adic L-functions

Especially the maximal torsion-free quotient W~ of H can be thought of a
direct factor of W via this map. For a technical reason (namely, H resides
in A), we regard L~ and Iw~ as elements in A via this inclusion although
they belong to A_ = £>[[W~]]. Moreover, to have a non-zero Iw", we need
to suppose a weak version of the Leopoldt conjecture (depending on S) for
the anti-cyclotomic tower. This weak form of Leopoldt's conjecture holds
true if the CM field M is abelian over Q. On the other hand, one can prove
unconditionally (i.e. without supposing the weak Leopoldt conjecture) the
non-vanishing of the characteristic power series Iw of the maximal 5-ramified
abelian extension over the full Zp-tower of M. Before giving the precise
definition of L~ and H, we state the first theorem:

Theorem 2.1 L~ divides H in On[[W]] ®z Q. Moreover if the //-invariant of
every branch of the Katz p-adic i-function of M vanishes, then we have the
strong divisibility:

(h(M)/h(F))L- | H in On[[W]].

The following conjecture is obviously motivated by (1.1):

Conjecture 2.2 H = (h(M)/h(F))L" up to a unit in On[[W]] if p > 2, where
h(M) (resp. h(F)) is the class number of M (resp. F).

This conjecture is known to be true if F = Q, p > 5 and the class number
h(M) of M is prime to p under a certain branch condition.

First, let us explain the definition of L~. Although we will not make the
identification with the power series ring due to the lack of canonical coordi-
nates of W, we may regard any element of A as a p-adic analytic function
of several variables. There are two different ways of viewing $ G A as an
analytic object: For G = G or W, let X(G) be the set of all continuous
characters of G with values in (Jp. If one fixes a Zp-basis (wt) of W, then
each character P G 3t(W) is determined by its value (P(wi)) E D r , where
D = {x e % | \x - l|p < 1}. Thus X(W) = Dr. Each character P : G -> Qp

induces an O-algebra homomorphism P : O[[G]] —> Qp such that P \G is the
original character of G. In this way, we get an isomorphism:

X(G) - Spec(D[[G]])(Qp) = Homo.alg(D[[G]], Qp).

Then

(Al) $ is an analytic function on X(G) whose value at P is P($) G Qp.
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Katz p-adic L-functions 275

On the other hand, we can view A as a space of measures on G in the sense
of Mazur so that

(A2) / P(g)
JG

By class field theory, we can identify, via the Artin symbol, the group G with
the quotient of the idele group M%. For a given A0-type Hecke character
<p : M£/Mx —> Cx of p-power conductor whose infinity type is given by

,)-«* for e =

as shown by A. Weil in 1955, (p has values in Q on finite ideles and we have a
unique p-adic avatar ip : G —» Q* which satisfies tp(x) = </?(#) if xp — x^ = 1,
and if xp 6 Mp

x is close enough to 1, then

In 1978, Katz showed in [K] the existence of a unique p-adic L-iunction given
by an element L of O«[[G]] such that

= c M

suitable p-adic period suitable complex period
whenever <p is critical at 0 (i.e. if either £ap > ^a + £ap + l > 0 o r ^ + l <
<̂r + £op + 1 ^ 0 for all j E E). Here, c(<p) is a simple constant including a

modifying Euler p-factor, local Gauss sum, F-factor and a power of w. See
[K, (5.3.0), (5.7.8-9)] for details. To define I " , we first project Katz's L to A.
Namely, we fix once and for all a finite order character A : Gtor —> Dx . Then
we have a continuous character A* : G = Gtor x W —> O[[W]] given by

\.(g,w) = \(g)w £ O[[W}},

where we consider A(#) for g £ Gtor as a scalar in D but w as a group element
in W. This character induces the projection to A

A. : O[[G]] = A[Gtor] -> A.

Then for any point P G £(W), AP = P o A» : G —> Qp is a p-adic character of
G. When XP is the avatar of an A0-type Hecke character, we say that P is
arithmetic (this notion of arithmeticity is independent of the choice of A). Let
c denote the complex conjugation in Gal(Q/F) and write Xc(x) = A(ca:c""1).
We then consider the anti-cyclotomic character a attached to A*, given by
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276 Hida & Tilouine - Katz p-adic L-functions

and the corresponding A-algebra homomorphism

This a* actually has values in the anti-cyclotomic part O[[W~]], where

W = {weW\wc = ewe"1 = txT1}.

Then we define
L~ = a . ( L ) e O

Although the divisibility of Theorem 2.1 is stated as taking place in the bigger
ring £>[[W]] D £[[W~]], actually the congruence power series H itself also
falls in the subring O[[W~]]. However we will know this fact after proving
the second divisibility: H \ (h(M)/h(F))Iw~ and we do not know this fact a
priori Thus we continue to formulate our result using On[[W]] as the base
ring. This power series L~ satisfies the following interpolation property:

p-adic period p p complex period

whenever P is arithmetic and XpXp1 is critical at P.

We now define the p-adic Hecke algebra and the congruence power series and
then give a sketch of the proof of the theorem. To define Hecke algebra, we
explain first a few things about Hilbert modular forms. Let / be the set
of all field embeddings of F into Q. The weight k = (A;<7)<T€/ of a modular
form will be an element of the free Z-module Z[J] generated by elements
of / . Actually, our holomorphic modular forms have double digit weight
(&,v) G Z[/]2 associated to the following automorphic factor:

where 7 = (^ j ) € GL2(FOO) (F^ = F <g>QR = R7) with totally positive

determinant and z = (za)<y€j G ft1 is a variable on the product of copies of
upper half complex planes f)1 indexed by / . For each open compact subgroup
V of the finite part of the adele group GL2(FA), let Sk)V(V) be the space of
holomorphic cusp forms / of weight (&, v) defined in [HI, §2]. Namely / is a
function on GL2(FA) satisfying

f ( a x u ) = f ( x ) J M ( u o o , zo)~
l for a G GL2(F) a n d u e V x C ,

where C is the stabilizer of z0 = (\/—T,..., \f-l) G S)1 in GL2(FOO), which is
isomorphic to the product of the center (= (Rx)7) of GL^F^) and 5O2(R)7.
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Katz p-adic L-functions 277

We can associate to / and each finite idele t £ GL2(FAf), a function fx on S)1

by

It is easy to check that ft satisfies the automorphic condition:

) = ft(z)JktVfr, z) for 7 £ Tt = rmGLUFn) n

where GL^FQQ) is the connected component of GL2(FOO) with identity. Sim-
ilarly we write F£+ for the connected component with identity of F£. Then
we suppose for / £ Sk>v(V) that, for all t £ GL2(FAf),

(i) / t is holomorphic on # J (holomorphy),
(ii) ft(z) has the following Fourier expansion:

Z&F c(tJt)exp(2iciTr(tz))

with c(£,/t) = 0 unless f > 0 for all a £ / (cuspidality).

Let Z) be the relative discriminant of M/F and let c and 9t be the integer
ring of F and Af, respectively. As the open compact subgroup V, we take
the group Va given by

c d )
a = l m o d ^ ^ d ~ l m o d

where r is the integer ring of F and c = lim t/Nt is the product of I-adic

completion of r over all primes 1. Let x •' FA/F* ~~* Zp De ^ e cyclotomic
character. If c(^,/ t) £ Q for all t £ GL2(FAf), we can associate to each / as
above the following p-adic g-expansion (cf. [H4, §1]):

f(y) = E0<UF a(tydj)q* with a(£ydj)e%,

where d is any differental idele of F (i.e., its ideal is the different of F/Q) and
y H-> a(t/, / ) is a function on finite ideles, vanishing outside integral ideles,
given by

for t =

with y<E(ad(VanFZf)F

Out of this (/-expansion, we can recover the Fourier expansion of / :

f

Z+.
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278 Hida & Tilouine - Katz p-adic L-functions

Here note that a(£yd, f)(^dy)^ is an algebraic number which is considered to
be a complex number via the fixed embedding of Q into C. When a(y, f)
is algebraic for all y with yp = 1, / is called algebraic (this is equivalent to
asking that c(£,/*) are algebraic for all t). We consider the union S(Q) of all
algebraic forms of all weight (&, v) inside the space of formal ^-expansions.
Then putting a p-adic uniform norm

|/|p = Supy|a(y,/)|p

on 5(Q), we define the space S of p-adic modular forms by the completion of
5(CJ) under the norm | |p.

Now we define the Hecke operators. For each x £ F£ with #00 = 1, we can
define the Hecke operator T{x) = Ta(x) acting on Sk,v{Va) as follows: First

take the double coset Va ( ? , ) Va and decompose it into a disjoint union

of finite right cosets U,a:,ya. Then we define Ta(x) by

/ I Ta(x)(g) = E,/(^).

Since we have taken the average of right translation of / on a double coset, we
can check easily that Ta(x) is a linear operator acting on Sk>v(VQ). Especially
the action of T(u) for u (E t* factors through (t/pat)x . Similarly, the center
FJ acts on Sk,v(Va) so that / | z(g) = f(gz). This action factors through
Z = F*/F*U(D)WF£ for

U(D){P) = {u e tx I u = 1 mod Dv and up = 1}.

Thus SktV(Va) has an action of the group G = Z x t£ and Hecke operators
T(x). The group G is a profinite group and we can decompose

G = Gtor x W

so that W ^ z{,F:Ql+1+* and Gtor is a finite group. Since MA D FA, we have
a natural homomorphism of Z into G. On the other hand, by our choice
of p-adic CM-type, we can identify tp = t ®f Zp with 9t5 = n<p€s9l<p. This
identification gives an injection of r̂  into M£ and yields a homomorphism of
t£ into G. Thus we have natural morphisms:

t:G=Zxtp
<->G and ^ : O[[G\] -> O[[G]].

We can easily check that 1 takes W into a subgroup of finite index of W and
1* is an D[[W]]-algebra homomorphism.
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Katz p-adic L-functions 279

We take the Galois closure $ of F in Q and let 53 be the valuation ring
of $ corresponding to the embedding $ into Qp. We pick an element wp

for each prime factor p of p in F such that wpt = pa for an ideal o prime
to p. We consider wp as a prime element in Fp. Then the p-adic Hecke
algebra hkiV(Dpa]V3) with coefficients in 53 is by definition the 53-subalgebra
of EndfQ(SktV(Va)) generated by

(a) Hecke operators T(x) for all x G t D F% ,
(b) the Hecke operator w~vT(wp)(wp G tp) for all p | p,
(c) the action of the group G = Z x t*.

It is well known that hk)V(Dpa; 03) is free of finite rank over 53 (cf [HI, Th.3.1]).
Especially T(wp) is divisible by wp — UaeIwp

v<r. For each extension K of Qp

containing $, let O be the p-adic integer ring of K. Then the p-adic Hecke
algebra of level Dpa is defined by

hM(Dp a ; O) = hfc>v(jDpa; 53) ®^ O.

By definition, the restriction of Tp(x) acting on SkyV{Vp) to SkiV(VQ) for /? >
a > 0 coincides Ta(x). Thus the restriction induces a surjective O-algebra
homomorphism:

which takes Tp(x) to Ta(x). Thus we can take the projective limit

^ ) = lim h M (
a

which is naturally an algebra over the continuous group algebra O[[G]]. For
each a, we can decompose

hk,v(Dpa;O) = K::
rd(Dpa;0) x h'kv{Dpa;O)

so that p~vT(p) is a unit in h£°rd(i2pa;:O) and is topologically nilpotent in
hs

kv(Dpa;Q). Then basic known facts are (see [H2]):

(HI) The pair (hk)V(Dp°°;Q),x-vT(x)) is independent of (k,v) if k > 2t,
where t =

In fact, the union SktV(Voo) = UaSk>v(Va;"Q) of all algebraic modular forms
of weight (k,v) is dense in S and thus the algebra hk)V(Dp°°;O) can be con-
sidered as a subalgebra of End(S') topologically generated by x~vT(x) and
it is independent of (k,v). Now we can remove the suffix (k,v) from no-
tation of the Hecke algebra and we write h(Z?;O) (resp. h = hnord(D;Q))
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280 Hida & Tilouine - Katz p-adic L-functions

for hktV(Dp°°;Q) (resp. h£;°rd(Z?p°°;£))). In other words, there is a universal
Hecke operator T(:r) G h(J9;O) which is sent to x~vT(x) under the isomor-
phism: h(D;O) ^ h ( )

(H2) h is of finite type and torsion-free as D[[VK]]-module.
(H3) There exists an OftW^-algebra homomorphism 6* : h —> O[[G]] such

that for primes outside Dp
] [ ] i ; r . . M

if 4 remains prime m M

where [£] is the image of the prime ideal O. under the Artin symbol.
This statement is just an interpretation of the existence of theta series 0((p)
for each A0-type Hecke character (p of G characterized by

( i f ( ) p ( ) ) ( p ) j . .
^ Q ^ q remains prime m M.

By (H3), we may consider the composite A, o 5* : h —> A.

(H4) After tensoring the quotient field L of A over Ao = O[[W]], we have a
A0-algebra decomposition

h ®Ao L = L © B for a complementary summand B,

where the projection to the first factor is given by A* o 0*.

Then the congruence module of A* is defined by

(H5)

The congruence power series H is then defined by the characteristic power
series of C(A*; A). By definition, the principal ideal HA is the reflexive closure
of the ideal h ®Ao A D L in A.

3. We now give a sketch of the proof of Theorem 2.1. The idea of the proof is
the comparison of two p-adic interpolations of Hecke L-functions of M. One
is Katz's way and the other is the p-adic Z-function attached to the Rankin
product Z-function of 9(XP) and ^(//Q). Here fx is another character of Gtor

and we extend it to a character //* : G —> Ax similarly to A*. In fact, we
can show by the method of p-adic Rankin convolution ([H4, Theorem I]) that
there exists a power series A in O[[W x W]] such that

A(P,Q)
H(P) °Kr^> (6(\P),6(\P))
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Katz p-adic L-functions 281

whenever both P and Q are arithmetic and both XP
1/J,Q and Ap1(//g) are

critical. Here D(s,#(Ap),0(//Q)c) is the Rankin product of 0(XP) and 0(//Q)C,

i.e., the standard L-function for GL(2) x GL{2) attached to the tensor product
of automorphic representations spanned by 0(XP) and 0{jiQ)c\ (0(XP),0(XP))
is the self Petersson inner product of 6(XP) and c(P, Q) is a simple constant
including the modifying Euler p-factor, Gauss sums, V-factors and a power of
7T. The integer m(P) is given as follows: Write the infinity type of XP as £ and
ra(P) = £a + ^cp for a G S (this value is independent of a). Similarly m(Q)
is defined for /J,Q. NOW looking at the Euler product of D and the functional
equation of Hecke L-functions, we see

) « L(0, A^V

It is also well known that, with a simple constant c(P) similar to c(P,

(6(\P),6(\P)) =

Modifying the Katz measure L in O[[G]], we can find two power series U and
L" in O[[W x W]] interpolating 1(0, ApVq) and Z(0, ApVg), respectively.
Then out of the above formulas, we get the following identity:

where U is a unit in O[[W x W]]. Thus if Lf and L" are prime to L~ in
O[[W x W]] ®z Q, we get the desired divisibility. Almost immediately from
the construction of L' and L'\ we know that for any character P £ £(W)
the half specialized power series L'P{X) = L'(P,X) and LP{X) in O[[W]]
have their //-invariants independent of P, equal to the //-invariant of the
Katz measure along the irreducible component of A"1// and A-1//c. If (a
characteristic 0) prime factor P(Y) (in On[[W]]) of L~(Y) divides / / , then
by letting P approach to a zero of P, we observe that the //-invariant of L'p
goes to infinity, which contradicts the constancy of the //-invariant of UP.
Thus L~~ is prime to L'L" in O[[W x W]] ®z Q, which shows the desired
assertion. Especially if the //-invariant of the Katz measure vanishes, then we
know the strong divisibility as in the theorem.

4. Now we explain briefly how one can show the other divisibility: H \ Iw~ by
using Mazur's theory of deformation of Galois representations. We keep the
notations and assumptions introduced above. In particular, we assume the
ordinarity hypothesis and fix a p-adic CM-type 5. To the pair (5, A), where
A is a given character of Gtor, we attached a congruence module, with charac-
teristic power series H. On the other hand, let ¥«, be the maximal abelian
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282 Hida & Tilouine - Katz p-adic L-functions

extension of M unramified outside p of M; so, we have G =
We have defined a character A* : G —> Ax for A = O[[W]] for a fixed finite
order character A : Gtor —> Dx. In fact, on Gtor, A,,, coincides with A and on
W, it is the tautological inclusion of W into A. Define the '—' part of A*,
which we write as a = ct\, by

a = A^A:)"1 for AJ(or) = X^cac'1).

Let M~ = M~(A_) be the fixed part of M^ by Ker(a), which contains
G+ = {a G G | c(a) = a}. We write H = Gal(M"(A_)/M) £ Im(a). Let
Ms(A_) be the maximal p-abelian extension of M~ unramified outside S.
One can prove, under a weak Leopoldt type assumption for the extension
M"(A_)/M (for details of this assumption, see our forthcoming paper), that
Xs = Gal(Ms(A_)/M") is torsion over ZP[[H]]. The character A" = A/Ac :
Gtor —> Ox factors through the torsion part Htor of H and the characteristic
power series of the A"-part XS(X~) = Xs ®zp[utOT] ^(^~) °f Xs is nothing but
Iw~. Then the precise result, we can obtain at this date is as follows:

Theorem 4.1 (i) If [F:Q]>1JH divides (h(M)/h(F))Iw in £>[[W]].

(ii) If M is imaginary quadratic, then H divides h(M)Iw~ in £)[[W]] unless
A~ = A/Ac restricted to the decomposition group D of p̂ in G is congruent
to 1 modulo the maximal ideal TTD of O. In this exceptional case, we need to
exclude the trivial zero, i.e., the divisibility holds in O[[W]][^-], where Px is a
generator of the unique height one prime ideal corresponding to the character
rA : H -> Dx such that rx(D) = 1 and rA | Htor = A".

Comments (a) By a base change argument in Iwasawa theory, one can prob-
ably include the 'trivial zero' PA. Nevertheless, the argument possibly needs
a sort of multiplicity one result for 'trivial zeros' of the Katz-Yager p-adic
L-iunction which needs to be verified.

(b) The reason why things become easier when [F : Q] > 1 is contained in
the following easy lemma. To state the lemma, let us recall the character
A, : G -> O[[W]] given by

K(g, w) = X(g)w e O[[W]] for g G Gtor

and w G W in §2.

Lemma ^.2 (i) If [F : Q] > 1, the ideal 0 generated by the values A*(cr) —
A1,(c(cr)), a running over the decomposition group Dp at p in G is of height
greater than 1, i.e., is not contained in any prime of height one in A = O[[W]].
(ii) If F = Q, this ideal is contained in P\A.
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The outline of the proof of Theorem 4.1 runs as follows. Let us fix a prime P
of height one such that the restrictions of A and Ac to Dp are not congruent
modulo P for all prime p in F over p (by Lemma 4.2, this gives no restriction
when [F : Q] > 2). We consider the complete discrete valuation ring Ap with
residue field k(P) and look at the residual representation

p0 : Gal(Q/F) - • GL2(k(P))

given as the reduction modulo P of the induced representation p0 of A* :
Gal(Cj/M) —> Ax. By the choice of P, A ^ Ac mod P, hence />0 is irreducible.
The main step in the proof of Theorem 4.1 is to relate XS(X~) <8>A Ap to a
module of Kahler differentials attached to some deformation problem of ~p0

over Ap. Since k(P) is not a finite field, the study of this deformation problem,
though very similar to the one made by B. Mazur in [M], is slightly trickier.
To define this problem, we need to introduce some notations. First, let N be
the ray class field of M of conductor p (one has of course N inside Moo) and
N^ be the maximal p-extension of N unramified outside p. It is clear that ~p0

restricted to Gal(Q/JV) factors through 11* = Gal(iV<P77V), so that, for the
deformation problem of p0, we can restrict ourselves to representations p of
II = Gal(JV(p)/P)- The great advantage of such a limitation in the choice of
/o's is that II is topologically of finite type (11^ is a pro-p-group and its Frattini
quotient is finite by Kummer theory over N). Now, let Art be the category
of local artinian Ap-algebras with residue field &(P), Sets the category of sets
and 5 the covariant functor

5 : Art -> Sets

given for A £ O6(Art) with maximal ideal mA by

5(A) = {p : II —> GL2(A) \ p is finitely continuous and

p mod mA = ~p0}/ » .

Here (i) ' « ' denotes the strict equivalence of representations, that is, conju-
gation by a matrix in GL2(A) congruent to 1 modulo m .̂

(ii) The phrase 'finitely continuous' means that there exists a A-submodule
L in A2 of finite type stable by p generating A2 over Ap. The reason for
this definition instead of usual P-adic continuity is that Ap is not locally
compact for the P-adic topology, but II is even compact. Hence a P-adically
continuous representation should have a very small image, and in some sense,
we look for representations with open image (over A). Note that a finitely
continuous representation induces a continuous representation: n —> GL(L),
L being endowed with the usual m-adic topology for the maximal ideal m of A.
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This notion of 'finite continuity' does not depend on the choice of the lattice
L by the Artin-Rees lemma. We can extend this notion of finite continuity
to any map u of II to an A-module V requiring that u having values in a
A-finite submodule L in V and the induced map u : II —> L is continuous
under the m-adic topology on L. This generalized notion will be used later
to define finitely continuous cohomology.

By using the fact that ~pQ is induced from a finitely continuous character:
II —> k(P)x, it is not so difficult to check by Schlessinger's criterion the
following fact:

Theorem 4-3 The functor 5 is pro-represent able; that is, there exists a unique
universal couple (R',pf) where R' is a local noetherian complete AP-algebra
with residue field k(P) and p' G $(R!) = lim d(R'/m%).

a

Comments a) The 'continuity' property p' enjoys should be called 'profinite
continuity', meaning that for any artinian quotient tp : R' —> A of R\ <p o p'
is finitely continuous. There is also an obvious notion of profinite continuity
of maps from II to any Ap-module.

b) It is natural to ask for the pro-representability of this problem starting from
an arbitrary irreducible finitely continuous representation ~pQ. The answer is
not known in general because of the lack of a cohomology theory adapted to
finite continuous representations and subgroups of GL2(k(P)). Such theory
is available when k(P) is a p-adic field, due to Lazard [L], and allows us to
give a positive answer in this case. See Appendix below.

In fact, the universal ring we need is smaller than R'. It will pro-represent a
subfunctor $s of 5 requiring local conditions at primes of F above p (these
conditions involve the choice we made of a p-adic CM-type S). We call
this problem the S-nearly ordinary deformation problem of ~p0. For ty in 5,
recalling p = p̂ fl F, we choose Dp so that Dp is the decomposition group
of p̂ in n M = Gal(N(pS)/M). A strict equivalence class [p] in ff(A) belongs
to $s(A) if and only if for any representative /?, the following conditions are
satisfied:

(4.1a) For each prime p above p in F, there exists a finitely continuous char-
acter 6P : Dp —» Ax such that p restricted to Dp is equivalent (but not

necessarily strictly) to ( Q C );
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(4.1b) 6P is congruent modulo m^ to the restriction of A* to Dp and 6P re-
stricted to the inertia subgroup Ip of Dp coincides with the restriction to Ip

of A

(4.1c) det(p) = det(po) (considered as having values in A via the structural
morphism: A —> AP —• A).

One can deduce from Theorem 4.3 that 5s is pro-represent able. We denote
by (i?5,/95) the corresponding universal couple. Let us define a Ap-module
2ffj> by

2UP = U£=1P-mAP/Ap = L/Ap,

where L is the quotient field of A. Then ffiP is the injective envelope of
k(P). We consider the algebra RS[WP] = Rs © 2UP with 2Up = 0. One can
consider, by abusing the notation, $s(Rs[%3p])' Namely $s(Rs[%Bp]) is a set
of profinitely continuous deformations of ~p satisfying the above conditions
(i), (ii) and (iii). Since II is topologically finitely generated, by the profinite
continuity, p has image in a noetherian subring Rm = Rs[P~mAP/AP] for
sufficiently large m. Thus we have a local A-algebra homomorphism <pp :
Rs —> Rs[%Bp] such that p « (pp o ps. Now we consider the subset

$o(Rs[Wp]) = {p€ $s(Rs[mp]) | P mod 2HP = ps}.

We also define SectA(Rs[$Bp]/Rs) to be the set of continuous sections (under
the mHs-adic topology) <p : Rs —> i2s[2UP] as i25-algebras whose projection to
2Up is contained in P~mAP/AP for m sufficiently large. We put

3/2(2Hp) = {x e M2(2Up) | Tr(x) = 0},

which is a module over II under the action: ax = ps(x)xps(x)~1. We consider
the cohomology group J71(n,6/2(2Up)), which is the quotient of the module
of profinitely continuous 1-cocycles on II having values in sl2(P~mAP/AP)
for sufficiently large m modulo usual coboundaries. In fact, for each p G

$Bp])> ¥P '• Rs —* Rs[%Bp] is a A-algebra homomorphism. If p G
$Bp]), then by the fact that p mod 2UP = ps, IT o <p = id^ . Thus

we have a morphism: $o(Rs[%Bp]) —* SectA(Rs[$BP]/Rs)- This morphism is
of course a surjective isomorphism because for <p G SectA(Rs[%8P]/Rs), <po ps
is an element of $o(Rs[$Bp])> Therefore we know that

(4.2) 3O(RS[WP]) = SectA(i?5[2Up]/i?5).

For each p G S, we can find ap G GL2(Rs) such that

f o r a11 a e D>

and <5p = Ac mod
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We fix such a ap for each p. Then we define the ordinary cohomology sub-
group H*rd(U, sl2(%Bp)) by the subgroup of cohomology classes of cocycle u
satisfying, for every p dividing p in F,

Theorem 4-4 We have a canonical isomorphism:

where the Kahler differential module £lRs/Ap is defined to be the module of
continuous differentials, i.e., CtRs/Ap = I/P for the kernel / of the multiplica-
tion map of the completed tensor product Rs®ApRs (under the adic topology
of the maximal ideal of Rs <g)Ap Rs) to i?5.

Proof For each p G $o(Rs[WP]), we define u : II -» M2(2UP) by

p((7) = (1 0 u(<r))ps(<r) for J G I I .

Since /9$ and p are both profinitely continuous, u has values in P~mAp/Ap for
sufficiently large m and is profinitely continuous. Then by (6.1c), we know
that det(ps) = det(p). This shows that u has values in sl2($Bp). Similarly

by (6.1b), we know that {( Q Q )} D apt^/pja"1. By the multiplicativity:
p(a)p(r) = /o(crr), we see easily that u is a cocycle and u is a coboundary
if and only if p w ps. Thus the map 5o(^5[2Bp]) —> / /^ ( I I , s/2(2tfp)) is
injective. Surjectivity follows from the fact that we can recover a profinitely
continuous representation out of a profinitely continuous cocycle by the above
formula. Namely we know that

=

If we have a section <p G SectA(Rs[%0p]/Rs), we can write ip{r) = r © dv(r).
Then d^ G DerA(jR5,2Up) = EomRs(CtRs/A,W3P). It is easy that from any
derivation d : Rs —* 2Up, we can reconstruct a section by the above formula.
Thus we know that

3 SectA{Rs[WP]/Rs)

which conclude the proof by (4.2).

We have an injection

res : H^sl^Wp)) -> H\nM,sl2(<mP)f*M'F\
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Note that as IIM-module, sl2(mP) = 2ffp(a) © Wp(a~1) © 2UP, where a =
K(K)'1 a n ( i %Bp(a) — ^ P a s A-module but II acts via the one-dimensional
abelian character a. The action of c interchanges 2Up(a) and WP(a~l) and
acts by —1 on 2Up. Thus we see

#HnM,*/2(^p))Gal(M/F) = ^ ( n ^ a M * ) ) e Homconti(G/(i + C)G,WP).

Recall that M~(A_)/Af is the extension corresponding to Ker(a). The in-
clusion of ^1(nM,2Up(a)) into H1(TLM,sl2(9Bp))Q*M/F) is given in terms of

cocycle by the cocycle U such that U(a) = I /c \ n ) f°r C<T = ccrc~l-
From this, it follows, by the ordinarity condition,

resnM_(u)(c/<pc"1) = resnM_(u)(J<pc) = 0 for all V e 5,

where M" = M"(A_). Namely resnM. (w) is unramified outside S. Thus we
have a natural map:

res : ifo
1

rd(nM,2»p(a)) -

Comments We omitted a from the module of extreme right, because the
A_-module structure on WP given by a coincides with the natural structure
given by the inclusion A_ = O[[W"]] into A through the A-module structure
of 22Jp. Moreover we can write the extreme right as

HomA_(X5(A-),2Up) = HomA(X5(A-) <g>A_ A,S0P).

Thus the variable coming from the '+ ' part W + in A is just a 'fake' and the
divisibility we will obtain is in fact the divisibility in A_ although we have
variables coming from W + inside the Hecke algebra. This is natural because
Xs(\~) is a A_-module. The use of 4+'-variables is inevitable because we do
not know a priori that the congruence power series belongs to the '—' part.
In the appendix, we prove that when JP = Q, the congruence power series
belongs to the ordinary part of the Hecke algebra, which can be regarded as
the '—' part in our situation.

It is not difficult to show that the above map: res. is injective; namely,

Corollary 4.5 HomA(X5(A-) <g>A_ A,2Hp) D ifo
1

rd(nM,2UP(a)).

Since the inclusion of Homconti(G/(l + c)G, WP) into ff1^, s/2(Jp))Gal(M/F)

is given in terms of cocycle by

we know that if U is ordinary, then u is unramified everywhere. Let Cl~ be
the '—' quotient of the ideal class group of K. We thus know that
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Theorem 4.6 H*rd(U,sl2(VBp)) = HomAp(fi/t5/Af, ®RS AP,2ffP) injects natu-
rally into

HomA(X5(A-) ®A_ A, WP) © Hom(C/-, 2UP)

as A-module.

To relate Xs(\~) to the congruence power series, we recall the morphism
\+ o 0* : h —• A seen in §2, H3. Let Ro be the local ring of h through
which the above morphism factors. To make Ro a A-algebra, we consider
R = Ro ®A0 A, which is still a complete local ring. Consider the module of
differentials €x = CIR/A ®R A introduced in [HI, p. 319], where the tensor
product is taken via

R -> A ®Ao A - • A,

which is A* o 0* composed with the multiplication on A. Let RP be the com-
pletion of the localization of R at P. In [H3, Th.I], an 5-nearly ordinary
deformation pmod : II —> GL2(Rp) of (k(P),~p0) has been constructed. Es-
pecially RP is generated over AP by Tr(/>mod), and hence, the natural map
(p : Rs —> Rp which induces the equality [<p o ps] = [pmod] is surjective. Then
cp induces another surjection

¥>* : ®>Rs/Ap ®Rs AP -> Cx ®A AP.

This combined with Theorem 4.6 yields

Theorem 4.1 We have a surjective homomorphism of A-modules:

(Xs(x-) ®A_ A') © (cr ®z AO -> tu

where A; is either A or A[~] in Lemme 4.2 according as F =fi Q or F = Q and

A_ mod TTD is trivial on Dp.

As explained in [T2], there is a divisibility theorem proven by M. Raynaud:

Theorem 4-8 H divides the characteristic power series of Ci in A.

Then Theorems 4.7 and 4.8 prove Theorem 4.1.

Although we have concentrated to the anti-cyclotomic tower, there is a (hy-
pothetical) way to include the case of the cyclotomic tower. To show the
dependence on F , we add subscript F to each notation, for example Lp for
L~ over F. Supposing the strong divisibility in A : Lpn \ Iwpn for the nth
layer Fn of the cyclotomic Zp-extension of F for all n, we hope that we could
eventually get the full divisibility: L \ Iw over Ft But for the moment, this
is still far away.
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Appendix 289

APPENDIX
Let F/Q be a finite extension and fix an arbitrary finite Galois extension N/F.
Let N^/N be the maximal p-profinite extension of N unramified outside p
and oo. Put II = Gal(N^/F). In this appendix, we shall prove the existence
of the universal deformation for any (continuous) absolutely irreducible Galois
representation ~p : II —> GLn(K) for a finite extension K/% and then we prove
the divisibility in A' (as in Theorem 4.7) of h(M)Iw~ by H when M is an
imaginary quadratic field. Let A be a noetherian local ring with residue field
K and suppose that A is complete under the m-adic topology for the maximal
ideal m of A. We consider the category ArtA of artinian local A-algebras with
residue field K. For any object A in ArtA, the p-adic topology on A gives a
locally compact topology on GLn(A). We consider the covariant functor

3 : ArtA -> Sets

which associates to each object A in ArtA a set of strict equivalence classes of
continuous representations p : II —> GLn(A) such that p mod mA = ~p. Then
we have

Theorem A.I 5 is pro-representable on ArtA.

Proof We verify the Schlessinger's criterion H{ (i = 1,2, . . . ,4) for pro-
representability ([Sch]). The conditions ifl9 H2 and HA can be checked in
exactly the same manner as in [M, 1.2]. We verify the finiteness of tangential
dimension; i.e.,

H3: dimK$(K[e]) is finite, where K[e] = K © Ke with e2 = 0.

If p € 5(iiT[£]), then we define a map u = up : II —> Mn(K) by p(a) =
(l©u((r)e)p(cr). Since p is continuous, u is a continuous 1-cocycle with values
in the II-module Mn(K), where II acts on Mn(K) by ax = ~p{cr)xp{a)~l. On
the other hand, if we have a continuous 1-cocycle u as above, we construct
a representation p by p(a) = ( 1 0 u(a)e)~p(cr). As a map to Mn(K), p is
continuous. Then p is finitely continuous as a representation. Thus the map
S^iffe]) —• Hl(U)Mn(K)) is surjective. Here CHC' indicates the continuous
cohomology. We see easily that u(a) = (a — l)m if and only if (1 ©m)"1/?^ ©
m) = p (i.e., p is strictly equivalent to />, which is the 'zero' element in
S(K[e])). Thus we have

and

(A.I) Hl(U,Mn(K)) = Hl(U,sln(K)) © Hom ÎI,
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By class field theory, Homc(II, K) is finite dimensional. We now claim

(A.2)

Let us prove this. Let F^ be the subfield of N^ fixed by Ker(7>). Since
cohomology groups of a finite group with coefficients in finite dimensional
vector space over K are finite dimensional, we may replace II by any normal
subgroup of finite index because of the inflation-restriction sequence. First
we may assume that H = Im(/5) is a pro-p-group without torsion and that
FQQ/N is unramified outside p and oo. Then applying a theorem of Lazard
[L, III.3.4.4.4], we know that H has a subgroup of finite index which is pro-
p-analytic. Hence we may even assume that H itself is pro-p-analytic. By
inflation-restriction sequence, the sequence:

(A.3) 0 -» H\{H,sln(K)) - H}(U, sln(K)) -> Horn*(Ker(p),sln(K))

is exact. Let Moo/l^ be the maximal p-abelian extension unramified outside
p and oo and X be the Galois group Ga^M^/F^). Let A = Zp [[#]]. Since
H is pro-p-analytic and is contained in the maximal compact subgroup of
GLn(K), we know that X is a A-module of finite type by [Ha, §3]. The
maximal topological abelian quotient Kev("p)ab is a quotient of X and hence
of finite type over A. This proves that

(A.4) dim*Horn*(Ker(7>), sln(K)) < +oo.

Thus we need to show the finite dimensionality of Hl(H,sln(K)). Let # be
the Lie algebra of G f) H. Then again by a result of Lazard [L, V.2.4.10], we
see

Hl(H,sln(K)) £ H\H,H\f>,sln{K))),

which is finite dimensional.

Let h0 = h°rd(jD;O) be the ordinary Hecke algebra defined in [HI, Th.3.3]
for any positive integer D prime to p. In this case G in §2 is just 2xZp

x for
Z = ((Z/DZ)X X Z£)/{±1}. Then we have

Theorem A.2 Suppose that p > 5 and F = Q. Let x '• Ax -> Zx be the
cyclotomic character such that x(wi) = f f°r the prime element Wj in Q,
(1 ^ p). Then we have an O[[G]]-algebra isomorphism:

which is given by T(x) H->T(X) ® \x{x)] for all x € Z H A). Here h0®oO[[Z£]]
is the profinite completion of h0 ®$ &[[<?•%]]? i-e-? ni-adic completion for the
maximal ideal m of Ao.
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Proof Let S(O) = {/ G S \ a(yj) G 0} and S = eS(Q) for the idempotent
e of h in h(D] O). Let So be the ordinary subspace of S which is denoted by
S^iD]O) in [HI, p. 336]. Then it is known that the pairing given by

(A, / ) = a(l, / | h) on h x S and h0 x So

is perfect in the sense that HomD(h, O) = S and vice versa [H4, Th.3.1].
For any character %j? : Z* —• Qp and / G S, / ® ̂ (j/) given by a(yy f ® ̂ ) =
i/>(x(y))a{y>f)ls again an element in 5 with /®^> | e = / ® ^ (cf. [H4, §7.VI]).
This shows that we have a natural O[[G]]-linear map m : S0®oC(l* ; O) —> S
given by

where <t(Z£;O) is the Banach O-module of all continuous functions on Z*
into D and S0®o€(Z£ ;O) is the p-adic completion of So ®0 C(Z*;O). Note
that Homo(S0®o£(Zp ;£)>£) - ho®0£[[Zp]]- It is easy to verify that the
dual map m* : h —> h0®oQ[[l*]] is in fact an O[[G]]-algebra homomorphism.
Since the projection map h —> h0 is surjective by definition and since any
[z'1] e D[[l*]] for z G Z£ is the image of T(z), m* is surjective. Note that
ho®o^[[zp 11 ^s ^ree °f finite r a n ^ over Ao by [H7, Th.3.1]. Since h is torsion-
free over Ao and its generic rank is equal to that of h0®o^[[^p ]]» w e conclude
that ra* is an isomorphism.

Corollary A.3 The congruence power series H can be chosen inside A_.

By this corollary, when F = Q, it is sufficient to consider only ordinary
Hecke algebras instead of nearly ordinary Hecke algebras and only ordinary
deformations instead of nearly ordinary deformations. To make this fact
more precise, let M/Q be an imaginary quadratic field of discriminant D
satisfying the ordinarity hypothesis: p = ^ptpc. We also assume that p >
5. Let L (resp. L*) be the maximal abelian extension of M unramified
outside <p (resp. <pc). Let Gcw = Gal(L/Af) and G*cw = Gal(L*/Af) and
Wcw (resp. W*w) be the maximal torsion-free quotient of Gcw (resp. G*cw).
Then the restriction map gives an isomorphism W = Wew x W*w. Thus
ot : WCV) 3 u i H wcw~lc~l G W_ gives an isomorphism. Similarly, without
losing generality, we may assume that A : Gtor —> Dx factors through Gcw.
We decompose Gcw = A x Wcw. Let A_ = O[[WCM;]] identifying W^ with
Wcw. We consider the character A* : Gcw —> A_ such that A*(5, w) = A(̂ )[w;]
for 8 G A and w G W. It is known that the //-invariant of Iw~ and L~ are
both trivial [G]. Thus we only worry about height one primes P (in A_) of
residual characteristic 0. We take iV/Q to be the ray class field of M modulo
p and consider the Galois group n as in Theorem A.I. Let K be the quotient
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field of A_/P. Then K/Qp is a finite extension and we consider the Galois
representation:

pQ = Ind^(A.) : n - GL2(A_), and

pP = I n d ^ A , mod P) : II -> GL2(K).

Suppose that P ^ Px as in Lemma 4.2. Then /?p is absolutely irreducible.
Let A be the P-adic completion of the localization of A. at P. Let Art be
the category of artinian local A-algebras with residue field K. Any object A
in Art is a locally compact ring with respect to p-adic topology and thus we
do not worry about 'finite continuity' etc. Let (R\ p') be the universal couple
representing the functor 5 : Art —> Sets defined for ~p = pP. We consider the
subfunctor of 5

d A r t

which associates to A G O6(Art) the set of strict equivalence class of repre-
sentations p : II —> GL2(A) such that

(i) p mod mA = pP,

(ii) There exists a continuous character 8 : D<p —» Ax such that p restricted
to D<$ is equivalent (but not necessarily strictly) to f ^ r j ;

(iii) 6 is congruent modulo m^ to the restriction of A£ to D<$ and 8 restricted
to the inertia subgroup Ip of Dp coincides with the restriction to Ip of
A£ (i.e., 8 is unramified at qj)

(iv) det(/o) = det(p0).

We say that an ideal a of R is ordinary if p1 mod a satisfies (i), (ii), (iii) and
(iv). Then it is an easy exercise to verify that if a and b are ordinary, then
a + b and a f) b are ordinary. Namely for 0 = fl ̂ ordinary &> -R°rd = i ? / J and
pord _ /̂ m o c[ g represents 5ord. Then the same argument as in §4 prove that
H | h(M)Iw~. From Theorem 2.1 and the vanishing of the //-invariant [G],
we conclude

Theorem A.4 Suppose p > 5 and that M is an imaginary quadratic field. Let
A; = A_[j^] if A_ mod TTO is trivial on D<$ and otherwise we put A' = A_.
Then we have

h(M)L~ \HmA_ and H \ h(M)Iw~ in A'.

Although we confined ourselves to characters A of p-power conductor, similar
result holds for any character whose conductor is prime to its complex con-
jugate. We hope to prove the divisibility even at the 'trivial-zero' Px in our
subsequent paper.
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