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ABSTRACT. The proof of [H04, Theorem 3.2], [HO7, Theorem 4.2] and [EAI, Theorem 8.25] is based
on the assertion claiming that the Zariski closure in the Hilbert modular Shimura variety of an
infinite set of CM points stable under the action of a CM torus contains an irreducible component
of positive dimension with a CM point in the starting infinite set. More than 7 years ago, Akshay
Venkatesh pointed me out that this fact might not be true for a non-noetherian pro-variety like
Shimura variety. I would like to present an argument proving this fact under an extra requirement
on the starting infinite set of CM points. Thereby the assertion of [H04, Theorem 3.3], [H07,
Theorem 4.3] and [EAI, Theorem 8.31] on non-vanishing modulo p of Hecke L-values is valid for
“Zariski dense” characters in the sense of these articles. In some special cases, non-vanishing is
claimed for “except finitely many characters” in these articles, which is still an open question.
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Recall from [H04] the base totally real field F with integer ring O and the CM quadratic extension
M/, with integer ring R. We fix a prime p > 2 unramified in M/Q each of whose prime factors
in O splits in M/F. We call such a CM field p-ordinary. Fix a prime ideal [ of O prime to p with
residual characteristic £. Let R, = O + ["R (the order of conductor [") and put Cl,, = Pic(R,).
Since O C R,,, we have a natural map Clp := Pic(O) — Cl,,. We write Cl, := Coker(Clp — Cl,).
Let Clo = lim Cl, and Cl3 := lim Cl; under natural projections. The group of fractional
R-ideals prime to [ is naturally embedded into Cls whose image in Cly, (resp. Cl3)) we write as
Cl1% C Cly (resp, C*9 C Clg). Decompose Cl, = A~ x T for the maximal finite group A~ and
Zy-free T'. Since Clp is finite, I' can be identified with the torsion-free part of Cl.,, and we have
a decomposition Cly, = I' x A with A surjecting down to A~ under the projection Cly, — CI3.
Write d = rankz, T' and choose a basis 71,...,7vq of ' over Z;. Let F (resp. Q,) be an algebraic
closure of F,, (resp. Q¢). We identify gy (F) = pp (Qy) as an ¢-divisible group, and write it just as
Heoo

For each projective fractional R,-ideal A, we defined in [H04, §2.1 and §3.1] a CM abelian variety
X (A) of ordinary CM type ¥ and the associated CM point z(A) = xx(A) on the Shimura variety
Sh for G = Resp/gGL(2) (see Section 3), which only depends on the ideal .A and a chosen p-ordinary
CM type X. For an open compact subgroup K = GL2(0,) x K (P) the point z(A) gives rise to a
point zx (A) = (z(A) mod K®)) € Shyx = Sh®) /K which often we write z:(A). Choose suitably
an irreducible component V' of the Shimura variety of prime-to-p level defined over an algebraic
closure F = F,, of F,. We just fix a finite extension W of W (F) inside C, and put W =W, = WNQ
for the algebraic closure Q C C,. We embed Q into C. We take a U([)-eigenform g/, and put

Ko
f = 6%g for the Ramanujan differential operator 6 given by []_ (qg%) with K, > 0 for the

g-expansion variables ¢, = exp(2miz,). We use the same symbol f also for f/r := f mod my
defined over F. Here g can have I'g-type level [" at [ for any finite n > 0. In [HO04] and [HO7], we
only allowed I'g-type level [ for g just because we needed only an Eisenstein series of level [ for g.
The argument works well for a U([)-eigenform g with any high power level [ of T'g-type.

Write T',, for the image of ' in Cl; (for small n, it can be just {1}). We fix a character 1 :
A~ — F* to project the measure originally defined on CI, to I',, (see Lemma 4.2 in the text).
To define the measure, we need to replace f(z(A)) by f([A]) := A7*(A) f(x(A)), choosing a Hecke
character of infinity type kX + (1 — ¢) and of conductor € prime to p¢ so that f([.A]) only depends
on the class [A] € Cl;; for all n (see §4.1 for more details of the choice of A\). This allows us to
define a “measure” doy = dpy., on the finite group C1,; by fcz; ddosn =3 aeci: P([ADS([A]).
If fIU() = af with a # 0, the measures (A()N(I)a=!)"dpy,,, patch into a unique measure dipy
on Cl, but if fl[U(I) = 0, this is just a collection of measures {dys,}n. In the application to
Hecke L-values, g is given by an Eisenstein series, hence f|U(l) # 0 always (i.e., the automorphic
representation spanned by an Eisenstein series is never super-cuspidal at any finite places). However
for a cusp form g which is highly ramified at [, f|U(I) = 0 can happen (even if we assume that A is
unramified at [).

Let Fq be the field of rationality of f/p, ¢ and A modulo myy, and define an integer 7 > 0 such that
¢-Sylow subgroup of Fq[e]* has order €7 (i.e., pupoo (Fq[pe]) = per (Fglpee]) and €7]|(q — 1)). Though
the measure is defined in the earlier papers for f with non-zero eigenvalue for U([), in this paper
we define a measure on Cl, for each finite n even for f with f|U(I) = 0, and the argument goes
through even for f killed by U(l). The non-vanishing of the U([)-eigenvalue is necessary to patch
the measure on C!;; for each n to get a measure on Cl__, but this patching argument is not essential
in the proof of non-vanishing results. Also if f|lU([) = 0, [,,- x¥dpsn # 0 can happen only for
the minimal n for which the integral is well defined. To projegt the measure dyy,, to I'y,, we need
to modify f into a modular form f; and further to a function ff : U, Cl,, — F which involve a

transcendental operation depending on a choice of a finite subset Q of Cl7 /C%9 (see (4.7)) so that
Jr Xd(Pff,n = Jor x¥dpy .y, for all n and all characters x : T';, — F*. Indeed, we embed | |, CI;;

into the product V< of Q-copies of V, choose an infinite subset Z of the disjoint union L, Cl,, and
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study the Zariski density in V< of the embedded image = < V<. Roughly speaking, defining n
by m € n < P € E comes from CI, (so, 2 C | |,,¢, Cl;,) and assuming that Z is stable under
a natural action of K* associated to the embedding | |, Cl;; — V<, we prove in Corollary 2.12
the desired Zariski density if = contains an infinite arithmetic progression. This is the key new
result in this paper which was not in the earlier works [H04], [HO7] and [EAI, Chapter 8]. Indeed,
Corollary 2.12 is used in [He25] to include the conjugate self dual characters for non-vanishing not
treated in the above papers. Assuming F' = Q, by a method different from the one presented in
this article, [BHKO] proves, not only for self dual cases, but the stronger non-vanishing, meaning
“except for finitely many” (resurrecting some result claimed in [HO7, Theorem 4.3]).

We regard the set of continuous characters Hom(T', juy=) as a subset of G, (Q,) by sending a
character x to (x(71), ..., x(7a)) € ule(Qp) C G (Qy). A subset X of Hom(T, jup) is said to be
Zariski dense if X is Zariski dense in G¢, over Q,. This notion of density is independent of the choice
of the basis {v;};. Write cond(x) for the conductor of x which is a power of [.

Here is a new version of [H04, Theorem 3.3] and (a part of) [H07, Theorem 4.2]:

Theorem 0.1. Suppose that there exists ¢ € F N Oy in each class v € (O/VO\)* for a sufficiently
large 5 > 1 (for a specific r > 0 defined in (4.16)) only dependent on [ (not v) such that the
g-expansion coefficient a(, fy) # 0 in F at an infinity cusp of V.. Then the set of characters
x € Hom(T, pyoo (F)) such that fcz; XYdpyn # 0 for n given by cond(x) = " is Zariski dense in

d
Gm/@z ’
In [HO4, Theorem 3.2], [HO7, Theorem 4.2] and [EAI, Theorem 8.25], when rankz, I' = 1, we claimed
a stronger version of Theorem 0.1 asserting non-vanishing of the integral for “except finitely many
characters” x. This stronger version is still an open question and is used to provide strong arithmetic
applications in [Hs14a] and [020]. Hence at this moment, the proof of these applications (including
the Eisenstein divisibility towards the Iwasawa CM main conjecture in [Hs14a]) is still incomplete.
Providing a proof of non-vanishing of the integral for “except finitely many characters x” (at least
in the rank 1 case) is an ongoing focus of current research (cf. [B20], [He25] and [BHKO]). Indeed,
in [BHKO], the authors announced that the proof of the Eisenstein divisibility by Hsieh in [Hs14a]
would be completed by a strategy related to their paper.

Taking an Eisenstein series as the starting modular form g, for any v € O/F and any j > r, the
assumption of the theorem is satisfied except for a very rare case which satisfies conditions (M1-3)
(see Theorem 0.2 below). For cusp forms, things are more complicated, and Hsieh [Hs14b] uses
Galois representations of the given cusp form as its traces is basically g-expansion coefficients. Of
course, one needs to assume that the root number is not —1 in addition to some extra assumptions
(as the square of the integral is the central critical values by Waldspurger).

Geometrically irreducible components of the Shimura variety of the level group T'o(9) are indexed
by polarization (strict) ideal classes of F'. Then infinity cusps of a component V are indexed by
equivalence classes of pairs (a, b) of ideals with (ab)™! giving a polarization ideal of V (e.g., [PAF,
§4.1.5]). The condition of the existence of & with a(, fy) # 0 does not depend on the choice of a, b.
It fIU(1) =0, fcz" X¥dyysn # 0 implies that [-conductor [V of x is exactly [ (i.e., v = n), while this
non-vanishing holds for all n > v once it holds for n = v if f|U(l) = af with a # 0.

If #: V! — U is a finite étale irreducible cover for a dense open subset U C V containing =,
Zariski density of Zin V< and density of a lift =’ in U< such that 7 induces an isomorphism =’ = =
are equivalent (cf. Remark 3.1). This can be applied to the finite layer U of the Igusa tower Ig over
V (or the Igusa tower twisted by an unramified character) which classifies Hilbert modular abelian
varieties with u-type level structure in addition to prime-to-p level structure. Here “twisting” means
that we replace the standard Igusa level structure p,; ®z O — A by p — A for a (multiplicative
type) group scheme g which is the Cartier dual of (O/p™O)(x) with the Galois action given by an
unramified character x of the base Galois group Gal(Q,/W). Note that U is a partial component
of the reduction modulo p of a level p-power Shimura variety (possibly twisted by x) not the entire
p-fiber. In this way, we can add finite p level to some extent.

Here are a more technical description and the reason why I take up this problem again. As will be
explained in §1.1, more than 7 years ago, Akshay Venkatesh noticed a missing point from the proof
of [HO04, Proposition 2.7] (taken to be true in [H04] and [HOT7]): positive dimensional irreducible
components of the Zariski closure of an infinite set = of closed points in a non-noetherian variety

Ifranky, I' =1, j can be taken to be equal to r.
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may not contain any points in the starting set =. For the proof of the above theorem, we need a
Zariski density theorem of a thin infinite set = of CM points in V2. A key step is to show for the
Zariski closure = of = to contain a positive dimensional irreducible component having at least one
point of Z. This is because the density theorems Corollary 3.19 and Theorem 3.20 of [H10] we apply
to show Z = V< require (as its starting hypothesis) existence of at least one positive dimensional
component with non-trivial intersection with Z. All the results of [H10] are valid and intact as
the Zariski closure appearing in [H10] has at the onset the base point in the positive dimensional
component. Unfortunately, under the setting of [H04] and [H07] and the present paper, the existence
of a positive dimensional component with a point in = is not evident a priori. In §2.3 and §2.4, if
n contains an arithmetic progression and =, for every m € n is sufficiently large stable under the
action 4 — aA for a € M* prime to Ip, replacing n by a suitable sub-progression, we show that
a semi-group generated by as as above and a power of U(l) acts faithfully on = and transitively on
the set Irro(Z) of all O-dimensional irreducible components of the Zariski closure =. To exhibit an
absurdity under = C Irrg(Z), some points of Irrg(Z) is shown to be projected onto a 0-dimensional
irreducible components P € = at a finite level (see Lemma 1.2 (3)). By the semi-group action, we
show the orbit of P is an infinite set, while the set of irreducible components at finite level is a finite
set (see Theorem 2.7 (1)). This is sufficient for a proof of Theorem 0.1 from the result of [H10].

When rankz, I' = 1, we obtain a slightly stronger result: Consider the sequence of vanishing
integral:

() :== {0 < n € Z|I" is the conductor of x with vanishing integral}.
Then, under the condition in Theorem 0.1 on non-vanishing of g-expansion coefficients of f modulo
p, this sequence contains no infinite arithmetic progressions if ranky, I' = 1 (see Corollary 5.3). This
does not mean that the natural density of (x) is zero [W72] (see Conjecture 5.4). To claim the
density 0, we need a somewhat stronger input. Since the description of = is technical, we postpone
it to Section 2 of the main text. Here we just say that Z is essentially the set of points in Sh(®)
corresponding classes in | |, Cl,; which carries a character x with vanishing integral.

Note here that V' is a non-noetherian pro-variety of the form V' = lim VK for noetherian schemes
Vi with K = Gal(V/Vk), and hence the zero set of a modular form on V is infinite (of continuous
cardinality) even if dim V' = 1 as its contain the entire fiber of the infinite étale covering 7 : V' — Vi
of the zeros of the modular form defined over the noetherian quotient Vi. Write Zx for the Zariski
closure of the image of = in VI?. There is an example supplied by Venkatesh of a pro-curve in which
any positive dimensional irreducible component of the Zariski closure of an infinite set = is disjoint
from = (see §1.1). If g (appearing in the proof of [H04, Theorem 3.2] denoted by g, in the text: see
(5.2)) had a non-zero eigenvalue for U([), the sequence like (*) associated to {gq}q would contain
an infinite arithmetic progression (and thereby getting a contradiction). However it is easy to see
galU(l) = 05 so, for the version of [HO4, Theorem 3.2] and the part of [H07, Theorem 4.2] in the
case where rankz, I' = 1, we are forced to assume that n contains an infinite arithmetic progression.

For the sake of the reader’s convenience, we state the corrected version of [HO7, Theorem 4.3]
which is identical to the original one removing the stronger assertion in the case where rankI’ =1
(and its proof is also identical replacing [HO7, Theorem 4.3] by the above Theorem 0.1). Let us
recall some notation from [HO7] (and refer undefined objects to [HO7, §4.3]). We assume that
W is sufficiently large containing all ¢-power of roots of unity and the CM abelian variety X (R)
with X (R)(C) = C*/R* for R* = {(v(a))ves € C¥|a € R}. We write Qo = (,),ex for the
Néron period defined in [HO7, §2.6] with Q% = [[, Q% € C* for k = > kv € Z[X]. Put
I's(k) := [, T'(ky) for the Gamma function I'(s). We fix a character v : A — W for W =W NQ.

Theorem 0.2. Let p > 2 and ¢ be as above. Let \ be a Hecke character of M of conductor €
prime to pl and of infinity type kX + k(1 —¢) with 0 < k € Z and 0 < k € Z[X] for a CM
type X ordinary with respect to p. Suppose that € is a product of split primes in M/F. Then
ﬂﬁFE(kEJr';l)kLgt)g(S’flxil)‘) €W for all characters X : Clog — = (W) factoring through T, where L")
is the L—fu;zoction with the FEuler -factor removed. Moreover, for Zariski densely populated character
X i Hom(T, p1e ), we have

7 Ts (kX 4 &)LV (0, v~ 71N)
QkEJrQIi

5_'5 0 mod myy,

unless the following three conditions are satisfied by v and X simultaneously:
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(M1) M/F is unramified everywhere;
(M2) The strict ideal class (in F') of the polarization ideal ¢ of X (R) (given in §3.1) is not a norm

class of an ideal class of M (< (MT/F) =-1);

(M3) The ideal character a — (Av~'N(a) mod my ) € F* of F is equal to the character (M—/F)
of M/F.

If (M1-3) are satisfied, the L-value as above vanishes modulo m for all anticyclotomic characters x.

Since the proof of the anticyclotomic main conjecture for the CM field M in [H06] is based on the
stronger version of this theorem to good extent, at the end of this paper (Section 6), we will reprove
the key ingredient in [H06] used to prove the main conjecture in [H06] by modified arguments, and
the final result of [H06, Theorem] and [H09, Theorem] in the introduction of these papers are valid
intact.

1. IRREDUCIBLE COMPONENTS OF ZARISKI CLOSURE

We study a general theory of Zariski closure in a pro-étale variety of an infinite set of close points.
We start with a pathologic example.

1.1. An example. To motivate the reader to go through this article dealing with technical topics, we
first discuss an example of an affine pro-scheme V' = V. /¢ étale over the affine line Vy = Spec(C[X])
such that the Zariski closure of an infinite set = C V(C) does not have a single positive dimensional
irreducible component containing a point of =. The example was supplied by Akshay Venkatesh in
2018 December.

For a (finite dimensional) scheme S/, for an algebraically closed field k, we write Irr(S) for the
set of all irreducible components of S and 7y(S) for the set of all connected components of a scheme
S. Put

Irrg(S) :={I € Irr(S)| dim I = d}.

Thus S = U ey Z and Irx(S) = S Trrg(S). Set Trry (S) = 31;65 Irrq(S). If S = Spec(A),
we write Irr(A) = Irr(Spec(A)) and mo(A) = mo(Spec(A)). The set Irr(A) is in bijection onto the
set of minimal prime ideals of A, and we identify the two sets.

Take k = C. Let V,, := Vp x Z/2"Z and the projection Z/2™7Z — 7Z/2"Z for m > n induces
étale morphism V;,, — V,,. Let P; := (X — j) C C[X] (0 < j € Z) and regard it as a closed
point j of V5. We define V := @n Vo = Vo X Zy. Write (P;, j)n for the maximal ideal of V,,
giving rise to the point (j,27 mod 27) € V,,. Therefore (P;,27) for finite j is the maximal ideal of
@, C[X] non-trivial equal to P; only at 27-component, of @, C[X], and the prime ideal (P}, 27),
is Pj @ @iz0i mod (2n) CIX]. Let Z={(j,27)oe € V]j = 1,2,...}, and write

En = {0, 2j)n = (J, 2j)n €EVnli=12,...}

for the image of = in V,. Note that Vi, = Spec(B,/2.7 C[X]) and V' = Spec(€D,, C[X]). We have
N;(P,27) 00 = ((0),0)0 © Mo jez (P> 27 ) oo, Where ((0),0)oo is the prime ideal of @, C[X] equal to
(0) only at the 0-component of B, C[X]. Thus == Vol o< ez (P 27) oo C V, where Vj is inserted
as the 0-component. Thus only positive dimensional irreducible (and connected) component of the
Zariski closure = in V is V, which does not contain any points of =.

If we have a transitive action of a semi-group inside Aut(V) on =, we expect to be able to

avoid such a pathologic example.

Though a : (v,2) — (v + 1,22) acts transitively on Z, « is not an automorphism of V. It is an
automorphism of V) x Qg which is an indo-pro-variety not a pro-variety. In the above example, we
have
w1) Irry (Z,) = {(Vo x 0)]0 € Z/2"Z}, Trrg(E,) = {(j x 2)nli=1,...,n— 1(27 £ 0 € Z/2"Z)},

I (E) = {(Vo x 0)[0 € Zg} and Trrg(E) = {(4,27) 0|0 < j € 2,27 € Zy}.
The action of any positive power of « brings some points in Irrg(Z,) into a component in Irry(Z,,)
(non-stability of Irrg(Z,,) under  coming from the fact that a is not an automorphism of V). Writing
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T @ V. — V,, we can consider the reduced image m,(I) C V,, for I € Irr(Z). Let m, .(Irr(Z)) =
{mn(D|I € Trr(Z)} and 71, 4 (Irr(Z)) = {7, ()| € Irr;(Z)} as sets. Then

(1.2)

7o Ity (2)) 2 Trr1 (), 7. (Irrg(Z)) D Irrg(Z,) with infinite 7o «(Irrg(Z)) — Irrg(E,) in Vo x 0.

(ne) The image of {(j,27)s € Z|j > n} lies in the one dimensional (Vy x 0) € Irr1(Z,,) and the
0-dimensional scheme (j,27) (j > n) is not étale over V,,.

If we take a 2-unit u € Z and consider E = {(j,u?)oo|j = 1,2,...} C V, one can show that
Irr(Z,) = {Vo x w/|u/ mod 2"} and Irr(Z) = {V, x z|z € (u)} for the subgroup (u) C Z5 topo-
logically generated by u. The action [1] : (j,u?) — (j + 1,u/™!) extends to an automorphism
[1]: (v,2) — (v+1,uz). A similar morphism «a(v, z) = (v + 1, 2z) for non-unit 2 in place of u is not
an automorphism of V.

Taking an infinite sequence of irreducible polynomials X —a; of F[X] with distinct a; € IF, we can
make an example similar to (ne) also over F taking V := Spec(F[X]) and E = {(P; := (X —a;),27)};
with V,, = Vo x Z/2"Z. Then lim V;, = Vo x Zo.

1.2. Geometry of irreducible components. We prepare some notation and geometric lemmas
to prove that Irro(Z) in the introduction is a union of the pull back image of Irrg(Ex) of finite level
(e.g., Lemma 1.2). After the lemmas, in the following Section 2, we study the correspondence action
whose orbit of any 0-dimensional irreducible component at finite level is infinite (this infinity is a
key to obtain absurdity under assuming = C Irrg(E)).

Let # : V/r — Vi/r be an affine étale Galois covering with V = Specovk (Oy) (as a relative
spectrum). Here K = Gal(V/Vk) and V = lim_ . Vy for U running over open subgroups of K
with Vy = V/U. In the following lemmas, assume that Vg is noetherian (so, Vy = V/U is also
noetherian for an open subgroup U of K. Let = C V(F) be an infinite set of closed points with
image Ex in Vi (F).

Lemma 1.1. Let X' (resp. X) be the Zariski closure of E (resp. Ex) in V (resp. Vi ). Then

(1) X’ and X are reduced scheme, X'/ X is finite if V/Vi is finite.
(2) The projection tx : X' — X is dominant inducing a surjection of F-points: X'(F) — X (F),
and X' is unramified over X.

(a1

As described in (ne), even if Z 2 Z, the map mx : X’ — X may not be étale.

Proof. Regard P’ € Z (resp. P € Ek) as a sheaf of Oyp-ideal (resp. Oy, -ideal) defining the point P’
(resp. P); so, for example Oy, /P = F(P) = as a skyscraper sheaf supported by P. By definition,
we have X' = Spec(Oy/(\pez P') and X = Spec(Oyy /Npez,. P)-

We prove the lemma first in the absolute affine case; so, we put Vg = Spec(A), V = Spec(4’),
B = A/Npez,, P and B = A'/(pcg P'. Since B' «— [[p/cz A’/P with the right-hand-side
reduced, B’ is reduced. In the same way, B is reduced.

If A’/A is étale finite, we have =g = {P' N A|P’ € E}; so, putting b’ := (\p, g P’ and b :=
Npez, P> we have b’ N A = b. Thus the induced map B L B’ is injective. If A’/A is not finite,
we can write A = |J; A; with A;/A finite étale, we still get the injectivity. Therefore the projection
Spec(B’) — Spec(B) is dominant. Pick a maximal ideal m € Spec(B)(F). Then by the going-up
theorem [CRT, Theorem 9.3 (i)], we have a prime ideal p € Spec(B’) with p’ " B = m. Take a
maximal ideal m’ containing p’, m’N B D m is still a proper ideal as B’/ B is integral; so, m'N B = m.
Thus B’/m'’ is a finite extension of B/m = F which is algebraically closed, we conclude B/m/ = F
and m’ € Spec(B’)(F); so, Spec(B’)(F) — Spec(B)(F) is onto.

Pick m’ € Spec(B’)(F) and regard it as a maximal ideal of A’. Since m’ D b', m:=m'NA D b;
so, m € Spec(B)(F). We have the following commutative diagram of the completions at m’ and m:

— -~ — -~
A/ A:n/

An
| |t |t
B

im B\/ Pm’ B\/

m’ -
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Since the top row composite: Ay — //1\{11 — //1\{11/ is an isomorphism (as A — A’ is étale), pms 0 iy is
onto. Therefore B’/B is an unramified extension and is finite if A’/A is finite. This proves (1) and
(2) in the absolute affine case.

Now we treat the general relative affine case. We cover Vi = J, Spec(A) for affine open sub-
scheme Spec(4), and write A" = 7,0y (Spec(A)). Then Spec(A’) is an open subscheme of V cov-
ering Spec(A). Then we have X' N Spec(A’) = X’ xy, Spec(4) = Spec(B’) and X N Spec(A) =
X Xy, Spec(A) = Spec(B) with (A'/A, B'/B,ZNSpec(A’), Zx NSpec(A)) satisfying the assumption
of Lemma 1.1. Since B (resp. B’) depends on A, if needed, we write B = B4 and B’ = B/, to
emphasize the dependence. By the above argument, B’ and B are reduced algebra, and B’ is an
unramified extension of B, B’/B is finite if A’/A is finite, and the projection Spec(B’) — Spec(B)
is dominant and the induced map: Spec(B’)(F) — Spec(B)(F) is surjective. Since Spec(B’) is the
pull-back to X’ of Spec(B) and X’ = J, Spec(B’y) = U, 7 *(Spec(Ba)) and X = |J, Spec(Ba),
the above proof in the affine case implies the assertion in the general case. O

(a1

Assume that 2 = Ex by 7. We have another commutative diagram:

B — HPGEK A/P

3| ]

B' ——— []pe= A'/P'.

The right vertical map is an isomorphism as =
Spec(B’) — Spec(B) is dominant.

Lemma 1.2. Let the notation and the assumption be as in Lemma 1.1. Recall that Vi is a noether-
ian scheme. Let m.(Irv(X")) := {w(Z")|Z’ € Irr(X')} for the set of the reduced image w(Z') C X.
Then we have

(1) The image m,(Irr(X")) contains Irr(X),

(2) For Y € Irr(X), if Y' € Irr(m=1(Y)) is contained in X', we have Y’ € Irr(X'), where
7T71(Y) =Y XV V.

(3) If E = Zx under the projection V = Vi, we have a unique section Trro(X) — Trro(X') of
Irrg(X") — Im(Irro(X')) € X and Irrg(X') C E. Moreover writing X{, for the image of X’
in V/U for an open subgroup U of K, Irro(X') = lim Irrg(X7{,) for U running over all open
subgroups of K.

(4) If dimZ = dim X for Z € Irrqim x (X), then Z is in the image of Irrqim x/(X') in X. In
particular, Irrgim x)(X') # 0.

Proof. Again we may assume that Vi = Spec(A), V = Spec(A’), X = Spec(B) and X’ = Spec(B’)
as in the proof of Lemma 1.1. Pick py € Irr(B) giving Y € Irr(Spec(B)). Since B’/B is integral, we
find a prime P’ € Spec(B’) such that P'N B = py by going-up theorem [CRT, Theorem 9.3 (i)]. For
each P’ € Spec(B’) with PN B = py (i.e., P" € 7~ 1(Y) = Spec(B’/py B’)), take a minimal prime
p’ C P’ (i.e,p’ € Irr(B’)). Then p’ N B is a prime ideal of B and py D p’ N B; so, by minimality of
py, we have py = p’ N B. Thus py is in the image of Irr(B’). This proves the assertion (1).

As V — Vg is étale, 77 1(Y) is étale over Y; so, equi-dimensional. Suppose that Y’ C X’ for
Y’ € Trr(r=1(Y)). Then we find Z’ € Irr(X’) such that Z’ D Y'; so, m(Z') C X. We are going to
show Z/ =Y’'. We have X D 7(Z’) D Y. Since n(Z’) is irreducible, 7(Z’) containing YV € Irr(X)
implies 7(Z’) =Y. Thus Z' - Y is a integral dominant; so, dim Z’ = dimY’ = dimY". This shows
Z = 7' € Irr(X'), as desired. Thus the assertion (2) follows.

To show the assertion (3) for Irrg, we first assume that B’/B is finite. We regard Ex C Spec(B).
Pick m € Irrg(B). Then B = B™ @ B/m for a subring B(™ C B as Spec(B/m) is a connected
component of Spec(B). Thus Irrg(B) = {Z € mo(Spec(B))|dim Z = 0}. Since B’ D B, the above
decomposition induces an algebra direct sum B’ = B’ ™ g B'/mB’. Since B’ is finite over B,
B'/mB’ has dimension 0. By reducedness of B’, the direct summand B’/mB’ of B’ is a direct sum
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of fields. This means that 7 induces a surjection of the upper row of the following diagram:

mo(Spec(B'/mB')) ——— mo(Spec(B/m)) = {m}

|
Irrog(B')

for each m € Irrg(B) C mo(B). Therefore m,(Irrg(B’)) D Irrg(B). Pick m € Irrg(B). If m ¢ Ek,
Ex C Spec(B™) as Spec(B) = Spec(B/m) LI Spec(B(™)). This implies B = A/ MNpez, P is equal
to B(™) a contradiction. Thus m € Eg, and Irrg(B) C Eg. Since Z = Ek, 7, has a unique section
7 :Irro(B) — Irro(B’). If B'/B is not finite, we can write B’ = J; B; for B-subalgebras B; C B’
finite over B. We may assume that the index set is totally ordered so that Bj; D Bj if j/ > j. Let
X{; = Spec(By) for an open subgroup U of K. Then By/B is finite unramified. Then applying
the above argument to finite By /B, we find natural inclusion Irrg(By) C 7y v «(Irro(By-)) for
open subgroups U' C U C K with a unique section 77y, ; : Irrg(By) < Trrg(By). In particular, the
injective limit of 77, 1, gives rise to the section 7 : Irr(B) < Irro(B’) and Irro(B’) = lim, Irro(By).
This proves the assertion (3).

Now suppose that dim B/p = dim B for p € Irr(B). Such p always exists as B is noetherian. Since
B'/B is integral, dim B = dim B’. Then we take p’ € Spec(B’) such that p’ N B = p. Such a prime
exists as already remarked. Then B/p — B’/p’ and hence dim B’ /p’ = dim B/p = dim B as B’/p’
is integral over B/p. Since dim B’ = dim B, we conclude p’ € Irrgim p (B'); so, Irrgim 5/ (B') # 0.
This proves the assertion (4). O

Lemma 1.3. Suppose that n.(Z') := w(Z') & Irx(X) for Z' € Irr(X'). Then there exists Zy € Irr(X)
such that Zy D w.(Z').

Proof. Again we may assume that X = Spec(B) and X’ = Spec(B’) as in the proof of Lemma 1.1.
Write Z’ = Spec(B’/p’). By the assumption, p’ N B ¢ Irr(B); therefore, p’ N B D po for a minimal
prime ideal po of B. By definition, po € Irr(B) and p’ N B D po means p’ N B € Spec(B/pp). Thus
Zy = Spec(B/pg) does the job. O

Lemma 1.4. If 2k is a subset of 2 with finite Ex —Zk o, then the Zariski closure X of ZEx in Vi
and that Xo of Ex.,0 share irreducible components of positive dimension (i.e., Irry (X) = Irry (X)),
and Irr(X) — Irr(Xy) is a finite subset of Ex — Zx 0.

Proof. Again we may assume that X = Spec(B) as in the proof of Lemma 1.1. Write Ex — Ex 0 =
{mi,...,mp} for maximal ideals m; of A and put a = ();m;. Then for by = (pez, , P and
b = ﬂPeEK P, we have b = bg Na. For each i, either m; D by or m; + by = A as m; is maximal.
Thus we may assume that Ex —Zx o = {m;|m; + by = A}. Then a+ by = A as |Ex — Zk o] is finite.
Thus A/b=A/bpNa= A/by® A/a, and hence X = Xy U (Ex —Ek,0) as desired. O

2. CORRESPONDING ACTION ON SUBVARIETIES IN THE HILBERT MODULAR VARIETY

We give a definition and a detailed analysis of the correspondence toric action on the tower
of subvarieties given by the Zariski closure of Zx in the product of copies of the Hilbert modular
Shimura variety. Assuming four axioms (c0), (T), (F) and (N), we prove a general result Theorem 2.7
in §2.3 assuring the existence of a component in Irr, () with a point in Z. We prove the axioms
later in §2.4 in our original setting and obtain Corollary 2.12 implying Theorem 0.1.

Recall the CM quadratic extension M,r with its integer ring R from the introduction and their
class groups Cly, = @n Cl, and Cl = @n Cl,, , where Cl,, is the ring class group of R,, = O+I["R
and Cl;; = Cl,,/Clp. Write [A],, for the class of a proper R,-ideal A in Cl,,. As in [H04, page 755],
define a subgroup C1%9 of Cl,, by

Cl1U = {[x] 0o = @[mﬁn NM] € Clg|z € M with e = 1} C Cls,
where R, = R,, ®z Z with Z = [], Z;. By multiplication, C1% acts on Cl,, and ClZ.
Let G := Resp/zGL(2) and Sh g be the Hilbert modular Shimura variety associated to G. Since
G(A(>®)) acts on Sh as automorphisms, we define the prime-to-p level Shimura variety Sh(®) by
Sh/G(Z,). The Shimura variety Sh(P) extend canonically to a smooth pro-scheme over W (e.g.
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PAF, Chapter 4]). Recall the irreducible component V = V®) of the Shimura variet Sh'?) we
Y2l

fixed. By smoothness, V/g :=V Xyy F is an irreducible component of Sh%).

Let Q@ C Cly be a finite subset independent modulo C*9; i.e., 6C¥9 £ §'C9 for any pair
5,0") € Q% with § # §’. Since Cl1*9 naturally contains Clp, for the image Q~ in CIZ, we have
y g 0o

Q = O and Q~ is still independent modulo Clol9, We identify the two sets Q@ and Q. For
a closed subgroup K C G(A®P>®)) we put K = G(Z,) x K® and write Vi for the image of

Vin SA'Y) = Sh/K. We set V/p := VS for B = @, W,F (the product of Q copies of V) and

Vik/B = VKQ/]F. We can embed Cl, into V by [A] — x(A) = x([A]) := (z([A]d))seo € V, and
write its image with C,,. Put C(*) =| | C, C V as abelian variety sitting over x(.A) is uniquely
determined by [A]. Though the modular form f is a function on V', we normalize it by multiplying
a suitable Hecke character value later so that the normalized values at (. A) and z(.A’) are identical
if [A] = [A'] in ClZ,. Because of this normalization, we may regard f as a function on C(**) modulo
Clp. We fix an infinite subset Z of C(°). When it is necessary to indicate the level group K
for which z(A) resides in Vi (or Vk), we write i (A) in place of z(A). Here K can be a closed
subgroup of GLy(F Iéoo)). Actually we only deal with the tower raising [-power level; so, K can be a
closed subgroup of GL3(Oy) which acts on V and V.

We fix a CM type X of M and write X, for the set of p-adic places induced by the embedding in
> by the identification C = C,, we fixed.

Notation 2.1. Hereafter, we simply write X (resp. Xy ) for the Zariski closure of 2 (resp. Ek).

=~

We recall two assumptions (unr) and (ord) in [HO04, §2.1] for p in addition to = 2 Zx under the
projection V — Vg

(ord) Y is p-ordinary: X, N Xpc =0 for the generator ¢ of Gal(M/F).

Such a CM type X is called a p-ordinary CM type. The existence of a p—ordinary CM type is
equivalent to the fact that all prime factors of p in F' split into a product of two distinct primes in
M. We suppose

(unr) p is unramified in F/Q.

2.1. Toric action. The Zariski closure X C V (resp. Xx C Vi) of E (resp. Zk) forms a tower
{X — Xk} K of varieties, and the tower induces a correspondence action on each noetherian layer
Xk. If we have an appropriate action of a torus T in G (A(poo)) on =, the correspondence action on
lim Irro(Xx) = Irro(X) C = (by Lemma 1.2 (3)) coincides with the action of T (see (2.5)). The
idea of the proof of Theorem 2.7 is to show

(1) Irrg(X k) # 0 for sufficiently small open K if Irro(X) # 0;
(2) If Irrg(X i ) # 0, assuming the infinity (co) of orbits in = under the action of T, Irro(Xk)
has to be of infinite order, against the noetherian property of Xx.

We start with a list of conditions for proving the assertions (1)—(2) above under the correspondence
action of T. After this, we state five lemmas about the action under these conditions before starting
with supplying the missing argument/fact (stated as Theorem 2.7).

If K is an open compact subgroup of G(A(>®), Vi is noetherian. On V = V<, Aut(V/F)
diagonally acts. Let us denote by = an infinite set of CM points in V for which we would like to
prove density in V. We suppose to have a semi-group T C Aut(V/F) as in (T) below acting on
= under the diagonal action. The action of T is supposed to come from the action of elements in
G(A®P>)) on ShP). Since it is a semi-group action, § € T embeds E into Z; so, 3(E) C E and
B~YZ) D =, where 37 may not be in T but in Aut(V/F).

Let N := {o(u)|u € O} for p(u) := (}}) and B be the normalizer of N in GL2(Oy) (i.e., B is the
upper triangular Borel subgroup). We may regard N and B as group schemes over Oy; for example,

N(A) = {(}¥)|u € A} for an O-algebra A. Decompose 0 = lim o O/NO = O x o0 =

Oyt x OV The group GLg (6) is decomposed accordingly.
We consider the following conditions for K:
(K) K is closed of the form K®) x K, x K with K®) ¢ GLy(F{***), GLy(0,) C K, C GLy(F})
and N C K; c Ty(1),
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(a1

(I) 7:V — Vg induces = = g,

where Fléproo) is the adele ring of F' away from ploo, Fj, = F' ®g Q, C Fj, and
To(*) = {g € GLy(01)|(g mod *) € B(O/I")}.

We put

[1(1") = {9 € GL2(01)|(g mod 1) € N(O/1")}
for the image g € PGLa(Oy) of g € GL2(Oy). For general g € GLa(Fy), we write S9 := g~1Sg for a
subgroup S of G(A(>)).

In the application in [H04], we assumed K to be T (1) x GLy(OM), and in [H07], we kept K = Lo(I)
but allowed K®Y to be a Io-type level group (cf. Definition 6.5). In these papers, the measure ¢ ¥
is defined using a level [ Eisenstein series f, but the measure is defined on CI;; for any high power
(™. If we start with a U(l)-eigenform f of level [, the same construction of the measure works well.
In any case, for Theorem 0.1, we do not need to assume K; = f([) and we allow K| = fl([") for any
n > 0.

Here is the first axiom. We assume

(T) T =T x " for " = {a"|0 <n € Z} and a group T acts on =,

where o € GLa(F}) is upper triangular and aNa~t 2 N. Here the semi-group T C Aut(V/F) acts
on Z under the diagonal action. The action of 7 is basically multiplication by elements in CI*9
(coming from the non-split torus M* < G(AP>))) which permutes elements in CI;; and is essential
in the proof of [H10, Theorem 3.20] which shows that X =V once we know Irr(X) = Irr; (X).

In this article, the action of the semi-group o plays a central role to prove Irr(X) = Irry (X).
The condition «Na~! 2 N implies that o € B (é wozn) B for some m > 0 with a uniformizer w;

of Oy, and if K; = I1(I) (v > 0), S = Sk := K N K” is normalized by K and a representative
set of Sk \K can be chosen in N. Note that Na' N := Upear NBN C GL2(F) is a multiplicative
semi-group.

Consider the following condition

(c0) every T-orbit in = is infinite.

This condition will be verified for our choice of = in Proposition 2.11 for the above « well chosen.
Since o € B (é ,I,O;n)B (m > 0) does not have a fixed point in V, if one orbit T(z) for z € = is
infinite, every orbit is indeed infinite.

For simplicity, we assume hereafter K; = Lo(1*) or I'y (I) with v > 0 and that K is open in G(A)
satisfying (K). Since « is supposed to preserve the irreducible component V of S h(P) | we may assume
that [™ = (w) with @ = pe° for some ¢ € R. Replacing m by a positive integer multiple of m, we
may further assume
(2.1) for a := w[" /w, elements (& 9) and ({Y) in G(Z) belong to K.

a

Indeed, by replacing m by mn and w by @™, a is replaced by a™ which is sufficiently close to 1.
Hereafter, for simplicity, we assume that a = (} 2) for w = ¢ and write (3 for a general element
in No"N. We write ?(Z)k (? = 3,371) for the Zariski closure in Vi of the image ?(Z)x =?(Zk)
of 7(Z) in Vk.

As we recall from [H04] in §3.1, the left action of g € G(AP>)) on the point z = (A4,7) € V is
given by g(z) = 7(g)~!(z), where the right action 7(g) is by definition given by  — no g for the
level structure 7 associated to the point 2 € Sh(P). If 3 € oV, K D N may not be normalized by 3.
Thus [ acts on Vi as a correspondence.

Let us explain the correspondence action in some more details. Recall S = Sk := KNB K3 =
K N KP. By definition $# = K ' NK C K and §° 'S C K (so, S® ' satisfies the condition
(K) while S is not). Then S is normalized by N if K| = fl([l’) but S  N. We have NGN =
Uyen NVBo(u) for a finite set N = {o(u)|u mod ¥} for 0 < j given by (det(8)) = ¥ (so, m|j), and
KBK = |],cpn KBo(u). Then we have the correspondence U(3) C Vi x Vi (with respect to the
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tower {V — Vi } k) defined by the following commutative diagram

v B(v)=v3"!
yg Lot
pS,KJ{ psﬁ’l,KJ(
VK — VK;
U(p)

where U(f3) is identified with a subvariety given by the diagonal image of Vs under the product of the
projections pg g X (psﬁfl  ©0). It is easy to see U(B") = U(B)™ under the correspondence action.
The correspondence U(3) brings a point x € Vi to a finite set U(8)(x) := (pgs—1 x © 6)(p§1K (2)).
We assume, for K satisfying (K),

(N)  The action of T on Z extends to a correspondence action of the semi-group NTN on E.

If it is necessary to indicate the dependence of the level group K, we write Zx for the image of = in
Vi. We write U(8")(Z2k) = Uez, U(B")(x). The condition (N) means that U(3) acts on = (i.e.,
U(B)(En) C En).

Since o € GLo(F), by (2.1), the correspondence U(3) for 3 € Sa™'S only depends on the double
coset NGN. We need the following finiteness condition (which will be verified in Lemma 2.10 and
(2.9)):

(F) EvN —U(a™)(En) and a™"(E) — = are finite for all n > 0.

Since 7 is a group, (F) implies finiteness of 2y — U(B)(Ey) and 371(Z) — = for all 3 € T. We
actually use only the finiteness of 37(Z) — = in the proof of the key result (Theorem 2.7).

Let X = Xz (resp. Xg = Xz g) be the Zariski closure of Z in V (resp. of the image =g in Vg) for
a closed subgroup S satisfying (K). Since U(8)(Z) C E, we find Xz D Xy =) = U,en Bo(u)(X=).
Thus we have a tower {Xg}g of reduced schemes with projections pg g : Xg» — Xg for ' C S
(which we write simply pg/ if S is clear in the context). Therefore, we can think of the corresponding
action of 3 on Xg with respect to the tower {Xg}s.

If S is open compact, Xg is a reduced variety (i.e., reduced noetherian). The semi-group NTN
acts on X sending X = X= to 3(X) = Xp=) and also U(8)(X) = Xyg)=). For f € NTN and
an open compact subgroup K C G(A(*)) satisfying (K), taking an open compact subgroup S of K
such that $S%" C K, we have a diagram

v—LS(v
Xs 2220 B(X) o C Xy

(22) ;DS,KJ( pSﬁil,KJ(
I XK)
o5
where C'(/3) is a subvariety given by the diagonal image of X under ps,x X pgs-1 g © 8. We regard
C(B) as a correspondence from Xk into Xg. This correspondence is specifically on X and its
points and is possibly different from the operator U(f) for the tower {V — Vg}s.

Lemma 2.2. Assume that Vs — Vi for S = Sk = K N K? is étale. Let Y° := pg’lK(ZK) =
Zi Xy Vs for Zs € Ir(Xs) and Zi = ps.x(Zs), and write Y° = UZGIrr(ys) Z. If Z # Z' for
Z,7" € Irr(Y¥®), we have ZNZ' =); s0, Yo = Uzetrys) Z- If Ki = T1(1¥) and Z € Irr(Y'S), then
K normalizes S and for u € K/S, either w(Z) =Z oru(Z)NZ = .

Proof. Note that Y5 := pglK (Zx) is étale finite over Zx as Vg — Vg is étale. Thus Y* is equi-
dimensional with dimZ = dimYs = dimZs = dimZx for Z € Irr(YS). It 0 # ZNnZ' ¢ Z
for Z # 7' (Z,72' € rr(Y?®)), Z — Zyk and Z' — Zk are dominant by the equi-dimensionality.
Thus by the étale property of Y° — Zg, Z(F) — Zg(F) and Z'(F) — Zk(F) are onto. For
x € (ZNZNEF), |(ZUZ") Xz, zr)[F)| < deg(Z'/Zk) + deg(Z/Zk); so, Z U Z' ramifies over
ps.i(Zs) since dimZ = dim Z’, which is impossible as Z U Z' — Y® — Zx is unramified by
Lemma 1.1 (2). This shows the first assertion.

Suppose that K = I'y (1) and Z € Irr(YS). Since SN = K and N normalizes S = Sx = KNK”,

o~

K normalizes S. If Ky = I'1(I"), Y9 = Uwners u(Z); so, u(Z) is still an irreducible component



NON-VANISHING OF INTEGRALS OF A MOD p MODULAR FORM 12

of Y9, and K/S acts on Irr(Y®). Thus the intersection is either empty or u(Z) N Z = Z. If
w(Z)NZ = Z, we have Z C u(Z). Since they are irreducible and have equal dimension, we conclude
Z =u(Z). O

Lemma 2.3. Suppose (F). Then for § € T and K satisfying (K), we have Irr . (U(8)(X)k) =
Irry (Xk) and Irr(Xg ) — Irr(U(B)(X) k) C (Ex — U(B)(Ek)). Similarly we have Irr (871 (X) k) =
Ity (Xg) and et (B~ (X)) — Irr(X k) C (B7H(E) — =).

Proof. Asremarked after (F), Z—U(8)(E) is finite for all 3 € T. Since U(8)(E) C E, we have a closed
immersion U(5)(Xk) C Xk. Since U(B)(X)k is the Zariski closure of U(8)(ZEk), the finiteness of

= — U(9)(=) implies Irr, (Xic) = e (U(8)(X)sc) and r(Xe) — (U (B)(X)c) C (2~ U(B)(E))
by Lemma 1.4. The last assertion follows from finiteness of 371 (Z) — = assumed in (F) O

The semi-group element 5 € T acts on mo(X) and Irr(X) in the sense that § sends m(X) and
Irr(X) isomorphically onto mo(3(X)) and Irr(3(X)), respectively. Therefore 3 : z +— B(z) = x5!
induces an isomorphism £, : Irr(Xg) = Irr(3(X) -1 ). Let Zs be an irreducible component of X
and write 3(Zs) € Irr(B(X) gs-1 ).

Lemma 2.4. Suppose that S C K is a closed subgroup for an open compact subgroup K = G(Z,) x
K® jn G(A). Take Zg € Irr(Xg) with dim Zg = dim Xg and write Zx for the image of Zs in
Xk. Then Zi € Irr(Xg), and there exists x € 2 such that its image xk lies in an open subscheme
of Zx made of smooth points of Z .

Proof. By Lemma 1.2, we have Zx € Irr(Xg). Thus we prove the existence of the point = € Z as
in the lemma. If Zx = Xk, nothing to prove. We suppose that Zx # Xg. Since Xk is noetherian,
the Zariski closure Z# of X — Zk is a proper closed subscheme of X ; so, by Zariski density of Z
in Xg, if Eg C ZIL(, we find Xx = ZIL(, a contradiction. Therefore (Zx — ZIL() NZx # 0. For the
Zariski closure Zj of (Zk —ZIL() NEx in Zk, Zj; UZIL( contains ((Zg —ZIL() NEg)U (ZIL( NEk) =Ek
as Xx = Zk UZIL(. Thus Z} UZIL( =X =2k UZIL(. Since ZIL( is a union of irreducible components
of Xy different from Zy, this implies Zx C Z, and (Zx — Z3) N Ek is Zariski dense in Zx. We
can thus pick zx in the open subscheme Zx — Z IL( in Zg. Since the subscheme of smooth points of
Zi — Z3 is non-empty and open in Zx [CRT, Theorem 24.4], we may assume that xx is a smooth
point of ZK—ZIL(. O

For each reduced Zariski closed subset ) of Vg, we put ¥ = Y N =Zg.

Lemma 2.5. Suppose that K is an open compact subgroup as in (K). Let Zx € Trr(Xk). Then
=2k s dense in Zk.

Proof. Since Zx N (Zx — ZIL() is dense in Zk as seen in the proof of Lemma 2.4, 2% containing
Ex N(Zxg — Z3) is dense in Zk.

We can argue differently. For an irreducible component Zx of Xy, Z — Z# is an open subset of
X s0, any open subset Y/ C (Zx — Z3), Y NEg # 0. Thus 2% == N Zf is dense in Zx. O

Take z € Z and 8 € T and fix an open compact subgroup K satisfying (K). Suppose V — Vi is
étale. Let S = Sx = KN K? C K such that SS9 C K. Take Yx € Irrg(Xg) with Y 3 2. Let
YS = pSK(YK) for the projection ps x : Vs — Vk. By Lemma 2.2, Y5 = l_lZGIrr(YS) Z (disjoint

—_ —y S ~ — —y S —_ —_ —_
union). By = &y, ZY" =2 ZYx. We have a partition ¥ = Uzetmys) E =Z for 2% = 25N Z.

Suppose K = Fl( ¥). Assume that V — Vi is étale. Since the diagram

YS—>V5

l PS,Klétalc

YK;VK

is Cartesian, Y¥ — Yy is étale. Therefore, Y is equi-dimensional with dimY® = dimYx. By
Lemma 1.2, Trr(Y¥) N Irr(Xg) # 0; so, we can define a non-empty subscheme Yg of Y° by

(2.3) Y = U A || 7 C Xs,

Zelrr(Xs)NIrr(Y'S) Z€lrrg(Xg)NIrr(YS)
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which is equi-dimensional with dimension d := dim Yk, and the identity (x) follows from Lemma 2.2
under étaleness of V — V. Thus Irr(Xs) N Irr(YS) = Trrg(Xs) N Ir(Y®). Note that taking
intersection Irr(Y¥) N Irr(Xg) # @ means that we can pick irreducible components of Xg which
dominates Yx (so, each member of Irr(Y®) N Irr(Xg) # () has dimension equal to dim Yx). By
Lemma 2.2, V¥ is a disjoint union of Y5 and UZGIYY(YS)%H(YS) X, and hence Ys — Y[ is étale finite
dominant.

Lemma 2.6. Suppose that K is an open compact subgroup as in (K) and pick Yk € Irrg(Xk)
for 0 < d < dimX. Suppose Vs — Vi is étale. Then we have YS = I_lZeIrr(YS)Z and Yg =
LlZeIrr(YS),ZcXS Z. The set 22 is either empty or Zariski dense in Z for Z € Trr(Y™S), and for each
x € EYS, there is a unique irreducible component Z € Irr(Ys) with x € Z.

Proof. The first assertion is proven before the statement of the lemma. We prove the remaining
assertion. If Z C Xg for Z € Trr(Y9), it is an irreducible component of Xg by Lemma 1.2. Thus
27 is Zariski dense in Z by Lemma 2.5. In other words, if Z ¢ Xg, Z¢ is an empty set, and for
each € Z¥5, there is a unique irreducible component Z € Irr(Yg) with 2 € Z as Ys is a disjoint
union of Z. O

2.2. Modular correspondences acting on irreducible components of X . Pick an irreducible
component Yx € Irry(Xg) for 0 < d < dim Xk with an open compact subgroup K satisfying (K).

2.2.1. Definition of the correspondence. Choosing x € = so that xg € Yg for Yg in (2.3), we have
B(x)s := x50~ € B(Ys) C Xgs-1, and there is a unique irreducible component Z of Y containing
xs by Lemma 2.6. Since Yg —;—> B(Ys) C B(X)gs—1 C Xgs-1, we have dimYyx = dimYg =

dim 8(Ys) = dim 3(Ys) k for the projection 5(Ys)k of 5(Ys) in Xk
For any pair of open compact subgroups (K, S) with K 5 SS% " (so, S ¢ K NB~1Kf3), we have
a diagram similar to (2.2):

s 22, B(Ys) — S X

pS,Klﬁnitc l Pgp—1 g lﬁnitc

Yk AT B(Ys)k = pgs—1 x(B(Ys)) — Xk

for the correspondence Cs(f) given by the reduced image Im(ps,x X pgs—1 x 0 B :Ys — Vg x Vi)
whose support is contained in C(8) in (2.2). Note that

(2.4) Cs(B) is independent of the choice of S

as ps .k X pngl)K o 6 = (pSK,K X pSf(,K o 6) O PS,Sk for SK =KnN 6K671 (SO, Cs(ﬁ) = CSK(ﬁ))
As mentioned below (2.2), the correspondence Cs(3) is with respect to the tower {Xx}x and is
possibly different from U () with respect to the tower {Vs}s.

Hereafter we choose S to be Sk and still write it as S (so, the correspondence action of Cs(/3) on
irreducible components we introduce in the proof of the following Theorem 2.7 only depends on
(and K)). Note that 8(Ys)x = U, Bu(Z)k for some u € N = K/Sk, where fu(Z) is the image
under pgs-1 g of fu(Z) for a component Z € Irr(Ys) (cf. Lemma 2.2). Since § : Xg = B(X)gs-1,
Irr(B(Ys)) C Irrg(B(X) gs-1 ) (d = dim Yk ). By the above diagram with dominant ps, x and pgs-1

we again find dim 8(Ys) g = dim Yk as 3(Ys)k C psﬁfl)K(ﬁ(pg}K(YK)).

2.3. Positive dimensionality of irreducible components of X. We now prove the following
fact not described in [HO4]:

K

Theorem 2.7. Suppose (unr) and (ord) at the beginning of Section 2 for p. Let = C V(F) be an
infinite subset injecting into Vi for any open compact subgroup K satisfying (K) and (I). We assume
that a semi-group T C Aut(V/F) as in (T) embedded in Aut(V/F) acts on E, and assume (F) and
(N).
(1) If the condition (00) is satisfied, all irreducible components of X has positive dimension;
(2) If T acts on = transitively, dim X > 0, X is equi-dimensional, and the irreducible component
containing a given x € = s unique.
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Under (c0), we can replace Z by an infinite orbit T(x) and apply the result and conclude the
Zariski closure of T(x) is equidimensional of positive dimension; so, one of them contains z.

Proof of (1)." We need to describe the correspondence action of § on Y € Irrg(Xg). First
suppose that d = dim X as this is the easiest case. Then dim 3(Ys)x = dim X, and hence 8(Z)k €
Irrgim x (X ) for Z € Irr(Ys). In this way, 8 € T acts on Yk € Irrgim x (X k) as correspondences (i.e.,
Yy is brought to a subset 3(Yx) = {3(Z2)k|Z € Irr(Xs) NTrr(Y®)} C Irrgim x (Xx ) whose member
has equal dimension). Since Irr(Xg) NTrr(Y®) is made of u(Z) for u € N, for a finite subset B of
NBN, we have the correspondence action of C(f) given by the image set S(Yk) := Uz {8 (Yi)}
under C(3) on Irrgim x (Xk).

Though we only need the result for d = 0, we give an argument for the intermediate dimension
0 < d < dim X now as this introduces necessary notation for the case d = 0. Pick Yx € Irrg(Xk)
and start with Yx € Irrg(Xg). As above to define the action of C(3) on Irrg(Xk), we only need
to give a good definition of the image set 5(Yx ) for a 8 € NTN. For simplicity, write S’ := S
Let us recall a general notation: For an irreducible component Y}, of X, we define as before
vy = pg/l)K(Yl’() and Yo = |z cr, (xonmr, (vrs') £ (by (2.3)). Now recall the irreducible
component Z € Irry(Ys) containing the base point g € Zg chosen in §2.2.1 and we apply the
above notation to the irreducible component Y}, of X such that 3(Z) C Z’ for an irreducible
component Z" of Y¢, (so, B(xs) € Z’). To see the existence of an irreducible component Yy of
Xk as above, we argue as follows. Since §(Z) is an irreducible closed variety of Xg/, ps k(8(2))
is an irreducible closed variety of Xg. Then there exists an irreducible component Y}, containing
ps kK (B(Z)) of Xk by Lemma 1.2 (1). Therefore 8(Z) C Y4, which is contained in Z’ € Irr(Yg,).
So dim Z" = dim Y}, > d by Lemma 2.2. Replacing (3, Yk, S, K) by (871,Y}, S, K), we apply the
above argument. Note that 71(Z2") C 3~} (Xg); so, B71(Z')k C B71(X)k. By the choice of Y,
Lemma 2.6 tells us that Z is determined by the two conditions (i) 37 (X)x D 71 (Z" )k D Yk
and (ii) zs € Z. Since Irry (371 (X)k) = Irr; (Xk) by Lemma 2.3 and 371(Z')k is irreducible,
we conclude from B71(Z")k D Yk that 371(Z')xk = Yk (as Yk is an irreducible component of
Irr (B71(X)k) = Irry (Xk)); in particular, dim Z’' = dim Yx = d. So, Y}, = 3(Z)k and that 3(Z)k
is an element in Irrg(X ) (Lemma 2.3). Therefore, again 5 € T acts on Irrg(Xx) as correspondences
(i.e., Yi is brought to a subset 3(Yx) = {3(Z2)k|Z € Irr(Xs) NTrr(Y?)} C Irrg(X g ) whose member
has equal positive dimension).

Now suppose d = 0. Since the correspondence action preserves Irry (Xg), it also preserves the
complement Irrg(Xg). The following argument to see the correspondence action is really an action
sending a point to a point also gives an alternative proof of the stability of Irrg(Xg) under the
action of T. We proceed similarly to the case where 0 < d < dim X using the same notation.
Then zx = Yx € Irrg(Xk) falls in the image Zx in Vi of 2 by Lemma 1.2 (3). By (I), the
projection 7 : V — Vg induces Z = EZg; so, pglK(xK) is a finite set of points above zx and
{2' € pg(zx)|z’ € Xs} is asingleton by Lemma 1.2 (2-3). Thus pg 5 (Yr) N Xs = pg i (xx) N Xs
is a singleton. Therefore Y = {Z := zg} is a singleton. Take an irreducible component Y},
of X such that 3(Z) C Z’ for an irreducible component Z’ of Y¢, (so, B(zg) € Z’). Such a
Y], exists by Lemma 1.2 (1). So dimZ’ = dimY}, > 0. We want to prove dimY}. = 0. Since
Irry (B74(X)s) = Irry (Xg) by Lemma 2.3 and (F), if dim Z’ > 0, we have dim 37!(Z’) > 0 and
B~Y(Z") is an irreducible component of Xg. Since 87!(Z’) D Z = xs by construction and the
two are irreducible components of Xg, we find that 37%(Z') = Z = x5, a contradiction against
dimZ" > 0. Hence dimZ’ = 0 and Z’ = B(Z) = B(xg). This implies that § brings Irro(Xk)
into Irrg(X k). It is now clear that this is really an action (not a correspondence action) of T on
Irrg(Xk ), and

(2.5) the action is compatible with the action of T on =

as II‘I‘()(XK) CEg ==

In particular, Irrg (X ) contains T(zg) for each zx € Irrg(Xx) C Ex. Then by (00), Irro(Xk)
is infinite, a contradiction as X is a noetherian scheme. Therefore Irro(Xg ) NT(zx) = 0 for every
open compact subgroup K of G(A®) satisfying (K) and z € Trrg(Xx ). This implies Trro(Xx) =

Tn the proof, we use the existence of 37! € Aut(V) essentially, while « : (v, 2) — (v + 1,22) in §1.1 cannot be
extended to an automorphism of V' there.
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() for every open compact subgroup K of G(A®) satisfying (K), and therefore Trro(X) = by
Lemma 1.2 (3). This shows that all irreducible components of X have positive dimension.

Proof of (2). We have proven positive dimensionality of irreducible components of X. We need to
prove equi-dimensionality of X and the uniqueness of the component containing x € = under equi-
dimensionality. Since the smooth locus X3™ of Xk is open dense in X by [CRT, Theorem 24.4],
=5 = EN X" is still dense in Xg. Since Irr(X g ) = mo(X "), for each x € 25, the irreducible
component of X3 containing x x is unique. Since T acts on Irr(X k) = mo(X3") as correspondence,
for any Z, 7" € Irr(Xk), we find z € EN Z*™ and y € EN Z"°™.

Interchanging Z and Z’ if necessary, by (T) and transitivity of the action, we can choose § €
T with 8(z) = y. Then 3(Z) € Irr(Xg) and y € B(Z) N Z'. Thus y € 2/ = 7' — z5™
(i.e., y € B(Z) N Z" with Z’ different from any irreducible components of 3(Z)) or 5(Z) D Z’ or
B(Z) C Z'. The case: y € Z2'*""9 = Z' — Z*™ does not occur as we have chosen y € Z"*™. Since the
correspondence action of T preserves Irry (X ) for any given d > 0, the remaining cases 5(Z) D Z' or
B(Z) C Z' imply dim Z = dim 5(Z) = dim Z’ and Z’ € Irr(8(Z)). Choosing one of Z and Z’ to have
maximal dimension dim X, the other has to have maximal dimension; so, Irr(Xk) = Irrgim x (XK );
so, Xk is equidimensional. This implies X is equidimensional.

By the first fundamental sequence of differentials and unramifiedness of Xg/Xk in Lemma 1.1,
the projection induces a surjection:

Qx e /r ®0x, Flzx) = Qx4 /5 0y, F(ws)

for S C K. By the proof of the equi-dimensionality, for dim Ox, »4 = dim Ox 4, for any point
rg € Xg with projection xx in Xg. Thus

dimgp QXK/]F ®OXK F(xK) > dimp QXS/JF ®0Xs F(xg) > dim OXS,OCS = dimOXK,acK-

Y

Here “dimp” indicates dimension of an F-vector space, and dim R for a ring R means the Krull
dimension of the ring R. Thus the singular locus

Xgi"g = {xg € Xg|dimp QXS/JF ®ox, F(zs) > dimoXSﬂcS}

of X is sent to X329, where F(z) is the residue field of z. Thus X*"9 = lim X", and hence
dim X*™ < dim X =dimY for any Y € Irr(X). Plainly T preserves X**9. If z € 2N X*'"9 then
Z=T(z) C X*"9; s0, X = X9 a contradiction. Thus =N X*"9 = (). Since X*™ := X — X9
is a dense open subscheme of X, mo(X*™) = Irr(X*™) = Irr(X) with X*™ = | | ¢y, () Y*™. Thus
for each given x € E C X*™  Y*™ € Irr(X*™) containing x is unique. O

Since Xk has positive dimension for an open compact level K (as |Ek| is infinity; ¢f. Lemma 1.2
(4)), by the above proposition, all components of X have positive dimension. Taking x € = and an
irreducible component of X containing =, we get

Corollary 2.8. Let the notation and the assumption be as in Theorem 2.7 (1). Then X contains
an irreducible component Xo of positive dimension with a point x € =. Moreover for each element
& of the stabilizer of x in T, we have £(Xo) = Xp.

Proof. We need to prove the last assertion: £(Xo) = Xo. Since £ € T, £(Xo) is another irreducible
component of X containing x. Taking a level group K sufficiently small, £(Xo) U X — Xk is
unramified. Since £(Xo) N Xy 3 z, unramifiedness and positive dimensionality of Xy tells us that
£(Xo) = Xo.

There is another argument. Replacing = by the orbit Z' := T(z), we may assume that T acts
transitively on Z. Then Xy and &(Xy) are irreducible components of the Zariski closure X’ of =’
Then we can apply Theorem 2.7 (2) to X’ and Z'. Since there is only one irreducible component
containing x = £(x), we have Xy = £(Xp). O

Remark 2.9. Note that the stabilizer of x € Z,, is given by 7, := (M*NR NR))/(F*NO{NO))

embedded into GLa(F] é[p )y € GLy(F ff °°)) which after p-adic completion contains a p-adically open
subgroup. We can take 7 in (T) to be this group or the bigger group (M *NR{*NR))/(F*NO*NO)),
and under this choice, we can apply Corollary 2.8 to £ € 7. The stability of X in Corollary 2.8 is
a requirement of [H10, Corollary 3.19, Theorem 3.20], and the choice 7, C 7 is sufficient for this
purpose. Since the central elements in F'* acts on V trivially, we take 7, as above rather than
M*NRY NRY.
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2.4. Verification of (F) and (N) for infinite arithmetic progression. We briefly describe the
choice of Z C V. For the details of the definition of CM point z(.A), see Section 3.

Let
(2.6) 7T :=(M* mR(X[)mR(Xp))/(FX mO(X[) mO(Xp))
but for our convenience, we often shrink 7 slightly to a subgroup of finite index to define T as
remarked in Remark 2.9. We write R(Xa)

For each ¢ € R( ) (in [HO4, page 755] the symbol “a” is used for the letter “¢” here), we have
z(A) == (X(A),A(A),nP)(A)) —£—> x(§A) as in the middle of [HO04, page 755], and as seen in [HO4,

)
page 756], pr(§W)(x(B)) = z([£V]B) for the class [€V] = [(€)] of the ideal (£) in Cle = lim Cl,.
Recall C,, = {x(A) := (2([A]0))scolA € Cl,} and C*) = || C, C V. Thus £ € T acts on C(>)
by [A] — [(§)][A].
Let oy be a prime element of O;. As specified in [H04, §2.1 and §3.1], for each proper fractional
ideal A of R, we have a specific CM point z(A) € Sh()(F). In our application, Z is made of the
set of points of the form z(A). Note that (see (3.3))

(b)) = (L) ().
y [HO04, (3.2)] (see (3.2) in the text), writing ay, = (é O

(2.7) amo(u)(zn (Rn)) = 9(%)0%(331\/(371)) zn(A) (0<meZ)

for A given by z(A) = z(R,)/C, for a suitable subgroup C, C X(R,) with C,, = O/I™ depending
on u, xy indicates the image of z in Vy, and A = R4y, if u = 0. By (2.1), in (2.7), we can
replace @™ by w = ¢p° and xn by zk, and the identity is valid on Vk (in place of Vy). Any A in
Ker(Cly4m — Cl,) with n > 0 can be written as in (2.7).

Set E7 = {x(A) € V|A € Ker(Cl, — Cl;)} for each n > j > 0 with a given j. Since

2} = {x([A]0)|A = ER, with £ € R N (1+VRy)},
defining 7; C 7 (for 7 in (2.6)) by
(2.8) T :={¢ € (M* N R NRE )| mod V) € (R /V)*}/ O,

the group 7; acts transitively on =} for every n with n > j > 0. Here R(,;) and O, are the
localization at pl of R and O not the completion, and note (7 : 7;) < oo.

m

Lemma 2.10. Assume that " is generated by an element of NM/F(R) and write "™ = (w) with
w € Nuyyr(R). Define o = (§2) and let T = T, = Tj X Uk>0Na N as a semi-group. If n
is an infinite arithmetic progression of difference m, for = = =, = En ; := ;5 "?““m, we have
=D U(B)(E) for B € Tjm (which implies that the condition (N) is satisfied), and = — U(5)(E) is
finite.

Proof. By (2.7), we have U(a)(Cp) = Cpim and U( )ET) = x(";”m). Thus the semi-group

Uiso NaFN acts on E, for n = {ng+im|i =0,1,2...} for U(a¥) (0 < k € Z) sending = ""““m into

:.ngjr(iJrk)m = _ng+(1+k)

Any element o is an image of an element o under the action of

B € Na*N. Then we have

—=no+im
f= =J

k—1
- k\(= o —=no+im :nng(kJri/)m o —no+im
Ey - UM E) = = - || = ==
i>0 >0 ;

which is finite. Since 7; is a group acting transitively on Z7°t*™ this implies = — U(8)(Z) is finite

for all 3 € NTN and hence we get (N) and (F) for U(5). O

The point z(.A) is given by identifying A®) = A®; Z® with the prime-to-p Tate module of the
corresponding CM abelian variety X (A); so, strictly speaking, it is more precise to write x(jf(?))
(or z(A)) in place of z(A). Under this notation, a(z(AP) x R,1) = (AP x Ryym,1) and

“12(APY x R, 1)) = 2(APY x R,,_,,,.() as long as n > m. See §5.3 for what happens when n < m.
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It appears that the map ! is non-injective, but this comes from the fact that K D N (satisfying
(K)) but Sk is not; in other words, pg x is not injective but shrinking K to K’ at [ so that
K'NnN = {1} (with K/N = K'/(K' N N)), the fiber of pg, x will be separated modulo Sk N K’
(but the fiber of pg,, x is non-trivial again). Thus a=1(C,) = C,_,, as long as n > m. This shows
(F) for o™ and E,, ;:

(2.9) a~(E) — E is finite for all i > 0
as long as n is an infinite arithmetic progression of difference m, ["* is generated by an element of
Nyyp(R) and adiag[l, @™ € K. Here we write diag[a, b] for the diagonal matrix with diagonal
entries a, b from top to bottom. Therefore in this case the condition (F) is valid.

If necessary, we also write sometime 2(A4) (A = A®z Z) for 2(A) assuming A, = R,. The group
T acts on x(A) as follows: For £ € T,

2(A) = 2(A) = 2(60A) = 2(()A),

where €V € M . is the finite idele with I-component equal to 1 and every component at finite place
outside [ is equal to &.

In the idele class group 7 := M /M*MZ, £ is trivial but €W is not trivial; so, the action of &
on Cl,, is non-trivial for a sufficiently large n. Regard Cl,, = Pic(R,,) as a quotient of Z, and write
(€) = (€),, for the image of £ in C1,,. Since Ker(Cl,, — Clp) is spanned by (£),, with & running in
T, T acts transitively on Ker(Cl,, — Cly). More generally, noting that 7, C 7 is the stabilizer of
z(R,) in Cl,., T, acts transitively on Ker(Cl,, — Cl,) for all n > r. From A with A= R, 1, we can
create ./zl\l = AW x R; . Then even if A = (R, with & € R, (i.e., A is trivial in Cl,), for i > n
with & & R; 1, A; is non-trivial in Cl;. In this way, the group 7 := R(Xp[)/O(Xp[) acts on C%9 as in
[HO4, page 755].

Let n={0<ng<ny <ng <---<mn; <---} be an infinite sequence of integers such that ™ is
generated by an elements in Ny /p(R). If m is an exponent such that [™ is generated by an elements
in Np/p(R), then any infinite arithmetic progression n = {n; = ng +im|0 < i € Z} for an initial
value 0 < ng satisfies this condition. Recall E}" = {(2([A]0))seo € V|[A] € Ker(Cl,, — Cl;)} for
0 < j < ng as in [HO4, Proposition 2.7]. Define = = =, ; = | J; E}* C V. Since Cl,, and Cl; is stable
under the action of 7; and the projection Cl,, — Cl; is compatible with the action of 7}, Z,, is
stable under 7;, and hence =, ; is also stable under 7;. Thus we get

Theorem 2.11. Choose 0 < m € Z so that I is principal generated by w = @ with ¢ € R and
define a as in Lemma 2.10. Suppose adiag[l,w|™™ € K. If n is an infinite arithmetic progression
(with initial value ng and difference m), the semi-group T; ., generated by the group T; in (2.8) and
a=(§2) acts transitively on 2, ; and satisfies (T), (N) and (F) (for T = T;).

0w

Theorem 2.7 combined with this result, Corollary 2.8 and [H10, Corollary 3.19, Theorem 3.20]
gives

Corollary 2.12. If n contains an arithmetic progression, then Z, ; for any j > r is Zariski dense
in V<.

2.5. Characteristic 0 version. We consider Sh%/)v and its geometric irreducible component V,yy

and define Y = V/%v in the same manner as above. Consider V/r = V)yy @w F. Note that V) is
smooth over W (see [PAF, Theorem 7.1]).

Lemma 2.13. Let A be a smooth W-domain and Z be a countable set of W-points of Spec(A)
and as a subscheme of Spec(A), = is étale over W. Write X := X @ F for X = A, A;,Z as a
subscheme of Spec(A). Then if = is Zariski dense in Spec(A), then the schematic closure of Z in
Spec(A) is equal to Spec(A) and =, = = Xy 1 for the generic point ) € Spec(A) is Zariski dense in

Spec(A) xw 7.
Order E={Py, Ps,...} withE, :={Py,..., P,}. Write X .= &nﬂ X/mj,X for X = A, A, =, P
(the formal completion along the special fiber).

Proof. Since A is smooth over W, A (resp. A) is smooth over W (resp. F); in particular, A i

>~

domain. Since =, is étale over W; so, is =,, over W. Thus =,
as sets.
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We have A/(j_, P; — [[; A/P; = [[;—, W. Thus A/(;_, P; is W-flat. In the same manner,
A/ Nj=1 P; is W-flat. We have a short exact sequence (Nj=1 P)@wF — A (4/ Nj=1 P;) @w F.
For an A-ideal a with W-flat quotient //1\/ a, we have an exact sequence @ = a Qw F — A —»
(A/a) @w F. We identify @ = a®yw F as an ideal of A and A/a with (A/a) ®w F. Take another ideal
b with W-flat A/b. Then A/(aNb) < A/b& A/b implies A/(anb) is W-flat. From the short exact
sequence: A/(anb) — A/a® A/b — A/(a+ b) for the two ideals a and b, we obtain a three term

exact sequence A/aNb = (A/anb)@w F 5 A/a®A/b - A/(@+b). Thus Im(7) = A/(@Nb) and
Coker(i) = A/(a+b) which implies a N b C @Nb. By induction on n, we thus have (\'_; P; C (j_, P,
and hence (()pcz ﬁ) @w F = Npez P C Npez Pj, whose right-hand-side is (0) by Zariski-density.
For P :=\pc= ﬁ, we have f’@WIF = P®wF. Therefore we conclude f’@WIF = (0). By Nakayama’s
lemma for adically complete modules over a complete ring (e.g., [CAG, Exercise 7.2]), we conclude
P = (0). Since Npez P C Npe= P C P = (0), we conclude Npe= P = 0. Thus = is schematically
dense in Spec(A). Since K = Frac(W) is flat over W, we have ((p = (POW K) = ((pez P)Ow K =
0; so, E ®yy 1 is Zariski dense in Spec(A) xyy n = Spec(4 @y K). ]

The definition of = C V in Theorem 0.1 works well over W; so, we take a geometrically irreducible
component V' of Sh%/)v with 2(R,,) € V(W) for sufficiently large n and define V = V< and = C V
as in Theorem 0.1.

Proposition 2.14. Assume Z Qw F is Zariski dense in V Q@w F. Then = ® n is Zariski dense in
the generic fiber V Qw 0.

Proof. Since V — Vi is affine, covering Vi by open affine schemes Spec(Ak ;) and pulling them
back to Spec(Ag,;) C Vs for open subgroups S C K, we apply Lemma 2.13 to Spec(A4;) C V for
A; =limg Ag; assuming Zariski density of = in the special fiber V®yy F and conclude Zariski density
in the generic fiber. O

3. GEOMETRIC MODULAR FORMS AND CM POINTS

The Hilbert modular Shimura variety Sh(®) is the moduli (up to prime-to-p O-linear isogeny) of
triples (X, A,n) for an abelian variety X of dimension d = [F : Q] with multiplication by O, an
O-linear polarization class A up to multiplication by (O(p)+)* (see [HO4, §2.2]) and an O-linear level
structure 1 VP (X) = T(X) @5 AP) =~ (Fls(f))2 for the Tate module 7 (X) of X. For the Hilbert
modular Shimura variety Sh(®), we use the definition and notation introduced in [H04, Section 2].
See also [HMI, Section 4.3] for a more detailed description of the Shimura variety and modular
forms. Geometric modular forms can be defined as global sections of weight x Hodge bundles over
the Shimura variety, or equivalently a functorial rule assigning a value to classified abelian varieties
with extra structure. Out of the assigned value at CM points, we create a distribution interpolating
L-values in the next section Section 4.

3.1. CM points z(A). We recall the definition of the CM points z(A) from [HO04]. Let G =
Resp/oGL(2) (s0, G(A) = GLy(A®gF')). We write the left action: G(AP>))x Sh(P) — Sh(P) simply
as (g, ) — g(x) := 7(g9) "' (x). Here the action of 7(g) is a right action induced by 1+ 7o g for the
level structure . For each point z = (X, A, n) € Sh, we can associate a lattice L = n~(7T (X)) C
(F Agoo))? Then the level structure n is determined by the choice of a base w = (wq, w2) of L over
O. In view of the base w, the inverted action z g(z) is matrix multiplication: ‘w +— g*w, because
(o g™ HT (X)) =gn~ (T (X)) =gL.

For each O-lattice A, we recall a description of a CM point 2(A) = (X (A), A(A),n(A)) € ShP
from [HO04, §2.1], where X (A) y is an abelian scheme of CM-type (M, ¥) with H'(X (A)(C),Z) = A
in the sense X (A)(C) = C¥/A*® for A¥ = {(a”*,...,a%¢) € C¥|a € A} writing ¥ = {01,...,04}.
For the order R4 := {o € M|aA C A} and an ideal a of R4, we write, as a finite flat group scheme
over W,

X(A)[a] := {2 € X(A)|az = 0} = ] Ker(ar: X(A) — X(A)).

aca
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It is well known that there is an O-ideal f(A) such that R4 = O + f(A)R. The ideal f(A) is called
the conductor of R4 (and A).

Recall the order R, = O + ™R C M with conductor [, the groups Cl, = Coker(Pic(O) —
Pic(R,,)) and Cl = lim Cl,. By class field theory, Cl;, gives the Galois group of the maximal
anticyclotomic class field in the ring class field of conductor [™ over M. The ideal [,,, = [+ ["R =
[R,,—1 is a prime ideal of R,, but is not proper (it is a proper ideal of R,,_1). Since X (R,,)[l;n] =
R/l = O/land 1,,Ry—1 C Ry, we find that X (Rp)[lm] = Rm—1/Rm and X (Rp)/ X (Rm)[lm] =
X(Rm—1). We pick a subgroup C C X(R,,)[l] isomorphic to O/l but different from X(R,,)[l,.].
We look into the quotient X (R,,)/C. Take a lattice 2 so that X(R,,)/C = X(%) & A/R,, = C.
Since C' is an O-submodule, 2 is an O-lattice of M. Since [C' = 0, we find [R,,2 C . Thus A
is Ry,4+1-ideal, because R,,+1 = O + [R,,. Since C is not an R,,—submodule, the ideal 2 is not
R,,—ideal; so, it is a proper R,,1—ideal. Since C generates over R, all [~torsion points of X (R,,),
we find R,,2 = [T'R,,. In this way, we have created ¢ proper R,,,1-ideals 2 with AR,, = [T'R,,.

We choose a base wy = (w1, ws) of R over O in [HO04, §2.1] with a specific choice at p and
[: at p, for the choice of the ordinary p-adic CM-type ¥ = {|p}, writing Ry = Hmex Ry and
Rye = [[pex Rpe for complex conjugation ¢, R, = Rxe @ Ry and wo,, = ((1,0), (0, 1)).

For an R,-proper ideal A prime to pl, we choose a level structure 5(A) of X (A) with 7(A)(0?) =
A in the following way. We are going to specify the base wqy of R now at [. So the base of ﬁﬁ? to
be the prime-to-p part w(()[) as above, because ASJ =RO. To specify the base wg ( of Ry, we take
d € Oy so that R = O[[\/E] C M;. We assume that d is a [~adic unit if [ is unramified in M/F and
d generates [Oy if [ ramifies in M/F. Then we choose wo [ = (1,v/d) and put wq := (wo |, w(()[)). We
use the base w :=wy - g of Ry, for a suitable g = g(A) € GLy(F}) to define the level structure for an
R,,-proper ideal A.

First we choose a representative set {2;} of ideal classes of M (prime to pl). Then we can write

(tpoo)

§lj = ajﬁ for an idele a; with a; = a; and choose a € M so that AR = o&; for a fractional

R-ideal A. Here for an idele a € F,* (resp. an adele a € F) and an integral ideal a, a(**) indicates
a, =1 (resp. a, = 0) for each place v appearing in a or co. We define the level structure n(.A) by
(Fléoo))2 3 (a,b) — aaajwi + baajwy € Méoo) =V(X(A)).

Here are the choices of g. When m = 0, ¢ = 1 (the identity matrix). When m > 0, we first
suppose that [ = (¢pp°) for ¢ € M. Our choice of g is diag[1, p]o(u) for a suitable u € Oy so that
the [-component of wg gives the base of R,,. The element g is equal to a,o(u) modulo To(I™).

Suppose that [ is not generated by a norm from M. We choose g = ay,o(u) with u € Oy so
that w(A) = aajw - g gives a base over O of A, and define n(A) by using w(A). For a general A
(not necessarily prime to pl), taking A in the same class of A prime to pl such that A = SAg for
B € M*, we replace the basis w by Sw and define 1(.A). There is an ambiguity of the choice of «, 8
and ¢ up to units in R, but this does not cause any trouble as what really matter is the embedding
pa: MF — G(AP) given by an(A) = n(A) - pa(e), which is independent of the choice of o, 3 and
®.

By our choice, we have p4 = pr on Mg)x, and

(3.1) det(g(A)) € F if I is generated by a norm from M.

Regarding ¥ as a set of p-adic places (i.e., field embeddings of M into Q,) and composing with
Q, = C we fixed, we may regard ¥ as a set of complex embeddings. We write £(A) := {(0(a))oex €
C*|a € A} as a lattice in C¥ :=] . C.

We choose a totally imaginary 6 € M with Im(o(d)) > 0 for all 0 € 3. Then the alternating
form (a, b) — (c(a)b — ac(b))/2d gives an identity R Ao R = ¢* for a fractional ideal ¢ of F. Here
" ={z € F|Trp/g(zc) C Z} =027 c! for the different  of F/Q. Identifying M ®g R with C* by
m®r — (o(m)r)yes, we find that (a,v/—1a) = Qa& > 0 for a € M*. Here the symbol “>”
means total positivity. Thus Trg/g o (-, -) gives a Riemann form for the lattice ¥(A), and therefore,
a projective embedding of C*/3(R) onto a projective abelian variety X (A),c. The complex abelian
scheme X (A) extends to an abelian scheme over W (unique up to isomorphisms). In this way, we get
a c¢-polarization A(A) : X(A)(C) ® ¢ 2 *X(A)(C) for the dual abelian scheme ‘X (A) = Picg((A)/W.
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For an order R of conductor f and a proper R-ideal A,
RAR=FOAR)+F(RAR)= ()" and AANA= (Npyr(A) 1),

where the exterior product is taken over O. Hereafter we fix ¢ so that ¢ is prime to pf(.A4)0, and write
¢(A) for Nar/p(A)~H(A)"te (so, ¢ = ¢(R)). We can always choose such a 6, since in this paper we
only treat A with [-power conductor.

Since an isogeny defined over the field of fractions Frac(WW) of W between abelian schemes over
W extends to the entire abelian scheme (e.g. [GME] Lemma 4.1.16), we have a well defined ¢(A)-
polarization A(A) : X(A) ® ¢(A) = 'X(A). Replacing X (A) by an isomorphic X (aA) for a € M,
we may assume that A, = R,. Then

X(A)lpr] = X(A)p] & X(A)[p°]
for pp = p N F is isomorphic by A(A) to its Cartier dual. Since the Rosati-involution a — a* =
A(A)o'ao A(A)~! is the complex conjugation ¢, X (A)[p]/ is multiplicative (étale locally) if and
only if X(A)[p°] is étale over W.

Since the base of R, is given by ay,'(1, \/E) for oy, = (é mOI") with a prime element <o of Oy, we
find that a,(z(R)) = z(R,) and a1 (x(Ry—1)) = z(R,). Moreover, for a suitable u € O

(3.2) w(z(A)) = (3 = ) (#(Rps1)) if A= Ry,/C for O/1=C # X(Rn][l],
because the base of wA; is given by (j‘fﬂi}/;) — ((1) %) Qa1 (\/13) . Here the action of =y :

z(A) — wi(z(A)) may bring z(A) on a geometrically irreducible component of Sh() to a different
one.

Now we consider 2(A) in Vk for an open subgroup K C G(A(*)) containing O*. By repeating
(3.2), if z(A) = (R,)/C for C = O/ with C N X (R,)[l,] = {0}, then A is a proper R,,{,,~ideal.
If further [ is generated by an element w € F', we get 2(A) = z(wA) = wi*(z(A)) in Vi (because
w/w € K) and

u

(3.3) 2(A) = (; w—m) (@(Rn4m)) = (1 %) (@(Rusm)) for a suitable u € O.

[
1
The set {z(A)|[AR,] = [2]} for A € Clp4m Tunning through ideal classes A projecting down to
a given ideal class [/] € Cl,, is in bijection with O/I™ by associating u to A in (3.3) (see [HO04,
Proposition 4.2]).

3.2. Geometric modular forms. Let k be a weight of ' = Resp/zGn,, that is, k : T(A) =
(A ®z O)* — A* is a homomorphism given by (a ® &)* = [[(a&?)*> for integers k, indexed by
field embeddings o : F < Q. Let B be a base ring, which is a WW-algebra. We consider quadruples
(X,A,nP),w), 4 for a B-algebra A with a differential w generating H°(X, Qx,4) over A®z O. We
impose the following condition:

(3.4) n®P(LP) = T(X) ®2 ZP for Le = O @ ¢* with a fixed c.

Under this condition, as seen in [H04, §2.3] and [HMI, §4.3.1], the classification up to prime-to—p
isogenies of the quadruples is equivalent to the classification up to isomorphisms. A modular form
f (integral over B) of weight k is a functorial rule of assigning a value f(X,A,n®) w) € A to
(the A-isomorphism class of) each quadruple (X, A, 7", w), 4 (called a test object) defined over a
B-algebra A. Here A is a ¢ polarization which (combined with ")) induces L. A L, = ¢* given
by ((a ®b), (' ®V')) — ab’ — a’b. The Tate test object at the cusp (a, b) for two fractional ideals
with a*b = ¢* is an example of such test objects. The Tate semi-AVRM Tateq p(q) is defined over
Z[[¢*]l¢c(ap), and is given by the algebraization of the formal quotient (G ® a*)/q® (see [HMI,
§4.2.5] for details of this construction). The rule f is supposed to satisfy the following three axioms:

(G1) For a B—algebra homomorphism ¢ : A — A’, we have
FIX R ™ w) x4 A') = (XK, 0P, w).

(G2) f is finite at all cusps, that is, the g—expansion of f at every Tate test object does not have
a pole at ¢ = 0. _
(G3) F(X,A,n™, w) = €7 F(X, N, 0P, w) for £ € T(A).
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We write G (c; B) for the space of all modular forms f satisfying (G1-3) for B-algebras A. Since
we do not place any level p-structure, the modular forms we consider has level prime to p (i.e., the
level subgroup at p is GL(L ) = GL2(0,)). We put

(3.5) Gr(B) = P Gi(c; B),

where ¢ prime to {p runs over a representative set of strict ideal classes of F.
An element g € G(A®P>)) fixing L% acts on f € Gi(¢; B) by

Fla(X, K, w) = f(X, K, 7" o g,w).
For a closed subgroup K® ¢ KP = GL(ZEP)) N G1(AP®), setting K = K® x GLy(0,) C
GLy(A), we write Gy (c; K; B) for the space of all K(?)-invariant modular forms; thus,
Gi(c: K; B) = HY(K®), Gi(c; B)).

Since elements of Gi(c; B) is of level prime to p, the notation Gg(c; K; B) is legitimate. Take an
O-ideal 91 prime to pc. Then the M—component of K, is GLo(Osn). Let

LoM) = {(24) € GLy(Om)|c € MOm} and T1(M) = {(2}) eToM)[a=d=1 mod NOn}.
Assume that 9 is prime to pl and define for an open subgroup Kin C SL2(Om)
Gr(Kwm; B) = @Gk(c; K x K, B).

A W-algebra B is called a p-adic algebra if B = @n B/p™B. We write 1,4 for the pair of level

ord

structures (9" : pyee @ 071 — X[p™], n®). A p-adic modular form f over a p-adic W-algebra
B is a functorial rule of assigning a value in A to triples (X, A, 1orq) /4 With c—polarization class A
satisfying an obvious version of (G1-2) for p—adic B-algebras A (not just B-algebras). In general,
we do not impose (G3) on p-adic modular forms. See [HMI, §4.2.8] for more details about p-adic
modular forms. We write V (¢; B) for the space of p—adic modular forms defined over B. We again
define

(3.6) V(B)=@V(:B) and V(Kwm;B) =@ V(K x K7™ B),

where V(c; KP); B) = H(K®) V(c; B)) with g € K®) acting through "), For f € V(B), we write
fe € V(c; B) for the c—component of f, and we say that f is of level M if f in either in Gy (Kn; B)
or in V(K[m; B) for Kin C GLQ(O[m) with Ky = Fo(‘ﬁ) or Fl(‘ﬁ)

Since ngrd induces the identification ﬁg’”d : G, ® O* = X for the formal completion of X along
the origin, by pushing forward the differential %, we can associate (X, A, n(®), ﬁgf;d%) to a quadruple

(X, A, ng’”d, n®)). In this way, any modular form f satisfying (G1-3) can be regarded as a p-adic
modular form by

< - —ord At
(3.7) FOC R, tora) = S (4R, @) 3575,

By the g—expansion principle (cf. [HMI, Corollary 4.16] or [PAF, Corollary 4.23]), we have a canonical
embedding of G (B) into V(B) which keeps the g—expansion. A p-adic modular form associated to
a modular form in Gy (B) satisfies the following replacement of (G3):

(€3) fOXAE nyrd n®)) = €F (X, A g, ) for € € OF.

Although we do not impose the condition (G3) on p—adic modular forms f, we limit ourselves
to the study of forms satisfying the following condition (G3') in order to define the modified value
f([A]) later at CM points z(.A) truly independent of the choice of A in its proper ideal class. Here
abusing our notation, x(A) is the quadruple (X(A), A(A), nora(A), w(A))/» introduced in [HO4,
§2.1]). We consider the torus Tpsy = Resg/zGy, and identify its character group X*(Ths) with
the module Z[X LI ¥c] of formal linear combinations of embeddings of M into Q. By the identity:
(X(&A), A(EA), nora(§A) = Enora(A))yw = (X(A),EEA(A), Mora(A) © pa(§))/w, we may assume
that for k, k € Z[X],

(G3) f(x(€A) = flpr(EW)(x(A))) = €+ f(2(A)) for € € Tar(Zy)).
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It is known that for the p—adic differential operator d, of Dwork-Katz ([K78] 2.5-6) corresponding
t0 52— for o € X, 0% f (6 =[], d4°) satisfies (G3') if f € G(B).

271 Ozo

Remark 3.1. The recipe (3.1) of regarding a geometric modular form as a p-adic one works well
even if we add an ordinary level p-structure ¢, : pn ®z O — X to the quadruples (X, A, 7P, w)
defining G (¢; B). By doing this, we can allow geometric modular forms of level I'y (p™) at p in the
picture. However this is redundant as our result is valid for any f € V(c;F,) which covers any
p-integral classical modular forms level Ty (p™) at p.

3.3. Hecke operators. Suppose that the [~component K of the level subgroup is equal to T'o(I*)
(v >0). Let e; = *(1,0),ea = *(0,1) be the standard basis of F? @ A®>) Then, under (3.4), for
each triple (X, A, Nord) /4 With 7orq = ng’”d x )

C=n(l""0Ore1 + Or€2)/77r(0r2)

gives rise to an A-rational cyclic subgroup of X of order [, that is, a finite group subscheme defined
over A of X, isomorphic to O/[” étale locally. Since Io(I*) fixes (I7¥Ore1+Orez)/OZ, the level To(1*)
moduli problem is equivalent to the classification of quadruples (X, A, C, ﬁf)?d) /A for a subgroup C
of order [V in X, where né?d is the (p—ordinary) level structure outside [. Thus we may define for
f € Gr(To(*N); B) the value of f at (X, A,C,n®Y, w) by f(X,A,C,n®Y w) = f(X,A,nP),w).
When f is a p—adic modular form, we replace the ingredient w by the ordinary level structure ng’”d
in order to define the value f(X, A, C,n®Y, ngTd).

We shall define Hecke operators T'(1, [") and U(I™) over (p-adic) modular forms of level K (with
K =Tg(1")). The operator U([") is defined when v > 0, and T'(1, ") is defined when v = 0. Since
[ is prime to p (and B is a W-algebra), any cyclic subgroup C’ of X of order [ is isomorphic to
O/1™ étale locally. We make the quotient 7 : X — X/C’, and A, ng’”d and w induce canonically a

v

polarization 7, A, a canonical level structure 7,03 = 7o 79, m,n®) = 7 on®Y and a differential

(7*)"lw on X/C". If C" N C = {0} for the Iy(I")-structure C (in this case, we call that C’ and C
are disjoint), 7(C) = C + C’/C" gives rise to the level I'g(I¥)-structure on X/C’. We write X/C’

for the new test object of the same level as the test object X = (X, A, C, n(()?d,w) we started with.
When f is p—adic, we suppose not to have w in X, and when f is classical, we ignore the ingredient

ng’”d in X. Then we define (for v > 0)
(38) AV = 5775 2 FX/C).
Il

where C’ runs over all étale cyclic subgroups of order [ disjoint from C. The newly defined f|U(I")
is a modular form of the same level as f and U(I") = U([)". Since the polarization ideal class of X/C’
is given by ¢[™ for the polarization ideal class ¢ of X, the operators U(I"™) permute the components

Je-

We recall some other isogeny actions on modular forms. For fractional ideals 3 in F', we can think
of the association X — X ®q 3 for each AVRM X. This operation will be made explicit in terms of
the lattice L = 71(X) in Lie(X). There are a natural polarization and a level structure on X ® 3
induced by those of X. Writing (X, A, n) ®3 for the triple made out of (X, A, n) after tensoring 3, we
define f|(3)(X,A,n) = f((X,A,n) ®3) (see [PAF, §4.1.9] for more details of this definition, though
(3) here is (37') in [PAF, §4.1.9]). For X (A), we have (3)(X(A)) = X(3A).

(3.9) The effect of (3) on the Fourier expansion at (a,b) is given by that at (30,3 'b)
(e.g., by [PAF, §4.2.9], noting (3) here is (371) in [PAF]).

Let q be a prime ideal of F outside pl. For a test object (X, A, C, ngi)d, w) of level T'y(q), we can
construct canonically its image under g-isogeny:

(X, X, C, %Y, w) = (X', K, w77, (1) w)

ord
for the projection 7: X — X" = X/C, where 7, = 14 - GL2(0Oy) for any level g-structure 74 identi-
fying 7q(X’) with OF. Then Then we have a linear operator [q] : V(T'1(I"9); B) — V (To(q*N); B)
given by f|[q](X) = f([q](X)). See [HO4, (4.14)] for the description of this operator in terms of the
lattice of X.
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If g splits into Q9 in M/F, choosing 14 induced by
X(A)[g>*] = Mg /Raq x Mg/Rg = Fy/Oq X Fyq/Oq,

we always have a canonical level g-structure on X (A) dependent on the choice of the factor Q. Then
[q](X(A)) = X(A[Q]™!) for [Q] € Clo. When q ramifies in M/F as q = Q2, X(A) has a subgroup
C = X(A)[Q,] isomorphic to O/q for Q,, = QN R,,; so, we can still define [q](X(A)) = X(AQ,') =
X(A[Q™h).

The effect on the g—expansion of the operator [q] can be computed similarly to (3) (e.g. [DR80]
5.8; see also [PAF, §4.2.9]), and the g—expansion of f|[q] at the cusp (a, b) is given by the g—expansion
of f at the cusp (qa, b).

These operators [q] and (3) change polarization ideals (as we will see later in [H04, §4.2]); so, they
permute components f.. By the g—expansion principle, f — f|[q] and f +— f|(3) are injective.

4. DISTRIBUTION ATTACHED TO U (I)-EIGENFORM

We recall notation and construction of a measure dyy, on Cl; for a mod p modular form f/p
such that fl[U(I) = af. If 0 # a € F, we can patch together into a measure dys on Cl_. If a = 0,
this is just a collection of infinitely many measures {dy¢ n}n (see Remark 4.1).

4.1. Anti-cyclotomic measure. Choose a U(l)-eigenform f € V(I'1(1¥1); A) with a central char-
acter for a p-adic ring A in which ¢ is invertible. We suppose that f|U(l) = (a/A([)N(l))f for either
aunit ¢ € A or a = 0. This f is an element of V(I';([¥91); A) defined over the non-connected
Hilbert modular Shimura variety whose geometrically connected components are indexed by the
strict ray class group CI5(I"N) of F. Our geometrically irreducible component V carries z(A) for
A € Cl*Y N Ky for Ky := Ker(Cly, — Cly). Anyway f(z(A)) is well defined for all A € €19
possibly z(.A) sitting in another geometrically connected component.
Choose a Hecke character A of M such that
(f1) A has infinity type k+ k(1 — ¢) of conductor € prime to p¢ which is a product of split primes
over F' (k,k € Z[X)),
(f2) Decompose € = FF. for integral ideals § and §. such that §F+ §. = R, § C §¢, the Neben
character of f as in [HO7, (S1-3)] is given by (5., Az, ()\|FA><)| |5

The existence of the character satisfying (f2) implies k, = k, for any two embeddings o, 7 € ¥; so,
hereafter, often we identify k with the integer k, and write kX in place of k (i.e., ¥ is identified
> oex 0 € Z[X]). It might appear strange to have the absolute value character |-|%, in the description
of the central character (A FAX)| - |3, of f, but when we extend a geometric modular form to an
automorphic form on G(A), we multiply the factor | det(g)|a as the adelic Fourier expansion has the
factor | det(g)|4 in front of the Fourier expansion sum in [HMI, (2.3.15)]; so, the central action on a
geometric modular form and the adelic one has this discrepancy. See [HMI, §2.3.2, §4.3.7] for more
details on the relation of geometric Hilbert modular forms and adelic ones. Then by (f1) and (G3’),
F([A]) = MA)~Lf(x(A)) for A prime to p depends only on the class of A in Cl,; = Cl,,/Clp.

For the p-adic avatar A(z) = )\(xR)x];E+'{(17C), we also have f([A]) = A(A)~!f(z(A)). This new
definition is valid even for A with non-trivial common factor with p. Then often we regard f as a
function of C(>) = | |, C,, (embedded into Sh%), or Ig/r by A z(A)).

Writing X (A)/C = X&) for C # X(A)[l,] for R,-proper ideal A prime to [, 2 is a proper
R, t1-ideal such that [(R,2) = A. Since there are N(I) proper R, 4i-ideal such that [(R,) = A if
n > 0, we have

(a/AN()AA)F([A]) = (@/AN (D)) f(2(A) = AUO@(A) = NO > fla()

WN(Rp A)=A
—NOTA@) Y ) P N ) S AR i 0,
WN(Rp A)=A WN(Rp A)=A

Since f([2]) only depends on the class of Cl,, ;, this implies
(1) a- f([A]n) = Z[B]nﬂ:cz;Hs[B]nﬂH[A]n f([Blnt1),

(2) SITOA) = AN Xy, ez, Bl mfal, L (Blngr)-

n
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We can rewrite the above relation (1) as

(4.1) a-f([Aln) = > f([Blnt1) ifn>0.

(Blny1€CL 1 :[Blng1—[Aln

More generally as seen in [H04, (3.8)], we get, for integers n > m > 1,

(42) > F([Bla) = a" =" F([Alm),

[BleCly , [Bln—[Alm€Clm
where A runs over all elements in Cl; which project down to ™" € Cl . The second relation
(2) can be written

(C1) AUOAL) = MO~ F([Blasr) 3 ([ Ansr) = F(Blos) for any [Bli1 with [RuBl, = [A].,
(C2) AU (A = AN i et i1 mt, S Blnim):

For each function ¢ : Cl, — A factoring through CI, , assuming a € A*, we define

(4.3) ¢dpg=a™" Y $(ATH)f([A)).

Clos AeCl,

Then for n > m > 1, assuming a € A*, we find

o Y HATHA) =aT Y s@ e Y f(A]

AeCly, AeClm AeCl, , A=A

W T p@ e AU () = . (z)deoy(z).
AeCly, -

Thus ¢ gives an A-valued distribution on ClZ, well defined independently of the choice of m for
which ¢ factors through Cl., because U (") = U(I)™.

Remark 4.1. The assumption that a € A* is not essential. If a = 0, we just define for each finite
n and a function ¢ : Cl,; — A

(4.4) Cddeor =Y (AT f([A]

Cln AeCly,
without dividing by a. Though we lose the distribution relation (4.4) above, we have well defined
value [ o1~ ¢depy dependent on n. Changing oo by n, all the formulas independent of the distribution
relation holds even when a = 0. So hereafter we allow the case where a = 0, and as a convention,
we use 7 in place of co. If a € A, we can replace n by oo since fcz; = fcz; as long as the integral

factors through CI;;. If a = 0, by (4.1), fcr ¢dpys # 0 happens for a unique n > 0. This n is a

minimal n for which ¢ factors through C1 . To write formulas uniform, we define a =1if a =0
anda=aifa#0inF.

Classical modular forms can be defined over the integer ring of a number field; so, we assume that
f is defined over a discrete valuation ring V (of residual characteristic p) in a number field E. We
assume that F is the smallest field containing M’ for the reflex (M’,%’) of (M, %) and the values
A(R) for all M-fractional ideals 2. We write P|p for the prime ideal of the p-integral closure V of
V in Q corresponding to Ip - Q — @p. More generally, if f = 6%g for a classical modular form ¢
integral over V, the value f([A]) is algebraic, abelian over M’ and P-integral over V by a result of
Shimura and Katz (see [EAI, §8.1.1] and [K78]).

Let f = 0%g for ¢ € Gi(To(l); V). Suppose flU(I) = (a/NON(I))f for a giving a unit of
V/P. For the moment, let ¢ be the measure associated to f with values in A = V. We have a
well defined measure ¢ mod P. Let Ey be the field of rationality of z(A) for all [A] € C19 over
Elpuss]. Then Ef/E is an abelian extension unramified outside ¢, and we have the Frobenius element
op € Gal(Ey/FE) (that is, the image of b under the Artin reciprocity map) for each ideal b of E prime
to ¢. By Shimura’s reciprocity law ([JACM] 26.8), writing (M’, ¥’) for the reflex CM type of (M, 3),
we find for o = oy, #(A)° = x(N(b)~>'A) for the norm N : E — M’. As for no*(A), we find
oong(A) = ung™ for u € Rgp. Since A, = R, we have X (R)[p™] = X (A)[p™] as a Galois module.

Thus we conclude u = ¢(b) for the Hecke character 1 of EJ /E* giving rise to the zeta function
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of X(R). From this, we see f([A])° = f([N(b)~> A]) for any ideal b, since 5 (b) € M generates
the ideal N(b)® c M ([ACM] Sections 13 and 19) and hence ¢ (b)*>tr1-9) = \(N(b)™'). We
then have

(4.5) o ([ otros@) = [ oo a)dosta)

ciy ciy
where N(b) is the norm of b over M’. Writing Fy for ¢ := p™ for the residue field of E NP, any
modular form defined over I, is a reduction modulo P of a classical modular form defined over V
of sufficiently high weight. Since ¢* € M’ for £ € M as the reflex of ¥/ is a sub-CM-type of X,
we have F; C Fq. Thus the above identity is valid for ¢ = ®° (s € Z) for the Frobenius element
® € Gal(F/F,). In this case, N(b) is a power of a prime ideal p|p in M’.

We now assume that A = F = V/P and regard the measure ¢ as having values in F. Then (4.5)
shows that if ¢ is a character x of Cl;; with arbitrary n > 0, for o € Gal(F/F,),

(16) [ x@desta) =0 = [ goxt@os) =0

Cly Cly
Let Fg[pe] be the finite subfield of F generated by all ~th roots of unity over Fy; so, it is the field
of rationality of A\, f and py over the residue field of M’ NP.

4.2. Measure projected to I' and I',,. Recall I',, which is the image of I" in Cl_. Since each
fractional R-ideal 2 prime to [ defines a class [2] in Cl_, we can embed the ideal group of fractional
ideals prime to [ into Cl. We write C%9 for its image. Thus the projection of [Q] in CI is [Q],
as specified for the integral ideal Q above. Then A% = A~ N C% is generated by prime ideals
of M ramified over F. We choose a complete representative set for A9 made of product of prime
ideals in M ramified over F' prime to pl. We may choose this set as {R~!|t € R}, where R is made
of square-free product of primes outside [ in F' non-principal ramifying in M/F, and R is a unique
ideal in M with 82 = r. Note that {9|t € R} is a complete representative set for 2-torsion elements
in the quotient Clj .

In [HO4] and [HO7], we used Cl, in place of Cl; so, we had to choose a complete representative
set S of the image Clr of Clp in Cl,,, which is not necessary. Indeed, since f([A]) = f([s.A]) for an
O-ideal s by our choice of A, we have hf([A]) = >,cs f([sA]) for h := |Clp|, and if we make our
choice of A, this implies the triviality of the measure if p|h. To avoid this, we do not sum over S.
We fix a character ¢ : A= — F* | and define

(4.7) Fo = X ) f][x)-

teER

In [HO4] and [HO7], fy is defined by

DT R) (Z 1/)/\1(5)fl<5>> [¢],
t€R s€S
and we do not follow this definition.

Choose a complete representative set Q for ClZ /TA® made of primes Q of M split over F
outside pl except for the trivial element R representing 1 € CIZ /TA9, Thus q := Nuyyr(Q) is a
prime ideal of O if Q # R (and q = O if Q = R). We choose 777(110) out of the base (w1, ws) of R,
so that at q = QN F, w1 4 = (1,0) € Rq X Rqe = Rq and wy q = (0,1) € Rgq X Rge = Ry. Since
all operators (s), [q] and [v] commute with U([), fy|[q] is still an eigenform of U([) with the same
eigenvalue as f. Thus in particular, we have a measure ¢y, |q- We then define another measure <p}/3
on I' by

(4.8) /F pdp) = QZQW*(D) /F Aoy, )
. . .

where ¢|Q(y) = ¢(y[Q]r) for the projection [Q]r in T of the class [Q] € Cl,. As already remarked,
¢ — ¢|Q is a transcendental action unless Q = R. If Q = R, ¢|Q = ¢ and f|[q] = f.
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Lemma 4.2. If x: 'y, = F* and ¢ : A= — F* are characters, we have

/ xdel = / xYdey.
r Cly,

n

Here recall the image I'y, of ' in C1 .
Proof. For a proper R,—ideal A, by the above definition of these operators,

FIell[al (A = A(A) ™ f=(Q7 R A)).

Since x =1 on A~ we have

/F xdel = Y (xTTHQR) D X (A al ([A])

" NEQTER Ael,
= 3 w@ RSN A = [ vy,
A,Q.¢ Cln
because Cl; = | g [Q "R T. O

We write Fq := Fy[¢)] C F for the field of rationality of ¢ over F,. Then o € Gal(F/Fq) preserves
dw}/ﬂ Then (4.6) shows that if x is a character of T', for o € Gal(F/Fq),

(4.9) /Fn X(x)d(p}zf(x) =0 < /Fn oo X(x)d(p}zf(x) =0.

4.3. Trace relation. For any finite extensions x/x’/Fq[p¢], we consider the trace map: Try /. (§) =
> ocGal(n/n) 0(§) for £ € k. Recall the image I';, of I' in Cl,. Define

(4.10) fwg([.A]) = Z V(Q) " £ (JAQY[Q]r) for the projection [Q]r € T of [Q].
Q€Q

Let x : T, — F* be a character. Suppose that Im(x) NFq[ue]™ has order ¢" and that x has order
¢”. Note that 1 <r € Z. Fix j > r, and write

(4.11) & = &, =T 1 x (Falss])
and [Ay] = [Ay]. for the image of y € I"in T',,. By (3.3), we have an isomorphism of O-modules:
(4.12) O/V 2®, by uw o(u/w?)z(Rpy;).

Note that [R,,—1.A4y], = [Ay]n—1 for all n. Recall a € F* defined in Remark 4.1. If v > j, for
d = [Fq[x] : Fqlpe]] = [Im(x) : Im(x) N Fqlue] ] = €77,

(4.13) /F Tr]Fq[X]/]Fq[X(f)”w]OX(yilx)d%);{')(x)

=LY A = 5 Y MAR(AA),

Ael Ay~ 1ed,, [Ale®,

because for an ¢—power root of unity and a finite extension x/Fq[pei], ¢ € per — pres

s IS i ¢S € kand KN g = iy
4.14 Truipe /s =
( ) Talper /() {O otherwise.
Thus by (4.9), we have
(4.15) > xS =0 if [ xudgs =0
[Ale®, Cln

Let F(®,[A,],F) be the space of functions ¢ : ®,[A,] — F. Consider the linear form ¢, :
F(Pnl[Ay],F) — F given by £,(¢) = 3> 4jcq, X([A])O([A][Ay]). Since the orthogonal complement

of the space spanned by {{y+ }secal(@[ue]/0) it F(Pn, F) under the pairing

(@, 0y = Y d([A[A]¢ ([A)
!

Aled,,
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is spanned by characters of order < ¢°~!. If ¢ = 1, the orthogonal complement is made of con-
stant functions on ®,,. Thus assuming that the integral (4.13) vanishes with ®,, 2 u, and that
Gal(Fq(pe]/Fq) = Gal(Q[ue]/Q), [A] — ff([.A] [A,]) is a constant function of [A] whose value is
f([Ay]), for aq = diag[1, @], we have

AN = D f2Bln) = Y fRle(u/m)an)([Ayln-1) = af P ([Ayla—1).
[Ble®ny v mod [
This is easy to see if we choose A, prime to [ (i.e., A, = Ry ). Hereafter exclusively the latter r

for the integer defined by

(4.16) fiese VB pe]™ = prer.
Thus r» > 1.

5. PROOF OF THEOREM 0.1

Write Gy, sz, for the formal completion over Z, at the origin of G, (IF¢). Let Hom(I', j1¢>) embed
into G¢ myz, and G4 w7, Py choosing a basis (71, .-.,74) of T over Zy and sending x € Hom(T', pip=)

to (x(71)s-- -, x(74)). A subset S of Hom(T, jug=) therefore has its Zariski closure S (resp. S) in
G2 (Qy) (resp. G%,(Qy)). Since Aut(GZ,) = GL4(Zy), the isomorphism class of S is independent of
the choice of the basis. As we will see later for our choice of S that dim.S = dim S, and hence S

being a proper Zariski closed set is independent of the choice of basis.
Fix a character ¢ : A — F*. Let

X =Xy = {x € Hom(T, ,ugao)|/ Xx¥dpy # 0 for some n}.
Cln

If a = 0, as seen in Remark 4.1, fcz; x¥dey # 0 for one value n; in other words, for n given by
cond(x) = I", the integral is not defined over Cl,s for n’ < n and the integral vanishes for n’ > n.
On the contrary, if a # 0, the vanishing (and non-vanishing) of the integral is independent of n as
long as it is well defined.

Assume the following condition:

(5.1) The Zariski closure Xy in G2 (Q,) of the set Xy has dimension < d,

and we are going to deduce absurdity.

5.1. Proof. We prepare a lemma. Let C,; be the f-adic completion of Q,. Let W be a discrete
valuation ring finite over the Witt vector ring W(Fg) inside (Cg for an algebraic closure F, of Fy, and
write K for its quotient field. For a formal subscheme X of G, /w, we write X(Cy) := X (W) for
the integral closure W of W in C,. The map ¢ ~ 3= is an automorphism of s for z,, € (Z/("Z)*.
Take a sequence of z, € Z lifting z,, and assuming {2, } converges to z € Z,. Then ( — t*~ gives
rise to an automorphism z € Z; of jiy. In this way, f-adic unit z acts on pio. If 2 € QN 7, prime
to ¢, this automorphism of uf.. extends to an isogeny t — t* of G%,. If we identify e = Q/Zy,
t — t* turns into a multiplication 7 — 27 by z on Q¢/Z,. In the following lemma, we take z = p™
for m € Z and a prime p # /.

Lemma 5.1. Let p and ¢ be distinct primes and r > 0 be an integer. Let X be a subset of ul~ and
X be the Zariski closure of X in G¢ (Qy) for d > 1. Suppose that X is a subscheme stable under

t — t*"" for alln € 7 and a fized v > 0 (this means X’ c X). Assume dimX < d. Identify
pdo (Qy) with (Q¢/Ze)¢ as (~divisible groups. Then, for a given d-tuple (a1, ...,aq) of non-negative
integers, we can find a sufficiently large p"-power P =p? (j =rj’, 0 < j' € Z) and a positive integer
N such that there exists a sequence of subsets {T,}>° 5 outside X(Qy) given by

Y, = (Pk161 %)
n fn+ar fntaq

mod Zf}’(ki) € Zd}

if we choose a basis {e;} of Z3 suitably.
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Proof. We choose the p"-power P so that P = 1 mod £. Let ['p = P% C Z; , which is an open
subgroup of 1 + (Z;. Let X[(>°] := X(Q,) N pu%e (Q). Since X’ < X, we have X[(>]P" C X[¢>];
s0, the Zariski closure of X[¢>] is stable under ¢ — t*". We may replace X by the Zariski closure of
X[¢°°] as the lemma only concerns about X(Q,) N ud. (Q,), and after the replacement, the stability
X" c X is intact. If X(Q,) N pdo (Qy) is a finite set, the assertion plainly follows; so, we may
assume that X' (Q,) N ué. (Q,) is infinite. Since X is noetherian, we may also assume that dim X' > 0
as otherwise, X'(Q,) is finite.

The variety X is defined over a finite extension K of Frac(W (F,)). Take W to be the (-adic
integer ring of K with maximal ideal mw. Let ?/w be the schematic closure of ?/;C in sz W
Writing GZ’L/W = Spec(A) for A=Wty 7', ... ta, t;'] and X = Spec((A @w K)/a) with an ideal
a of A®w K, X,w = Spec(A/2) for A :=an A. Thus X ,w is flat over W. Let

m=mw+ (t1 —1,...,ta — 1) C W[te,t7 ", ..., ta, t; ']

and A be the m-adic closure of % in A = WI[Ty,..., Ty]] = lim A/m" with T; =t; — 1.

We write M for m-adic completion of an A-module M and gr(M) = D2 m"M/m" M (the
graded module over gr(A)). Note that @Zl sw = Spf (//1\) is the formal completion of G%, /w along
the identity of G, Ve

Define X' := Spf(X) for X := W[[T1, .. .,Td]]/é\l, which is a formal subscheme of @Zl/w over
W. Since X = A/A®4 WI[T4,...,T,]] = /T/\Ql, X is a flat over W. Since dim(X) = dimgr(X) =
dimgr(A/A) = dim(A4/2) (e.g., [CRT, Theorem 15.7]), we find dim X = dim X < d.

Since X(Qy) N pde (Qy) # 0 and pd.. xw F, has only one geometric point, we see X(W=]) D
X(Qy) N pd (Qy). Since X X, we still have X?" C X inside @Zl/w. Thus X is stable under an
open subgroup U of 1 + ¢Z,. Here an element s € 1 + {Z; acts on @Zl by t — t°.

Since X is noetherian, it has finitely many geometrically irreducible components, and U permutes
them. Thus, replacing U by its open subgroup, we may assume that U fix each geometrically

irreducible component. By extending scalars, we may assume that each geometrically irreducible
component is defined over W. Then by Lemma 5.5 below, X = ., (Z¢ i, where T¢; C GZ’L/W is

=

a formal subtorus of @Zl sw and Z is a finite subset of pde (W pps<]).

We first assume that Z = {1}. By this assumption, X is a union of subtori {7;}sc; with |.J| < oo
and dim7; < d. Thus we have its (-adic Tate module T'7; = lim T[("] C T := Tpd.. Put TX :=
U, TT:. We identify ud, = ¢="T/T = T/¢"T}; so, pl = Q,T/T. In particular, X[("] = X N pf,
is the image of | J, Q/T7; in pd, = £7"T/T. Then we can choose a base {e1,...,e,} of T over Z;
outside TX so that Zye N TX = {0} for e = €1 + €2 + -+ -+ e4. Then the f-adic distance from the
Q¢-span QgT)/(\ = U; Q¢T7; to the point ;7 is larger than or equal to cf™ for a positive constant c
independent of n. Thus we can find a sufficiently large power P of p” (¢-adically very close to 1) so
that U, =I'p s+ + Dpgpids for I'p = P%¢ gives rise to an open neighborhood of % disjoint
from QgT)/(\ . Then the image T, of U,, in ,u?x, is disjoint from X [¢>°] and hence from X for alln > 1.

When Z # {1}, we consider the subgroup (Z) of ul.. generated by Z. The group (Z) is finite.
Consider the projection 7 : éﬁl — éﬁl /{Z). The image of w()/(\ ) under 7 is a union of formal subtori
and hence stable under scalar multiplication by elements in Z,. Using the result proven under the
condition Z = {1} applied to 7(X), we write Y! for the sets constructed for m(ude) = pe /(Z).
Then we find that for n > N any I'4-orbit of an element in the pull-back image T,, := 7~ 1(Y%)

gives a desired set T,, C ué (Q,). This finishes the proof. O
Choose a Zg-basis 71,...,7q for d = rankz, I'. Then identify Hom(T, jue=) with pde by x —
(x(m), -+, xX(72)) € pde C GY,. Here is a more accurate version of Theorem 0.1.

Theorem 5.2. Suppose that for a given class v € (O(/V)* with a sufficiently large j > 1 > 0 forr
as in Theorem 0.1 and a cusp (a,b) with a and b coprime to |, there exists £ € ab N —v such that
a(§, fy) # 0 in F. Then the set of characters x € Hom(T', pe) with v(x) = v and non-vanishing
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fCln Yxdpy #0 forn > 0 given by cond(x) = (* is Zariski dense in G%,(Q,). Here v(x) € (Oy/V)*
is defined in the following proof. If rankz, I' =1, we can take j = r for r as in (4.16).

Though the minimal possible r depends on [, the assumption in the theorem is in appearance
weaker than

(h) There exists a strict ideal class ¢ of F' such that ¢(Q 'R 1s) is in ¢ for some (Q,%R,s) €
Q x 8§ x R and for any given integer j > r > 0, the N ()7 modular forms fy | (3 %) for
u € [79/0 are linearly independent,

which is assumed in [H04, Theorem 3.3].

Proof. Let
X = {x € Hom(T, py) — Gi/@£| / de}/f #0 and v(x) =v}
r

and X (resp. X) be the formal Zariski (resp. Zariski) closure of X in @Zl /w (resp. G%)). Note that

x" C X and XP C X. Suppose X is a proper Zariski closed subset of GZ, and get a contradiction.

First suppose d = 1. Then X is a finite set. Take j := 7 in (4.11) and (4.12). So there exists B > 0
such that if the conductor of a character x is [" with n > B, by (4.15), identifying ®,, = O/(IO\)"
as in (4.12) by z(Ay) = o(u/l")x(Rptr) < O(/(10()", x induces a character of O(/(IO;)" which is
of the form u — C;f(X)u for v(x) € (O(/(IO()")*. Then we have

/de%?f = > XASRlow/=)([AA) = D ¢ fRle(u/tN)([AA) = 0.

[Aled, w  mod I”

Here [A,] is any element in T',. Let Z,, = {z([A])|[A] € T'n} and E:= | |, 5=, NV. Then = is
associated to an infinite arithmetic progression of difference m (for minimal exponent [ is generated
by Nar/r(R)).

Since x|s, : O/ — F* is an arbitrary character of order ¢", we may fix a character x,(u) =
for v € (O/1")* independent of n > B as an additive character of O/I". Writing

(5.2) g =Y xo(u)fylou/mt),

ueO/ v

we find Y750 7 (Q)g0[a]([A][Q]r) = 0 for all [A] € Z. By Corollary 2.12, = is Zariski dense in
V = V<, and hence we conclude g,|[q] = 0. Since the g-expansion of a modular form h|[q] at (a, b)
is given by the g-expansion of h at (qa, b); so, by g-expansion principle, g,|[q] = 0 < ¢, = 0 (e.g.,
[H10, (5.10)]). Note a(¢, gv) = N(D)"a(é, fy) as long as € = —v mod [¥. Since v is arbitrary, we can
choose v so that & as in the theorem satisfies £ = —v mod I”; so, g, # 0, a contradiction.

We now assume d > 2. Take a base v, ...,v4 of I' of " over Z, which gives rise to an identification
Hom(T, pe=) = pde by x — (x(m1),---,x(7a)). Regard ud. C Gi/@l and apply Lemma 5.1 to

VU
T

X C GY,. Thus we have the base ey,...,eq as in Lemma 5.1 of the Tate module THom(T, pip) =
@n Hom(T', p1gn). We rewrite the corresponding basis of T as 71, ..., v4; so, the Zy-module ”yl-Z’f is
sent isomorphically onto Zse; for each i. Recall Cl = @n Cl, and Cly = I' x A for a finite group
A. Pick the smallest integer 0 < a € Z so that Ker(Clo, — Cl,) C T. Choose aq,---,aq so that
0, %gaﬁ"ztz = Ker(Cly — Clgyy) for n > 0. Let P = p? with j > r as in Lemma 5.1.

Suppose [™ is principal generated by @ = @p° for ¢ € R. Then T = J,» 5 T is disjoint from
X by Lemma 5.1 for some positive integer N. Put Zq im = {2(A)|A € Ker(Cloyim — Cla)},
replacing m by a positive multiple so that m > N — a. Define an infinite arithmetic progression
n:={a+im|i =1,2,...}. Then T, ,, acts transitively on =, and by Theorem 2.7 and the proof of

[HO4, Proposition 2.8], = embedded in V< by A — x([A]) := (2([A][Q]r))aco is Zariski dense.
For each x € T,

Y@t Y A fec((AQ7Y[Q)) =0
Q AeyX~ (ng;)

holds by (4.15) (see also [H04, page 770]) for A with x([A]) € E,,.
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Identify again ®, = O;/(10)/ and define v(x) € (Oi/(10)7)* by x(u) = (" for all u €
O(/(10y)) = ®,,. Let g, := Zueo/[j Xo () fylo(u/w]) for x,(u) = C;-rr(w) for Tr := Trp, /z,. Then

(5:3) Zw ") gllal([Al[Q)r) = 0 for x([A]) € E.

Acd,

By Zariski density of Z in V¥, we conclude g,|[q] = 0. Since [q] € Aut(Sh(®)), we conclude g, = 0.
For a chosen class v € (O/VV), we find £ such that £ € —v and a(&, fy) # 0 < a(€, gv) # 0, and
from this we conclude contradiction against a(§, fy) # 0. O

Here is an obvious corollary of the proof of Theorem 5.2:

Corollary 5.3. Let the notation be as in Theorem 5.2. Suppose d = 1 and a(§, fy) # 0 for
some & € —v for a given v € (O/1V)*. For a character x € Hom(T, py~(F)), define n(x) by
Ker(x) = Ker(I' = Cly,(y)). Define a subset of Z by
nyi= (OO0 = v and [ xwder =0},
n(x)

Then n, cannot contain any infinite arithmetic progression.
We can interpret heuristically the above corollary into a natural density O result. Let
n={0<ng<ni<ng<---<n;<---}
be an infinite sequence of integers. We define the density of n by

Hn, <
Dl e i Ll =l
Consider the function ¢ = ¢,, : j +— n; defined on the set of natural numbers N := {n € Z|n > 0}.
We study D(n) in terms of ¢. Suppose

(E) n does not contain any arithmetic progression.

Let A¢(x) = ¢(x + 1) — ¢(z). Suppose that A¢(z) is bounded by an integer B > 0. Then the
map Z 3> x — ¢(x) mod B has a fiber F over a € [0, B) N Z with infinitely many element by the
pigeon hole principle. Arrange the set F’ := {m|a +mB € F} in increasing order, if F’ contains an
additive subgroup, then n contains an arithmetic progression, a contradiction to (E). Thus A¢(x)
is unbounded. Therefore lim, .o, ¢(x)/Bx = oo for all B > 0, and we have |A¢(xz)| < B for
2 > 0. This implies D(n) = 0 if n does not contains arithmetic progression. As mentioned in
the introduction, there exist a sequence of positive lower density without containing an arithmetic
progression [W72]. However we are inclined to believe at least

Conjecture 5.4. Let the notation and the assumption be as in Corollary 5.3. Then D(n,) = 0.

5.2. A rigidity lemma. If a formal completion at a point v of a scheme V,w has a canonical
structure of a formal torus, a subvariety passing through v is interesting in the sense that such a
variety is often quite limited (and such a result is called a rigidity result). If V is a good integral
model of a Shimura variety, such subvariety is close to a Shimura subvariety (as Chai calls it a Tate
linear subvariety of a Shimura variety). The study of the linearity was an essential tool in the study
of density of CM points in [H10] which we used. Here we study formal subschemes of G =G "W

stable under the action of ¢ — t* for all z in an open subgroup U of Z,. Intuitively, one might
expect that such a formal scheme is a union of a coset of formal subtori. We can prove this if the
formal subscheme has large quantity of torsion points (cf. Lemma 5.1). There is a general result
due to Chai of this type (see [EAI, Theorem 10.6]). Here we recall with a proof an easy case of such
rigidity results used in the proof of Lemma 5.1 from [H14, Lemma 4.1]:

Lemma 5.5. Let K be a finite extension of Frac(W (F. )) and W be the integral closure of W (Fy) in
K. Let T = Spf(7T) be a closed formal subscheme ofG Gn "W flat geometrically irreducible over
W (i.e., TNQ, = W). Suppose there exists an open subgroup U of ) such that T is stable under

the actwn Gt t“eG foralueU. IfT contains a Zariski dense subset Q0 C T(Cr)Npps (Cp),
then we have w € Q and a formal subtorus T such that T = Tw.
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A similar assertion is not valid for a formal group @fn /1c = Spec(K[[T, T"]]) over a characteristic
0 field K. Writing ¢t = 1+7T and t' = 1+ 7" for multiplicative variables ¢, ', the formal subscheme Z
defined by #°%(t') = 1 is not a formal torus, but it is stable under (¢,#') — (t™,t'™) for any m € Z.
See [C02, Remark 6.6.1 (iv)] for an optimal expected form of the assertion similar to the above
lemma.

Proof. Let T be the singular locus of the associated scheme T*" = Spec(7) over W, and put
T° = T3h \ Ts. The scheme Ty is a closed formal subscheme of T" with dim7Ty < dimT as 7T is
excellent [CRT, §32]. To see this, we note, by the structure theorem of complete noetherian ring,
that 7 is finite over a power series ring W[[X1, ..., X4]] C 7 for d = dimw T (cf. [CRT, §29]). The
sheaf of continuous differentials Q7 /spe(wyix,,...,x,]) is @ torsion 7-module, and T} is the support
of the formal sheaf of Q7 /spewiix,,...x,)) (Which is a closed formal subscheme of T"). The regular
locus T° of T is open dense in the generic fiber T/‘"‘,’é = T*" xw K of T*". Then Q° := T°NQ is
Zariski dense in T/‘"‘,’é

In this proof, by extending scalars, we always assume that W is sufficiently large so that for ¢ € Q
we focus on, we have ¢ € G(W) and that we have a plenty of elements of infinite order in T(W)
and in 7°(KC) N T(W), which we simply write as T°(W) := T°(K) N T(W).

Note that the stabilizer Us of ¢ € Q in U is an open subgroup of U. Indeed, if the order of ( is
equal to €%, then Us = U N (1 + €°Z;). Thus making a variable change ¢ — t¢(~! (which commutes
with the action of U¢), we may assume that the identity 1 of G is in Q°.

Let éa", Tun and T2, be the rigid analytic spaces associated to T and T (in Berthelot’s sense
in [J95, §7]). We put T2, = Tun \ T2, which is an open rigid analytic subspace of T,,. Then
we apply the logarithm log : Go"(C,) — Cy = Lie( A%Z) sending (;); € G(Cy) (the f-adic
open unit ball centered at 1 = (1,1,...,1)) to (log,(t;)):;) € C} for the ¢-adic Iwasawa logarithm
map log, : C; — C;. Then for each smooth point z € T°(W), taking a small analytic open
neighborhood V. of z (isomorphic to an open ball in W9 for d = dimw T)) in 7°(W), we may
assume that V, = G, NT°(W) for an n-dimensional open ball G, in G(W) centered at = € G(W).
Since Q° # 0, log(T°(W)) contains the origin 0 € C}. Take ¢ € Q°. Write T¢ for the Tangent space
at ¢ of T'. Then T; = W for d = dimw 7. The space T¢ @w Cy is canonically isomorphic to the
tangent space Ty of log(V;) at 0.

If dimw T = 1, there exists an infinite order element t; € T(W). We may (and will) assume that

U= (1+¢mZ) for 0 < m € Z. Then T is the (formal) Zariski closure t{ of
9 = {14722 € Zo} = 61 {88772 € Zu},

which is a coset of a formal subgroup Z. The group Z is the Zariski closure of {t{"?|z € Z}; in
other words, regarding ¢} as a W-algebra homomorphism t} : 7 — C,, we have t;Z = Spf(2)
for Z = T/N,cu Ker(tt). Since t¥ is an infinite set, we have dimw Z > 0. From geometric
irreducibility and dimw 7" = 1, we conclude T' = t;Z and Z = @m. Since T' contains roots of unity
¢ € Q C ppe (W), we confirm that T' = (Z for ¢ € QN pj,, for m" > 0. Replacing t; by "
for m as above if necessary, we have the translation Z, 3 s — (t; € Z of one parameter subgroup
Z¢ > s — t5. Thus we have log(t1) = %ﬂszo € T¢, which is sent by “log : G — C7” to log(t1) € Tp.
This implies that log(t1) € Ty and hence log(t1) € T¢ for any ¢ € Q° (under the identification of the
tangent space at any € G with Lie(@)). Therefore T¢’s over ¢ € Q2° can be identified canonically.
This is natural as Z is a formal torus, and the tangent bundle on Z is constant, giving Lie(Z).

Suppose that d = dimw T > 1. Consider the Zariski closure Y of tV for an infinite order element
t € Ve (for ¢ € Q°). Since U permutes finitely many geometrically irreducible components, each
component of Y is stable under an open subgroup of U. Therefore Y = (J('7¢ is a union of
formal subtori 7¢/ of dimension < 1, where ¢’ runs over a finite set inside pjs (C¢) N T(Cy). Since
dimw Y = 1, we can pick 7¢ of dimension 1 which we denote simply by 7. Then 7 contains ¢t* for
some u € U. Applying the argument in the case of dimw T' = 1 to 7, we find ulog(t) = log(t*) € T¢;
s0, log(t) € T¢ for any ¢ € Q° and ¢t € V. Summarizing our argument, we have found

(t) The Zariski closure of tV in T for an element ¢ € V; of infinite order contains a coset 7~ of

one dimensional subtorus 7, §EM/ =1 and tEM/ € T for some m’ > 0;
(D) Under the notation as above, we have log(t) € T, for all ¢ € Q°.
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Moreover, the image V¢ of V; in G /T is isomorphic to (d — 1)-dimensional open ball. If d > 1,
therefore, we can find 7 € V¢ of infinite order. Pulling back ¥ to ¢’ € V¢, we find log(t), log(t') € T¢,
and log(t) and log(t') are linearly independent in T¢. Inductively arguing this way, we find infinite
order elements t1,...,tq in V¢ such that {log(¢;)}i=1, .. 4 spans over the quotient field K of W the
tangent space T¢/x = Te @w K — Ty (for any ¢ € Q°). We identify Ty C To with T/ C To.
Thus the tangent bundle over T/O,C is constant as it is constant over the Zariski dense subset 2°.
Therefore T is close to an open dense subscheme of a coset of a formal subgroup. We pin-down
this fact.

Take t; € V¢ as above (i = 1,2,. .., d) which give rise to a basis {09; = log(t;) }; of the tangent space
of T¢ )i = Tk Note that ¢} € T and u0; = log(tj') = ulog(t;) € Tyi for u € U. The embedding
log: Ve =11 C Lze(G sw) is surjective onto a open neighborhood of 0 € T1 (by extending scalars
if necessary). For t € V,, if we choose ¢ closer to ¢, log(t) getting closer to 0. Thus by replacing
t1,...,tq inside V¢ to elements in V; closer to ¢, we may assume that log(t;) & log(t;) for all ¢ # j
is in log(VC)

So, for each pair ¢ # j, we can find t,1; € V¢ such that log(tl-tj-ﬂ) log(t;) £ log(t;) = log(tix;)-
The element log(t;+;) is uniquely determined in 10g(Gan(Ce)) = Gan (Cy)/ 13 (Cy). Thus we con-
clude ¢/, jtitj-ﬂ = tix; for some (], ; € pyy for sufficiently large N. Replacing T' by its image under
the ¢-power isogeny Gote t!" € G and t; by th, we may assume that tl-tj-ﬂ = tj+; all in
T. Since tY - T, by (t), for a sufficiently large m’ € Z, we find a one dimensional subtorus H;
containing ! such that QH C T with some G €y, for all <. Thus again replacing T' by the

image of the ¢-power isogeny Gt te € G, we may assume that the subgroup H (Zariski)
topologically generated by t1,...,t4 is contained in T. Since {log(¢;)}; is linearly independent, we
conclude dimwy H > d = dimw 7T, and hence T must be the formal subgroup H of G. Since T is
geometrically irreducible, H =T is a formal subtorus. Pulling it back by the ¢-power isogenies we
have used, we conclude T' = Cﬁ for the original T and ¢ € uj,,, (W). Since  is Zariski dense in
T, we may assume that ¢ € . This finishes the proof. (|

5.3. Semi-group action. An explicit description of the action of «, in §2.4 is a key to prove the
density corollary Corollary 2.12. Though we do not need it, we add here an explicit determination
of the action of ;! (and ay, in the case not treated yet) on the point z(A) defined in [H04, §2.1].

~

More generally, we consider a pair (L,n : 02 =~ Z) of an O-lattice L of M and an O-linear
isomorphism 7 : (FP*?)2 = T @ F**) with ((0®)2) = L®). We suppose that L, = R,. We
define Lg = Im(nog(0%)NM and (L,7n)g := (Lg,nog). The pair gives rise to a point z(L) € Sh(p)

Choose a prime element @ of O and if [ ramifies in R, we suppose that R = O+ /@(O\. Recall
R, = O+ I["R. If £ is odd or £ dose not split in R, we write R = O; + dOy so that § = /o if
[ ramifies in R and § = v/d for d € O if I is unramified (d = §? is square if [ = ££¢ splits and
d=(6,—06) € Re X Rge = Ry). If £ =2 and ¢ splits in R, we define R; = {z € Ri|lr = 2° mod 2}
and we start with this order, which has basis 1 and (1, —1) € O; x Oy = R(. We note in this case
Ry = (RiNF)Ngu(Rq NF)in F for primes q, and we put 6 = (1,—1) € R1 ¢ (so, we start
with non-maximal order Ry). Then we put a; = ({9, ) € GL2(O1). We often regard a; € G(A)
so that its component at a prime q # [ is equal to 1. We simply write R,, for the pair (R, n,)
with 7, (a,b) = a + @b at [ and outside [, we choose the level structure in §3.1 and define the level
structure 7, accordingly.

Then we put o (z(R,,)) = #(R,ai") under the action defined above. This action depends only
on local component at [. As seen in (3.2) and (3.3), we have

(5.4) a(z(Ry)) = 2(Rnt1) and o Y(z(R,)) = 2(R,—1) if n > 0.
Since
—nl] _ 1 — wié !
o [5]= |:w7"6:| = 5[ Y }
we need to change the original level structure 7, to 7, given by 7,,(a,b) = @, "6 (awd +b)

at [,
at [ and outside [, the choice is the same as 7,,. The lattice will change as follows

(un) Ry +— *"Rm[ with Ry = R if [ remains prime or [ is odd and split in R;
(ram) Ry~ [T"LR, ( with Ry = R if [= £% in R;
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(sp2) Ry, — TR, with Ry = Ry if [|2 and [ splits in R.
Denote z/(A) = (A, 7)) with A equal to the ideal as in (un), (ram) and (sp2). Since

ol — {fractional projective R,-ideals}

3

{principal R, -ideals}

we may allow R,-ideals not prime to [. For an R,-fractional ideal A prime to [, we denote A,, (resp.
A;,) by the Rj-fractional ideal A, (resp. A ) with A, (= R, (vesp. A, | given as in (un), (ram)
and (sp2)), and outside [, it is equal to the given A. We have the following effect of af* on the points
z(Ay) and ' (A});

(+) o (z(An)) = 2(Antm) and o " (2'(A})) = 2/ (A, ) if 2 > 0 and m > 0;

(0) ai*(z'(A})) = 2(Am—n) and o " (2(An)) = &'(A}, ) if m > n;

(=) m( (A7) = 2'(A;, ) and o ™ (2(An)) = 2(An—m) if n > m.

6. KEY STEPS IN THE PROOF OF ANTICYCLOTOMIC MAIN CONJECTURE IN [HOG6]

In this section, we continue to assume (unr), (ord) and p > 3. Take W sufficiently large, and fix
an anti-cyclotomic finite prime-to-p order character ¢ : M /M* — W> with prime-to-p conductor
€(¢)). Here we say 1 is anti-cyclotomic if 1 (2¢) = ¢~ (z) for all z € M. Define an integral F-ideal
i =i(¢) by the product of all unramified inert primes in €(¢)). Let

(6.1) hi(M/F) = (h(M)/h(F)) [T(O/1] + 1)

i

for the class numbers h(M) and h(F'). For a Hecke character ¢ of M of type Ao, regarding it as
a character of Gal(Q/M) by class field theory, we write ¢.(0) = ¢(coc) for complex conjugation ¢
and ¢~ = ¢/p.. It is a consequence of class field theory (see [H06, (7.18)] and [HMI, Lemma 5.31])
that we can always find another finite order Hecke character ¢ : M /M*M — C* such that
its anti-cyclotomic projection ¢~ is the starting anti-cyclotomic character 1. Replacing ¢ by the
Teichmiiller lift of (¢ mod my,), we assume that ¢ also has order prime to p. A key step towards
the proof of the anticyclotomic main conjecture is the following divisibility in the introduction of
[HO6] and [HO09, (A)]:

(L) hi(M/F)L5 ()| H(p) in W[[Ta]).

We will recall the detailed meaning of the notation in (L) in the following subsection §6.2. Briefly,
here h(M) (resp. h(F')) is the class number of M (resp. F), and I'js is the Galois group over M of
the composite of all Z,-extensions of M and I'y, (resp. I'},) is its anti-cyclotomic (resp. cyclotomic)
projection. The power series L, (¢) in W([[['}/]] is the anti-cyclotomic Katz p-adic L-function with
branch character ¢, H () is the congruence power series associated to the ordinary p-adic analytic
family 6(p) of modular form containing the theta series of ¢. The power series H (i) is determined
up to units in W[[I'p]] (and the identity hereafter is always up to units in the Iwasawa algebras
containing the two sides).

In [HOG], the divisibility (L) is attributed to [H07, Corollary 5.6], whose proof relies on the stronger
version [HO7, Theorem 4.3] of Theorem 0.2 (actually the density 0 expectation in Conjecture 5.4 is
sufficient). In [HO6], this corollary was quoted as Corollary 5.5 in [HOG, page 468], but it became
Corollary 5.6 after publication of [HO7] one year after the publication of [H06]. This stronger version
is still an open question as remarked below Theorem 0.1. In any case, as Corollary 6.15, we give a
different proof of (L) (without assuming any conjecture).

Here is an outline of the new proof. The new proof goes as follows. Following the technique of
[HT93], the formula below was proven in [H07, Theorem 5.5] under some assumptions on ¢ which
we recall later:

R Lyle7'd)Lp(e™ o)
Hp)  W(M/F)L (0)
Here ¢ is as in (L) for which we want to prove (L) and ¢ is a well chosen character of conductor
divisible by a high [-power. The numerator R € W[[['5; x I'ps]] interpolating the Rankin product of
the two CM families 8(¢) and 0(p). The numerator of the right-hand-side of (RKO0) is the product

of the two Katz p-adic L-functions £,(¢ '¢) and L£,(¢ '¢.) (with some Euler factors removed)
with branch characters ¢~'¢ and ¢~ 1¢., respectively. The argument relies on the vanishing of the

(RKO0)
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p-invariant of Katz p-adic L-functions [H11]. Indeed, in [HT93, Theorem I], (L) is proven under
the vanishing of the p-invariant of the numerator of the right-hand-side of (RK0) which we realize
by (RKO0) and a new formula (RK1) in [H09] below. In [H11], the vanishing of the p-invariant
of primitive Katz p-adic L-functions is proven under some restrictive assumptions (including (A1)
below) 18 years later. Therefore we analyze carefully the missing Euler factors and arrange ¢ for
them to have vanishing p-invariant; thereby, the divisibility (L) follows. We note also that by the
general formula (RK1), we removed the split conductor assumption (Al) in [HO09).

We need an improvement of (RK0) in [H09] to remove the split conductor assumption (Al). We
choose a CM quadratic extension M7 /F disjoint from M (or more precisely, if M = M, the formula
we obtain is just (RKO0); so, we assume for a while, M # M;). For a Hecke character £ of X = M, M,
and the composite K = M My, write E := §oNg/x as a Hecke character of K. Adjusting the notation
to the formula (RKO0), in [H09, Theorem 3.5] (where slightly different notation was used), under some
assumptions on ¢ (which we recall later), the following formula generalizing (RKO) is proven:

R _ Ep@’\fl(g)
H(p)  hi(M/F)Ly (¢)’

where ¢ is a branch Hecke character of M; such that (/5715 has split conductor in K (over its
maximal real subfield), R € W/[[['pr x T'pp]] and Ep(ﬁfl/\) is the Katz p-adic L-function X in
W[I'k]] with some Euler factors removed (of branch character (/5*15) projected to W[[T'ar x Tar,]]

We will choose ¢ well in (RKO) and (RK1) so that the imprimitive Katz p-adic L-functions
appearing in the numerator also have vanishing p-invariant; so, if p# exactly divides hi(M/F)L, (),
p* has to divide the denominator of the left-hand-side H(p). Combining with [HT93, Theorem IJ,
this completes the proof of (L).

In [HO7], using the stronger version of Theorems 0.1 and 0.2, under (A1), we find ¢ in (RK1)
so that the numerator of the right-hand-side is a unit in W[y x T'pz]]. Whether the actual
Theorems 0.1 and 0.2 are sufficient for this argument is not clear.

(RK1)

6.1. Summary of assumptions, definitions and known facts. Before going into a detailed
description of the argument we sketched, we recall the assumptions and the notations we made in
[HO6]. In addition to (unr) and (ord), the assumptions we made in [HO6] are:

(A1) The character ¢ has prime-to-p conductor made of split primes over F;

(A2) The local character ¢ is non-trivial for all o € X,;

(A3) The restriction 9. of ¢ to Gal(F/M[y/p*]) for p* = (—1)P=1/2p is non-trivial.
The assumption (Al) is later removed in [H09] and (A3) is used to prove the main conjecture
from (L), and the argument of [H09] and the part of [HO06] involving (A3) are nothing to do with
weakening Theorem 0.1 (resp. Theorem 0.2) of the stronger assertion [HO7, Theorem 4.2] (resp.
[HO7, Theorem 4.3]); so, we prove (L) for an odd prime p under (A2) (the argument in the case
where non-split conductor will be exposed in §6.3.

Since ¥, = 71, we find ¥~ = ¢? and Y% = 1 for ¢y = 1/)|FAX. Indeed, (Npg/p(x)) = Yipe(z) =
1, and hence ¢ factors through F;/F* Ny p(MS) = Gal(M/F). Thus ¢p is either trivial or

XM = (M—/F) Write €(7) for the conductor of a Hecke character ? of M.

Lemma 6.1. We can find a finite order Hecke character ¢ of M such that ¢~ =1 satisfying

(1) the order of ¢ is prime to p;
(2) for any given finite set S of primes outside €(v)), €(p) is outside S.

Proof. As is well known (e.g., [HMI, Lemma 5.31]), we can always find a finite order Hecke character
@ of M such that ¢ = . Taking a high p-power p™ so that ¥?" ~1 =1 and ¢P" has order prime
to p, replacing ¢ by ¢P", we assume that ¢ has order prime to p with ¢~ = 1.

Take a prime factor Q|€(y) outside €(¢)) and put q := QNF. Then ¢4 := <p|R§ satisfies pq0c = q.

Nk/r

Consider the norm map: My} —— F . Since Nyyp(z) = z'*¢, we have H'(M/F, M) =
Ker(Ny/r)/Im(1—c) = {1} by Hilbert’s theorem 90. Thus (g is trivial on Im(1 —c¢) = Ker(Nas/p);
s0, ¢q factors through Njs/p, and we have a finite order character @, : FqX — C* such that
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©q = ®q0 Np/p. By a theorem of Chevalley [C51, Théoreme 1], we can extend ®4 to a finite order
global Hecke character ® of F' whose prime-to-q conductor is outside a given positive integer. Then
¢ = (P~ o Ny p) satisfies ¢~ = ¢ and €(¢) is prime to g. In this way, we can avoid any finite
set of primes outside €(¢) in the conductor of ¢ with ¢~ = 1). Then as above, we can modify ¢
further to have order prime to p. (I

Write €(€) for the conductor of a Hecke character £ of M and decompose €(&) = F(£)F.(£)I(§)R(E)
so that §(§) is a product of primes of M split over F with § + §. = R and F.(£)° C F(§), J(&) is a
product of primes of M inert unramified over F' in M and R(£) is a product of ramified primes of M
over F'. For the restriction of ?(§) to F', we use the lower case gothic character (e.g., ¢(§) = €(§)NF
and i = i(y) = J(¢) N F). Then we define Z(€) :=lim Clp(€p™). We have a canonical split exact
sequence: A¢ — Z(€) — I'p for the maximal finite group A¢ and the torsion-free I'ps. Over the
maximal subgroup A(g ) of Ag¢ with order prime to p, the above exact sequence is split canonically;
so, we write the projection of z € Z(€) to I'ps (resp. A(Qp)) as z > zyr (resp. z +— 2(P)). We identify
Z(€) with an appropriate quotient of Gal(Q/M) by class field theory. Let 91 (resp. ) be the prime-
to—p part of the “minimal level” of ¢ (resp. the Artin conductor of Ind}; ¢). The Artin conductor of
Ind, ¢ is given by 9N = N r(€(@))d(M/F) for the relative discriminant d(M/F') of M/F, which
is equal to the conductor of the automorphic induction 7(p) of p. We write i(¢~) = [, 1V and
define

(6.2) N, = N H (—le®/21

i)
where [a] is the integer such that a < [a] < a+ % and M) is the prime-to-i(¢~) part of
N =dM/F)i(¢7 )Na/r(3(e7)R(p™)) for f(¢~) = F(¢~) N F. Note that N, DN DN

Out of the character ¢ : A(Qp) — W, we have the universal character ¢ : Gal(Q/M) — Z(€) —
W[Ta])* deforming o given by sending z € Z(€) to ¢(2P))zpr € W][Ta]]. Hereafter, for simplicity,
we write A for W[[['as]]. The induced representation Indh, & is modular nearly ordinary at p, and
hence, for a suitably chosen e dependent on ¢, by the universality of the nearly p—ordinary Hecke
algebra h := h"™°"4(9N, ¢; W) defined in [H09, §2.4] (see below for a description of the Neben character
set €), we have a unique algebra homomorphism X\ = A\, : h — A such that Tr(Ind}; &) = X o Tr(pn)
for the 2-dimensional universal nearly ordinary modular Galois representation pn with trace in h.
For P € Spf(A)(C,), ¢p := (¢ mod P) can be regarded as a continuous character of M /M*,
and if gp restricted to an open subgroup U of R} coincides over U with an algebraic character
of G (Rp) = R}, we call P an arithmetic point. If P is arithmetic, we have a complex character
op : M /M* — C* whose p-adic avatar is given by @p; so, ¢p is the archimedean avatar of gp.

Let T'}f. be the maximal torsion-free quotient of Clr(9p>) and write I for the product of I'f with
the maximal torsion-free subgroup I';, of O (unique under (unr)). We have a natural isomorphism
't =T}, induced by the restriction map Gal(Q/F) — Gal(Q/M). Decomposing R, = O, & O,, so
that Ry, = O, gives the left factor, each v € I'y; can be embedded to (y™',7) € Iy, C RS /R —
Clpr(p™). In this way, I' is embedded in T'js, and A is an algebra over W/[[I']]. The Hecke operator
coming from each diagonal toric elements diag[y~!,~] with v € ' and the central action gives rise
to a natural group homomorphism I' < h* and induces an algebra structure W[[I']] <> h. This
makes A\, a W[[I']]-algebra homomorphism.

The automorphic induction 7(pp) of ¢p for each arithmetic point P € Spf(A)(Q,) has corre-
sponding local Galois representation of the form 7 4 © 72,4 for almost all places q and at super-
cuspidal non-split places v it is irreducible isomorphic to absolutely irreducible Indf\r/}’n To,0, and the
automorphic representation 7 attached to each arithmetic point of Spf(h)(Q,) satisfies the same
property everywhere at finite places.

Definition 6.2. We write Ss. = Ssc(p) for the supercuspidal primes v which is denoted by S in
[HO09, §3.1]. Often we regard 7 (resp. mo,0) as a quasi-character of Fy* (resp. My) by local class
field theory.

Each arithmetic point P € Spf(h)(Q,) has weight k = k(P) = (k1 = k1(P), k2 = k2(P)) with
kj € Z[I] and k1 — k2 > I in the sense of [PAF, §4.3.1] where the role of k1 and kg are reversed
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(i.e., k gives the Hodge weight of the attached motive). A weight k = > k,0 € Z[I] is regarded
often as a character of O) by O) > u — [],¢; o(u)¥s. Identifying O, for p|p with the inertia
subgroup I, of the Galois group of the maximal abelian extension of F},, the Galois representation
pp := (pn mod P) has upper triangular form on I, with Hodge-Tate weight «(P) [HMI, §2.3.8]; in
particular, the infinity type of ¢p is

(6.3) 00(pp) = = D (K1 (P)g|p0 + K2(P)o|0C).
oex

The algebra h is finite flat over WJ[IT']|] and is reduced [PAF, §4.2.11], and the residue ring
h @ W{[T]]/(PNW][T]]) is isomorphic to the classical nearly ordinary weight x Hecke algebra [PAF,
Corollary 4.31]. In particular, Ap := (A, mod P) gives the Hecke eigenvalue Ap(T'(q)) of a Hecke
cigenform 6(pp) in m(pp). The eigenvalue Ap(T(q)) is equal to Tr(Ind}; $p(Frobg)) for primes g
outside 9'p. The complex modular form 6(pp) is the minimal form in the sense of [H09, (L1-3) in
§3.1] generating the automorphic induction w(pp) for the archimedean avatar ¢p of pp. We recall
the definition of a minimal form later in Definition 6.5.

By (A2) and v having order prime to p, A, is onto [H86, Corollary 4.2]; so, we identify Im(A,) = A
(this is the only place we use (A2) in this paper).
Definition 6.3. Since h is finite flat over W|[I']] and is reduced [PAF, §4.2.11], we can write uniquely
Spf(h) = Spf(Im(\,)) U Spf(ht) for a unique complementary reduced closed subscheme Spf(h') C
Spf(h) [HT93, (6.9)]. Then it is known that Co = Im(A,)®@nh™* (i.e., Spf(Im(A,)) Xspe(n) Spf(h*) =
Spf(Cy)) is isomorphic to A/(H(p)) as h-modules for a non-zero element H(p) € A [HT93, (6.9)],

which is called the congruence power series of A,.

We can replace h in the above definition of H () by the local ring T of h through which A, factors
through, since Spf(T) is the connected component of Spf(h) containing Spf(Im(A)).

Remark 6.4. By definition, H(p) ¢ AX < )\, is not an injection < h # A < ht # 0. The
congruence power series H () only depends up to units on the isomorphism class of h.

An automorphic representation m = 7p associated to an arithmetic point of P € Spf(h)(Q,) is
factored as follows: m = w(>) ® 7, for representations 7(°*) of G(A(>®)) and 7., of G(R), and we
further decompose

(6.4) 7o) = xS @ s, 70 = Q) w(mLgym2a) 75, = Q) T(M0a)
q€Sse vESse
for the principal series representation m(mi q,m2 ) of GL2(Fy) induced from the upper triangular

—x
Borel subgroup from two characters m1,q, m2,q : £y — Q  with central character wr q = 14724 and
local automorphic induction 7(m ). We always use the character v for primes in Ss.

(NBO) We put 7y := Hwﬂﬂ/|wﬂﬂ| (the unitarization of wy),

q
which is a finite order Hecke character. We regard here the pair (m 4,72 4) as a character of the
Borel subgroup by (&%) +— 1 q(a)m2,q(d). We define a To-type level subgroup by

Up(a) := {(25) € GLy(0)|c € aO}.

So its I-component is To(I") in §2.1 if [ is the [-factor of a.

The infinity component 7o, is described by a weight kK = (K1, k2) € Z[IF] of the diagonal torus
T = G x Gy C GL(2)/F in the following way: We impose r1 + k2 = [s]I for I = Y ., v with
an integer [x]. Then the central character w, has the following form w,(z) = (A=D1 =TT P
for totally positive z € FX. The weight of a holomorphic vector under SOq(F..) = (S*)! is given
by (S1)! 3 (exp(8,v/—1)), +— exp(—v/—1>, k,0,) for k= k1 — ko + 1.
Definition 6.5. We call the set of characters w := (7T17q|oc>l<,7T27q|Oc>l<,7T+)q U, 7y ]lox,T10)o as
minimal Neben characters of m. We write often w; for the character of OBse)x = HqQSSC Oy with
values in W The set w gives rise to a character of the level group Uy(c(m)) for

o(m) = ] (@mq) N€lrzq) [] €moo)d(My/Fo)

q€Sse vESse
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for the local relative discriminant d(M,/F,) [H09, (L1-3) in §3.1]. We call ¢(x) the minimal level
of ™. A nonzero eigen vector under Up(c(m)) in w(5s¢) with this Neben character has minimal level
among character twists. The character m; may not be a Hecke character (i.e., may not be trivial over
F* C (Flés“oo))x), but w1 is a Hecke character. For a given order of m;, there is a unique nonzero
minimal vector v(>) in 7(>) up to scalars [PAF, §5.1.1]. Filling in the holomorphic lowest weight
vector v at 0o and a new vector at Ss., v = () @ vo is called a minimal vector with Neben-
type w, which is unique up to scalars. There is a more classical choice of Neben type characters:
o = (1,74 |5x,m4), which is our choice at supercuspidal paces v. The vector in 7() with this
Neben character under Uy(c(m)) with lowest holomorphic vector at oo is the new vector (which is
known to be unique up to scalars by the theory of new forms). Note that the local automorphic
conductor C(mq) of mq at q & Sec is given by €(m1 4)€(m2,q) and C(my) = &(mp,0)d(My/Fy) for
0 € Sse; s0, C(mq) C &€(m1,q) NE(m2,q) and the minimal vector has level €(m q) N &(maq) at q & Sse.

Remark 6.6. We used in [H09, §3.2] the minimal form in two automorphic representations 7, 7’
to make an almost primitive Rankin product (the Rankin product with less missing Euler factor)
under the classical convolution method in [H91] adapted to p-adic interpolation. However, we needed
to assume that m = 7] to make Rankin convolution of minimal forms in two everywhere principal
automorphic representations , 7’ [H09, (3.6)]. We can use the Neben-type 7y = (1,74 4 |qu  T4q)
and 77" at some places g in the level with 71 4 # 7] ; to avoid this assumption as was done in
[H91]. However by doing this, we miss some Euler factors at q unless the Euler factor of the
primitive Rankin product is trivial (and this is a reason for writing [H09] to have less missing
factors). In this sense, as long as the Euler factor is trivial at g, the choice of Neben types " and
Ty = (7T17q|O:|<,7T27q|O:|<,7T+7q), does not matter to have the exact Petersson inner product formula
[H09, (3.5)] by the adjoint L-value which is the key for the divisibility in [H09, Theorem 3.1].
By definition, the prime-to-p part 7”®) of x and the Teichimiiller lift of Neben characters w;)p of
(7T;7P|O;< mod myy) (? = new, nothing) for p|p are independent of the arithmetic point of Spf(h)

giving rise to 7 and depends only on ¢.

We now regard the character k = (k1,K2) as a character of T(0,) = O) x O by T(Op) >
diag(z,y) — x"y". The Hecke algebra h is naturally an algebra over W[[T(O, x O/MN') x
Clp(M'p>)]] and z induces a character

T(0p x O/N) x Clp(Np™) 5 (diag(z,y), 2) — x'yy> mi (wov)ma(yor )74 (2) € W

which gives rise to an arithmetic point P : W[[T(O, x O/M') x Clp(Wp>)]] — W. The quotient
h ®@w(ir(0, x0/m)xCip(p==)]),p W is the Hecke algebra h-"(c(r), m; W) of nearly ordinary Hilbert
modular forms on Uy (c(7)) of weight x of Neben character wr. Here ¢(7) D 9 and ¢(7) /M is a product
of prime factors of p. In particular, the algebra homomorphism A, : h — W sending T'([) to the
Hecke eigenvalue of T'([) of the minimal vector in 7 factors through h,(c(7), 7; W). All this follows
from the theory exposed in [PAF, §4.2.12].

Definition 6.7. Branch Neben characters are a set
e=(e1,q,€2,q: 08 =W erq: Ff =W )ggs,. U(Liero: Of =W eq o) By — W),
of finite order characters with order prime to p indexed by primes q of F' such that €| q|,x = €1 q€2,q,
q

assuming that all these characters e+7q|0qx , €1,q5 €2,9 are trivial over Og for almost all primes q and

€4 = Hq €4,q 15 induced by a Hecke character of F'.

Here we say “branch Neben characters” because the p-adic analytic family is made of a specific
vector (minimal or new at finite places) in automorphic representations 7 (indexed by Spf(h)) which
is an eigen vector under the action of a specific level group. The Neben-character set €?) outside
p and the Teichimiiller part at p is independent of the members 7, and 7 is congruent to € modulo
myy for all members of the family indexed by Spf(h).

To describe the local component at a prime q of the branch Neben character set € we choose for
m(@p), we use local class field theory and identify local characters of RS with the corresponding
characters of the inertia group Iq C Gal(Mq/Mgq) (resp. I; C Gal(Mq/F,) for ¢ = QN O) for each
prime £ of R. We define the minimal level M of ¢ already mentioned by ¢(m(p)) for automorphic
induction 7(p) of .
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As a general rule, for (e1,q, €2,q, €4,q), We always assume

M/F
(6.5) Cle1,q) 2 €leaq), and ey = <p|FAX X for xp = (L>

Note that € = wr(y)/|wr(e)| (the unitarization of the central character of the automorphic induction
m(p) of ¢). Even under (6.5), there could be several choices.
First assuming Ind}; ¢ restricted to Gal(Fy/F,) is reducible (so, m(¢)q is principal), we make

explicit the “minimal” Neben character set e““" = (e’lné", eh'y"s €1.q) as follows: for q outside M'p,
et = eyt™ = 1, and for primes q|N'p of F,
67711'71 — <P|IQ if q= Dﬁa
. an extension of ¢|r, to I; if g =0Q% or Q,
(NB1) _
2,q mlnXth if q= D2 or D,

where Q and Q are distinct primes in M. Here if q|€p splits in M, we have chosen the order of
decomposition q = QQ so that Q € ¥, and Q|F(p). If q is outside Np, we have €1 4 = €2 4.

Without assuming reducibility of Ind}, ¢ over Gal(Fy/Fy), we define branch characters e b =

(€157, €55, €4.q) of “new” type for any prime g:

(NB2) g’ =1 and 57" = e+|qu .

Plainly, for q outside OV, 4" = 2%

For the global branch characters we often take mixed product of e““"

new
P q

€, with specific choices given each time (with ;%" at least for places where Indke K, Pv is irreducible).
If we choose the new type everywhere snnultaneously, we write €. If we choose minimal type
everywhere possible, we write e““" (so, for v € Ss., we are forced to choose €]
€"™). As exhibited in [H09, §3 1-2], to compute complex L-functions (e1ther adjoint or Rankin-
type) as primitive as possible via a classical method, we need to choose the minimal type wherever

places minimal type allowable. Thus to define H (<p), we use eg“"

We write e~ := €] "e> which factors through (O/M)*, and Up(M) 3 u = (24) > er(det(u))e (u)
with €~ (u) = €1(a) "te2(d) is a well defined character of Uy(M) D Up(N'), where

Up(a) := {(25) € GLy(0)|c € aO}.

Remark 6.8. By tensoring a Hecke character 6 of finite order, we can bring each Hilbert modular
form f to f®8 given by (f ®8)(x) = f(x)f(det(x)), which induces an isomorphism h(, €7*"; W) =
h(N, €757 W), where €74 = (1,404 |O><,€2 4% |O><,€+ q02) for q & S, writing €' = (e1,€2,€4)
(while €~ is intact under this operatlon) This basically shows, by Remark 6.4, H ( ) can be chosen
not to have any variable in W[[T'£]] in W[[T]]. This fact will not be used in this paper.

and € and just write it as

new oven if we write

Choice of ¢: For a fixed 1, we have a freedom to choose ¢ with ¢~ = 4. Since ¢ and p(§ o Ny p)
have equal ¢~ = 9 for finite order Hecke character £, we choose an optimal ¢ for our purpose in
the following way: Recall € = €(p) and ¢ = €N F and the finite set S = S(p) of prime factors
cd(M/F) (or equivalently, prime factors of 9t). Since S;. C S for Ss. = Ssc(p), we can decompose
S = Ssc U Sab and Sab = S’L u ST U Sf for Sf = {q € Sab|q D) fc(‘P)} for fc(‘P) = Sc(¢) nFe
Si :={q € Sawlqg D i(p)} and S, := {q € Sap|qg D d(M/F)} Write ¢z for Se-component of ¢(y) for
? = i,r, f,ab. Locally at q € Sa U {p|p}, Ind}; ¢lp, = ¢y @ ¢y for two characters oy and ¢y of
Dy. Regarding ¢y as a character of Oy which is the inertia group of the maximal abelian extension
of Fy, we choose ¢} = <p|Rg (as a character of Oy identifying Rq = Oy) if g = Q0 € Sy U {plp}
with Q|F. or Q € ¥,c, and otherwise, the choice is just a factor of Indf\} ¢|p, for g € S;US,.. Let
% = [ies.uiplp P4 as a character of Og , — W* for Os,,p = [lyes,,u(p|py Ou (extending

scalars W if necessary). By [C51, Théoreme 1], we can find a character &, of O* with conductor
outside Sy, U {p|p} such that £, extends to a finite order Hecke character ® = @, of F*Fy.
Replacing ®,, by the Teichimiiller lift of (®, mod my ), we may assume that @, has order prime to p
and @4 = ¢ for all g € Sy U{p|p}. Replacing the starting ¢o := ¢ by o(PoNyyr)~t (ie., m(¢) by
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min

7(p)®®~" and writing ¢ for the new choice p(®o Ny p) ", we achieve ', = €5, (j = 1,2) for all

€o.j
q € SawU{plp}. At g€ Se, = {q]€(&,)}, the local component mq(p) = mq(00) ® @5 with spherical

mq(0) (or equivalently, Ind?, olr, = §;1 @ 5;1), and we choose €, 4 := €5 = (1, %, Wr(pq))-
Thus €, = €. This shows

(6.6) S, is the set of places q where €, q = €5 # emm.

We choose a quadratic CM-extension M;,r with integer ring I2; inside Q. The field M; can be
equal to M. Write K for the composite of M and M; inside Q if M # M, and K = M ®@p M =
MoM it My = M. When M; = M, we embed M (resp. My = M) diagonally (resp. by  — (x®x°))
into K. Write F; for the maximal totally real subfield of K if K is a field, and otherwise, we put
Fy =F&F C K. Then in K, there are three semi-simple quadratic extensions M, Fy and M; of F":

M
/ \
(6.7) F —- F < K.
\ /
My

When K is a field, we impose the following conditions:
(K1) M;/F is a p-ordinary CM field.
(K2) For primes plp in F, the decomposition group of p in Gal(K/F) is trivial (i.e., for any
subextension of K/F, prime factors of p are all split).
Thus Fy g = Fip for all primes B|p in K. We may also impose

(K3) For places v either in S or archimedean, M ®p F,, & M; ®p F, (so, all primes in S splits in
K/Fy).

(K4) For every prime [ ¢ S ramifying in M/F, [ is unramified in M; /F.

(K5) For the integer ring Ry of My, Ry = O*.

Since we impose how places decompose in Fy/F only at the finite set S U {p|p} U {qlc =€ N F} U
{|d(M/F)} U {v|oo} of places of F, there will be infinitely many choices of (M, F1, K) satisfying
(K1-5). The field M;/F and hence K/F; are a p-ordinary CM field by (K1-3) in which all primes
in S and over p split. Since the finite group R;'/O* is represented by roots of unity, by adding
ramification to M; /F, we may assume (K4).

We now choose carefully a Hecke character ¢ of M; and the corresponding branch Neben character
set € so that we can prove vanishing of the p-invariant of the Rankin product A, * A\gy. We fix
an isomorphism ¢ : Mpoo H[|cpoo » = H[|cpoo My = Mi po as in (K3), which induces an
identification of their integer ring R, = Ri p and transfers the chosen CM types ¥ and X, of M
to X1 and X4 p, respectively. If M # M;, the CM type X; depends on the choice of ¢, but we fix it
once and for all. If M = M, the top inclusion M «— M ®p M; in (6.7) is given by £ — £ ® 1 and
the bottom inclusion by £ — 1 ® &, where we identify M ® p My with M & M by £ @n — (En @ En°).
Therefore ¥ = 7.

Lemma 6.9. If K is a field, assume (K1-4). Suppose that € = €, = €, is as in (6.6). Pick a
prime £ outside S U {p|p} such that all prime factors U of € splits in M1 /F (so, U splits in K/Fy).
Fiz an l-adic CM type Xy of My so that {{|¢} = Xy U Xpc. Then there exists a Hecke character
¢ of whatever high conductor [[ecyx,. L™ of order prime to p. Identify the {-component Rie with
Ris, xRis, = OAEX x O =T(Oy) in this order, and set € = €}*. Then € = €3 = ¢} and we
have g1 = €1 over O* and an algebra homomorphism Ay : h™°"4(Ny, e; W) — A’ for A" := W{[[[ay]]
parameterizing automorphic inductions m(¢q) for arithmetic points Q € Spf(A')(Q,). Moreover
Ny =M =d(Mi/F)[[gex, (LNEF)"

Proof. The class group CLa, ([[¢ey,.[*°) has a quotient isomorphic to Z,, which comes from
Riglc 5>z — 2% € Z) regarding Yyc as an archimedean CM type. Then for a non-trivial
character ¢ of C'Lay, ([[¢eyx,.£") with high n and ¢-power order, (;5|R1X,E’Z = 1. Thus """ = ez

has the desired property. The last assertion is clear from the construction of ¢, and the choice

newi min
€ =€y €5 O
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Lemma 6.10. For a given p-ordinary CM type ¥ of M, define a subset of embedding »E -
Homgeia(K,Q,) for K = M ®p My as follows:

SFi={o®ailoc € 3,01 € Iy, 0lr = 01|r},

where (0 ® 01)(z ®y) = o(z)o1(y) forz € M and y € My. Then XX is a p-ordinary CM type of K
and LK = Indﬁ Y if K is a field.

If ¢ is a Hecke character of M with &(z,) = ab> 179 we find (z) = £ o N (zp) =
:Eflnfﬁ(kEJrn(lfc)) . :EkaKflnfﬁ K(1—c)
P =p :

Proof. We have |SX| = 2[F : Q] = [Fy : Q). When M = M;, we embed M into M ® M = K
diagonally, and M; by My > z — (z ® c(z)) € M & M. Allowing K to be a field, let (cps) =
Gal(K /M) and (cpr,) = Gal(K /M) with ¢ = eprepr, which is the generator of Gal(K/Fy). We call
¢ complex conjugation acting on K. By definition, every element in ¥ (resp. ¥%¢) restricts to M
to an element in ¥ (resp. Ycpr). Since ¥ is a CM type of M, we find XX N X%¢ = ). Counting
number of elements, we find ¥ U 25 ¢ = Homgeq (K, @p) as desired.

If 0,7 € ¥ with ¢ and 7c¢ inducing the same p-adic place of K, its restriction o|p; and
T¢|lm = T|mem to M also induces the same place of M, which is against the p-ordinarity of X
as Resy Infy; ¥ = 2%. Thus XX is p-ordinary. O

Choose a character ¢ : M /M* — W* as in Lemma 6.9 of conductor €; = [[¢cy,. " and of
order prime to p. In the same manner as above, we define the groups (T Ml,FXﬁ,FLl, Ag,) for M
in place of (I'ar, 'y, T4y, Ae) for M and the Hecke algebra h’ := h™°"4(MNy, e, W). Note F.(¢) = &;
with F(¢) = J(p) = R(p) = 1 replacing A¢ by Ae,, M by M; and ¢ by ¢ and 1 = ¢; for
e = €. In addition, we have 91, = M}. Write h’ := h™ (M, &; W) (where & = € = eg”" as
in Lemma 6.9).

We recall A’ = W|[[T'5y,]] and define the character ¢ : Z(€1) — A’* for ¢ in the same way as the

construction of ¢. For an arithmetic point ) € Spec(A’), ¢ has complex avatar ¢g with infinity
type ¢0(zoo)xs" for m € Z[Ix]. Then m + mc = klx for an integer k. Since (mg,mgc) is the
Hodge type at o associated to the motive of ¢p, to have s = 0 as a critical evaluation point for
L(s, ¢q), we must have

(c1) mo # Mmee,

(c2) ¥} :={o € Ix|msz >0 > mgy.} is a CM type (since m + mec = klg for k € Z).
Then for m' := m — kX}, m’ + m'c = 0 and hence we can write m’ = k(1 — ¢) for K € Z[3];
so, m = kX} + k(1 — ¢). By (cl1-2), ks > 0 for all 0 € ¥{. The region of m satisfying k& > 0 is
called the right critical region (and functional equation brings it to the left defined by k¥ < 1 and
ko > 1 —k [HT93, Theorem II]). We assume that ¥] = ¥; (otherwise, we change ¢ to attain this if
possible (which is always possible if p totally split in K/Q). This choice of ¥; therefore determines
the nearly ordinary character ¢, : Gal(@p /Fy) specified in the nearly ordinary deformation problem
for Indf(}l ¢ mod myy (see below (p,) in §6.5 and [HMI, (D4), §1.3.1]). Hereafter we always assume
k> 0and kK, > 0 for all 0 € Xy.

Lemma 6.11. Write p = pp o Nk and <$Q = ¢q o Ng/m, for arithmetic points P ® QQ €
SPf(A®A’)(C,). Then we have Zariski densely populated critical P ® Q € Spf(A®A’) such that
@;HEQ is critical at 0.

Proof. Write the infinity type of @p (resp. (Ep) as —Infy (kX +r(1—c)) (resp. — Infﬁl (X1 4+ p(1-
c))) with k, ¢ € Z, kp € Z[3] and pug € Z[X1]. Then the Hodge type of the CM motive attached to
<p1§1<$Q at o € XX is given by

(Ko — toy —k — Ko + £+ po) ifUGEKﬂZ{(,
(6.8) U+ Ko — poc, —k — Ko + loc) if o € ©K — K
' (—Koe + phoy =k + Koe — o) if o € K — K

(_Hoc+ﬂoc;_k+é+ﬂoc_ﬂoc) 1fU€Z¥UZKa

where X = Infﬁl ¥1. To compare x and j, we identify Z[XX] = Z[Ir,] = Z[¥X] and regard x and
p as an element of Z[Ir,]. Then (6.8) tells us if k — £ > maxoer. o — Ko, s = 0 is critical for
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L(s, '¢q). Thus we have Zariski densely populated critical P® Q € Spf (A®A’). In fact, allowing
twists ¢p (resp. ¢¢g) by finite order characters of I'as (resp. I'ar,), only one choice of Hodge type
critical at 0 is sufficient for Zariski density of arithmetic P ® Q. O

In the automorphic induction m(¢q) relative to M;/F, writing ¢g for the archimedean avatar
of ¢p with automorphic induction 7(¢qg), we have a unique normalized Hecke eigenform g(gQ)
corresponding ®vg € 7r(¢Q)(°°) such that v, is a spherical vector for q outside M| p, v, is either
a new vector or a minimal vector accordingly to the choice of new or minimal Neben character
set €4 and a minimal vector at p|p specified by 5““". Thus we get an algebra homomorphism

Ay I’ — A’ which gives rise to the family of minimal modular forms g(gQ) for each arithmetic
points @ € Spec(A’).

The construction of the p-adic Rankin product of the Galois representation Indf\} op ®Indf(}l 5&1
is carried out in [H91, Theorem 5.1] when g4 = €5" for all q|0] and €q = €%’ for all q|9" and in
[HO9, Theorem 3.3] when eq = €' for all q|91] and eq = €'y for all g[9. In our case, € = €
and € = €3 = eg“" the computation of [H91] applies. However, by (6.6), €q # €;"*" possibly only
at primes in Sy, and Indf(}l ¢ is unramified there by (K3), the primitive Rankin product has trivial
Euler factor; so, the result of [H91] and [H09] match and produces Rankin-product primitive at all
q outside Ssc. At v € Spe, T(Pg) is unramified; so, no extra Euler factor appears by [H96, (7.4.1)]
and [EMI, Proposition 9.1.1]. Therefore the result of [H91] and [H09] produces primitive Rankin
product without missing factors for our choice of ¢ and ¢.

We put R :=D - H(p) for D = A, * \y. By the definition of H (), R is an element of A@y A’ =
WI[T'p x Tar]] tautologically; so, we have D = H@) The modified norm map Ng/pr X NK/M1
induces the homomorphlsmj\/ I'x — Iar xTy, . Taking the Katz p-adic L-function K € W{[T'k]] of
K with branch character ¢ (3 := po Ni/um, b:=do NK/MI) we define £, € W[[['y x Ty, ]] =
A®w A’ by push forward via N : T 3 v — (Ng/ar ()72 Nian (7)) € Tar x Tag, of K. Thus

Lp € AQwA’ satisfies
(6.9) L,(P.Q) = L,(P Q) = K(35'd0) = / 5 dadk

for points (P,Q) = P ® Q with P € Spf(A)(C,) and @ € Spf(A')(C,), where <$Q = $Q|Gal(@/K)
and pp = &Q|Gal(@/K) and d/C is the measure on I'i associated to K. In particular, if F} = F & F
and K = M & M, we have A®w A’ = W[[['ar x T'a]] and for the (possibly imprimitive) Katz p-adic
L-function Ly (resp. Lz) with branch character ¢¢—! (resp. oo 1)

(6.10) L£y(P,Q) = L1(Zp' 6Q) La(Pp' 0q o €).

Here in [HT93, Theorem 8.1] where we first dealt with this type of problem, we get an extra finite
Euler factor ¥; at primes [[(9 + N} ) which is a factor of a high power of d(M/F) (as €(¢) is prime
to €(¢p)), and we define L; := ¥;K; for the corresponding primitive Katz p-adic L-function K;. The
conditions (K1-3) is automatic if M = My, but (K4) is impossible if S does not contain all ramifying
primes in M/F and U, is a product of Euler factors at such primes (in [HT93], K, is denoted by
L;). In [HO9, Theorem 3.5] (and [HT93, Theorem 8.1]), we showed the equality of the values of the
two sides of (RK1) at P ® Q for P ® @ critical at 0 as in Lemma 6.11.

Lemma 6.12. If M # M, for p odd, we have a canonically split exact sequence
1—>FK£>FMXFM1 N—F>F+—>1

for N sending (v,71) € Tne x Tagy to v4 -y € T'h for the pmjectwn v+ € T3, = Tk (resp.
Vit € FLI =T7F) of v (resp. m). Indeed, Ty = T3, ¥ FMl with Tf; = T'} by the restriction maps.
Similarly, for X = M, M, K, 'y =T'y x F} with F} = FJPC by the restriction maps.

Proof. Writing X /X for the composite of all anticyclotomic Z,-extensions of X. Then I'x =
Gal(X_/X) for X = M, M;. From the proof of Lemma 6.10, recall cps (resp. car,) generating

Gal(K /M) (resp. Gal(K/M)). We write I';- ! for the 7-eigenspace of I'y; with eigenvalue +1
for 7 = cpr, e, and ¢ = cprenr,. Then I'py = F;é”zfl X F;?Il:fl, as no non-trivial fixed point of

¢ = cyey, in ' By restriction map, we have I'y — I'y for X = M, M;, and I'j; — I'}, (resp.
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Iy — Ty, factors through 6= (resp. F;éwl:fl). As Z,-modules, we have rank 'y = 1[X : QJ;
so, rank ' = rank 'y, + rank 'y, with rank Iy, = rank "), = [F': Q]. By comparing ranks, we
find T =~" = I'y; and T2~ " =Ty, Thus [x = I'y, x Ty, x I'f, and this shows the desired
result. O

Since points P ® @ critical at 0 are Zariski dense by Lemma 6.11, we conclude the identity. We
restate [H09, Theorem 3.5] and [HT93, Theorem 8.1] for our choice of ¢ and ¢ with ¢~ equals a

given 1:

Theorem 6.13. Let ¢ (resp. ¢) be a character of A(Qp) (resp. A(gl)) with values in W* as in
Lemma 6.9. According to Lemma 6.9, we choose the branch Neben characters € for ¢ and € for ¢.
Then we have, up to a unit in AQw A, for L, in (6.9),

R c,

H(p)  m(M/F)Ly (¢)’
where ¢ = ¢~. Here L, (¢) € W[[I'y]] C A C A®wA’, H(p) € A, while £, € W[N(T'k)]] C
A®w A" for N in Lemma 6.12, though H(p) can be chosen in W[[['y,]] C A as explained basically
in Remark 6.8

6.2. Proof of (L). We recall the argument (with a bit different formulation) in [HT93, page 257]
just above Theorem 8.2 proving

Theorem 6.14. Let the notation be as in Theorem 6.13. Then the GCD of L1Ly and L, (¢) of
(6.10) in the unique factorization domain AQwA' is at worst a power of (w) = w(ADwA') in
A®w N, where w is a prime element of W. In particular, hi(M/F)L, (1) is a factor of H(p) in
the unique factorization domain A ®z, Q,.

Proof. Take My = M. We prove that GCD of L; and L, (¢) is at most a power of @. The same
argument works well for Ly. Write S = Spf(A). In our case, A = A’; so, we write often Aj,
with S = Spf(Ar) (resp. Ag with Sg = Spf(Ag)) for the left (resp. right) factor of AQy A.
Then Spf(AL&wAg) = Sp xw Sr = S xw S. The idea of the proof is that the zero locus of
L, (%) in (Sp x Sg)(Cp) is concentrated on SL(Cy) as L, (v) € Ar, while Li(P, Q) considered
as a function of @ of the factor Sr(C,) cannot have zero concentrated on the factor Si(C,). To
make this rigorous, for P € S, (W) regarding P as an algebra homomorphism P : A — W (i.e.,
AD Ty v pp'(y) € W), we consider an automorphism ¢p : A’ = A’ induced by the inclusion
N =1® AN Cc ARN composed with the twisted projection AQA — W ONBA, Poid,, AN =N,

We now fix P € S.(C,) and consider the p-adic formal function Sg(C,) 3 @ — L,(P,Q) € C,
as an element Lp € A’. Recall K; which is the Katz p-adic L-function with branch character o~ '¢.
Note that Lp := tp. U1K (i.e., fFZ\/{ &dLp = fFZ\/{ (£ 01p)d(¥1K1)), and hence we get the identity
Lp =0« Lp =0 for P, P e SR(CP)-

By definition, L, (v)) € A. If L, (¢) is a power of w times a unit, there is nothing to prove. So
we assume to have a height 1 prime p = (7) of A prime to (@) such that L, (¢)) € p. Then as an
element of A®A’, p@A’ = m(A®A’) is the height 1 prime containing L, (1). Writing X = Spf(A/p),
we find Spf(ADA /p @A) = X x §'.

Towards absurdity, we assume p|L;. Since the Katz p-adic L-function K; has an evaluation
point Py with critical convergent Hecke L-value and ¥;(Py) # 0, we have Ly # 0 and ¥; # 0.
For P € Sr(C,) in X, we find Lp = 0 and hence Lpr = 0 for all P’ € Sg(C,), which implies
UKy = Ly = 0 and Ky = 0, a contradiction. Thus Ly and L, () has only common factor
supported by the characteristic p-fiber of S; x Sg, as desired.

Alternatively, the identity Lp := tpP1K; implies the identity u(Lp) = u(¥1K;) of the pu-
invariant. Taking P € X, we find u(Lp) = oo which implies X; = 0 again, a contradiction. The
second argument is employed in [HT93, page 257].

The last assertion on divisibility follows from the identity of Theorem 6.13 as the denominator
and the numerator of the right-hand-side of the identity are prime to each other in the unique
factorization domain A®A’ ®7, Q, and H(¢p), L, () € A O

Corollary 6.15. Assume p > 2 and that v is an anticyclotomic character of M. Then we have
hi(M/F)L, (V)| H(g) in A.
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Proof. We choose My # M satisfying (K1-5); so, K is a field and after base-change (/5*15 has split
conductor relative to K/F; (i.e., satisfying (A1) for K/Fy). for a well chosen (M, ¢) (just above
(6.6)) with ¢~ = 1 having conductor prime to d(M/F)d(M1/F), we choose ¢ as in Lemma 6.9.
Then the branch character $~'¢ has conductor made of split primes in K /F1 by (K3). Then by
[H11, Theorem I], the p-invariant of the $1¢ of K is trivial, and hence L, in (6.9) has trivial
p-invariant. Then by Theorem 6.13, for the p-invariant, we have u(hi(M/F)L, () < p(H(p)),
which completes the proof of hi(M/F)L, (¢)|H () by Theorem 6.14. O

Remark 6.16. As is clear from the above proof of Corollary 6.15, for the divisibility of characteristic
0 factor, we used M; = M. For the characteristic p-factor, we need to choose a field M; # M
as in (K1-5) since $1¢ has split conductor relative to K/Fy (ie., (Al) for K/Fy) to apply the
vanishing of p in [H11] proven under (Al) for K/Fy. If M = M; and i(p)r(p) # 1, we have
i(p71o))r(p o) =i(p™1o))e(p Lde) = i(¢)r(¢) # 1, and we cannot apply the result in [H11].

6.3. How the condition (A1) is removed for the main conjcture. We proved the divisibility
(L) without assuming (Al). However the proof of the main conjecture in [H06] requires (Al). Here
is how to bring the argument to work without (A1) (or rather, we bring by quadratic base-change
to the case where (A1) is satisfied). This is described in [H09], and we recall here the argument.

Recall hi(M/F) = (h(M)/h(F))[1;(I0/1] +1). Up to a p-adic unit, hi(M/F) is the relative
class number of the ray class group modulo i, that is the ratio of the order of the ray class group
Clp(i) of M and that of Clp(i) of F.

The idea of the proof is to reduce the conjecture to the case under (Al) treated in [HO6] by
quadratic base change to a well chosen totally real quadratic extension F’/F eliminating the as-
sumption (Al). The three of the main ingredients of the proof is the R = T theorem proven by
Fujiwara without (A1), the congruence power series H(p) € W{[T'p]] of the CM-component of the
universal nearly ordinary Hecke algebra h = h™°"¢(M, ¢; W) we defined out of ¢ and the charac-
teristic power series Fas (1)) of the t)-branch of the anticyclotomic Iwasawa module X[¢)] = Xx[¢)]
[HMI, §5.3.1] unramified outside X,,.

Fujiwara formulated his results in [F06] using a different Hecke algebra (out of a quaternion
algebra D) related to h by the Jacquet-Langlands correspondence. We will describe the relation of
h and Fujiwara’s Hecke algebra in the last subsection §6.5.

Since we deal with several CM fields, we write L), (1) for L, () hereafter (emphasizing depen-
dence on M). The assertion (L) proven in Corollary 6.15 is

(6.11) he(M/F) Ly, (9| H().
On the other hand, Fujiwara’s result already quoted implies (see Corollary 6.23 and Remark 6.24):
(B) H(p) = hi(M/F)Fy;(¥) up to units in W[[T p]].

Thus we get:

(©) Ly (0)\Fiy () in W3]

To conclude the theorem, we choose an appropriate totally real quadratic extension F’/F and put
E = F'M. Since Gal(E/F) = Gal(F'/F) x Gal(M/F) = (Z/2Z)?, there exists a third quadratic
extension M'/F in E/F. Note that M’ is a CM field. In summary, we have again

M/

/! N
F — F — F
N /!
M

We can arrange F’/F so that
(F1) for any prime t of F ramifying in M, the inertia group of v in Gal(E/F) is given by
Gal(E/M’) (so, any prime factor of v in F’ splits in E/F’),
(F2) for any prime ¢ inert in M/F in the conductor €(¢)) of ¥, the decomposition group of q in
Gal(E/F) is given by Gal(E/M’) (so, any prime factor of q in F’ splits in E/F"),
(F3) E/M ramifies at least one finite place outside p.
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We consider the base-change g = 1) o Ng/p;. Then by (F1-2), ¢ has conductor whose prime
factors all split in E/F’ (so, (Al) for ¢ is satisfied). Thus by the main theorem of [H06], we
have Ly, (vr) = Fr(¥g) up to units in W[[['5]]. We have the restriction map Res : I'y, — Ty,
By (F3), Res is a surjection. In [H09, §4], we gave a detailed argument proving Res(Fg (¥g)) =

Fr () Fyy (a) for a = (E/—M) and Res(L5(¢5)) = Ly, (1) L3, () up to units in W[[T'y,]]. Thus

Ly () Ly (Ya) = Fr () Fy  (der)
up to units in W[[T';;]]. Note here that 1o remains anticyclotomic (because a has order 2). By (C):
(WO Fa () and Ly, (Ya)|Fpy(a), we conclude the individual identity:

Ly (¥) = Fy () and Ly (Ya) = Fy (¢a)

up to units in W[[[';,]]. This finishes the reduction of the main conjecture to the split conductor
case treated in [HOG].

6.4. Local deformation. We now recall Fujiwara’s result, which is not described in [H09] in details.
We first prove the following lemma essentially due to Weil [W74] (and a similar result is given in
[D96, page 141] for unramified M;/Qy).

Lemma 6.17. Let [ be a prime of F' outside p such that My is a quadratic extension field of Fy. Let
@ = (¢ mod my) as a character of Gal(M/Fy) with values in (W/mw )*. Assume thatp := Ind}, @
is absolutely irreducible over Gal(M/F}). Then every deformation p : Gal(M/F}) — GL2(A) of p
for a local complete W -algebra A is of the form Indf\?/}I ® for a character ® congruent to © modulo
ma.

Though well known, we give a detailed proof. For a representation ? of Gal(M/F), write M e

(the splitting field) as Fi(?). The inertia group of a Galois extension K/E of local fields is written
as I(K/FE).

Proof. Write G := Gal(F\(p)/F\) and G’ := Gal(F\(p)/M,) for the maximal p-profinite extension
ﬁ[(ﬁ) of Fi(p). Then pa factors through G. Let p = ps : G — GL2(A) be a deformation of p,
and write mp for the composite of p with the projection m = m4 : GLa(A) — PGL2(A). Then
Ker(mp) C A*, and hence the commutator [Ker(mp), Ker(mp)] is contained in Ker(p). Therefore we
may replace G' by the maximal abelian quotient D := G/[Ker(wp), Ker(mp)]. Hereafter we regard p
as a representation of D. We write D’ for the image of G’ in D and K for the fixed field of Ker(mp)
in Fy; so, D = Gal(K®/F) and D' = Gal(K®/M,) for the maximal abelian extension K% /K
inside F((p). In particular, Ker(p) < D — Im(p) and Ker(7p) < D — Im(xp) are extensions with
p-profinite Ker(p). By the commutative diagram,

Im(75p) —— PGLy(F)

wPT TT mod m 4

Im(map) —— PGL2(A),

the group Ker(r,) is p-profinite.

For a homomorphism of a group X into D, we write X for the closure of the image of X. Since
D is almost p-profinite, X is almost p-profinite. Then, by local class field theory, we have an exact
sequences

(6.12) K* < D — Gal(K/F)) 2 Im(rp) and K* < D' — Gal(K/M).
Thus D is the completed Weil group relative to K/F;. We also have exact sequences
(6.13) Of — 11— I(K/F) and Of — I' — I(K /M)

for the inertia subgroup I = I[(K%/F)) and I' = I(K"b/M[) Since O is almost (- proﬁnite
((6) =In7Z), OIX( is almost f-profinite. By the definition of G, o) % 1s also almost p-profinite; so, O
is finite. This shows that I is a finite group.

By adding subscript ¢t and w, we indicate the tame inertia group and the wild inertia group.
Write 7y : I — I; for the canonical projection and ' : I — p(I) for the mod m,4 reduction map.
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Since Ker(m;) = I, is ¢-profinite and Ker(n’) is p-profinite, we find Ker(m; x 7’) = Ker(m;) N Ker(n’)
is trivial. Thus I — I x p(I). Since p(I") C p(I") ® §.(I’) is abelian with cyclic p-primary part
inside I, I’ is an abelian group. Writing I]. for the r-primary part of I’ for a prime r, I]. for r # p
injects into p(I") which is a surjective image of the r-primary part of Oy, as I' is the Galois group
of an abelian fully ramified extension over M. If r £ ¢, I is the surjective image of Fé writing
O, /U =TFg; so, |I;|’(Q —1). By the action of Gal(M/Fy) = (c) via conjugation on I’, I’ fits into
an exact sequence I’ < I’ — I'" for the “—"-eigenspace I’ under the conjugation action of c.

Suppose that M;/F} is unramified. Then Q = ¢? for ¢ = |Op,/I|. Computing the “+”-eigenspaces
of ¢ on Fy), we find |I’f|’(q T 1) for 7 # p as I’} is the Galois group of a fully ramified abelian
extension over Fi.

If M,/ Fy is ramified and r & {p, ¢}, |I7C|’(q —1) and I = I'} as ¢ acts trivially on F, = Oy, /I =
Op,/l. In any case, without assuming a ramification condition on M;/F}, a Frobenius lift ¢ in D
acts on I; by ¢po¢~t = g7 for the order ¢ of the residue field of Op,. Thus the action of ¢ on I’ for
r & {p, ¢} coincides with the action of c.

Since A is p-profinite local and ¢ has order prime to p, we may and do identify ¢ with the
Teichimiiller lift to A* of . Thus we have a subgroup D C D with D = D x Ker(%) (resp. D' cD
with D’ =~ D Ker(®|p/)) isomorphic to 5(D) (resp. p(D’)), and D' acts on the representation
space V(p) with the distinct characters ¢ and .. Note ¢ # . on D as 7 = IndB, 7 is absolutely
irreducible. Thus the ?-eigenspace V(?) C V(p) for ? = ¢, ¢, has rank 1 over A and V(p) =
V(e) ® V(p.) over D.

For g € I, on p(g)V (¥), T =DnNI acts by ¢4 given by ¢4(h) = ¢(g~'hg) for h € T, Since
I’ is abelian, g preserves V(p); so, I’ acts on V(p) by a character ® extending . The group D’
is generated by a Frobenius lift ¢’ in D’ and I’, and ¢’ normalizes I’; so, on p(¢')V(®), I’ acts
either by ® or ®.. If M;/F| is unramified, ®. = @4, and therefore p(¢) interchanges ® and ®.. In
particular ¢’ commutes with I’ and D’ is an abelian group. This implies $odp "t =0Q =g for Ij;
so, [I]||(Q — 1) if M;/F\ is unramified, and hence |I||(Q — 1)| Im(p)| is bounded independently of p..

If M,/ F; is ramified, we can still argue as above, and find V(p) = V(®) & V(®.) for a character
® extending ¢ to I'. Since ¢ € D’ normalizes I, either (1) @4 = @ or (ii) 4y = ®.. The case (ii)
implies ¢, = 4. Since ¢ € D" and ¢ is a character of D', vy = ¢; s0, p. = ¢, which is against
absolute irreducibility of 5. Thus Case (i) occurs, and ®, = ® and hence ® extends to D’ (i.e., D’
is abelian). Thus we find p = IndB, ®. Since ¢ commutes with I’, we find 1I}||(g — 1). In any case,
|I|’ — 1)| Im(p)| always. O

The following corollary of the proof of the above lemma is useful:

Corollary 6.18. Let the notation and the assumptions be as in Lemma 6.17. If pa is a deformation
of p= Indf\r/}I @ for 0 # p, then the Artin conductor of pa is equal to the Artin conductor of p.

Proof. The Artin conductor of the induced representation Indf\r/}I ¢ is given by Ny, /r (€(§))d(M/ Fy)
for the conductor €(§) = €(&|;) of the character € and the relative discriminant d(M;/F). Under the
notation in the proof of Lemma 6.17, the p-primary part I]’D is a quotient of IFX Write pg = IndFI

by Lemma 6.17. Since ®p |/ factors through I, If @[ # 1, €(®) = &(p) = L. If ¢ is unralmﬁed
we get p = . against absolute irreducibility of p. This implies €(®) = €(¢), and hence the
conductor of p4 and p match. O

6.5. R =T theorem. We recall here how the local ring attached to p = Ind}; @ of h™ (9, e; W)
can be identified with the universal Galois deformation ring, reducing the fact to [F06, §7]. This
fact is used in §6.3. The Taylor-Wiles argument implemented by Fujiwara for quaternionic modular
forms identify the universal Galois deformation ring with a local ring of a Hilbert modular Hecke
algebra h7-°" (M, x; W) of weight x = (k1, k2) € Z[I] of diagonal torus T = G, x G,, C GL(2),p
and a finite order Neben character set x = (x1, X2, X+) of T(Op) x Clp(M'p>). See Definition 6.5
in the text and (SA1-3) in [PAF, §4.3.1] for the weight and the Neben character set; in particular,
K satisfies k1 + Ky = [k]I with [k] € Z for I = ) ; v. Strictly speaking, Fujiwara works with
quaternionic automorphic forms of a division algebra D,r producing Shimura variety of dimension
< 1. So here we describe how we can shift from quaternionic automorphic forms to Hilbert modular
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forms by the Jacquet—Langlands correspondence (which is perhaps not in the literature though
obvious for some specialists).

We first study briefly a slight generalization of the deformation problems discussed in [EMI,
§6.1.1]. In this section, W is a discrete valuation ring sufficiently large but a finite extension of Z,,.
We write F := W/myy.

Let F(p) be the splitting field of 7 = Ind} B; so, Gal(F(p)/F) = Im(p). Let S be the set of
prime factors of 91, and recall Sy, C S which is the set of primes [ such that the image p(Dy) is
non-abelian; so, it falls in the normalizer of a subtorus of GLy(F). In other words, Ss. is made up of
super cuspidal primes v for 7(¢) (or equivalently, the set of v with absolutely irreducible Indh; ¢|p, :
See = {l|i(¥)x(1))}). Then S = S,y U Ss.. Write F®Ss¢)(p) for the maximal p-profinite extension of
F(p) unramified outside p and S, and put G := Gal(F®%<) /F) with G’ := Gal(F®%<) /M). We
write Dy (resp. I;) for the decomposition (resp. inertia) group in G of a prime [ of F. Since ¢ has
order prime to p (and p > 2) and 7 = Ind4; B, the image 5(I;) of the [-inertia subgroup for [[pM’ is
a non-trivial subgroup having values in the normalizer of a subtorus of GLy(F).

Recall the Neben character set € defined in Definition 6.7 for ¢ (i.e., €j,4 = e;q
new, and €, = €;7" for q € Sse). In this subsection, the choice of “new” or “min” does not matter
since the Hecke algebras produced are all isomorphic (as long as projecting algebra to the “new”
part when we take €¢"), since each principal series automorphic representation at q & S,. U {p|p}

® .
has a unique minimal vector (up to scalars) assigned by €7'*"

for ? = min or

5" and a unique new vector (up to scalars)
at the same time. At p|p, we choose minimal branch character ¢, = eg%" (though as we have done
above (6.6), we have chosen ¢ so that ;""" = e*"). Our argument works even if ;""" # 7 (i.e.,
we do not make the specific choice of ¢ with ¢~ = ).

Pick a Neben character set x deforming e. This means that at x» ¢ = €74 mod my (? =1,2,+)
for all q outside p and x is trivial outside S. We write the Hilbert modular Hecke algebra h,, , =
h-ord(M,, x; W) of weight kK = (k1,k2) with a Neben character set x = (x1, X2, X+), Which is a
quotient of h = h™° (M, ¢; W) by an arithmetic point P of W[[T(0,) x Clp(M'p>]] associated
to k and x. Here the minimal level 91, is determined by x as described just above Definition 6.7,
and each automorphic representation m whose minimal vector induces a W-algebra homomorphism
Ar o hy y — W as Hecke eigenvalues has principal series component 7(m1 q, 72 4) With x4 = 7;,q for
all primes q outside Ss. U {p|p}. Then x; is given by, for all z € Opxm/

k]I
p

We write the character of the left-hand-side of (6.14) as x. 7 for ? = 1,2,+. Note that 9, =
MN(E(x1,p) NE(x2,p)) (s0, M, /M is a factor of a hight power of p).

At a prime []i(¢)) having odd exponent in J(v), Fujiwara chooses for some reason a quaternion
algebra D ramified only at such places and most ramified at archimedean places [F06, §3.7] (so,
D ®g R has at most one split factor M3(R)). Main reasons for this choice of D are: Since he chooses

(6.14) Xj(®)zy? =¢€j(r) mod my (j=1,2) and x4 (z)zpy” =ei(x) mod myy.

the étale cohomology of a Shimura variety of an appropriate level group K C Gp(F éoo)> (Gp = D)
for the Taylor-Wiles ingredient Mg of Hecke modules in (tw3) of [HMI, §3.2.3], to guarantee torsion-
freeness of Mg required by the Taylor-Wiles argument, he needs to shift to Shimura variety of
dimension < 1. In addition, as described in [F06, §3.7], a direct local-global compatibility in [GK80]
of Hilbert modular Galois representations made out of D by Carayol in the indefinite case and by
Taylor otherwise assures modular Galois deformations to have required local form at v]i(1)t(v)).

If 3(y)MR(v) is trivial, everything we say here is exposed in [HMI, §3.2.4], where the Taylor-Wiles
argument is done only using Hilbert modular forms. In [HMI, §3.2.4], Mg is cut out from the p-adic
Hecke algebra h"'o’”d(‘ﬁxQ, x; W) of each extra level @) which is always torsion-free; so, there is no
need to shift from GL(2),r to Gp; however, we do not reach the freeness of Fujiwara’s Mg over
the corresponding local ring of the Hecke algebra [F06, Theorem 0.4]. In any case, the case where
J()R(¢) # 1 is not treated in [HMI] mainly to make the book short.

Fujiwara’s Galois cohomological computation [F06, §3] similar to [HMI, §3.2.4] (to show that
{Mg}q produces a Taylor-Wiles system) is nothing to do with the choice of Gp or GL(2); so, the
only things necessary is to identify the level group in GLQ(a) which produces the Hecke algebra
containing the local ring parameterizing all modular deformations of a given type. Or else, as
local-global compatibility and cohomological computation of the tangent spaces of local and global
deformation rings supplied by Fujiwara, we can give ourselves Mq using appropriate Hecke algebras



NON-VANISHING OF INTEGRALS OF A MOD p MODULAR FORM 47

similarly to [HMI] and repeat the argument as in [HMI], for which the exposition will be technical,

long and tedious. So we describe in this subsection the deformation type Fujiwara used at primes

v|i(¢0)e(¢), and we show that all Jacquet-Langlands image for GL(2) (from D) produces a unique

local ring Ty , of h, , with respect to the level data (M, x), and patching {Tyx , }«,, together, we

produce a unique local ring T of h universal among nearly ordinary deformations of minimal level.
Plainly the following condition is satisfied:

(m) for all primes | outside p, ramification index of U in F(p)/F is prime to p.
Let p: G — GL2(A) (A € CLg) be a deformation of p = Ind%,; @ : G — GLy(F) acting on V(p). We

~

fix the ordinary quotient character 6 = @, of p so that p|p, = (g %) Identifying the inertia group
of maximal abelian extension of F, with Oy, we say p is p-ordinary if

(») palp, = (616‘“ 6;) for two characters 05, : Dy — A* with 6|1, = €;, mod myu for
j=172.
Here €, p is in the Neben character set made out of .. By (A2), there is no ambiguity of the order
of 0 ,. We call d2 , the ordinarity (quotient) character of pa. The weight (x, x) condition is

~ [O1,p *

(bx) palD, = ( o 6“) for two characters 05, : Dy — A* with §; |1, = X«,jl1, for j =1,2.

For [ € Sup, in Definition 6.7, we have chosen €; : Iy — W> as Neben characters defined by ¢.
By extending scalars F, we assume that p|;, = € @ € for [ € Sgp, with €;( = (¢;,; mod my).
We impose a “minimality” condition for q € S, (similar to (p)) :

(qab) For q € Sap, we have p|r, mod ma = (%q con )

Here we regard ¢ as having values in A by the W-algebra structure W — A. In the condition (qqp),
the right-hand-side is always diagonal by our choice of G (i.e., q only can ramify in F(p)/F). For
any deformation p4 on the bigger Galois group Gal(M /F), pa satisfying (qqs) factors through G as
the splitting field of p4 over F(p) is p-profinite unramified. The following rigidity result at v € S,
follows from Lemma 6.17
(v) Forv € S (i-e., 0|i(¥)e(¥)), plp, = IndDy ® 4 for a character ® 4 of conductor €(py,) with
Py =9y mod my, ’

where D] is the decomposition group at v of G'. We always impose these two conditions (p) and
(dap), while (v) is automatic by Corollary 6.18. If a p-adic Galois character £ : G — @: satisfies
&(x) = x4 (x)x][f]l for z € F,(., as a Hecke character, the unitarization of the archimedean avatar
of ¢ is the archimedean avatar of x.

We consider the following functors for a fixed absolutely irreducible representation p : G —
GLy(F) satisfying (p) and (gas). Recall DY, D, D, : C — SETS given by

DP(A) :={pa : G — GLa(A)|ps mod my = p}/T(m4),

Do4(A) = {pa € D(A)|(p) for all p|p and (qup) for all q € Sap},
DY 4(A) = {pa € D" (A)|(px) for all p|p},

DIE(A) = {pa € D'(A)|det p = £} for * = nothing or &,

where I'(m 4 ) := Ker(GL2(A) — GL2(A/my4)). For the local ring T of h whose Galois representation
M/F)

(6.15)

pr deforms P, as a character of F, det pr = @|pxxar for xas := (
A

The deformation problem D! in (6.15) requires (h2-3) and (Q4-6) in [HMI, §3.2.1] for primes
outside Ss.U{p}, and at q € S, no restriction imposed; so, it is the type denoted by u (unrestricted)
in [F06, §3.7]. Strictly speaking, our choice of the Galois group G automatically imposes (v) (and
this is essentially the content of the condition u in [F06, §3.7]). The other conditions (h?) and
(Q?) in [HMI, §3.2.1] are either automatic by our choice of G or does not apply for the induced
representation p = Indf\} @ for ¢ of order prime to p. We record the following fact proven in [HMI,
Theorem 3.25], [F06, Theorem 3.34] and [EMI, Theorem 6.1.1] covering (possibly) different cases:

Theorem 6.19. Let the notation be as above. The functors D for the properties ? and * in (6.15)
is represented by a universal couple (R., pl), respectively, so that D°(A) = Home(R?, A) by p — ¢,
with ¢, 0 p. = p mod I'(m,).
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Write Clf(x) for the strict class group modulo r. Decompose Clj:(M'p>®) = I't x A+ for the
maximal torsion subgroup A*. Then R’ for ? = (), ord is a W[A*]-algebra by det(p’)|o+. Noting
that e, induces a character of AT. Then we define

Do (4) = {p € D(A)|det(p)|ar = pp0 s}
Plainly D%+ is represented by
(6.16) R4 = R @uriat ey W= R/ (det(p”)(8) — €4(6))sen+

and the universal representation p° %+ which the projection of p°™® to GLo(R"%¢+). The rep-
resentations p’ is called the universal representation (of type (?,%)). By det(p"®<+) : I'p —
(Revde4)% (vesp. det(p°™?) : Clp(Mp>®) — R*), R"%+ (resp. R) is a W/[[['r|]-algebra (resp.
WI[Clp(9'p*°)]]-algebra).

Since k1 + k2 = [K]1, the character x4 in (6.14) factors through O, /O which is a subgroup of

ClE(p™), where O C O is the group of totally positive units. Here O7 is the closure of O in the
compact group O,. Since p is unramified in /" and p > 2, O, is uniquely a product of a torsion-free
subgroup I'; and a maximal torsion subgroup A™, ¢; can be regarded as a character of A~. Then
X, = X;11 Xx,2 as a character of O induces a character of O = I'. x A~ whose restriction to A~
is given by €| ox- Also the image of O in the quotient 'k of Clp(p™) is canonically a factor of

Oy /OX. Thus we have a well defined Xm+|1‘;- Then, we define yr : T' =5 xT7 — W by x5 Xe.+-
Tracking down our construction, similarly to (6.16), we obtain

Corollary 6.20. Let £ be a Galois character of G given by £(x) = X+(x)x][f]l regarded as a Hecke

character (50, §|A+ — €+|A+)- Then Ri = Rord’é+ ®W[[FH7XF W, and pg 15 the pTOjECtiOTl Of pord,ar .

Let the notation be as in Corollary 6.20. Choose a weight x such that k = k1 — ke + 1 > 21.
Let ¢ and x be as in Corollary 6.20. For a suitably chosen level group K = [[, Kq C Gp(Fa)
(and a Neben character set) in [F06, §3.7] relative to 7, Fujiwara made a p-adic Hecke algebra Hi ,
of weight (k,x) with respect to the level K and identified (RS, p&) with (T’%X, prex) for a unique
local ring T2 of H, , carrying the quaternionic modular deformation pp=.x of p. Since Fujiwara’s
quaternion algebra D splits at primes outside Ss., identifying D ®@p Fj(s.co0) With GLo(Fy(ssco0)),
KG9 = [ygs.. Kqa = Uo (M)(Ss¢) (up to inner conjugation) and his Neben-character set is identical
to x outside Sg. (up to inner conjugation). The choice of K. := qussc K, and the character
(identifying a unique vector in the representation space up to scalars) is described in [F06, §3.7]
(via a result of Gérardin-Kutzko [GK80] making the local Langlands correspondence explicit for
induced representations on the Galois side and the automorphic side). We do not specify K. but
just mention that its level is given by the Ss.-part of Mg, in (6.2). The main theorem of [F06,
Theorem 0.2] include

Theorem 6.21 (K. Fujiwara). Suppose k1 —ko > I (i.e., K1,y —ko, > 1 for allv € Ip). We have a
canonical isomorphism (RS, p&) = (T%X, prex) under (unr), (ord) and (A2-3). In particular, TRX
is a relative local complete intersection over W.

The local complete intersection property follows automatically from the Taylor-Wiles system argu-
ment Fujiwara used (cf. [EMI, Theorem 6.2.20]).

Corollary 6.22. Let the notation and the assumption be as in Theorem 6.21. Then we have a
canonical isomorphism (Ty v, pr,. ) = (TFX, prex) for the unique local ring Ty y of hy y carrying a
deformation of p. Moreover, for the unique local ring T of h = h™ "N, &; W) (e = €'™) specializing
to Ty, by the control theorem (in [PAF, Corollary 4.31]) and its Galois representation pr, we have

a canonical isomorphism (T, pr) = (RO"+, porde+); in particular, T is a relative local complete
intersection over W[[T].

By the local Langlands conjecture proven by Kutzko [K80] and the local-global compatibility
(outside p) of p-adic Hilbert modular Galois representation actually made out of quaternion alge-
bras, the local Artin conductor at a prime [ 1 p of the p-adic Galois representation attached to a
quaternionic holomorphic automorphic representation 7 of Gp(Fa) is equal to the automorphic con-
ductor of the Jacquet-Langlands image JL(w) of 7 as an automorphic representation of GLa(Fy).
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As described in [F06, §3.7], the local-global compatibility follows from Carayol’s (resp. Taylor’s)
construction [C86] (resp. [T89], [T95]) of the Galois representation if Fujiwara’s quaternion algebra
D is indefinite (resp. definite). For this, the choice of D is also forced (in appearance).

Proof. Simply, write (T, pg) (resp. (T, p)) for (TR, prx) (vesp. (Tyy,pr,.,)). Then T and Tp
are reduced free of finite rank over W. Thus Tr ®z, Qp = [[ge; £ and T ®z, Q, = [[p ey '
for finite extensions E, E’ of Frac(W) with finite index set J, J'. Extending scalars W, we may
assume that O = Op = W for all E, E’. By the universality of (T, pr), for each p € DE(W),
we have a unique holomorphic cuspidal automorphic representation 7p of Gp(Fa) whose Galois
representation p2 is isomorphic to p. Then 7p has a unique vector fp (up to scalars) in the space
of cusp forms Sp on Fujiwara’s level group K and his Neben character. Thus p? is isomorphic to
the Galois representation pg : G — GL2(Op) attached to the component E € J uniquely. We thus
write (7p, fp) as (7g, fr). By Jacquet-Langlands correspondence, we have a holomorphic cuspidal
automorphic representation 7y = JL(7g) of GLa(Fy) whose Galois representation p, is isomorphic
to pg. By the multiplicity one theorem, 7/; is unique.

The representations pg and pf have equal S,.-part of the Artin conductor (equal to the S, .-part
of d(M/F)Nyr(€(¥))) by Corollary 6.18. By the identification of K¢ with Up(9):<) up to
inner conjugations in Gp, 7% has a minimal vector whose weight and Neben-character set is (k, x)
on the level group Uy(M) outside p. Thus 7y has a unique minimal vector f% in the space S of
nearly ordinary modular forms of weight (k, x) and of level Uy (M(€(x1,p) N€(x2,))). Thus we have
a correspondence {E € J|pg = p} — {E’ € J'|prr = p} of subsets of J and J'. By multiplicity
one, this set {E' € J'|pps = p} is a singleton, and by universality of (Tr, pr), {FE € J|pr = p} is
again a singleton. Thus we have an injection J < J'. For any E’ € J', pg: € DS (W) by definition,
and hence J = J'. This implies Tr ®z, Q, = T ®z, Q, as W-algebras by an isomorphism induced
by the bijection: F = E’. Since the Jacquet-Langlands correspondence preserves Hecke operators
outside S, by Chebotarev density, Hecke operators outside S generate Tr and T over W inside
Tr ®z, Qp =T ®z, Qp; so, we conclude T' = T as desired.

Once (Tr, pp) = (T, p) is established with local complete intersection property over W, the
identity (T, pr) = (R"%c+ p°rd<+) (and local complete intersection property over W[[T]]) follows
from the control theorem (cf. [HMI, §3.2.8]) by a standard argument. O

Letting G act on sl(A) by 2 +— pa(o)zpa(o)~!, we get the adjoint representation Ad(p) out of

pa € DY(A). An immediate consequence of this corollary is (see [EMI, Theorem 6.2.21])

Corollary 6.23. Let the notation and the assumption be as in Corollary 6.22. Then Pontryagin
dual Sel(Ad(pa))* of the adjoint Selmer group Sel(Ad(pa)) for any deformation pa € D4+ (A)

is canonically isomorphic to Qr/wir) wr) A, where Qr/wr) is the module of continuous

sPpa
1-differentials over W[[T]]. In particular, applying this to p := Indh, & € Do+ (A), we have
Sel(Ad(p))* = Qr/w(r) @w(r].e, A, which implies (H(p)) = Fitta(Sel(Ad(pa))*) for the Fitting
ideal Fittp(X) of a finite A-module X .

We have two remarks.

Remark 6.24. The identity of the differential module and the dual Selmer group is a general non-
sense (see [EMI, (6.8)]), and the identity of the Fitting ideal is a consequence of the complete inter-
section property (see [EMI, Theorem 6.2.21]). Since Ad(Indy (@) = xar ®Ind}; 3= and Sel(yp)* =
Cly, (i(1) @2 W[[Ty,]], we have Sel(Indh; @)* 22 (Cly, (i) @z W[[Ty,]]) ® X [~ ] for the anticyclo-
tomic Iwasawa module X~ [p~] as in [HMI, Theorem 5.33], where Cl;,(i(v))) = Coker(Clp(i(¢)) —
Clar(i(v))). The identity Sel(xr)* = Cl;;(i(v))) @z W][I'3,]] follows from Lemma 6.17. In the above
reference [HMI, Theorem 5.33], the Cl;, appears in place of the bigger Ci;,(i(¥))) as we assumed
i(y)r(y) = 1. Since the deformation problem Fujiwara constructed is unrestricted at vli(y)e(w),
Lemma 6.17 implies that Sel(xs) in this general case reflects deformation of the form Indf(} ® for a
character ® of Cly(i(1)) and is isomorphic to Cly,(i(¢)) ®z W][[I'},]] by the same argument as in
[HMI]. This is an explanation of the decomposition Fitts (Sel(Indh, 3)*) = hi(M/F) Fitta (X~ [¢]).

The second remark is the product formula H(y) = hi(M/F)L, (1) in an algebraic manner.

Remark 6.25. Decomposing Cly (€(p)p™) as AS\Z) x I'§; for the p-profinite part I'§, with the

prime-to-p part AS\Z), we can extend ¢ to ¢° : G — W][[['{,;]] by sending ¢ € G to its image



NON-VANISHING OF INTEGRALS OF A MOD p MODULAR FORM 50

(6,7) € Ag\? x T, in this order and giving the value ¢°(g) := @(6)y € W[[['$,]]. Then Indk, ¢° €
Derde+ (W[TS,]]), and hence we have the corresponding projection 6 : T — W([[['S,]]. Therefore we
get a decomposition Spf(T) = Spf(W[[T'3,]])USpf(T+) for the complementary reduced closed formal
subscheme Spf(T+). Similarly, we have a tautological surjection ¢ : W[[['S;]] — A, which produces
Spf(A) U Spf(W[I',]]F) for the image W[[I'3,]]* of W[[I'$,]] in Ker(@) ®wry) Frac(W[[I]]). Then
we have an exact sequence 0 — Ker(d) - R — S — 0 for R = T and S = WJ[[['$,]] [H13, §5].
Then for Cy := W([['},]] @ T+ and Cas := W[[['3/]] ©@wrs, ). A- By [H13, Lemma 5.3], we have
(H(p)) = Fittp (Co®sA) Fitta (Chyr) and it is easy to see Fitta (Car) = (hi(M/F)). Thus the solution

of the anticyclotomic main conjecture means Fitty (Co ®s A) = (Ly,(v)).
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